1
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
2
|
Cheng B, Li M, Zheng J, Liang J, Li Y, Liang R, Tian H, Zhou Z, Ding L, Ren J, Shi W, Zhou W, Hu H, Meng L, Liu K, Cai L, Shao X, Fang L, Li H. Chemically engineered antibodies for autophagy-based receptor degradation. Nat Chem Biol 2025:10.1038/s41589-024-01803-1. [PMID: 39789191 DOI: 10.1038/s41589-024-01803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
Cell surface receptor-targeted protein degraders hold promise for drug discovery. However, their application is restricted because of the complexity of creating bifunctional degraders and the reliance on specific lysosome-shuttling receptors or E3 ubiquitin ligases. To address these limitations, we developed an autophagy-based plasma membrane protein degradation platform, which we term AUTABs (autophagy-inducing antibodies). Through covalent conjugation with polyethylenimine (PEI), the engineered antibodies acquire the capacity to degrade target receptors through autophagy. The degradation activities of AUTABs are self-sufficient, without necessitating the participation of lysosome-shuttling receptors or E3 ubiquitin ligases. The broad applicability of this platform was then illustrated by targeting various clinically important receptors. Notably, combining specific primary antibodies with a PEI-tagged secondary nanobody also demonstrated effective degradation of target receptors. Thus, our study outlines a strategy for directing plasma membrane proteins for autophagic degradation, which possesses desirable attributes such as ease of generation, independence from cell type and broad applicability.
Collapse
Affiliation(s)
- Binghua Cheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Meiqing Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Jiwei Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaming Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Hui Tian
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeyu Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Li Ding
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Ren
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Shi
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjie Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Long Meng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ke Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Ximing Shao
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| |
Collapse
|
3
|
Yegnaswamy S, C SK, Aldaais E. Conformational dynamics of the membrane protein of MERS-CoV in comparison with SARS-CoV-2 in ERGIC complex. J Biomol Struct Dyn 2025:1-15. [PMID: 39755960 DOI: 10.1080/07391102.2024.2437529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/21/2024] [Indexed: 01/07/2025]
Abstract
The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions. A structural expansion below the transmembrane and above the beta-sheet sandwich domain within the dimer was observed in all the M-proteins. This site on the beta-sheet sandwich domains near the C-terminal end could serve as a potential drug-binding site. Notably, a stable helical structure was identified in the C-terminal domain of the MERS-CoV membrane protein, whereas a proper secondary structural conformation was not observed in the SARS-CoV-2 membrane protein. Further, the SARS-CoV-2 membrane protein exhibited stronger binding to the lipid bilayer than the MERS-CoV, indicating its greater structural stability within the ERGIC complex. The structural similarity between the membrane protein of MERS-CoV and SARS-CoV-2 suggests the feasibility of employing a common inhibitor against these beta-coronaviruses. Furthermore, this analysis enhances our understanding of the membrane protein's interactions with proteins and lipids, paving the way for therapeutic developments against these viruses.
Collapse
Affiliation(s)
- Subha Yegnaswamy
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, Maharashtra, India
| | - Selvaa Kumar C
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, Maharashtra, India
| | - Ebtisam Aldaais
- College of Applied Medical Sciences, lmam Abdulrahman Bin Faisal University (lAU), Dammam, Saudi Arabia
| |
Collapse
|
4
|
Luesch H, Ellis EK, Chen QY, Ratnayake R. Progress in the discovery and development of anticancer agents from marine cyanobacteria. Nat Prod Rep 2024. [PMID: 39620500 PMCID: PMC11610234 DOI: 10.1039/d4np00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 12/11/2024]
Abstract
Covering 2010-April 2024There have been tremendous new discoveries and developments since 2010 in anticancer research based on marine cyanobacteria. Marine cyanobacteria are prolific sources of anticancer natural products, including the tubulin agents dolastatins 10 and 15 which were originally isolated from a mollusk that feeds on cyanobacteria. Decades of research have culminated in the approval of six antibody-drug conjugates (ADCs) and many ongoing clinical trials. Antibody conjugation has been enabling for several natural products, particularly cyanobacterial cytotoxins. Targeting tubulin dynamics has been a major strategy, leading to the discovery of the gatorbulin scaffold, acting on a new pharmacological site. Cyanobacterial compounds with different mechanisms of action (MOA), targeting novel or validated targets in a range of organelles, also show promise as anticancer agents. Important advances include the development of compounds with novel MOA, including apratoxin and coibamide A analogues, modulating cotranslational translocation at the level of Sec61 in the endoplasmic reticulum, largazole and santacruzamate A targeting class I histone deacetylases, and proteasome inhibitors based on carmaphycins, resembling the approved drug carfilzomib. The pipeline extends with SERCA inhibitors, mitochondrial cytotoxins and membrane-targeting agents, which have not yet advanced clinically since the biology is less understood and selectivity concerns remain to be addressed. In addition, efforts have also focused on the identification of chemosensitizing and antimetastatic agents. The review covers the state of current knowledge of marine cyanobacteria as anticancer agents with a focus on the mechanism, target identification and potential for drug development. We highlight the importance of solving the supply problem through chemical synthesis as well as illuminating the biological activity and in-depth mechanistic studies to increase the value of cyanobacterial natural products to catalyze their development.
Collapse
Affiliation(s)
- Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Emma K Ellis
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| |
Collapse
|
5
|
Karimi R, Coupland CE, Rubinstein JL. Vesicle Picker: A tool for efficient identification of membrane protein complexes in vesicles. J Struct Biol 2024; 216:108148. [PMID: 39481498 DOI: 10.1016/j.jsb.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/15/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Electron cryomicroscopy (cryo-EM) has recently allowed determination of near-atomic resolution structures of membrane proteins and protein complexes embedded in lipid vesicles. However, particle selection from electron micrographs of these vesicles can be challenging due to the strong signal contributed from the lipid bilayer. This challenge often requires iterative and laborious particle selection workflows to generate a dataset of high-quality particle images for subsequent analysis. Here we present Vesicle Picker, an open-source program built on the Segment Anything model. Vesicle Picker enables automatic identification of vesicles in cryo-EM micrographs with high recall and precision. It then exhaustively selects all potential particle locations, either at the perimeter or uniformly over the surface of the projection of the vesicle. The program is designed to interface with cryoSPARC, which performs both upstream micrograph processing and downstream single particle image analysis. We demonstrate Vesicle Picker's utility by determining a high-resolution map of the vacuolar-type ATPase from micrographs of native synaptic vesicles (SVs) and identifying an additional protein or protein complex in the SV membrane.
Collapse
Affiliation(s)
- Ryan Karimi
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto M5G 1L7, Canada
| | - Claire E Coupland
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
6
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Wang H, Zhang Y, Wang W, Shao J, Khan RU, Zeng S, Qian L. Fluorescent labeling of live-cell surfaceome and its application in antibody-target interaction analysis. Anal Chim Acta 2024; 1330:343296. [PMID: 39489976 DOI: 10.1016/j.aca.2024.343296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Cell-surface proteins play key roles in the communication between external stimuli and internal signaling. As protein types and expression levels vary in different cells, in-situ visualization of the whole surface proteome (surfaceome) may facilitate the study of their functions in homeostasis maintenance or response to environmental changes (e.g., drug treatment). However, there lacks easily-prepared and universal labeling probes to visualize them in living cells. RESULTS We designed and synthesized a small-molecule fluorescent probe, SRB-NHS, for one-step labeling of surfaceome. Live-cell imaging results exhibited the plasma membrane localization of the fluorescent signal from SRB-NHS and SDS-PAGE/fluorescence scanning results confirmed the covalent labeling of proteins by SRB-NHS, indicating the suitability of SRB-NHS for surfaceome labeling towards different cell lines. SIGNIFICANCE Upon labeling by SRB-NHS, the cellular internalization of surfaceome was studied under different stimuli (e.g., nutritional deprivation, drug treatments). Intriguingly, specific monitoring of the interaction between antibody drugs and related cell-surface targets can be achieved when the probe is used in combination with fluorescently labeled antibodies and imaged via Förster resonance energy transfer (FRET), offering a new method compatible with various cell lines to monitor the surfaceome or a specific drug-target interaction in situ.
