1
|
Prakash K, Baddeley D, Eggeling C, Fiolka R, Heintzmann R, Manley S, Radenovic A, Shroff H, Smith C, Schermelleh L. Resolution in super-resolution microscopy - facts, artifacts, technological advancements and biological applications. J Cell Sci 2025; 138:jcs263567. [PMID: 40421932 DOI: 10.1242/jcs.263567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Super-resolution microscopy (SRM) has undeniable potential for scientific discovery, yet still presents many challenges that hinder its widespread adoption, including technical trade-offs between resolution, speed and photodamage, as well as limitations in imaging live samples and larger, more complex biological structures. Furthermore, SRM often requires specialized expertise and complex instrumentation, which can deter biologists from fully embracing the technology. In this Perspective, a follow-up to our recent Q&A article, we aim to demystify these challenges by addressing common questions and misconceptions surrounding SRM. Experts offer practical insights into how biologists can maximize the benefits of SRM while navigating issues such as photobleaching, image artifacts and the limitations of existing techniques. We also highlight recent developments in SRM that continue to push the boundaries of resolution. Our goal is to equip researchers with the crucial knowledge they need to harness the full potential of SRM.
Collapse
Affiliation(s)
- Kirti Prakash
- Delft Center for Systems and Control, Faculty of Mechanical, Maritime, and Materials Engineering, Technische Universiteit Delft, Delft, 2628 CN, The Netherlands
| | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Jena, 07745, Germany
- Leibniz Institute of Photonic Technology, Jena, 07743, Germany
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, 07743, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Jena, 07745, Germany
| | - Suliana Manley
- Laboratory of Experimental Biophysics, School of Basic Sciences, Institute of Physics Interfaculty Institute of Bioengineering, EPFL SB-LEB, Lausanne, 1015, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, School of Engineering, Institute of Bioengineering, EPFL STI IBI-STI LBEN, Lausanne, 1015, Switzerland
| | - Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA 20147, USA
| | - Carlas Smith
- Delft Center for Systems and Control, Faculty of Mechanical, Maritime, and Materials Engineering, Technische Universiteit Delft, Delft, 2628 CN, The Netherlands
| | | |
Collapse
|
2
|
Pandey S, Pathoor N, Wohland T. Super-resolution algorithms for imaging FCS enhancement: A comparative study. Biophys J 2025:S0006-3495(25)00205-X. [PMID: 40181536 DOI: 10.1016/j.bpj.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
Understanding the structure and dynamics of biological systems is often limited by the trade-off between spatial and temporal resolution. Imaging fluorescence correlation spectroscopy (ImFCS) is a powerful technique for capturing molecular dynamics with high temporal precision but remains diffraction limited. This constraint poses challenges for quantifying dynamics of subcellular structures like membrane-proximal cortical actin fibers. Computational super-resolution microscopy (CSRM) presents an accessible strategy for enhancing spatial resolution without specialized instrumentation, enabling compatibility with ImFCS. In this study, we evaluated various CSRM techniques, including super-resolution radial fluctuations, mean-shift super-resolution, and multiple signal classification imaging, using total internal reflection fluorescence datasets of actin fibers labeled with F-tractin-mApple. By combining structural masks from total internal reflection fluorescence and CSRM, we distinguished off-fiber, mixed, and on-fiber regions for region-specific diffusion analyses. Although all CSRM algorithms improve ImFCS data analysis, super-resolution radial fluctuations demonstrated superior performance in identifying cortical actin fibers, showing minimal variance in on-fiber diffusion coefficients. These findings establish a framework for integrating CSRM with ImFCS to achieve high-resolution spatial and dynamic characterization of subcellular structures from single measurements.
Collapse
Affiliation(s)
- Shambhavi Pandey
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nithin Pathoor
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Lokesh NR, Pownall ME. Microscopy methods for the in vivo study of nanoscale nuclear organization. Biochem Soc Trans 2025; 53:BST20240629. [PMID: 39898979 DOI: 10.1042/bst20240629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Eukaryotic genomes are highly compacted within the nucleus and organized into complex 3D structures across various genomic and physical scales. Organization within the nucleus plays a key role in gene regulation, both facilitating regulatory interactions to promote transcription while also enabling the silencing of other genes. Despite the functional importance of genome organization in determining cell identity and function, investigating nuclear organization across this wide range of physical scales has been challenging. Microscopy provides the opportunity for direct visualization of nuclear structures and has pioneered key discoveries in this field. Nonetheless, visualization of nanoscale structures within the nucleus, such as nucleosomes and chromatin loops, requires super-resolution imaging to go beyond the ~220 nm diffraction limit. Here, we review recent advances in imaging technology and their promise to uncover new insights into the organization of the nucleus at the nanoscale. We discuss different imaging modalities and how they have been applied to the nucleus, with a focus on super-resolution light microscopy and its application to in vivo systems. Finally, we conclude with our perspective on how continued technical innovations in super-resolution imaging in the nucleus will advance our understanding of genome structure and function.
Collapse
Affiliation(s)
- Nidhi Rani Lokesh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, U.S.A
| | - Mark E Pownall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, U.S.A
| |
Collapse
|
4
|
Curd A, Cleasby A, Baird M, Peckham M. Modelling 3D supramolecular structure from sparse single-molecule localisation microscopy data. J Microsc 2024; 296:115-120. [PMID: 37877157 DOI: 10.1111/jmi.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023]
Abstract
Single-molecule localisation microscopy (SMLM) has the potential to reveal the underlying organisation of specific molecules within supramolecular complexes and their conformations, which is not possible with conventional microscope resolution. However, the detection efficiency for fluorescent molecules in cells can be limited in SMLM, even to below 1% in thick and dense samples. Segmentation of individual complexes can also be challenging. To overcome these problems, we have developed a software package termed PERPL: Pattern Extraction from Relative Positions of Localisations. This software assesses the relative likelihoods of models for underlying patterns behind incomplete SMLM data, based on the relative positions of pairs of localisations. We review its principles and demonstrate its use on the 3D lattice of Z-disk proteins in mammalian cardiomyocytes. We find known and novel features at ~20 nm with localisations of less than 1% of the target proteins, using mEos fluorescent protein constructs.
Collapse
Affiliation(s)
- Alistair Curd
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Alexa Cleasby
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Michelle Baird
- Cell and Developmental Biology Centre, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michelle Peckham
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Kusumi A, Tsunoyama TA, Suzuki KGN, Fujiwara TK, Aladag A. Transient, nano-scale, liquid-like molecular assemblies coming of age. Curr Opin Cell Biol 2024; 89:102394. [PMID: 38963953 DOI: 10.1016/j.ceb.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
This review examines the dynamic mechanisms underlying cellular signaling, communication, and adhesion via transient, nano-scale, liquid-like molecular assemblies on the plasma membrane (PM). Traditional views posit that stable, solid-like molecular complexes perform these functions. However, advanced imaging reveals that many signaling and scaffolding proteins only briefly reside in these molecular complexes and that micron-scale protein assemblies on the PM, including cell adhesion structures and synapses, are likely made of archipelagoes of nanoliquid protein islands. Borrowing the concept of liquid-liquid phase separation to form micron-scale biocondensates, we propose that these nano-scale oligomers and assemblies are enabled by multiple weak but specific molecular interactions often involving intrinsically disordered regions. The signals from individual nanoliquid signaling complexes would occur as pulses. Single-molecule imaging emerges as a crucial technique for characterizing these transient nanoliquid assemblies on the PM, suggesting a shift toward a model where the fluidity of interactions underpins signal regulation and integration.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Amine Aladag
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Cheng X, Nareddula S, Gao HC, Chen Y, Xiao T, Nadew YY, Xu F, Edens PA, Quinn CJ, Kimbrough A, Huang F, Chubykin AA. Impaired Experience-Dependent Theta Oscillation Synchronization and Inter-Areal Synaptic Connectivity in the Visual Cortex of Fmr1 KO Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.601989. [PMID: 39211264 PMCID: PMC11360911 DOI: 10.1101/2024.07.23.601989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fragile X syndrome (FX) is the most prevalent inheritable form of autism spectrum disorder (ASD), characterized by hypersensitivity, difficulty in habituating to new sensory stimuli, and intellectual disability. Individuals with FX often experience visual perception and learning deficits. Visual experience leads to the emergence of the familiarity-evoked theta band oscillations in the primary visual cortex (V1) and the lateromedial area (LM) of mice. These theta oscillations in V1 and LM are synchronized with each other, providing a mechanism of sensory multi-areal binding. However, how this multi-areal binding and the corresponding theta oscillations are altered in FX is not known. Using iDISCO whole brain clearing with light-sheet microscopy, we quantified immediate early gene Fos expression in V1 and LM, identifying deficits in experience-dependent neural activity in FX mice. We performed simultaneous in vivo recordings with silicon probes in V1 and LM of awake mice and channelrhodopsin-2-assisted circuit mapping (CRACM) in acute brain slices to examine the neural activity and strength of long-range synaptic connections between V1 and LM in both wildtype (WT) and Fmr1 knockout (KO) mice, the model of FX, before and after visual experience. Our findings reveal synchronized familiarity-evoked theta oscillations in V1 and LM, the increased strength of V1→LM functional and synaptic connections, which correlated with the corresponding changes of presynaptic short-term plasticity in WT mice. The LM oscillations were attenuated in FX mice and correlated with impaired functional and synaptic connectivity and short-term plasticity in the feedforward (FF) V1→LM and feedback (FB) LM→V1 pathways. Finally, using 4Pi single-molecule localization microscopy (SMLM) in thick brain tissue, we identified experience-dependent changes in the density and shape of dendritic spines in layer 5 pyramidal cells of WT mice, which correlated with the functional synaptic measurements. Interestingly, there was an increased dendritic spine density and length in naïve FX mice that failed to respond to experience. Our study provides the first comprehensive characterization of the role of visual experience in triggering inter-areal neural synchrony and shaping synaptic connectivity in WT and FX mice.
Collapse
|
7
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
8
|
Andronov L, Han M, Zhu Y, Balaji A, Roy AR, Barentine AES, Patel P, Garhyan J, Qi LS, Moerner WE. Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles. Nat Commun 2024; 15:4644. [PMID: 38821943 PMCID: PMC11143195 DOI: 10.1038/s41467-024-48991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
The SARS-CoV-2 viral infection transforms host cells and produces special organelles in many ways, and we focus on the replication organelles, the sites of replication of viral genomic RNA (vgRNA). To date, the precise cellular localization of key RNA molecules and replication intermediates has been elusive in electron microscopy studies. We use super-resolution fluorescence microscopy and specific labeling to reveal the nanoscopic organization of replication organelles that contain numerous vgRNA molecules along with the replication enzymes and clusters of viral double-stranded RNA (dsRNA). We show that the replication organelles are organized differently at early and late stages of infection. Surprisingly, vgRNA accumulates into distinct globular clusters in the cytoplasmic perinuclear region, which grow and accommodate more vgRNA molecules as infection time increases. The localization of endoplasmic reticulum (ER) markers and nsp3 (a component of the double-membrane vesicle, DMV) at the periphery of the vgRNA clusters suggests that replication organelles are encapsulated into DMVs, which have membranes derived from the host ER. These organelles merge into larger vesicle packets as infection advances. Precise co-imaging of the nanoscale cellular organization of vgRNA, dsRNA, and viral proteins in replication organelles of SARS-CoV-2 may inform therapeutic approaches that target viral replication and associated processes.
Collapse
Affiliation(s)
- Leonid Andronov
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Mengting Han
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Yanyu Zhu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Ashwin Balaji
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Biophysics PhD Program; Stanford University, Stanford, CA, 94305, USA
| | - Anish R Roy
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | | | - Puja Patel
- In Vitro Biosafety Level 3 (BSL-3) Service Center, School of Medicine; Stanford University, Stanford, CA, 94305, USA
| | - Jaishree Garhyan
- In Vitro Biosafety Level 3 (BSL-3) Service Center, School of Medicine; Stanford University, Stanford, CA, 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Sarafan ChEM-H; Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, 94158, USA.
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
- Sarafan ChEM-H; Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Andronov L, Han M, Zhu Y, Balaji A, Roy AR, Barentine AES, Patel P, Garhyan J, Qi LS, Moerner W. Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566110. [PMID: 37986994 PMCID: PMC10659379 DOI: 10.1101/2023.11.07.566110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The SARS-CoV-2 viral infection transforms host cells and produces special organelles in many ways, and we focus on the replication organelle where the replication of viral genomic RNA (vgRNA) occurs. To date, the precise cellular localization of key RNA molecules and replication intermediates has been elusive in electron microscopy studies. We use super-resolution fluorescence microscopy and specific labeling to reveal the nanoscopic organization of replication organelles that contain vgRNA clusters along with viral double-stranded RNA (dsRNA) clusters and the replication enzyme, encapsulated by membranes derived from the host endoplasmic reticulum (ER). We show that the replication organelles are organized differently at early and late stages of infection. Surprisingly, vgRNA accumulates into distinct globular clusters in the cytoplasmic perinuclear region, which grow and accommodate more vgRNA molecules as infection time increases. The localization of ER labels and nsp3 (a component of the double-membrane vesicle, DMV) at the periphery of the vgRNA clusters suggests that replication organelles are enclosed by DMVs at early infection stages which then merge into vesicle packets as infection progresses. Precise co-imaging of the nanoscale cellular organization of vgRNA, dsRNA, and viral proteins in replication organelles of SARS-CoV-2 may inform therapeutic approaches that target viral replication and associated processes.
Collapse
Affiliation(s)
- Leonid Andronov
- Department of Chemistry; Stanford University, Stanford, CA 94305 U.S.A
| | - Mengting Han
- Department of Bioengineering; Stanford University, Stanford, CA 94305 U.S.A
| | - Yanyu Zhu
- Department of Bioengineering; Stanford University, Stanford, CA 94305 U.S.A
| | - Ashwin Balaji
- Department of Chemistry; Stanford University, Stanford, CA 94305 U.S.A
- Biophysics PhD Program; Stanford University, Stanford, CA 94305 U.S.A
| | - Anish R. Roy
- Department of Chemistry; Stanford University, Stanford, CA 94305 U.S.A
| | | | - Puja Patel
- In Vitro Biosafety Level 3 (BSL-3) Service Center, School of Medicine; Stanford University, Stanford, CA 94305 U.S.A
| | - Jaishree Garhyan
- In Vitro Biosafety Level 3 (BSL-3) Service Center, School of Medicine; Stanford University, Stanford, CA 94305 U.S.A
| | - Lei S. Qi
- Department of Bioengineering; Stanford University, Stanford, CA 94305 U.S.A
- Sarafan ChEM-H; Stanford University, Stanford, CA 94305 U.S.A
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158 U.S.A
| | - W.E. Moerner
- Department of Chemistry; Stanford University, Stanford, CA 94305 U.S.A
- Sarafan ChEM-H; Stanford University, Stanford, CA 94305 U.S.A
| |
Collapse
|
10
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
11
|
Schueder F, Rivera-Molina F, Su M, Marin Z, Kidd P, Rothman JE, Toomre D, Bewersdorf J. Unraveling cellular complexity with transient adapters in highly multiplexed super-resolution imaging. Cell 2024; 187:1769-1784.e18. [PMID: 38552613 DOI: 10.1016/j.cell.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Mapping the intricate spatial relationships between the many different molecules inside a cell is essential to understanding cellular functions in all their complexity. Super-resolution fluorescence microscopy offers the required spatial resolution but struggles to reveal more than four different targets simultaneously. Exchanging labels in subsequent imaging rounds for multiplexed imaging extends this number but is limited by its low throughput. Here, we present a method for rapid multiplexed super-resolution microscopy that can, in principle, be applied to a nearly unlimited number of molecular targets by leveraging fluorogenic labeling in conjunction with transient adapter-mediated switching for high-throughput DNA-PAINT (FLASH-PAINT). We demonstrate the versatility of FLASH-PAINT with four applications: mapping nine proteins in a single mammalian cell, elucidating the functional organization of primary cilia by nine-target imaging, revealing the changes in proximity of thirteen different targets in unperturbed and dissociated Golgi stacks, and investigating and quantifying inter-organelle contacts at 3D super-resolution.