Collapse
Affiliation(s)
- Haoting Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, 313100, China
| | - Ying Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Wenchao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinning Shao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, 313100, China.
| |
Collapse
|
8
|
Huang C, Zhang J, Liu Z, Xu J, Zhao Y, Zhang P. In Situ and Label-Free Quantification of Membrane Protein-Ligand Interactions Using Optical Imaging Techniques: A Review. BIOSENSORS 2024; 14:537. [PMID: 39589996 PMCID: PMC11592237 DOI: 10.3390/bios14110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Membrane proteins are crucial for various cellular processes and are key targets in pharmacological research. Their interactions with ligands are essential for elucidating cellular mechanisms and advancing drug development. To study these interactions without altering their functional properties in native environments, several advanced optical imaging methods have been developed for in situ and label-free quantification. This review focuses on recent optical imaging techniques such as surface plasmon resonance imaging (SPRi), surface plasmon resonance microscopy (SPRM), edge tracking approaches, and surface light scattering microscopy (SLSM). We explore the operational principles, recent advancements, and the scope of application of these methods. Additionally, we address the current challenges and explore the future potential of these innovative optical imaging strategies in deepening our understanding of biomolecular interactions and facilitating the discovery of new therapeutic agents.
Collapse
Affiliation(s)
- Caixin Huang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingbo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiying Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Pengfei Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Wang M, Chen H, Zhang T, Zhang Z, Xiang X, Gao M, Guo Y, Jiang S, Yin K, Chen M, Huang J, Zhong X, Ohto U, Li J, Shimizu T, Yin H. Targeting toll-like receptor 7 as a therapeutic development strategy for systemic lupus erythematosus. Acta Pharm Sin B 2024; 14:4899-4913. [PMID: 39664432 PMCID: PMC11628833 DOI: 10.1016/j.apsb.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/05/2024] [Accepted: 08/12/2024] [Indexed: 12/13/2024] Open
Abstract
Endosomal TLRs (TLR3/7/8/9) are highly analogous innate immunity sensors for various viral or bacterial RNA/DNA molecular patterns. Among them, TLR7, in particular, has been suggested to be a target for various inflammatory disorders and autoimmune diseases including systemic lupus erythematosus (SLE); but few small-molecule inhibitors with elaborated mechanism have been reported in literature. Here, we reported a well-characterized human TLR7-specific small-molecule inhibitor, TH-407b, with promising potency and negligible cytotoxicity through a novel binding mechanism. Notably, TH-407b not only effectively inhibited TLR7-mediated pro-inflammatory signaling in a variety of cultured cell lines but also demonstrated potent inflammation suppressing activities in primary peripheral blood mononuclear cells (PBMCs) derived from SLE patients. Furthermore, TH-407b showed prominent efficacy in vivo, improved survival rate and ameliorated symptoms of SLE model mice. To obtain molecular insights into the TH-407b derivatives' inhibition mechanism, we performed the structural analysis of TLR7/TH-407b complex using cryogenic electron microscopy (cryo-EM) method. As an atomistic resolution cryo-EM structure of the TLR family, it not only of value to facilitate structure-based drug design, but also shed light to methodology development of small proteins using EM. Significantly, TH-407b has unveiled an inhibition strategy for TLR7 via stabilizing its resting/inactivated state. Such a resting state could be generally applicable to all TLRs, rendering a useful method for targeting this group of important immunological receptors.
Collapse
Affiliation(s)
- Meng Wang
- Toll Biotech Co., Ltd. (Beijing), Beijing 102209, China
| | - Hekai Chen
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Tuan Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Zhikuan Zhang
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo 113-0033, Japan
| | - Xuwen Xiang
- Toll Biotech Co., Ltd. (Beijing), Beijing 102209, China
| | - Meng Gao
- Toll Biotech Co., Ltd. (Beijing), Beijing 102209, China
| | - Yilan Guo
- Toll Biotech Co., Ltd. (Beijing), Beijing 102209, China
| | - Shuangshuang Jiang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Kejun Yin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Mintao Chen
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jian Huang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xincheng Zhong
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo 113-0033, Japan
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100032, China
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo 113-0033, Japan
| | - Hang Yin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Li L, Zhang J, Li Y, Huang C, Xu J, Zhao Y, Zhang P. Dielectric Surface-Based Biosensors for Enhanced Detection of Biomolecular Interactions: Advances and Applications. BIOSENSORS 2024; 14:524. [PMID: 39589983 PMCID: PMC11592350 DOI: 10.3390/bios14110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Surface plasmon resonance (SPR) biosensors are extensively utilized for analyzing molecular interactions due to their high sensitivity and label-free detection capabilities. Recent innovations in surface-sensitive biosensors with dielectric surfaces address the inherent limitations associated with traditional gold surfaces, such as thermal effects and biocompatibility issues, which can impede broader applications. This review examines state-of-the-art biosensor configurations, including total internal reflection, optical waveguide, photonic crystal resonators, Bloch surface wave biosensors, and surface electrochemical biosensors, which can enhance analyte signals and augment the molecular detection efficiency at the sensor interface. These technological advancements not only improve the resolution of binding kinetics analysis and single-molecule detection but also extend the analytical capabilities of these systems. Additionally, this review explores prospective advancements in augmenting field enhancement and incorporating multimodal sensing functionalities, emphasizing the significant potential of these sophisticated biosensing technologies to profoundly enhance our understanding of molecular interactions.
Collapse
Affiliation(s)
- Liangju Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; (L.L.); (Y.L.); (C.H.)
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
| | - Jingbo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yacong Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; (L.L.); (Y.L.); (C.H.)
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
| | - Caixin Huang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; (L.L.); (Y.L.); (C.H.)
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
| | - Jiying Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; (L.L.); (Y.L.); (C.H.)
| | - Pengfei Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Noriega M, Corey RA, Haanappel E, Demange P, Czaplicki G, Atkinson RA, Chavent M. Coarse-Graining the Recognition of a Glycolipid by the C-Type Lectin Mincle Receptor. J Phys Chem B 2024; 128:9935-9946. [PMID: 39368102 DOI: 10.1021/acs.jpcb.4c03242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Macrophage inducible Ca2+-dependent lectin (Mincle) receptor recognizes Mycobacterium tuberculosis glycolipids to trigger an immune response. This host membrane receptor is thus a key player in the modulation of the immune response to infection by M. tuberculosis and has emerged as a promising target for the development of new vaccines against tuberculosis. The recent development of the Martini 3 force field for coarse-grained (CG) molecular modeling allows the study of interactions of soluble proteins with small ligands which was not typically modeled well with the previous Martini 2 model. Here, we present a refined approach detailing a protocol for modeling interactions between a glycolipid and its receptor at a CG level using the Martini 3 force field. Using this approach, we studied Mincle and identified critical parameters governing ligand recognition, such as loop flexibility and the regulation of hydrophobic groove formation by calcium ions. In addition, we assessed ligand affinity using free energy perturbation calculations. Our results offer mechanistic insight into the interactions between Mincle and glycolipids, providing a basis for the rational design of molecules targeting this type of membrane receptors.
Collapse
Affiliation(s)
- Maxime Noriega
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Robin A Corey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Georges Czaplicki
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - R Andrew Atkinson
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| |
Collapse
|
12
|
Lu H, Zhu Z, Fields L, Zhang H, Li L. Mass Spectrometry Structural Proteomics Enabled by Limited Proteolysis and Cross-Linking. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39300771 DOI: 10.1002/mas.21908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
The exploration of protein structure and function stands at the forefront of life science and represents an ever-expanding focus in the development of proteomics. As mass spectrometry (MS) offers readout of protein conformational changes at both the protein and peptide levels, MS-based structural proteomics is making significant strides in the realms of structural and molecular biology, complementing traditional structural biology techniques. This review focuses on two powerful MS-based techniques for peptide-level readout, namely limited proteolysis-mass spectrometry (LiP-MS) and cross-linking mass spectrometry (XL-MS). First, we discuss the principles, features, and different workflows of these two methods. Subsequently, we delve into the bioinformatics strategies and software tools used for interpreting data associated with these protein conformation readouts and how the data can be integrated with other computational tools. Furthermore, we provide a comprehensive summary of the noteworthy applications of LiP-MS and XL-MS in diverse areas including neurodegenerative diseases, interactome studies, membrane proteins, and artificial intelligence-based structural analysis. Finally, we discuss the factors that modulate protein conformational changes. We also highlight the remaining challenges in understanding the intricacies of protein conformational changes by LiP-MS and XL-MS technologies.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Sun W, Zhang H, Xie W, Ma L, Dang Y, Liu Y, Li L, Qu F, Tan W. Development of Integrin-Facilitated Bispecific Aptamer Chimeras for Membrane Protein Degradation. J Am Chem Soc 2024; 146:25490-25500. [PMID: 39226482 DOI: 10.1021/jacs.4c04794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The emergence of lysosome-targeting chimeras (LYTACs), which represents a promising strategy for membrane protein degradation based on lysosomal pathways, has attracted much attention in disease intervention and treatment. However, the expression level of commonly used lysosome-targeting receptors (LTRs) varies in different cell lines, thus limiting the broad applications of LYTACs. To overcome this difficulty, we herein report the development of integrin α3β1 (ITGA3B1)-facilitated bispecific aptamer chimeras (ITGBACs) as a platform for the degradation of membrane proteins. ITGBACs consist of two aptamers, one targeting ITGA3B1 and another binding to the membrane-associated protein of interest (POI), effectively transporting the POI into lysosomes for degradation. Our findings demonstrate that ITGBACs effectively eliminate pathological membrane proteins, such as CD71 and PTK7, inducing significant cell-cycle arrest and apoptosis and markedly inhibiting tumor growth in tumor-bearing mice models. Therefore, this work provides a novel and versatile membrane protein degradation platform, offering a promising targeted therapy based on tumor-specific LTRs.