Collapse
Affiliation(s)
- Florian Schueder
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
| | | | - Maohan Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Zach Marin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Phylicia Kidd
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Physics, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Luo H, Jiang C, Wen Y, Wang X, Wang F, Liu L, Yu H. Correlative super-resolution bright-field and fluorescence imaging by microsphere assisted microscopy. NANOSCALE 2024; 16:1703-1710. [PMID: 38099700 DOI: 10.1039/d3nr04096h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The resolution of fluorescence imaging has been significantly enhanced with the development of super-resolution imaging techniques, surpassing the diffraction limit and reaching sub-diffraction scales of tens of nanometers. However, the resolution of the bright-field images of cells is restricted by the diffraction limit, leading to a significant gap between the resolutions of fluorescence and bright-field imaging, which hinders the research of the precise distribution of intracellular nanostructures. A microsphere superlens offers a promising solution by providing label-free super-resolution imaging capabilities compatible with fluorescence super-resolution imaging. In this study, we used microsphere superlenses to simultaneously enhance the resolution of bright-field and fluorescence imaging, achieving correlated super-resolution bright-field and fluorescence imaging. Compared to conventional bright-field images, we improved the imaging resolution from λ/1.3 to λ/4.2. A correlative super-resolution of mouse skeletal muscle cells was achieved, enabling the clear observation of the precise distribution of nanoparticles in mouse skeletal muscle cells. Furthermore, microsphere superlenses inherit the advantages of optical imaging, which is expected to enable the capturing of ultrafast biological activity within living cells with extremely high temporal resolutions.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaodi Jiang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Shenyang Jianzhu University, Shenyang 110168, China
| | - Yangdong Wen
- Institute of Urban Rail Transportation, Southwest Jiaotong University, Chengdu 610000, China
| | - Xiaoduo Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Feifei Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, Hong Kong
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
13
|
Walker G, Brown C, Ge X, Kumar S, Muzumdar MD, Gupta K, Bhattacharyya M. Oligomeric organization of membrane proteins from native membranes at nanoscale spatial and single-molecule resolution. NATURE NANOTECHNOLOGY 2024; 19:85-94. [PMID: 38012273 PMCID: PMC10981947 DOI: 10.1038/s41565-023-01547-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
The oligomeric organization of membrane proteins in native cell membranes is a critical regulator of their function. High-resolution quantitative measurements of oligomeric assemblies and how they change under different conditions are indispensable to understanding membrane protein biology. We report Native-nanoBleach, a total internal reflection fluorescence microscopy-based single-molecule photobleaching step analysis technique to determine the oligomeric distribution of membrane proteins directly from native membranes at an effective spatial resolution of ~10 nm. We achieved this by capturing target membrane proteins in native nanodiscs with their proximal native membrane environment using amphipathic copolymers. We applied Native-nanoBleach to quantify the oligomerization status of structurally and functionally diverse membrane proteins, including a receptor tyrosine kinase (TrkA) and a small GTPase (KRas) under growth-factor binding and oncogenic mutations, respectively. Our data suggest that Native-nanoBleach provides a sensitive, single-molecule platform to quantify membrane protein oligomeric distributions in native membranes under physiologically and clinically relevant conditions.
Collapse
Affiliation(s)
- Gerard Walker
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Caroline Brown
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Xiangyu Ge
- Department of Pathology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Shailesh Kumar
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Mandar D Muzumdar
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, USA
| | - Kallol Gupta
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | | |
Collapse
|
14
|
Hutin S, Tully MD, Brennich M. Small-Angle X-Ray Scattering for Macromolecular Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:163-172. [PMID: 38507206 DOI: 10.1007/978-3-031-52193-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Small angle X-ray scattering (SAXS) is a versatile technique that can provide unique insights in the solution structure of macromolecules and their complexes, covering the size range from small peptides to complete viral assemblies. Technological and conceptual advances in the last two decades have tremendously improved the accessibility of the technique and transformed it into an indispensable tool for structural biology. In this chapter we introduce and discuss several approaches to collecting SAXS data on macromolecular complexes, including several approaches to online chromatography. We include practical advice on experimental design and point out common pitfalls of the technique.
Collapse
Affiliation(s)
- Stephanie Hutin
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, Grenoble, France
| | - Mark D Tully
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, Grenoble, France
| | - Martha Brennich
- European Molecular Biology Laboratory, Grenoble, Grenoble, France.
| |
Collapse
|
15
|
Astratov VN, Sahel YB, Eldar YC, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao YT, Hsieh CL, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked NT, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng JX, Kariman BS, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang GJ, Chu SW, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen MJ, Stanciu SG, Smolyaninova VN, Smolyaninov II, Leonhardt U, Sahebdivan S, Wang Z, Luk’yanchuk B, Wu L, Maslov AV, Jin B, Simovski CR, Perrin S, Montgomery P, Lecler S. Roadmap on Label-Free Super-Resolution Imaging. LASER & PHOTONICS REVIEWS 2023; 17:2200029. [PMID: 38883699 PMCID: PMC11178318 DOI: 10.1002/lpor.202200029] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 06/18/2024]
Abstract
Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.
Collapse
Affiliation(s)
- Vasily N. Astratov
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Yair Ben Sahel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonina C. Eldar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nikolay Zheludev
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Junxiang Zhao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zachary Burns
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Material Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Evgenii Narimanov
- School of Electrical Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Neha Goswami
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Emanuel Pfitzner
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Brian Abbey
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Alberto Diaspro
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Aymeric LeGratiet
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- Université de Rennes, CNRS, Institut FOTON - UMR 6082, F-22305 Lannion, France
| | - Paolo Bianchini
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Natan T. Shaked
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 6997801, Israel
| | - Bertrand Simon
- LP2N, Institut d’Optique Graduate School, CNRS UMR 5298, Université de Bordeaux, Talence France
| | - Nicolas Verrier
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | | | - Olivier Haeberlé
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | - Sheng Wang
- School of Physics and Technology, Wuhan University, China
- Wuhan Institute of Quantum Technology, China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, USA
| | - Yeran Bai
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Behjat S. Kariman
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Katsumasa Fujita
- Department of Applied Physics and the Advanced Photonics and Biosensing Open Innovation Laboratory (AIST); and the Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Moshe Sinvani
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Zeev Zalevsky
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Guan-Jie Huang
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shi-Wei Chu
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Omer Tzang
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Dror Hershkovitz
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Ori Cheshnovsky
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Mikko J. Huttunen
- Laboratory of Photonics, Physics Unit, Tampere University, FI-33014, Tampere, Finland
| | - Stefan G. Stanciu
- Center for Microscopy – Microanalysis and Information Processing, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Vera N. Smolyaninova
- Department of Physics Astronomy and Geosciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Igor I. Smolyaninov
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ulf Leonhardt
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sahar Sahebdivan
- EMTensor GmbH, TechGate, Donau-City-Strasse 1, 1220 Wien, Austria
| | - Zengbo Wang
- School of Computer Science and Electronic Engineering, Bangor University, Bangor, LL57 1UT, United Kingdom
| | - Boris Luk’yanchuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Alexey V. Maslov
- Department of Radiophysics, University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Boya Jin
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Constantin R. Simovski
- Department of Electronics and Nano-Engineering, Aalto University, FI-00076, Espoo, Finland
- Faculty of Physics and Engineering, ITMO University, 199034, St-Petersburg, Russia
| | - Stephane Perrin
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Paul Montgomery
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Sylvain Lecler
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
16
|
Barentine AES, Lin Y, Courvan EM, Kidd P, Liu M, Balduf L, Phan T, Rivera-Molina F, Grace MR, Marin Z, Lessard M, Rios Chen J, Wang S, Neugebauer KM, Bewersdorf J, Baddeley D. An integrated platform for high-throughput nanoscopy. Nat Biotechnol 2023; 41:1549-1556. [PMID: 36914886 PMCID: PMC10497732 DOI: 10.1038/s41587-023-01702-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/02/2023] [Indexed: 03/16/2023]
Abstract
Single-molecule localization microscopy enables three-dimensional fluorescence imaging at tens-of-nanometer resolution, but requires many camera frames to reconstruct a super-resolved image. This limits the typical throughput to tens of cells per day. While frame rates can now be increased by over an order of magnitude, the large data volumes become limiting in existing workflows. Here we present an integrated acquisition and analysis platform leveraging microscopy-specific data compression, distributed storage and distributed analysis to enable an acquisition and analysis throughput of 10,000 cells per day. The platform facilitates graphically reconfigurable analyses to be automatically initiated from the microscope during acquisition and remotely executed, and can even feed back and queue new acquisition tasks on the microscope. We demonstrate the utility of this framework by imaging hundreds of cells per well in multi-well sample formats. Our platform, implemented within the PYthon-Microscopy Environment (PYME), is easily configurable to control custom microscopes, and includes a plugin framework for user-defined extensions.
Collapse
Affiliation(s)
- Andrew E S Barentine
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yu Lin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Edward M Courvan
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Phylicia Kidd
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Miao Liu
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Leonhard Balduf
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Computer Science and Mathematics, University of Applied Sciences, Munich, Germany
| | - Timy Phan
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Computer Science and Mathematics, University of Applied Sciences, Munich, Germany
| | | | - Michael R Grace
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Zach Marin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Auckland Bioengineering Institute at University of Auckland, Auckland, New Zealand
| | - Mark Lessard
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Juliana Rios Chen
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Siyuan Wang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Karla M Neugebauer
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
- Nanobiology Institute, Yale University, West Haven, CT, USA.
| | - David Baddeley
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Auckland Bioengineering Institute at University of Auckland, Auckland, New Zealand.
- Nanobiology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
17
|
Balasubramanian H, Hobson CM, Chew TL, Aaron JS. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun Biol 2023; 6:1096. [PMID: 37898673 PMCID: PMC10613274 DOI: 10.1038/s42003-023-05468-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
The optical microscope has revolutionized biology since at least the 17th Century. Since then, it has progressed from a largely observational tool to a powerful bioanalytical platform. However, realizing its full potential to study live specimens is hindered by a daunting array of technical challenges. Here, we delve into the current state of live imaging to explore the barriers that must be overcome and the possibilities that lie ahead. We venture to envision a future where we can visualize and study everything, everywhere, all at once - from the intricate inner workings of a single cell to the dynamic interplay across entire organisms, and a world where scientists could access the necessary microscopy technologies anywhere.
Collapse
Affiliation(s)
| | - Chad M Hobson
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA.
| |
Collapse
|
18
|
Fuentes LA, Marin Z, Tyson J, Baddeley D, Bewersdorf J. The nanoscale organization of reticulon 4 shapes local endoplasmic reticulum structure in situ. J Cell Biol 2023; 222:e202301112. [PMID: 37516910 PMCID: PMC10373298 DOI: 10.1083/jcb.202301112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023] Open
Abstract
The endoplasmic reticulum's (ER's) structure is directly linked to the many functions of the ER, but its formation is not fully understood. We investigate how the ER-membrane curving protein reticulon 4 (Rtn4) localizes to and organizes in the membrane and how that affects the local ER structure. We show a strong correlation between the local Rtn4 density and the local ER membrane curvature. Our data further reveal that the typical ER tubule possesses an elliptical cross-section with Rtn4 enriched at either end of the major axis. Rtn4 oligomers are linear shaped, contain about five copies of the protein, and preferentially orient parallel to the tubule axis. Our observations support a mechanism in which oligomerization leads to an increase of the local Rtn4 concentration with each molecule, increasing membrane curvature through a hairpin wedging mechanism. This quantitative analysis of Rtn4 and its effects on the ER membrane result in a new model of tubule shape as it relates to Rtn4.
Collapse
Affiliation(s)
- Lukas A. Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zach Marin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jonathan Tyson
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Marin Z, Fuentes LA, Bewersdorf J, Baddeley D. Extracting nanoscale membrane morphology from single-molecule localizations. Biophys J 2023; 122:3022-3030. [PMID: 37355772 PMCID: PMC10432223 DOI: 10.1016/j.bpj.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Membrane surface reconstruction at the nanometer scale is required for understanding mechanisms of subcellular shape change. This historically has been the domain of electron microscopy, but extraction of surfaces from specific labels is a difficult task in this imaging modality. Existing methods for extracting surfaces from fluorescence microscopy have poor resolution or require high-quality super-resolution data that are manually cleaned and curated. Here, we present NanoWrap, a new method for extracting surfaces from generalized single-molecule localization microscopy data. This makes it possible to study the shape of specifically labeled membranous structures inside cells. We validate NanoWrap using simulations and demonstrate its reconstruction capabilities on single-molecule localization microscopy data of the endoplasmic reticulum and mitochondria. NanoWrap is implemented in the open-source Python Microscopy Environment.
Collapse
Affiliation(s)
- Zach Marin
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Lukas A Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut
| | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
20
|
Paupiah AL, Marques X, Merlaud Z, Russeau M, Levi S, Renner M. Introducing Diinamic, a flexible and robust method for clustering analysis in single-molecule localization microscopy. BIOLOGICAL IMAGING 2023; 3:e14. [PMID: 38487695 PMCID: PMC10936397 DOI: 10.1017/s2633903x23000156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 03/17/2024]
Abstract
Super-resolution microscopy allowed major improvements in our capacity to describe and explain biological organization at the nanoscale. Single-molecule localization microscopy (SMLM) uses the positions of molecules to create super-resolved images, but it can also provide new insights into the organization of molecules through appropriate pointillistic analyses that fully exploit the sparse nature of SMLM data. However, the main drawback of SMLM is the lack of analytical tools easily applicable to the diverse types of data that can arise from biological samples. Typically, a cloud of detections may be a cluster of molecules or not depending on the local density of detections, but also on the size of molecules themselves, the labeling technique, the photo-physics of the fluorophore, and the imaging conditions. We aimed to set an easy-to-use clustering analysis protocol adaptable to different types of data. Here, we introduce Diinamic, which combines different density-based analyses and optional thresholding to facilitate the detection of clusters. On simulated or real SMLM data, Diinamic correctly identified clusters of different sizes and densities, being performant even in noisy datasets with multiple detections per fluorophore. It also detected subdomains ("nanodomains") in clusters with non-homogeneous distribution of detections.
Collapse
Affiliation(s)
- Anne-Lise Paupiah
- Inserm UMR-S 1270, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, INSERM-Sorbonne Université, Paris, France
| | - Xavier Marques
- Inserm UMR-S 1270, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, INSERM-Sorbonne Université, Paris, France
- Museum National d’Histoire Naturelle, CNRS UMR 7196-INSERM U1154, Paris, France
| | - Zaha Merlaud
- Inserm UMR-S 1270, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, INSERM-Sorbonne Université, Paris, France
| | - Marion Russeau
- Inserm UMR-S 1270, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, INSERM-Sorbonne Université, Paris, France
| | - Sabine Levi
- Inserm UMR-S 1270, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, INSERM-Sorbonne Université, Paris, France
| | - Marianne Renner
- Inserm UMR-S 1270, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, INSERM-Sorbonne Université, Paris, France
| |
Collapse
|
21
|
Arnould B, Quillin AL, Heemstra JM. Tracking the Message: Applying Single Molecule Localization Microscopy to Cellular RNA Imaging. Chembiochem 2023; 24:e202300049. [PMID: 36857087 PMCID: PMC10192057 DOI: 10.1002/cbic.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
RNA function is increasingly appreciated to be more complex than merely communicating between DNA sequence and protein structure. RNA localization has emerged as a key contributor to the intricate roles RNA plays in the cell, and the link between dysregulated spatiotemporal localization and disease warrants an exploration beyond sequence and structure. However, the tools needed to visualize RNA with precise resolution are lacking in comparison to methods available for studying proteins. In the past decade, many techniques have been developed for imaging RNA, and in parallel super resolution and single-molecule techniques have enabled imaging of single molecules in cells. Of these methods, single molecule localization microscopy (SMLM) has shown significant promise for probing RNA localization. In this review, we highlight current approaches that allow super resolution imaging of specific RNA transcripts and summarize challenges and future opportunities for developing innovative RNA labeling methods that leverage the power of SMLM.
Collapse
Affiliation(s)
- Benoît Arnould
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexandria L Quillin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
22
|
Wang LG, Montaño AR, Combs JR, McMahon NP, Solanki A, Gomes MM, Tao K, Bisson WH, Szafran DA, Samkoe KS, Tichauer KM, Gibbs SL. OregonFluor enables quantitative intracellular paired agent imaging to assess drug target availability in live cells and tissues. Nat Chem 2023; 15:729-739. [PMID: 36997700 DOI: 10.1038/s41557-023-01173-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/27/2023] [Indexed: 04/30/2023]
Abstract
Non-destructive fluorophore diffusion across cell membranes to provide an unbiased fluorescence intensity readout is critical for quantitative imaging applications in live cells and tissues. Commercially available small-molecule fluorophores have been engineered for biological compatibility, imparting high water solubility by modifying rhodamine and cyanine dye scaffolds with multiple sulfonate groups. The resulting net negative charge, however, often renders these fluorophores cell-membrane-impermeant. Here we report the design and development of our biologically compatible, water-soluble and cell-membrane-permeable fluorophores, termed OregonFluor (ORFluor). By adapting previously established ratiometric imaging methodology using bio-affinity agents, it is now possible to use small-molecule ORFluor-labelled therapeutic inhibitors to quantitatively visualize their intracellular distribution and protein target-specific binding, providing a chemical toolkit for quantifying drug target availability in live cells and tissues.
Collapse
Affiliation(s)
- Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Antonio R Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Jason R Combs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Nathan P McMahon
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Allison Solanki
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Michelle M Gomes
- Cancer Early Detection Advanced Research Center (CEDAR), Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kai Tao
- Cancer Early Detection Advanced Research Center (CEDAR), Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - William H Bisson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Dani A Szafran
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Surgery, Dartmouth Health, Lebanon, NH, USA
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
23
|
Aguilar A, Khalil AA, Aldeiturriaga DP, Sedao X, Mauclair C, Bon P. Nondestructive inspection of surface nanostructuring using label-free optical super-resolution imaging. Sci Rep 2023; 13:6008. [PMID: 37045939 PMCID: PMC10097710 DOI: 10.1038/s41598-023-32735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Ultrafast laser processing can induce surface nanostructurating (SNS) in most materials with dimensions close to the irradiation laser wavelength. In-situ SNS characterization could be key for laser parameter's fine-tuning, essential for the generation of complex and/or hybrid nanostructures. Laser Induced Periodic Surface Structures (LIPSS) created in the ultra-violet (UV) range generate the most fascinating effects. They are however highly challenging to characterize in a non-destructive manner since their dimensions can be as small as 100 nm. Conventional optical imaging methods are indeed limited by diffraction to a resolution of [Formula: see text] nm. Although optical super-resolution techniques can go beyond the diffraction limit, which in theory allows the visualization of LIPSS, most super-resolution methods require the presence of small probes (such as fluorophores) which modifies the sample and is usually incompatible with a direct surface inspection. In this paper, we demonstrate that a modified label-free Confocal Reflectance Microscope (CRM) in a photon reassignment regime (also called re-scan microscopy) can detect sub-diffraction limit LIPSS. SNS generated on a titanium sample irradiated with a [Formula: see text] nm femtosecond UV-laser were characterized with nanostructuring period ranging from 105 to 172 nm. Our label-free, non-destructive optical surface inspection was done at 180 [Formula: see text]m[Formula: see text]/s, and the results are compared with commercial SEM showing the metrological efficiency of our approach.