Collapse
Affiliation(s)
- Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hui Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Wanlin Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lele Ma
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yang Dang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Ling Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Fengli Qu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Daly CA, Seebald LM, Wolk E. Employing Metadynamics to Predict the Membrane Partitioning of Carboxy-2 H-Azirine Natural Products. J Phys Chem B 2024; 128:8771-8781. [PMID: 39225398 PMCID: PMC11403667 DOI: 10.1021/acs.jpcb.4c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural products containing the carboxy-2H-azirine moiety are an exciting target for investigation due to their broad-spectrum antimicrobial activity and new chemical space they afford for novel therapeutic development. The carboxy-2H-azirine moiety, including those appended to well-characterized chemical scaffolds, is understudied, which creates a challenge for understanding potential modes of inhibition. In particular, some known natural product carboxy-2H-azirines have long hydrophobic tails, which could implicate them in membrane-associated processes. In this study, we examined a small set of carboxy-2H-azirine natural products with varied structural features that could alter membrane partitioning. We compared the predicted membrane partitioning and alignment of these compounds to those of established membrane embedders with similar chemical scaffolds. To accomplish this, we developed parameters within the framework of the CHARMM36 force field for the 2H-azirine functional group and performed metadynamics simulations of the partitioning into a model bacterial membrane from aqueous solution. We determined that the carboxy-2H-azirine functional group is strongly hydrophilic, imbuing the long-chain natural products with amphipathicity similar to the known membrane-embedding molecules to which they were compared. For the long-chain analogs, the carboxy-2H-azirine head group stays within 1 nm of the phosphate layer, while the hydrophobic tail sits within the membrane. The carboxy-2H-azirine lacking the long alkyl chain instead partitions completely into aqueous solution.
Collapse
Affiliation(s)
- Clyde A Daly
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, United States
| | - Leah M Seebald
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, United States
| | - Emma Wolk
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, United States
| |
Collapse
|
15
|
Zhang L, Wang Y, Zheng C, Zhou Z, Chen Z. Cellular thermal shift assay: an approach to identify and assess protein target engagement. Expert Rev Proteomics 2024; 21:387-400. [PMID: 39317941 DOI: 10.1080/14789450.2024.2406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.
Collapse
Affiliation(s)
- Liying Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chang Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zihan Zhou
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhe Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
16
|
Wang H, Yan J, Wang W, Chen E, Chen D, Zeng S, Li Q, Qian L. Antibody-based near-infrared fluorogenic probes for wash-free imaging of cell-surface proteins. Anal Chim Acta 2024; 1320:343005. [PMID: 39142782 DOI: 10.1016/j.aca.2024.343005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Cell-surface proteins, which are closely associated with various physiological and pathological processes, have drawn much attention in drug discovery and disease diagnosis. Thus, wash-free imaging of the target cell-surface protein under its native environment is critical and helpful for early detection and prognostic evaluation of diseases. RESULTS To minimize the interference from autofluorescence and fit the penetration depth towards tissue samples, we developed a fluorogenic antibody-based probe, Ab-Cy5.5, which will liberate > 5-fold turn-on near-infrared (NIR) emission in the presence of its target antigen within 10 min. SIGNIFICANCE By taking advantage of the fluorescence-quenched dimeric H-aggregation of Cy5.5, Ab-Cy5.5 with Cy5.5 attached at the N-terminus showed negligible background signal, allowing direct imaging of the target cell-surface protein in both living cells and tissue samples without washing.
Collapse
Affiliation(s)
- Haoting Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Yan
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenchao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Endong Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325006, China
| | - Di Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Quan Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325006, China.
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, 313100, China.
| |
Collapse
|
17
|
Recoulat Angelini AA, Roman EA, González Flecha FL. The Structural Stability of Membrane Proteins Revisited: Combined Thermodynamic and Spectral Phasor Analysis of SDS-induced Denaturation of a Thermophilic Cu(I)-transport ATPase. J Mol Biol 2024; 436:168689. [PMID: 38936696 DOI: 10.1016/j.jmb.2024.168689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Assessing membrane protein stability is among the major challenges in protein science due to their inherent complexity, which complicates the application of conventional biophysical tools. In this work, sodium dodecyl sulfate-induced denaturation of AfCopA, a Cu(I)-transport ATPase from Archaeoglobus fulgidus, was explored using a combined model-free spectral phasor analysis and a model-dependent thermodynamic analysis. Decrease in tryptophan and 1-anilino-naphthalene-8-sulfonate fluorescence intensity, displacements in the spectral phasor space, and the loss of ATPase activity were reversibly induced by this detergent. Refolding from the SDS-induced denatured state yields an active enzyme that is functionally and spectroscopically indistinguishable from the native state of the protein. Phasor analysis of Trp spectra allowed us to identify two intermediate states in the SDS-induced denaturation of AfCopA, a result further supported by principal component analysis. In contrast, traditional thermodynamic analysis detected only one intermediate state, and including the second one led to overparameterization. Additionally, ANS fluorescence spectral analysis detected one more intermediate and a gradual change at the level of the hydrophobic transmembrane surface of the protein. Based on this evidence, a model for acquiring the native structure of AfCopA in a membrane-like environment is proposed.
Collapse
Affiliation(s)
- Alvaro A Recoulat Angelini
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Junín 956, Buenos Aires, Argentina
| | - Ernesto A Roman
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Junín 956, Buenos Aires, Argentina
| | - F Luis González Flecha
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Junín 956, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Labrecque C, Fuglestad B. Ligandability at the Membrane Interface of GPx4 Revealed through a Reverse Micelle Fragment Screening Platform. JACS AU 2024; 4:2676-2686. [PMID: 39055139 PMCID: PMC11267533 DOI: 10.1021/jacsau.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
While they account for a large portion of drug targets, membrane proteins present a unique challenge for drug discovery. Peripheral membrane proteins (PMPs), a class of water-soluble proteins that bind to membranes, are also difficult targets, particularly those that function only when bound to membranes. The protein-membrane interface in PMPs is often where functional interactions and catalysis occur, making it a logical target for inhibition. However, protein-membrane interfaces are underexplored spaces in inhibitor design, and there is a need for enhanced methods for small-molecule ligand discovery. In an effort to better initiate drug discovery efforts for PMPs, this study presents a screening methodology using membrane-mimicking reverse micelles (mmRM) and NMR-based fragment screening to assess ligandability at the protein-membrane interface. The proof-of-principle target, glutathione peroxidase 4 (GPx4), is a lipid hydroperoxidase that is essential for the oxidative protection of membranes and thereby the prevention of ferroptosis. GPx4 inhibition is promising for therapy-resistant cancer therapy, but current inhibitors are generally covalent ligands with limited clinical utility. Presented here is the discovery of noncovalent small-molecule ligands for membrane-bound GPx4 revealed through the mmRM fragment screening methodology. The fragments were tested against GPx4 under bulk aqueous conditions and displayed little to no binding to the protein without embedment into the membrane. The 9 hits had varying affinities and partitioning coefficients and revealed properties of fragments that bind within the protein-membrane interface. Additionally, a secondary screen confirmed the potential to progress the fragments by enhancing the affinity from >200 to ∼15 μM with the addition of certain hydrophobic groups. This study presents an advancement of screening capabilities for membrane-associated proteins, reveals ligandability within the GPx4 protein-membrane interface, and may serve as a starting point for developing noncovalent inhibitors of GPx4.
Collapse
Affiliation(s)
- Courtney
L. Labrecque
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Brian Fuglestad
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
19
|
Ødum MT, Teufel F, Thumuluri V, Almagro Armenteros JJ, Johansen AR, Winther O, Nielsen H. DeepLoc 2.1: multi-label membrane protein type prediction using protein language models. Nucleic Acids Res 2024; 52:W215-W220. [PMID: 38587188 PMCID: PMC11223819 DOI: 10.1093/nar/gkae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
DeepLoc 2.0 is a popular web server for the prediction of protein subcellular localization and sorting signals. Here, we introduce DeepLoc 2.1, which additionally classifies the input proteins into the membrane protein types Transmembrane, Peripheral, Lipid-anchored and Soluble. Leveraging pre-trained transformer-based protein language models, the server utilizes a three-stage architecture for sequence-based, multi-label predictions. Comparative evaluations with other established tools on a test set of 4933 eukaryotic protein sequences, constructed following stringent homology partitioning, demonstrate state-of-the-art performance. Notably, DeepLoc 2.1 outperforms existing models, with the larger ProtT5 model exhibiting a marginal advantage over the ESM-1B model. The web server is available at https://services.healthtech.dtu.dk/services/DeepLoc-2.1.