Collapse
Affiliation(s)
- Alberto Aguilar
- Xlim Research Institute, CNRS UMR 7252, Universitéde Limoges, Limoges, France.
| | - Alain Abou Khalil
- UMR 5516 CNRS, Hubert-Curien Laboratory, University of Lyon, Jean-Monnet University, 42000, Saint-Etienne, France
| | - David Pallares Aldeiturriaga
- UMR 5516 CNRS, Hubert-Curien Laboratory, University of Lyon, Jean-Monnet University, 42000, Saint-Etienne, France
| | - Xxx Sedao
- UMR 5516 CNRS, Hubert-Curien Laboratory, University of Lyon, Jean-Monnet University, 42000, Saint-Etienne, France
- GIE Manutech-USD, 42000, Saint-Etienne, France
| | - Cyril Mauclair
- UMR 5516 CNRS, Hubert-Curien Laboratory, University of Lyon, Jean-Monnet University, 42000, Saint-Etienne, France
- GIE Manutech-USD, 42000, Saint-Etienne, France
| | - Pierre Bon
- Xlim Research Institute, CNRS UMR 7252, Universitéde Limoges, Limoges, France.
| |
Collapse
|
24
|
Weidner J, Neitzel C, Gote M, Deck J, Küntzelmann K, Pilarczyk G, Falk M, Hausmann M. Advanced image-free analysis of the nano-organization of chromatin and other biomolecules by Single Molecule Localization Microscopy (SMLM). Comput Struct Biotechnol J 2023; 21:2018-2034. [PMID: 36968017 PMCID: PMC10030913 DOI: 10.1016/j.csbj.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
The cell as a system of many components, governed by the laws of physics and chemistry drives molecular functions having an impact on the spatial organization of these systems and vice versa. Since the relationship between structure and function is an almost universal rule not only in biology, appropriate methods are required to parameterize the relationship between the structure and function of biomolecules and their networks, the mechanisms of the processes in which they are involved, and the mechanisms of regulation of these processes. Single molecule localization microscopy (SMLM), which we focus on here, offers a significant advantage for the quantitative parametrization of molecular organization: it provides matrices of coordinates of fluorescently labeled biomolecules that can be directly subjected to advanced mathematical analytical procedures without the need for laborious and sometimes misleading image processing. Here, we propose mathematical tools for comprehensive quantitative computer data analysis of SMLM point patterns that include Ripley distance frequency analysis, persistent homology analysis, persistent 'imaging', principal component analysis and co-localization analysis. The application of these methods is explained using artificial datasets simulating different, potentially possible and interpretatively important situations. Illustrative analyses of real complex biological SMLM data are presented to emphasize the applicability of the proposed algorithms. This manuscript demonstrated the extraction of features and parameters quantifying the influence of chromatin (re)organization on genome function, offering a novel approach to study chromatin architecture at the nanoscale. However, the ability to adapt the proposed algorithms to analyze essentially any molecular organizations, e.g., membrane receptors or protein trafficking in the cytosol, offers broad flexibility of use.
Collapse
Affiliation(s)
- Jonas Weidner
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Charlotte Neitzel
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Martin Gote
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Jeanette Deck
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Kim Küntzelmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Götz Pilarczyk
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Martin Falk
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Marin Z, Fuentes LA, Bewersdorf J, Baddeley D. Extracting nanoscale membrane morphology from single-molecule localizations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525798. [PMID: 36945449 PMCID: PMC10028748 DOI: 10.1101/2023.01.26.525798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Membrane surface reconstruction at the nanometer scale is required for understanding mechanisms of subcellular shape change. This historically has been the domain of electron microscopy, but extraction of surfaces from specific labels is a difficult task in this imaging modality. Existing methods for extracting surfaces from fluorescence microscopy have poor resolution or require high-quality super-resolution data that is manually cleaned and curated. Here we present a new method for extracting surfaces from generalized single-molecule localization microscopy (SMLM) data. This makes it possible to study the shape of specifically-labelled membraneous structures inside of cells. We validate our method using simulations and demonstrate its reconstruction capabilities on SMLM data of the endoplasmic reticulum and mitochondria. Our method is implemented in the open-source Python Microscopy Environment. SIGNIFICANCE We introduce a novel tool for reconstruction of subcellular membrane surfaces from single-molecule localization microscopy data and use it to visualize and quantify local shape and membrane-membrane interactions. We benchmark its performance on simulated data and demonstrate its fidelity to experimental data.
Collapse
|
26
|
Galiani S, Eggeling C, Reglinski K. Super-resolution microscopy and studies of peroxisomes. Biol Chem 2023; 404:87-106. [PMID: 36698322 DOI: 10.1515/hsz-2022-0314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023]
Abstract
Fluorescence microscopy is an important tool for studying cellular structures such as organelles. Unfortunately, many details in the corresponding images are hidden due to the resolution limit of conventional lens-based far-field microscopy. An example is the study of peroxisomes, where important processes such as molecular organization during protein important can simply not be studied with conventional far-field microscopy methods. A remedy is super-resolution fluorescence microscopy, which is nowadays a well-established technique for the investigation of inner-cellular structures but has so far to a lesser extent been applied to the study of peroxisomes. To help advancing the latter, we here give an overview over the different super-resolution microscopy approaches and their potentials and challenges in cell-biological research, including labelling issues and a focus on studies on peroxisomes. Here, we also highlight experiments beyond simple imaging such as observations of diffusion dynamics of peroxisomal proteins.
Collapse
Affiliation(s)
- Silvia Galiani
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein Strasse 9, D-07745 Jena, Germany, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany.,Jena Center for Soft Matter, Philosophenweg 7, D-07743 Jena, Germany
| | - Katharina Reglinski
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein Strasse 9, D-07745 Jena, Germany, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany.,University Clinics Jena, Bachstraße 18, D-07743 Jena, Germany
| |
Collapse
|
27
|
Walker G, Brown C, Ge X, Kumar S, Muzumdar MD, Gupta K, Bhattacharyya M. Determination of oligomeric organization of membrane proteins from native membranes at nanoscale-spatial and single-molecule resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529138. [PMID: 36865290 PMCID: PMC9980011 DOI: 10.1101/2023.02.19.529138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The oligomeric organization of membrane proteins in native cell membranes is a critical regulator of their function. High-resolution quantitative measurements of oligomeric assemblies and how they change under different conditions are indispensable to the understanding of membrane protein biology. We report a single-molecule imaging technique (Native-nanoBleach) to determine the oligomeric distribution of membrane proteins directly from native membranes at an effective spatial resolution of ∼10 nm. We achieved this by capturing target membrane proteins in "native nanodiscs" with their proximal native membrane environment using amphipathic copolymers. We established this method using structurally and functionally diverse membrane proteins with well-established stoichiometries. We then applied Native-nanoBleach to quantify the oligomerization status of a receptor tyrosine kinase (TrkA) and a small GTPase (KRas) under conditions of growth-factor binding or oncogenic mutations, respectively. Native-nanoBleach provides a sensitive, single-molecule platform to quantify membrane protein oligomeric distributions in native membranes at an unprecedented spatial resolution.
Collapse
|
28
|
Fuentes LA, Marin Z, Tyson J, Baddeley D, Bewersdorf J. The nanoscale organization of reticulon 4 shapes local endoplasmic reticulum structure in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525608. [PMID: 36747764 PMCID: PMC9900957 DOI: 10.1101/2023.01.26.525608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
UNLABELLED The endoplasmic reticulum’s (ER) structure is directly linked to the many functions of the ER but its formation is not fully understood. We investigate how the ER-membrane curving protein reticulon 4 (Rtn4) localizes to and organizes in the membrane and how that affects local ER structure. We show a strong correlation between the local Rtn4 density and the local ER membrane curvature. Our data further reveal that the typical ER tubule possesses an elliptical cross-section with Rtn4 enriched at either end of the major axis. Rtn4 oligomers are linear-shaped, contain about five copies of the protein, and preferentially orient parallel to the tubule axis. Our observations support a mechanism in which oligomerization leads to an increase of the local Rtn4 concentration with each molecule increasing membrane curvature through a hairpin wedging mechanism. This quantitative analysis of Rtn4 and its effects on the ER membrane result in a new model of tubule shape as it relates to Rtn4. SUMMARY Rtn4 forms linear-shaped oligomers that contain an average of five Rtn4 proteins, localize to the sides of elliptical tubules, prefer orientations near parallel to the tubule axis, and increase local curvature of the ER membrane by increasing local Rtn4 density.
Collapse
Affiliation(s)
- Lukas A. Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zach Marin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jonathan Tyson
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| |
Collapse
|
29
|
Zöldi M, Katona I. STORM Super-Resolution Imaging of CB 1 Receptors in Tissue Preparations. Methods Mol Biol 2023; 2576:437-451. [PMID: 36152208 DOI: 10.1007/978-1-0716-2728-0_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) opened new possibilities to study the spatial arrangement of molecular distribution and disease-associated redistribution at a previously unprecedented resolution that was not achievable with optical microscopy approaches. Recent discoveries based on SMLM techniques uncovered specific nanoscale organizational principles of signaling proteins in several biological systems including the chemical synapses in the brain. Emerging data suggest that the spatial arrangement of the molecular players of the endocannabinoid system is also precisely regulated at the nanoscale level in synapses and in other neuronal and glial subcellular compartments. The precise nanoscale distribution pattern is likely to be important to subserve several specific signaling functions of this important messenger system in a cell-type- and subcellular domain-specific manner.STochastic Optical Reconstruction Microscopy (STORM) is an especially suitable SMLM modality for cell-type-specific nanoscale molecular imaging due to its compatibility with traditional diffraction-limited microscopy approaches and classical staining methods. Here, we describe a detailed protocol for STORM imaging in mouse brain tissue samples with a focus on the CB1 cannabinoid receptor, one of the most abundant synaptic receptors in the brain. We also summarize important conceptual and methodical details that are essential for the valid interpretation of single-molecule localization microscopy data.
Collapse
Affiliation(s)
- Miklós Zöldi
- Department of Psychological and Brain Sciences, Indiana University, IN, USA
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University, IN, USA.
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
30
|
Verzelli P, Nold A, Sun C, Heilemann M, Schuman EM, Tchumatchenko T. Unbiased choice of global clustering parameters for single-molecule localization microscopy. Sci Rep 2022. [PMID: 36581654 DOI: 10.1101/2021.02.22.432198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Single-molecule localization microscopy resolves objects below the diffraction limit of light via sparse, stochastic detection of target molecules. Single molecules appear as clustered detection events after image reconstruction. However, identification of clusters of localizations is often complicated by the spatial proximity of target molecules and by background noise. Clustering results of existing algorithms often depend on user-generated training data or user-selected parameters, which can lead to unintentional clustering errors. Here we suggest an unbiased algorithm (FINDER) based on adaptive global parameter selection and demonstrate that the algorithm is robust to noise inclusion and target molecule density. We benchmarked FINDER against the most common density based clustering algorithms in test scenarios based on experimental datasets. We show that FINDER can keep the number of false positive inclusions low while also maintaining a low number of false negative detections in densely populated regions.
Collapse
Affiliation(s)
- Pietro Verzelli
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Andreas Nold
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Chao Sun
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Erin M Schuman
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany.
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
31
|
Verzelli P, Nold A, Sun C, Heilemann M, Schuman EM, Tchumatchenko T. Unbiased choice of global clustering parameters for single-molecule localization microscopy. Sci Rep 2022; 12:22561. [PMID: 36581654 PMCID: PMC9800574 DOI: 10.1038/s41598-022-27074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Single-molecule localization microscopy resolves objects below the diffraction limit of light via sparse, stochastic detection of target molecules. Single molecules appear as clustered detection events after image reconstruction. However, identification of clusters of localizations is often complicated by the spatial proximity of target molecules and by background noise. Clustering results of existing algorithms often depend on user-generated training data or user-selected parameters, which can lead to unintentional clustering errors. Here we suggest an unbiased algorithm (FINDER) based on adaptive global parameter selection and demonstrate that the algorithm is robust to noise inclusion and target molecule density. We benchmarked FINDER against the most common density based clustering algorithms in test scenarios based on experimental datasets. We show that FINDER can keep the number of false positive inclusions low while also maintaining a low number of false negative detections in densely populated regions.
Collapse
Affiliation(s)
- Pietro Verzelli
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Andreas Nold
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Chao Sun
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Erin M Schuman
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany.
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
32
|
Ebert V, Eiring P, Helmerich DA, Seifert R, Sauer M, Doose S. Convex hull as diagnostic tool in single-molecule localization microscopy. Bioinformatics 2022; 38:5421-5429. [PMID: 36315073 DOI: 10.1093/bioinformatics/btac700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Single-molecule localization microscopy resolves individual fluorophores or fluorescence-labeled biomolecules. Data are provided as a set of localizations that distribute normally around the true fluorophore position with a variance determined by the localization precision. Characterizing the spatial fluorophore distribution to differentiate between resolution-limited localization clusters, which resemble individual biomolecules, and extended structures, which represent aggregated molecular complexes, is a common challenge. RESULTS We demonstrate the use of the convex hull and related hull properties of localization clusters for diagnostic purposes, as a parameter for cluster selection or as a tool to determine localization precision. AVAILABILITY AND IMPLEMENTATION https://github.com/super-resolution/Ebert-et-al-2022-supplement. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Vincent Ebert
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| | - Dominic A Helmerich
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| | - Rick Seifert
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| |
Collapse
|
33
|
Milstein JN, Nino DF, Zhou X, Gradinaru CC. Single-molecule counting applied to the study of GPCR oligomerization. Biophys J 2022; 121:3175-3187. [PMID: 35927960 PMCID: PMC9463696 DOI: 10.1016/j.bpj.2022.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
Single-molecule counting techniques enable a precise determination of the intracellular abundance and stoichiometry of proteins and macromolecular complexes. These details are often challenging to quantitatively assess yet are essential for our understanding of cellular function. Consider G-protein-coupled receptors-an expansive class of transmembrane signaling proteins that participate in many vital physiological functions making them a popular target for drug development. While early evidence for the role of oligomerization in receptor signaling came from ensemble biochemical and biophysical assays, innovations in single-molecule measurements are now driving a paradigm shift in our understanding of its relevance. Here, we review recent developments in single-molecule counting with a focus on photobleaching step counting and the emerging technique of quantitative single-molecule localization microscopy-with a particular emphasis on the potential for these techniques to advance our understanding of the role of oligomerization in G-protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Joshua N Milstein
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - Daniel F Nino
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Xiaohan Zhou
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
34
|
Li J, Dong Y, Wei R, Jiang G, Yao C, Lv M, Wu Y, Gardner SH, Zhang F, Lucero MY, Huang J, Chen H, Ge G, Chan J, Chen J, Sun H, Luo X, Qian X, Yang Y. Stable, Bright, and Long-Fluorescence-Lifetime Dyes for Deep-Near-Infrared Bioimaging. J Am Chem Soc 2022; 144:14351-14362. [PMID: 35905456 DOI: 10.1021/jacs.2c05826] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Near-infrared (NIR) fluorophores absorbing maximally in the region beyond 800 nm, i.e., deep-NIR spectral region, are actively sought for biomedical applications. Ideal dyes are bright, nontoxic, photostable, biocompatible, and easily derivatized to introduce functionalities (e.g., for bioconjugation or aqueous solubility). The rational design of such fluorophores remains a major challenge. Silicon-substituted rhodamines have been successful for bioimaging applications in the red spectral region. The longer-wavelength silicon-substituted congeners for the deep-NIR spectral region are unknown to date. We successfully prepared four silicon-substituted bis-benzannulated rhodamine dyes (ESi5a-ESi5d), with an efficient five-step cascade on a gram-scale. Because of the extensive overlapping of their HOMO-LUMO orbitals, ESi5a-ESi5d are highly absorbing (λabs ≈ 865 nm and ε > 105 cm-1 M-1). By restraining both the rotational freedom via annulation and the vibrational freedom via silicon-imparted strain, the fluorochromic scaffold of ESi5 is highly rigid, resulting in an unusually long fluorescence lifetime (τ > 700 ps in CH2Cl2) and a high fluorescence quantum yield (ϕ = 0.14 in CH2Cl2). Their half-lives toward photobleaching are 2 orders of magnitude longer than the current standard (ICG in serum). They are stable in the presence of biorelevant concentration of nucleophiles or reactive oxygen species. They are minimally toxic and readily metabolized. Upon tail vein injection of ESi5a (as an example), the vasculature of a nude mouse was imaged with a high signal-to-background ratio. ESi5 dyes have broad potentials for bioimaging in the deep-NIR spectral region.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruwei Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Guanyu Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Cheng Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Meng Lv
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yuyang Wu
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Sarah H Gardner
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Feng Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Jian Huang
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, 1111 Halei Road, Shanghai, 201203, China
| | - Hao Chen
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiao Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
35
|
Li M, Shang M, Li L, Wang Y, Song Q, Zhou Z, Kuang W, Zhang Y, Huang ZL. Real-time image resolution measurement for single molecule localization microscopy. OPTICS EXPRESS 2022; 30:28079-28090. [PMID: 36236964 DOI: 10.1364/oe.463996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Recent advancements in single molecule localization microscopy (SMLM) have demonstrated outstanding potential applications in high-throughput and high-content screening imaging. One major limitation to such applications is to find a way to optimize imaging throughput without scarifying image quality, especially the homogeneity in image resolution, during the imaging of hundreds of field-of-views (FOVs) in heterogeneous samples. Here we introduce a real-time image resolution measurement method for SMLM to solve this problem. This method is under the heuristic framework of overall image resolution that counts on localization precision and localization density. Rather than estimating the mean localization density after completing the entire SMLM process, this method uses the spatial Poisson process to model the random activation of molecules and thus determines the localization density in real-time. We demonstrate that the method is valid in real-time resolution measurement and is effective in guaranteeing homogeneous image resolution across multiple representative FOVs with optimized imaging throughput.