Collapse
Affiliation(s)
- Marius Thrane Ødum
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Felix Teufel
- Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
- Digital Science & Innovation, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - José Juan Almagro Armenteros
- Bristol Myers Squibb Company, Informatics and Predictive Sciences Research, Calle Isaac Newton 4, Sevilla 41092, Spain
| | | | - Ole Winther
- Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Genomic Medicine, Rigshospitalet (Copenhagen University Hospital), 2100 Copenhagen, Denmark
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Henrik Nielsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Soulié M, Deletraz A, Wehbie M, Mahler F, Chantemargue B, Bouchemal I, Le Roy A, Petit-Härtlein I, Fieschi F, Breyton C, Ebel C, Keller S, Durand G. Rigid Cyclic Fluorinated Detergents: Fine-Tuning the Hydrophilic-Lipophilic Balance Controls Self-Assembling and Biochemical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32971-32982. [PMID: 38885044 DOI: 10.1021/acsami.4c03359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We report herein the synthesis of three detergents bearing a perfluorinated cyclohexyl group connected through a short, hydrogenated spacer (i.e., propyl, butyl, or pentyl) to a β-maltoside polar head that are, respectively, called FCymal-3, FCymal-4, and FCymal-5. Increasing the length of the spacer decreased the critical micellar concentration (CMC), as demonstrated by surface tension (SFT) and isothermal titration calorimetry (ITC), from 5 mM for FCymal-3 to 0.7 mM for FCymal-5. The morphology of the micelles was studied by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and small-angle X-ray scattering (SAXS), indicating heterogeneous rod-like shapes. While micelles of FCymal-3 and -4 have similar hydrodynamic diameters of ∼10 nm, those of FCymal-5 were twice as large. We also investigated the ability of the detergents to solubilize lipid membranes made of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC). Molecular modeling indicated that the FCymal detergents generate disorder in lipid bilayers, with FCymal-3 being inserted more deeply into bilayers than FCymal-4 and -5. This was experimentally confirmed using POPC vesicles that were completely solubilized within 2 h with FCymal-3, whereas FCymal-5 required >8 h. A similar trend was noticed for the direct extraction of membrane proteins from E. coli membranes, with FCymal-3 being more potent than FCymal-5. An opposite trend was observed in terms of stabilization of the two model membrane proteins bacteriorhodopsin (bR) and SpNOX. In all three FCymal detergents, bR was stable for at least 2 months with no signs of aggregation. However, while the structural integrity of bR was fully preserved in FCymal-4 and -5, minor bleaching was observed in FCymal-3. Similarly, SpNOX exhibited the least activity in FCymal-3 and the highest activity in FCymal-5. By combining solubilizing and stabilizing potency, FCymal detergents push forward our expectations of the usefulness of fluorinated detergents for handling and investigating membrane proteins.
Collapse
Affiliation(s)
- Marine Soulié
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
- Avignon Université, Unité Propre de Recherche et d'Innovation, Equipe Synthèse et Systèmes Colloïdaux Bio-organiques, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Anais Deletraz
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Moheddine Wehbie
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | | | - Ilham Bouchemal
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Aline Le Roy
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Cécile Breyton
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Sandro Keller
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
- Avignon Université, Unité Propre de Recherche et d'Innovation, Equipe Synthèse et Systèmes Colloïdaux Bio-organiques, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| |
Collapse
|
21
|
Fang Y, Zhang Y, Bi S, Peng B, Wang C, Ju H, Liu Y. Securing LYTAC with Logic-Identification System for Cancer Cell-Selective Membrane Protein Degradation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310039. [PMID: 38431928 DOI: 10.1002/smll.202310039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Lysosome-targeting chimera (LYTAC) links proteins of interest (POIs) with lysosome-targeting receptors (LTRs) to achieve membrane protein degradation, which is becoming a promising therapeutic modality. However, cancer cell-selective membrane protein degradation remains a big challenge considering expressions of POIs in both cancer cells and normal cells, as well as broad tissue distribution of LTRs. Here a logic-identification system is designed, termed Logic-TAC, based on cell membrane-guided DNA calculations to secure LYTAC selectively for cancer cells. Logic-TAC is designed as a duplex DNA structure, with both POI and LTR recognition regions sealed to avoid systematic toxicity during administration. MCF-7 and MCF-10A are chosen as sample cancer cell and normal cell respectively. As input 1 for logic-identification, membrane proteins EpCAM, which is highly expressed by MCF-7 but barely by MCF-10A, reacts with Logic-TAC to expose POI recognition region. As input 2 for logic-identification, Logic-TAC binds to POI, membrane protein MUC1, to expose LTR recognition region. As output, MUC1 is connected to LTR and degraded via lysosome pathway selectively for cancer cell MCF-7 with little side effect on normal cell MCF-10A. The logic-identification system also demonstrated satisfactory in vivo therapeutic results, indicating its promising potential in precise targeted therapy.
Collapse
Affiliation(s)
- Yanyun Fang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bo Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Caixia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
22
|
XUE J, LIU Z, WANG F. [Applications of native mass spectrometry and ultraviolet photodissociation in protein structure and interaction analysis]. Se Pu 2024; 42:681-692. [PMID: 38966976 PMCID: PMC11224945 DOI: 10.3724/sp.j.1123.2024.01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 07/06/2024] Open
Abstract
Dynamic changes in the structures and interactions of proteins are closely correlated with their biological functions. However, the precise detection and analysis of these molecules are challenging. Native mass spectrometry (nMS) introduces proteins or protein complexes into the gas phase by electrospray ionization, and then performs MS analysis under near-physiological conditions that preserve the folded state of proteins and their complexes in solution. nMS can provide information on stoichiometry, assembly, and dissociation constants by directly determining the relative molecular masses of protein complexes through high-resolution MS. It can also integrate various MS dissociation technologies, such as collision-induced dissociation (CID), surface-induced dissociation (SID), and ultraviolet photodissociation (UVPD), to analyze the conformational changes, binding interfaces, and active sites of protein complexes, thereby revealing the relationship between their interactions and biological functions. UVPD, especially 193 nm excimer laser UVPD, is a rapidly evolving MS dissociation method that can directly dissociate the covalent bonds of protein backbones with a single pulse. It can generate different types of fragment ions, while preserving noncovalent interactions such as hydrogen bonds within these ions, thereby enabling the MS analysis of protein structures with single-amino-acid-site resolution. This review outlines the applications and recent progress of nMS and UVPD in protein dynamic structure and interaction analyses. It covers the nMS techniques used to analyze protein-small-molecule ligand interactions, the structures of membrane proteins and their complexes, and protein-protein interactions. The discussion on UVPD includes the analysis of gas-phase protein structures and interactions, as well as alterations in protein dynamic structures, and interactions resulting from mutations and ligand binding. Finally, this review describes the future development prospects for protein analysis by nMS and new-generation advanced extreme UV light sources with higher brightness and shorter pulses.
Collapse
|
23
|
Torabi M, Nazaruk E, Bilewicz R. Alignment of lyotropic liquid crystals using magnetic nanoparticles improves ionic transport through built-in peptide ion channels. J Colloid Interface Sci 2024; 674:982-992. [PMID: 38964002 DOI: 10.1016/j.jcis.2024.06.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
HYPOTHESIS We hypothesize that simultaneous incorporation of ion channel peptides (in this case, potassium channel as a model) and hydrophobic magnetite Fe3O4 nanoparticles (hFe3O4NPs) within lipidic hexagonal mesophases, and aligning them using an external magnetic field can significantly enhance ion transport through lipid membranes. EXPERIMENTS In this study, we successfully characterized the incorporation of gramicidin membrane ion channels and hFe3O4NPs in the lipidic hexagonal structure using SAXS and cryo-TEM methods. Additionally, we thoroughly investigated the conductive characteristics of freestanding films of lipidic hexagonal mesophases, both with and without gramicidin potassium channels, utilizing a range of electrochemical techniques, including impedance spectroscopy, normal pulse voltammetry, and chronoamperometry. FINDINGS Our research reveals a state-of-the-art breakthrough in enhancing ion transport in lyotropic liquid crystals as matrices for integral proteins and peptides. We demonstrate the remarkable efficacy of membranes composed of hexagonal lipid mesophases embedded with K+ transporting peptides. This enhancement is achieved through doping with hFe3O4NPs and exposure to a magnetic field. We investigate the intricate interplay between the conductive properties of the lipidic hexagonal structure, hFe3O4NPs, gramicidin incorporation, and the influence of Ca2+ on K+ channels. Furthermore, our study unveils a new direction in ion channel studies and biomimetic membrane investigations, presenting a versatile model for biomimetic membranes with unprecedented ion transport capabilities under an appropriately oriented magnetic field. These findings hold promise for advancing membrane technology and various biotechnological and biomedical applications of membrane proteins.