Collapse
|
36
|
Wang W, Chan YH, Kwon S, Tandukar J, Gao R. Nanoscale fluorescence imaging of biological ultrastructure via molecular anchoring and physical expansion. NANO CONVERGENCE 2022; 9:30. [PMID: 35810234 PMCID: PMC9271151 DOI: 10.1186/s40580-022-00318-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 05/25/2023]
Abstract
Nanoscale imaging of biological samples can provide rich morphological and mechanistic information about biological functions and dysfunctions at the subcellular and molecular level. Expansion microscopy (ExM) is a recently developed nanoscale fluorescence imaging method that takes advantage of physical enlargement of biological samples. In ExM, preserved cells and tissues are embedded in a swellable hydrogel, to which the molecules and fluorescent tags in the samples are anchored. When the hydrogel swells several-fold, the effective resolution of the sample images can be improved accordingly via physical separation of the retained molecules and fluorescent tags. In this review, we focus on the early conception and development of ExM from a biochemical and materials perspective. We first examine the general workflow as well as the numerous variations of ExM developed to retain and visualize a broad range of biomolecules, such as proteins, nucleic acids, and membranous structures. We then describe a number of inherent challenges facing ExM, including those associated with expansion isotropy and labeling density, as well as the ongoing effort to address these limitations. Finally, we discuss the prospect and possibility of pushing the resolution and accuracy of ExM to the single-molecule scale and beyond.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Yat Ho Chan
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - SoYoung Kwon
- Department of Biomedical and Health Information Sciences, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jamuna Tandukar
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Ruixuan Gao
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
37
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
38
|
Hobson CM, Aaron JS. Combining multiple fluorescence imaging techniques in biology: when one microscope is not enough. Mol Biol Cell 2022; 33:tp1. [PMID: 35549314 PMCID: PMC9265156 DOI: 10.1091/mbc.e21-10-0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
While fluorescence microscopy has proven to be an exceedingly useful tool in bioscience, it is difficult to offer simultaneous high resolution, fast speed, large volume, and good biocompatibility in a single imaging technique. Thus, when determining the image data required to quantitatively test a complex biological hypothesis, it often becomes evident that multiple imaging techniques are necessary. Recent years have seen an explosion in development of novel fluorescence microscopy techniques, each of which features a unique suite of capabilities. In this Technical Perspective, we highlight recent studies to illustrate the benefits, and often the necessity, of combining multiple fluorescence microscopy modalities. We provide guidance in choosing optimal technique combinations to effectively address a biological question. Ultimately, we aim to promote a more well-rounded approach in designing fluorescence microscopy experiments, leading to more robust quantitative insight.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| |
Collapse
|
39
|
Chung KKH, Zhang Z, Kidd P, Zhang Y, Williams ND, Rollins B, Yang Y, Lin C, Baddeley D, Bewersdorf J. Fluorogenic DNA-PAINT for faster, low-background super-resolution imaging. Nat Methods 2022; 19:554-559. [PMID: 35501386 PMCID: PMC9133131 DOI: 10.1038/s41592-022-01464-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/23/2022] [Indexed: 11/21/2022]
Abstract
DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution microscopy method that can acquire high-fidelity images at nanometer resolution. It suffers, however, from high background and slow imaging speed, both of which can be attributed to the presence of unbound fluorophores in solution. Here we present two-color fluorogenic DNA-PAINT, which uses improved imager probe and docking strand designs to solve these problems. These self-quenching single-stranded DNA probes are conjugated with a fluorophore and quencher at the terminals, which permits an increase in fluorescence by up to 57-fold upon binding and unquenching. In addition, the engineering of base pair mismatches between the fluorogenic imager probes and docking strands allowed us to achieve both high fluorogenicity and the fast binding kinetics required for fast imaging. We demonstrate a 26-fold increase in imaging speed over regular DNA-PAINT and show that our new implementation enables three-dimensional super-resolution DNA-PAINT imaging without optical sectioning.
Collapse
Affiliation(s)
- Kenny K H Chung
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Zhao Zhang
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Phylicia Kidd
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Yongdeng Zhang
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Nathan D Williams
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Bennett Rollins
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Yang Yang
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - David Baddeley
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University, New Haven, CT, USA.
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
40
|
A coordinate-based co-localization index to quantify and visualize spatial associations in single-molecule localization microscopy. Sci Rep 2022; 12:4676. [PMID: 35304545 PMCID: PMC8933590 DOI: 10.1038/s41598-022-08746-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Visualizing the subcellular distribution of proteins and determining whether specific proteins co-localize is one of the main strategies in determining the organization and potential interactions of protein complexes in biological samples. The development of super-resolution microscopy techniques such as single-molecule localization microscopy (SMLM) has tremendously increased the ability to resolve protein distribution at nanometer resolution. As super-resolution imaging techniques are becoming instrumental in revealing novel biological insights, new quantitative approaches that exploit the unique nature of SMLM datasets are required. Here, we present a new, local density-based algorithm to quantify co-localization in dual-color SMLM datasets. We show that this method is broadly applicable and only requires molecular coordinates and their localization precision as inputs. Using simulated point patterns, we show that this method robustly measures the co-localization in dual-color SMLM datasets, independent of localization density, but with high sensitivity towards local enrichments. We further validated our method using SMLM imaging of the microtubule network in epithelial cells and used it to study the spatial association between proteins at neuronal synapses. Together, we present a simple and easy-to-use, but powerful method to analyze the spatial association of molecules in dual-color SMLM datasets.
Collapse
|
41
|
Doose S. LOCAN: a python library for analyzing single-molecule localization microscopy data. Bioinformatics 2022; 38:2670-2672. [PMID: 35298593 DOI: 10.1093/bioinformatics/btac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
SUMMARY Single-molecule localization microscopy has become an important part of the super-resolution microscopy toolbox in biomedical research. Software platforms for applying analytical methods to the point-based data structures are needed that offer both routine application and flexible customization of analysis procedures. We present a python library called LOCAN that consists of well-defined data structures and analysis methods for analyzing localization data in a script or computable notebook. AVAILABILITY AND IMPLEMENTATION The package source code is released open-source under a BSD-3 license at https://github.com/super-resolution/Locan. It can be installed form the Python Package Index at https://pypi.org/project/locan. Documentation is available at https://locan.readthedocs.io. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sören Doose
- Department of Biotechnology und Biophysics, Julius-Maximilians-University, Am Hubland / Biocentre, 97074 Würzburg, Germany
| |
Collapse
|
42
|
Schneider MC, Schütz GJ. Don’t Be Fooled by Randomness: Valid p-Values for Single Molecule Microscopy. FRONTIERS IN BIOINFORMATICS 2022; 2:811053. [PMID: 36304307 PMCID: PMC9580918 DOI: 10.3389/fbinf.2022.811053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
The human mind shows extraordinary capability at recognizing patterns, while at the same time tending to underestimate the natural scope of random processes. Taken together, this easily misleads researchers in judging whether the observed characteristics of their data are of significance or just the outcome of random effects. One of the best tools to assess whether observed features fall into the scope of pure randomness is statistical significance testing, which quantifies the probability to falsely reject a chosen null hypothesis. The central parameter in this context is the p-value, which can be calculated from the recorded data sets. In case of p-values smaller than the level of significance, the null hypothesis is rejected, otherwise not. While significance testing has found widespread application in many sciences including the life sciences, it is hardly used in (bio-)physics. We propose here that significance testing provides an important and valid addendum to the toolbox of quantitative (single molecule) biology. It allows to support a quantitative judgement (the hypothesis) about the data set with a probabilistic assessment. In this manuscript we describe ways for obtaining valid p-values in two selected applications of single molecule microscopy: (i) Nanoclustering in single molecule localization microscopy. Previously, we developed a method termed 2-CLASTA, which allows to calculate a valid p-value for the null hypothesis of an underlying random distribution of molecules of interest while circumventing overcounting issues. Here, we present an extension to this approach, yielding a single overall p-value for data pooled from multiple cells or experiments. (ii) Single molecule trajectories. Data from a single molecule trajectory are inherently correlated, thus prohibiting a direct analysis via conventional statistical tools. Here, we introduce a block permutation test, which yields a valid p-value for the analysis and comparison of single molecule trajectory data. We exemplify the approach based on FRET trajectories.