Collapse
Affiliation(s)
- Mostafa Torabi
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland.
| |
Collapse
|
24
|
Bao P, Phillips K, Raval R. Membrane Proteins in Action Monitored by pH-Responsive Liquid Crystal Biosensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31843-31850. [PMID: 38841859 PMCID: PMC11194810 DOI: 10.1021/acsami.4c06614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Liquid crystal (LC) biosensors have received significant attention for their potential applications for point-of-care devices due to their sensitivity, low cost, and easy read-out. They have been employed to detect a wide range of important biological molecules. However, detecting the function of membrane proteins has been extremely challenging due to the difficulty of integrating membrane proteins, lipid membranes, and LCs into one system. In this study, we addressed this challenge by monitoring the proton-pumping function of bacteriorhodopsin (bR) using a pH-sensitive LC thin film biosensor. To achieve this, we deposited purple membranes (PMs) containing a 2D crystal form of bRs onto an LC-aqueous interface. Under light, the PM patches changed the local pH at the LC-aqueous interface, causing a color change in the LC thin film that is observable through a polarizing microscope with crossed polarizers. These findings open up new opportunities to study the biofunctions of membrane proteins and their induced local environmental changes in a solution using LC biosensors.
Collapse
Affiliation(s)
- Peng Bao
- Open Innovation
Hub for Antimicrobial
Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Kyle Phillips
- Open Innovation
Hub for Antimicrobial
Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Rasmita Raval
- Open Innovation
Hub for Antimicrobial
Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
25
|
Labrecque CL, Fuglestad B. Ligandability at the membrane interface of GPx4 revealed through a reverse micelle fragment screening platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593437. [PMID: 38766018 PMCID: PMC11100811 DOI: 10.1101/2024.05.09.593437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
While they account for a large portion of drug targets, membrane proteins (MPs) present a unique challenge for drug discovery. Peripheral membrane proteins (PMPs), a class of proteins that bind reversibly to membranes, are also difficult targets, particularly those that function only while bound to membranes. The protein-membrane interface in PMPs is often where functional interactions and catalysis occur, making it a logical target for inhibition. However, interfaces are underexplored spaces in inhibitor design and there is a need for enhanced methods for small-molecule ligand discovery. In an effort to better initiate drug discovery efforts for PMPs, this study presents a screening methodology using membrane-mimicking reverse micelles (mmRM) and NMR-based fragment screening to assess ligandability in the protein-membrane interface. The proof-of-principle target, glutathione peroxidase 4 (GPx4), is a lipid hydroperoxidase which is essential for the oxidative protection of membranes and thereby the prevention of ferroptosis. GPx4 inhibition is promising for therapy-resistant cancer therapy, but current inhibitors are generally covalent ligands with limited clinical utility. Presented here is the discovery of non-covalent small-molecule ligands for membrane-bound GPx4 revealed through the mmRM fragment screening methodology. The fragments were tested against GPx4 in bulk aqueous conditions and displayed little to no binding to the protein without embedment into the membrane. The 9 hits had varying affinities and partitioning coefficients and revealed properties of fragments that bind within the protein-membrane interface. Additionally, a secondary screen confirmed the potential to progress the fragments by enhancing the affinity from > 200 μM to ~15 μM with the addition of certain hydrophobic groups. This study presents an advancement of screening capabilities for membrane associated proteins, reveals ligandability within the GPx4 protein-membrane interface, and may serve as a starting point for developing non-covalent inhibitors of GPx4.
Collapse
Affiliation(s)
- Courtney L. Labrecque
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
26
|
Sawhney A, Li J, Liao L. Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features. Int J Mol Sci 2024; 25:5247. [PMID: 38791287 PMCID: PMC11121315 DOI: 10.3390/ijms25105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Residue contact maps provide a condensed two-dimensional representation of three-dimensional protein structures, serving as a foundational framework in structural modeling but also as an effective tool in their own right in identifying inter-helical binding sites and drawing insights about protein function. Treating contact maps primarily as an intermediate step for 3D structure prediction, contact prediction methods have limited themselves exclusively to sequential features. Now that AlphaFold2 predicts 3D structures with good accuracy in general, we examine (1) how well predicted 3D structures can be directly used for deciding residue contacts, and (2) whether features from 3D structures can be leveraged to further improve residue contact prediction. With a well-known benchmark dataset, we tested predicting inter-helical residue contact based on AlphaFold2's predicted structures, which gave an 83% average precision, already outperforming a sequential features-based state-of-the-art model. We then developed a procedure to extract features from atomic structure in the neighborhood of a residue pair, hypothesizing that these features will be useful in determining if the residue pair is in contact, provided the structure is decently accurate, such as predicted by AlphaFold2. Training on features generated from experimentally determined structures, we leveraged knowledge from known structures to significantly improve residue contact prediction, when testing using the same set of features but derived using AlphaFold2 structures. Our results demonstrate a remarkable improvement over AlphaFold2, achieving over 91.9% average precision for a held-out subset and over 89.5% average precision in cross-validation experiments.
Collapse
Affiliation(s)
- Aman Sawhney
- Department of Computer and Information Sciences, University of Delaware, Smith Hall, 18 Amstel Avenue, Newark, DE 19716, USA;
| | - Jiefu Li
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, China;
| | - Li Liao
- Department of Computer and Information Sciences, University of Delaware, Smith Hall, 18 Amstel Avenue, Newark, DE 19716, USA;
| |
Collapse
|
27
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
28
|
Lu C, Jiang J, Chen Q, Liu H, Ju X, Wang H. Analysis and prediction of interactions between transmembrane and non-transmembrane proteins. BMC Genomics 2024; 25:401. [PMID: 38658824 PMCID: PMC11040819 DOI: 10.1186/s12864-024-10251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Most of the important biological mechanisms and functions of transmembrane proteins (TMPs) are realized through their interactions with non-transmembrane proteins(nonTMPs). The interactions between TMPs and nonTMPs in cells play vital roles in intracellular signaling, energy metabolism, investigating membrane-crossing mechanisms, correlations between disease and drugs. RESULTS Despite the importance of TMP-nonTMP interactions, the study of them remains in the wet experimental stage, lacking specific and comprehensive studies in the field of bioinformatics. To fill this gap, we performed a comprehensive statistical analysis of known TMP-nonTMP interactions and constructed a deep learning-based predictor to identify potential interactions. The statistical analysis describes known TMP-nonTMP interactions from various perspectives, such as distributions of species and protein families, enrichment of GO and KEGG pathways, as well as hub proteins and subnetwork modules in the PPI network. The predictor implemented by an end-to-end deep learning model can identify potential interactions from protein primary sequence information. The experimental results over the independent validation demonstrated considerable prediction performance with an MCC of 0.541. CONCLUSIONS To our knowledge, we were the first to focus on TMP-nonTMP interactions. We comprehensively analyzed them using bioinformatics methods and predicted them via deep learning-based solely on their sequence. This research completes a key link in the protein network, benefits the understanding of protein functions, and helps in pathogenesis studies of diseases and associated drug development.
Collapse
Affiliation(s)
- Chang Lu
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Jiuhong Jiang
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Qiufen Chen
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Huanhuan Liu
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Xingda Ju
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China.
| | - Han Wang
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China.
| |
Collapse
|
29
|
Mendonça JB, Fernandes PV, Fernandes DC, Rodrigues FR, Waghabi MC, Tilli TM. Unlocking Overexpressed Membrane Proteins to Guide Breast Cancer Precision Medicine. Cancers (Basel) 2024; 16:1402. [PMID: 38611080 PMCID: PMC11011122 DOI: 10.3390/cancers16071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer (BC) is a prevalent form of cancer affecting women worldwide. However, the effectiveness of current BC drugs is limited by issues such as systemic toxicity, drug resistance, and severe side effects. Consequently, there is an urgent need for new therapeutic targets and improved tumor tracking methods. This study aims to address these challenges by proposing a strategy for identifying membrane proteins in tumors that can be targeted for specific BC therapy and diagnosis. The strategy involves the analyses of gene expressions in breast tumor and non-tumor tissues and other healthy tissues by using comprehensive bioinformatics analysis from The Cancer Genome Atlas (TCGA), UALCAN, TNM Plot, and LinkedOmics. By employing this strategy, we identified four transcripts (LRRC15, EFNA3, TSPAN13, and CA12) that encoded membrane proteins with an increased expression in BC tissue compared to healthy tissue. These four transcripts also demonstrated high accuracy, specificity, and accuracy in identifying tumor samples, as confirmed by the ROC curve. Additionally, tissue microarray (TMA) analysis revealed increased expressions of the four proteins in tumor tissues across all molecular subtypes compared to the adjacent breast tissue. Moreover, the analysis of human interactome data demonstrated the important roles of these proteins in various cancer-related pathways. Taken together, these findings suggest that LRRC15, EFNA3, TSPAN13, and CA12 can serve as potential biomarkers for improving cancer diagnosis screening and as suitable targets for therapy with reduced side effects and enhanced efficacy.
Collapse
Affiliation(s)
- Júlia Badaró Mendonça
- Translational Oncology Platform, Center for Technological Development in Health, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil;
- Laboratory of Applied Genomics and Bioinnovation, Instituto Oswaldo Cruz (IOC) Fiocruz, Rio de Janeiro 21045-900, RJ, Brazil;
| | - Priscila Valverde Fernandes
- Divisão de Patologia (DIPAT), Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (P.V.F.); (D.C.F.); (F.R.R.)
| | - Danielle C. Fernandes
- Divisão de Patologia (DIPAT), Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (P.V.F.); (D.C.F.); (F.R.R.)
| | - Fabiana Resende Rodrigues
- Divisão de Patologia (DIPAT), Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (P.V.F.); (D.C.F.); (F.R.R.)
| | - Mariana Caldas Waghabi
- Laboratory of Applied Genomics and Bioinnovation, Instituto Oswaldo Cruz (IOC) Fiocruz, Rio de Janeiro 21045-900, RJ, Brazil;
| | - Tatiana Martins Tilli
- Translational Oncology Platform, Center for Technological Development in Health, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil;
- Laboratory of Clinical and Experimental Pathophysiology, IOC, Fiocruz, Rio de Janeiro 21041-210, RJ, Brazil
| |
Collapse
|
30
|
Dong T, Wan S, Wang Y, Fu Y, Wang P. Effects of Chemical Fixatives on Kinetic Measurements of Biomolecular Interaction on Cell Membrane. J Membr Biol 2024; 257:131-142. [PMID: 38206377 DOI: 10.1007/s00232-024-00305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Understanding the interaction between ligands and membrane proteins is important for drug design and optimization. Although investigation using live cells is desirable, it is not feasible in some circumstances and cell fixation is performed to reduce cell motion and degradation. This study compared the effects of five fixatives, i.e., formaldehyde vapor (FV), paraformaldehyde (PFA), acetone, methanol, and ethanol, on kinetic measurements via the LigandTracer method. We found that all five fixatives exerted insignificant effects on lectin-glycan interaction. However, antibody-receptor interaction is markedly perturbed by coagulant fixatives. The acetone fixation changed the binding of the anti-human epidermal growth factor receptor 2 (HER2) antibody to HER2 on the cell membrane from a 1:2 to a 1:1 binding model, while methanol and ethanol abolished the antibody binding possibly by removal of the HER2 receptors on the cell membrane. The capability of binding was retained when methanol fixation was performed at lower temperatures, albeit with a binding model of 1:1 instead. Moreover, whereas cell morphology does not exert a substantial impact on lectin-glycan interaction, it can indeed modify the binding model of antibody-receptor interaction. Our results provided insights into the selection of fixatives for cell-based kinetic studies.
Collapse
Affiliation(s)
- Tianbao Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Shengyang Wan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Yanhui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Yaru Fu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Pengcheng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| |
Collapse
|
31
|
Sarihan M, Kasap M, Akpinar G. Streamlined Biotinylation, Enrichment and Analysis for Enhanced Plasma Membrane Protein Identification Using TurboID and TurboID-Start Biotin Ligases. J Membr Biol 2024; 257:91-105. [PMID: 38289568 DOI: 10.1007/s00232-023-00303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/23/2023] [Indexed: 04/11/2024]
Abstract
Plasma membrane proteins (PMPs) play pivotal roles in various cellular events and are crucial in disease pathogenesis, making their comprehensive characterization vital for biomedical research. However, the hydrophobic nature and low expression levels of PMPs pose challenges for conventional enrichment methods, hindering their identification and functional profiling. In this study, we presented a novel TurboID-based enrichment approach for PMPs that helped overcoming some of the existing limitations. We evaluated the efficacy of TurboID and its modified form, TurboID-START, in PMP enrichment, achieving efficient and targeted labelling of PMPs without the need for stable cell line generation. This approach resulted reduction in non-specific biotinylation events, leading to improved PMP enrichment and enabled assessment of the subcellular proteome associated with the plasma membrane. Our findings paved the way for studies targeting the dynamic nature of the plasma membrane proteome and aiming to capture transient associations of proteins with the plasma membrane. The novel TurboID-based enrichment approach presented here offers promising prospects for in-depth investigations into PMPs and their roles in cellular processes.
Collapse
Affiliation(s)
- Mehmet Sarihan
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical School, 41001, Umuttepe, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical School, 41001, Umuttepe, Kocaeli, Turkey.
| | - Gurler Akpinar
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical School, 41001, Umuttepe, Kocaeli, Turkey
| |
Collapse
|
32
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
33
|
Lim S, Ha Y, Lee B, Shin J, Rhim T. Calnexin as a dual-role biomarker: antibody-based diagnosis and therapeutic targeting in lung cancer. BMB Rep 2024; 57:155-160. [PMID: 38303563 PMCID: PMC10979343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Lung cancer carries one of the highest mortality rates among all cancers. It is often diagnosed at more advanced stages with limited treatment options compared to other malignancies. This study focuses on calnexin as a potential biomarker for diagnosis and treatment of lung cancer. Calnexin, a molecular chaperone integral to N-linked glycoprotein synthesis, has shown some associations with cancer. However, targeted therapeutic or diagnostic methods using calnexin have been proposed. Through 1D-LCMSMS, we identified calnexin as a biomarker for lung cancer and substantiated its expression in human lung cancer cell membranes using Western blotting, flow cytometry, and immunocytochemistry. Anti-calnexin antibodies exhibited complement-dependent cytotoxicity to lung cancer cell lines, resulting in a notable reduction in tumor growth in a subcutaneous xenograft model. Additionally, we verified the feasibility of labeling tumors through in vivo imaging using antibodies against calnexin. Furthermore, exosomal detection of calnexin suggested the potential utility of liquid biopsy for diagnostic purposes. In conclusion, this study establishes calnexin as a promising target for antibody-based lung cancer diagnosis and therapy, unlocking novel avenues for early detection and treatment. [BMB Reports 2024; 57(3): 155-160].
Collapse
Affiliation(s)
- Soyeon Lim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Youngeun Ha
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Boram Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Junho Shin
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Taiyoun Rhim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
34
|
Chen X, Zhou JL, Yu J, Chen N, Chen W, Lu H, Xin GZ, Lin Y. Development of target-based cell membrane affinity ultrafiltration technology for a simplified approach to discovering potential bioactive compounds in natural products. Anal Bioanal Chem 2024; 416:1647-1655. [PMID: 38305859 DOI: 10.1007/s00216-024-05166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Target-based drug discovery technology based on cell membrane targets has gained significant traction and has been steadily advancing. However, current methods still face certain limitations that need to be addressed. One of the challenges is the laborious preparation process of screening materials, which can be time-consuming and resource-intensive. Additionally, there is a potential issue of non-specific adsorption caused by carrier materials, which can result in false-positive results and compromise the accuracy of the screening process. To address these challenges, this paper proposes a target-based cell membrane affinity ultrafiltration technology for active ingredient discovery in natural products. In this technique, the cell membranes of human lung adenocarcinoma epithelial cells (A549) with a high expression of epidermal growth factor receptor (EGFR) were incubated with candidate drugs and then transferred to an ultrafiltration tube. Through centrifugation, components that interacted with EGFR were retained in the ultrafiltration tube as "EGFR-ligand" complex, while the components that did not interact with EGFR were separated. After thorough washing and eluting, the components interacting with EGFR were dissociated and further identified using LC-MS, enabling the discovery of bioactive compounds. Moreover, the target-based cell membrane affinity ultrafiltration technology exhibited commendable binding capacity and selectivity. Ultimately, this technology successfully screened and identified two major components from the Curcumae Rhizoma-Sparganii Rhizoma (CS) herb pair extracts, which were further validated for their potential anti-tumor activity through pharmacological experiments. By eliminating the need for laborious preparation of screening materials and the potential non-specific adsorption caused by carriers, the development of target-based cell membrane affinity ultrafiltration technology provides a simplified approach and method for bioactive compounds discovery in natural sources.