Collapse
|
43
|
Martens KJA, Turkowyd B, Endesfelder U. Raw Data to Results: A Hands-On Introduction and Overview of Computational Analysis for Single-Molecule Localization Microscopy. FRONTIERS IN BIOINFORMATICS 2022; 1:817254. [PMID: 36303761 PMCID: PMC9580916 DOI: 10.3389/fbinf.2021.817254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/28/2021] [Indexed: 09/28/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) is an advanced microscopy method that uses the blinking of fluorescent molecules to determine the position of these molecules with a resolution below the diffraction limit (∼5-40 nm). While SMLM imaging itself is becoming more popular, the computational analysis surrounding the technique is still a specialized area and often remains a "black box" for experimental researchers. Here, we provide an introduction to the required computational analysis of SMLM imaging, post-processing and typical data analysis. Importantly, user-friendly, ready-to-use and well-documented code in Python and MATLAB with exemplary data is provided as an interactive experience for the reader, as well as a starting point for further analysis. Our code is supplemented by descriptions of the computational problems and their implementation. We discuss the state of the art in computational methods and software suites used in SMLM imaging and data analysis. Finally, we give an outlook into further computational challenges in the field.
Collapse
Affiliation(s)
- Koen J. A. Martens
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, United States
- Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Bartosz Turkowyd
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, United States
- Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ulrike Endesfelder
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, United States
- Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
44
|
Kaur A, Adair LD, Ball SR, New EJ, Sunde M. A Fluorescent Sensor for Quantitative Super‐Resolution Imaging of Amyloid Fibril Assembly**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amandeep Kaur
- School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Liam D. Adair
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Sarah R. Ball
- School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW 2006 Australia
| | - Elizabeth J. New
- The University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Margaret Sunde
- School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
45
|
Chandris P, Giannouli CC, Panayotou G. Imaging Approaches for the Study of Metabolism in Real Time Using Genetically Encoded Reporters. Front Cell Dev Biol 2022; 9:725114. [PMID: 35118062 PMCID: PMC8804523 DOI: 10.3389/fcell.2021.725114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Metabolism comprises of two axes in order to serve homeostasis: anabolism and catabolism. Both axes are interbranched with the so-called bioenergetics aspect of metabolism. There is a plethora of analytical biochemical methods to monitor metabolites and reactions in lysates, yet there is a rising need to monitor, quantify and elucidate in real time the spatiotemporal orchestration of complex biochemical reactions in living systems and furthermore to analyze the metabolic effect of chemical compounds that are destined for the clinic. The ongoing technological burst in the field of imaging creates opportunities to establish new tools that will allow investigators to monitor dynamics of biochemical reactions and kinetics of metabolites at a resolution that ranges from subcellular organelle to whole system for some key metabolites. This article provides a mini review of available toolkits to achieve this goal but also presents a perspective on the open space that can be exploited to develop novel methodologies that will merge classic biochemistry of metabolism with advanced imaging. In other words, a perspective of "watching metabolism in real time."
Collapse
Affiliation(s)
- Panagiotis Chandris
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | | | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| |
Collapse
|
46
|
Wang B, Xiong M, Susanto J, Li X, Leung W, Xu K. Transforming Rhodamine Dyes for (d)STORM Super‐Resolution Microscopy via 1,3‐Disubstituted Imidazolium Substitution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bowen Wang
- Department of Chemistry University of California, Berkeley 456 Stanley Hall Berkeley CA 94720 USA
| | - Michael Xiong
- Department of Chemistry University of California, Berkeley 456 Stanley Hall Berkeley CA 94720 USA
| | - Josephine Susanto
- Biotium Inc. 46117 Landing Parkway Fremont CA 94538 USA
- Department of Pharmacology and Pharmaceutical Sciences University of Southern California Los Angeles CA 90033 USA
| | - Xue Li
- Biotium Inc. 46117 Landing Parkway Fremont CA 94538 USA
| | - Wai‐Yee Leung
- Biotium Inc. 46117 Landing Parkway Fremont CA 94538 USA
| | - Ke Xu
- Department of Chemistry University of California, Berkeley 456 Stanley Hall Berkeley CA 94720 USA
- Chan Zuckerberg Biohub San Francisco CA 94158 USA
| |
Collapse
|
47
|
Yang J. Branched Proximity Hybridization Assay for the Quantification of Nanoscale Protein-Protein Proximity. Methods Mol Biol 2022; 2488:35-45. [PMID: 35347681 DOI: 10.1007/978-1-0716-2277-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To better quantify the nanoscale protein-protein proximity, we developed a new branched proximity hybridization assay (bPHA). In this assay, oligo-coupled target protein-binding reagents, such as aptamer, nanobody, and antibodies, are used to convert the proximity of target proteins to the proximity of a pair of designed oligos. The closely positioned oligo pair then serve as a template for a maximum of 400-fold linear signal amplification through branched DNA (bDNA). The amplified bPHA signal is recorded and quantified by flow cytometer, providing high throughput, multiplexing, and single-cell resolution for nanoscale protein proximity studies.
Collapse
Affiliation(s)
- Jianying Yang
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
48
|
Xu N, Qiao Q, Liu X, Xu Z. Enhancing Brightness and Photostability of Organic Small Molecular Fluorescent Dyes Through Inhibiting Twisted Intramolecular Charge Transfer (TICT) ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Willems J, Westra M, MacGillavry HD. Single-Molecule Localization Microscopy of Subcellular Protein Distribution in Neurons. Methods Mol Biol 2022; 2440:271-288. [PMID: 35218545 DOI: 10.1007/978-1-0716-2051-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past years several forms of superresolution fluorescence microscopy have been developed that offer the possibility to study cellular structures and protein distribution at a resolution well below the diffraction limit of conventional fluorescence microscopy (<200 nm). A particularly powerful superresolution technique is single-molecule localization microscopy (SMLM). SMLM enables the quantitative investigation of subcellular protein distribution at a spatial resolution up to tenfold higher than conventional imaging, even in live cells. Not surprisingly, SMLM has therefore been used in many applications in biology, including neuroscience. This chapter provides a step-by-step SMLM protocol to visualize the nanoscale organization of endogenous proteins in dissociated neurons but can be extended to image other adherent cultured cells. We outline a number of methods to visualize endogenous proteins in neurons for live-cell and fixed application, including immunolabeling, the use of intrabodies for live-cell SMLM, and endogenous tagging using CRISPR/Cas9.
Collapse
Affiliation(s)
- Jelmer Willems
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Manon Westra
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
50
|
Kasheverov IE, Kuzmenkov AI, Kudryavtsev DS, Chudetskiy IS, Shelukhina IV, Barykin EP, Ivanov IA, Siniavin AE, Ziganshin RH, Baranov MS, Tsetlin VI, Vassilevski AA, Utkin YN. Snake Toxins Labeled by Green Fluorescent Protein or Its Synthetic Chromophore are New Probes for Nicotinic acetylcholine Receptors. Front Mol Biosci 2021; 8:753283. [PMID: 34926576 PMCID: PMC8671107 DOI: 10.3389/fmolb.2021.753283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
Fluorescence can be exploited to monitor intermolecular interactions in real time and at a resolution up to a single molecule. It is a method of choice to study ligand-receptor interactions. However, at least one of the interacting molecules should possess good fluorescence characteristics, which can be achieved by the introduction of a fluorescent label. Gene constructs with green fluorescent protein (GFP) are widely used to follow the expression of the respective fusion proteins and monitor their function. Recently, a small synthetic analogue of GFP chromophore (p-HOBDI-BF2) was successfully used for tagging DNA molecules, so we decided to test its applicability as a potential fluorescent label for proteins and peptides. This was done on α-cobratoxin (α-CbTx), a three-finger protein used as a molecular marker of muscle-type, neuronal α7 and α9/α10 nicotinic acetylcholine receptors (nAChRs), as well as on azemiopsin, a linear peptide neurotoxin selectively inhibiting muscle-type nAChRs. An activated N-hydroxysuccinimide ester of p-HOBDI-BF2 was prepared and utilized for toxin labeling. For comparison we used a recombinant α-CbTx fused with a full-length GFP prepared by expression of a chimeric gene. The structure of modified toxins was confirmed by mass spectrometry and their activity was characterized by competition with iodinated α-bungarotoxin in radioligand assay with respective receptor preparations, as well as by thermophoresis. With the tested protein and peptide neurotoxins, introduction of the synthetic GFP chromophore induced considerably lower decrease in their affinity for the receptors as compared with full-length GFP attachment. The obtained fluorescent derivatives were used for nAChR visualization in tissue slices and cell cultures.
Collapse
Affiliation(s)
- Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S Chudetskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina V Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei E Siniavin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow Region, Russia
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|