Collapse
Affiliation(s)
- Xuan Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jinhao Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Ningbo Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wenda Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Huaqiu Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
35
|
Wang Y, Weng S, Tang Y, Lin S, Liu X, Zhang W, Liu G, Pandi B, Wu Y, Ma L, Wang L. A transmembrane scaffold from CD20 helps recombinant expression of a chimeric claudin 18.2 in an in vitro coupled transcription and translation system. Protein Expr Purif 2024; 215:106392. [PMID: 37952787 DOI: 10.1016/j.pep.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Cluster of differentiation 20 (CD20) is a nonglycosylated, multispanning transmembrane protein specifically integrated by B lymphocytes. Similar to CD20, another four-pass transmembrane protein, claudin 18.2, has attracted attention as an emerging therapeutic target for cancer. However, their poor solubility and toxic nature often hinder downstream applications, such as antibody drug development. Therefore, developing a cost-effective method for producing drug targets with multiple membrane-spanning domains is crucial. In this study, a high yield of recombinant CD20 was achieved through an E. coli-based in vitro coupled transcription-translation system. Surface plasmon resonance results showed that rituximab (an antileukemia drug) has nanomolar affinity with the CD20 protein, which aligns with published results. Notably, a previously hard-to-express claudin 18.2 recombinant protein was successfully expressed in the same reaction system by replacing its membrane-spanning domains with the transmembrane domains of CD20. The folding of the extracellular domain of the chimeric protein was verified using a commercial anti-claudin 18 antibody. This study provides a novel concept for promoting the expression of four-pass transmembrane proteins and lays the foundation for the large-scale industrial production of membrane-associated drug targets, similar to claudin 18.2.
Collapse
Affiliation(s)
- Yao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Shaoting Weng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yajie Tang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Sen Lin
- Anyang Kindstar Global Medical Laboratory Ltd, Anyang, Henan province, 455000, China
| | - Xiayue Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Wenhui Zhang
- Henan Panran Medical Equipment Co., Ltd, Anyang, Henan province, 455000, China
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Boomi Pandi
- Department of bioinformatics, Alagappa University, Karaikudi, India
| | - Yinrong Wu
- Henan Panran Medical Equipment Co., Ltd, Anyang, Henan province, 455000, China
| | - Lei Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Lin Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| |
Collapse
|
36
|
Tsai YX, Chang NE, Reuter K, Chang HT, Yang TJ, von Bülow S, Sehrawat V, Zerrouki N, Tuffery M, Gecht M, Grothaus IL, Colombi Ciacchi L, Wang YS, Hsu MF, Khoo KH, Hummer G, Hsu STD, Hanus C, Sikora M. Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries. Cell 2024; 187:1296-1311.e26. [PMID: 38428397 DOI: 10.1016/j.cell.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.
Collapse
Affiliation(s)
- Yu-Xi Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Ning-En Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Klaus Reuter
- Max Planck Computing and Data Facility, 85748 Garching, Germany
| | - Hao-Ting Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany
| | - Vidhi Sehrawat
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland
| | - Noémie Zerrouki
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France
| | - Matthieu Tuffery
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France
| | - Michael Gecht
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany
| | - Isabell Louise Grothaus
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Yong-Sheng Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt, Germany
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Hiroshima 739-8526, Japan.
| | - Cyril Hanus
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France; GHU Psychiatrie et Neurosciences de Paris, 75014 Paris, France.
| | - Mateusz Sikora
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland.
| |
Collapse
|
37
|
Lee KY. Membrane-Driven Dimerization of the Peripheral Membrane Protein KRAS: Implications for Downstream Signaling. Int J Mol Sci 2024; 25:2530. [PMID: 38473778 DOI: 10.3390/ijms25052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Transient homo-dimerization of the RAS GTPase at the plasma membrane has been shown to promote the mitogen-activated protein kinase (MAPK) signaling pathway essential for cell proliferation and oncogenesis. To date, numerous crystallographic studies have focused on the well-defined GTPase domains of RAS isoforms, which lack the disordered C-terminal membrane anchor, thus providing limited structural insight into membrane-bound RAS molecules. Recently, lipid-bilayer nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses have revealed several distinct structures of the membrane-anchored homodimers of KRAS, an isoform that is most frequently mutated in human cancers. The KRAS dimerization interface is highly plastic and altered by biologically relevant conditions, including oncogenic mutations, the nucleotide states of the protein, and the lipid composition. Notably, PRE-derived structures of KRAS homodimers on the membrane substantially differ in terms of the relative orientation of the protomers at an "α-α" dimer interface comprising two α4-α5 regions. This interface plasticity along with the altered orientations of KRAS on the membrane impact the accessibility of KRAS to downstream effectors and regulatory proteins. Further, nanodisc platforms used to drive KRAS dimerization can be used to screen potential anticancer drugs that target membrane-bound RAS dimers and probe their structural mechanism of action.
Collapse
Affiliation(s)
- Ki-Young Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 11160, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
38
|
Yoon S, Bae HE, Hariharan P, Nygaard A, Lan B, Woubshete M, Sadaf A, Liu X, Loland CJ, Byrne B, Guan L, Chae PS. Rational Approach to Improve Detergent Efficacy for Membrane Protein Stabilization. Bioconjug Chem 2024; 35:223-231. [PMID: 38215010 DOI: 10.1021/acs.bioconjchem.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Membrane protein structures are essential for the molecular understanding of diverse cellular processes and drug discovery. Detergents are not only widely used to extract membrane proteins from membranes but also utilized to preserve native protein structures in aqueous solution. However, micelles formed by conventional detergents are suboptimal for membrane protein stabilization, necessitating the development of novel amphiphilic molecules with enhanced protein stabilization efficacy. In this study, we prepared two sets of tandem malonate-derived glucoside (TMG) variants, both of which were designed to increase the alkyl chain density in micelle interiors. The alkyl chain density was modulated either by reducing the spacer length (TMG-Ms) or by introducing an additional alkyl chain between the two alkyl chains of the original TMGs (TMG-Ps). When evaluated with a few membrane proteins including a G protein-coupled receptor, TMG-P10,8 was found to be substantially more efficient at extracting membrane proteins and also effective at preserving protein integrity in the long term compared to the previously described TMG-A13. This result reveals that inserting an additional alkyl chain between the two existing alkyl chains is an effective way to optimize detergent properties for membrane protein study. This new biochemical tool and the design principle described have the potential to facilitate membrane protein structure determination.
Collapse
Affiliation(s)
- Soyoung Yoon
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, South Korea
| | - Hyoung Eun Bae
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, South Korea
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Baoliang Lan
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Menebere Woubshete
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Aiman Sadaf
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, South Korea
| | - Xiangyu Liu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, South Korea
| |
Collapse
|
39
|
Ogunbowale A, Georgieva ER. Engineered Chimera Protein Constructs to Facilitate the Production of Heterologous Transmembrane Proteins in E. coli. Int J Mol Sci 2024; 25:2354. [PMID: 38397029 PMCID: PMC10889703 DOI: 10.3390/ijms25042354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
To delve into the structure-function relationship of transmembrane proteins (TMPs), robust protocols are needed to produce them in a pure, stable, and functional state. Among all hosts that express heterologous TMPs, E. coli has the lowest cost and fastest turnover. However, many of the TMPs expressed in E. coli are misfolded. Several strategies have been developed to either direct the foreign TMPs to E. coli's membrane or retain them in a cytosolic soluble form to overcome this deficiency. Here, we summarize protein engineering methods to produce chimera constructs of the desired TMPs fused to either a signal peptide or precursor maltose binding protein (pMBP) to direct the entire construct to the periplasm, therefore depositing the fused TMP in the plasma membrane. We further describe strategies to produce TMPs in soluble form by utilizing N-terminally fused MBP without a signal peptide. Depending on its N- or C-terminus location, a fusion to apolipoprotein AI can either direct the TMP to the membrane or shield the hydrophobic regions of the TMP, maintaining the soluble form. Strategies to produce G-protein-coupled receptors, TMPs of Mycobacterium tuberculosis, HIV-1 Vpu, and other TMPs are discussed. This knowledge could increase the scope of TMPs' expression in E. coli.
Collapse
Affiliation(s)
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
40
|
Dolorfino M, Samanta R, Vorobieva A. ProteinMPNN Recovers Complex Sequence Properties of Transmembrane β-barrels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575764. [PMID: 38352434 PMCID: PMC10862708 DOI: 10.1101/2024.01.16.575764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Recent deep-learning (DL) protein design methods have been successfully applied to a range of protein design problems, including the de novo design of novel folds, protein binders, and enzymes. However, DL methods have yet to meet the challenge of de novo membrane protein (MP) and the design of complex β-sheet folds. We performed a comprehensive benchmark of one DL protein sequence design method, ProteinMPNN, using transmembrane and water-soluble β-barrel folds as a model, and compared the performance of ProteinMPNN to the new membrane-specific Rosetta Franklin2023 energy function. We tested the effect of input backbone refinement on ProteinMPNN performance and found that given refined and well-defined inputs, ProteinMPNN more accurately captures global sequence properties despite complex folding biophysics. It generates more diverse TMB sequences than Franklin2023 in pore-facing positions. In addition, ProteinMPNN generated TMB sequences that passed state-of-the-art in silico filters for experimental validation, suggesting that the model could be used in de novo design tasks of diverse nanopores for single-molecule sensing and sequencing. Lastly, our results indicate that the low success rate of ProteinMPNN for the design of β-sheet proteins stems from backbone input accuracy rather than software limitations.
Collapse
Affiliation(s)
- Marissa Dolorfino
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-VIB Center for Structural Biology, Brussels, Belgium
| | | | - Anastassia Vorobieva
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-VIB Center for Structural Biology, Brussels, Belgium
- VIB Center for AI and Computational Biology, Belgium
| |
Collapse
|
41
|
Yamada K, Shioya R, Nishino K, Furihata H, Hijikata A, Kaneko MK, Kato Y, Shirai T, Kosako H, Sawasaki T. Proximity extracellular protein-protein interaction analysis of EGFR using AirID-conjugated fragment of antigen binding. Nat Commun 2023; 14:8301. [PMID: 38097606 PMCID: PMC10721602 DOI: 10.1038/s41467-023-43931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Receptor proteins, such as epidermal growth factor receptor (EGFR), interact with other proteins in the extracellular region of the cell membrane to drive intracellular signalling. Therefore, analysis of extracellular protein-protein interactions (exPPIs) is important for understanding the biological function of receptor proteins. Here, we present an approach using a proximity biotinylation enzyme (AirID) fusion fragment of antigen binding (FabID) to analyse the proximity exPPIs of EGFR. AirID was C-terminally fused to the Fab fragment against EGFR (EGFR-FabID), which could then biotinylate the extracellular region of EGFR in several cell lines. Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis indicated that many known EGFR interactors were identified as proximity exPPIs, along with many unknown candidate interactors, using EGFR-FabID. Interestingly, these proximity exPPIs were influenced by treatment with EGF ligand and its specific kinase inhibitor, gefitinib. These results indicate that FabID provides accurate proximity exPPI analysis of target receptor proteins on cell membranes with ligand and drug responses.
Collapse
Affiliation(s)
- Kohdai Yamada
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Ryouhei Shioya
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Hirotake Furihata
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Atsushi Hijikata
- Laboratory of Computational Genomics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of BioScience and Technology, 1266 Tamura, Nagahama, 526-0829, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan.
| | - Tatsuya Sawasaki
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
42
|
Zhang B, Brahma RK, Zhu L, Feng J, Hu S, Qian L, Du S, Yao SQ, Ge J. Insulin-like Growth Factor 2 (IGF2)-Fused Lysosomal Targeting Chimeras for Degradation of Extracellular and Membrane Proteins. J Am Chem Soc 2023; 145:24272-24283. [PMID: 37899626 DOI: 10.1021/jacs.3c08886] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Targeted degradation of the cell-surface and extracellular proteins via the endogenous lysosomal degradation pathways, such as lysosome-targeting chimeras (LYTACs), has recently emerged as an attractive tool to expand the scope of extracellular chemical biology. Herein, we report a series of recombinant proteins genetically fused to insulin-like growth factor 2 (IGF2), which we termed iLYTACs, that can be conveniently obtained in high yield by standard cloning and bacterial expression in a matter of days. We showed that both type-I iLYTACs, in which IGF2 was fused to a suitable affibody or nanobody capable of binding to a specific protein target, and type-II iLYTAC (or IGF2-Z), in which IGF2 was fused to the IgG-binding Z domain that served as a universal antibody-binding adaptor, could be used for effective lysosomal targeting and degradation of various extracellular and membrane-bound proteins-of-interest. These heterobifunctional iLYTACs are fully genetically encoded and can be produced on a large scale from conventional E. coli expression systems without any form of chemical modification. In the current study, we showed that iLYTACs successfully facilitated the cell uptake, lysosomal localization, and efficient lysosomal degradation of various disease-relevant protein targets from different mammalian cell lines, including EGFR, PD-L1, CD20, and α-synuclein. The antitumor properties of iLYTACs were further validated in a mouse xenograft model. Overall, iLYTACs represent a general and modular strategy for convenient and selective targeted protein degradation, thus expanding the potential applications of current LYTACs and related techniques.
Collapse
Affiliation(s)
- Bei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Rajeev Kungur Brahma
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiayi Feng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shiqi Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
43
|
Socrier L, Steinem C. Photo-Lipids: Light-Sensitive Nano-Switches to Control Membrane Properties. Chempluschem 2023; 88:e202300203. [PMID: 37395458 DOI: 10.1002/cplu.202300203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
Biological membranes are described as a complex mixture of lipids and proteins organized according to thermodynamic principles. This chemical and spatial complexity can lead to specialized functional membrane domains enriched with specific lipids and proteins. The interaction between lipids and proteins restricts their lateral diffusion and range of motion, thus altering their function. One approach to investigating these membrane properties is to use chemically accessible probes. In particular, photo-lipids, which contain a light-sensitive azobenzene moiety that changes its configuration from trans- to cis- upon light irradiation, have recently gained popularity for modifying membrane properties. These azobenzene-derived lipids serve as nanotools for manipulating lipid membranes in vitro and in vivo. Here, we will discuss the use of these compounds in artificial and biological membranes as well as their application in drug delivery. We will focus mainly on changes in the membrane's physical properties as well as lipid membrane domains in phase-separated liquid-ordered/liquid-disordered bilayers driven by light, and how these changes in membrane physical properties alter transmembrane protein function.
Collapse
Affiliation(s)
- Larissa Socrier
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
44
|
Sawhney A, Li J, Liao L. Improving AlphaFold predicted contacts in alpha-helical transmembrane proteins structures using structural features. RESEARCH SQUARE 2023:rs.3.rs-3475769. [PMID: 37961476 PMCID: PMC10635369 DOI: 10.21203/rs.3.rs-3475769/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Residue contacts maps offer a 2-d reduced representation of 3-d protein structures and constitute a structural constraint and scaffold in structural modeling. In addition, contact maps are also an effective tool in identifying interhelical binding sites and drawing insights about protein function. While most works predict contact maps using features derived from sequences, we believe information from known structures can be leveraged for a prediction improvement in unknown structures where decent approximate structures such as ones predicted by AlphaFold2 are available. Results Alphafold2's predicted structures are found to be quite accurate at inter-helical residue contact prediction task, achieving 83% average precision. We adopt an unconventional approach, using features extracted from atomic structures in the neighborhood of a residue pair and use them to predicting residue contact. We trained on features derived from experimentally determined structures and predicted on features derived from AlphaFold2's predicted structures. Our results demonstrate a remarkable improvement over AlphaFold2 achieving over 91.9% average precision for held-out and over 89.5% average precision in cross validation experiments. Conclusion Training on features generated from experimentally determined structures, we were able to leverage knowledge from known structures to significantly improve the contacts predicted using AlphaFold2 structures. We demonstrated that using coordinates directly (instead of the proposed features) does not lead to an improvement in contact prediction performance.
Collapse
Affiliation(s)
- Aman Sawhney
- Department of Computer and Information Sciences, University of
Delaware, Smith Hall, 18 Amstel Avenue, Newark, DE, 19716,United States
| | - Jiefu Li
- School of Optical-Electrical and Computer Engineering, University
of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, P. R.
China
| | - Li Liao
- Department of Computer and Information Sciences, University of
Delaware, Smith Hall, 18 Amstel Avenue, Newark, DE, 19716,United States
| |
Collapse
|
45
|
Hoang Trinh TK, Catalano C, Guo Y. Fabrication of membrane proteins in the form of native cell membrane nanoparticles using novel membrane active polymers. NANOSCALE ADVANCES 2023; 5:5932-5940. [PMID: 37881706 PMCID: PMC10597567 DOI: 10.1039/d3na00381g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Membrane proteins are a widespread class of bio-macromolecules responsible for numerous vital biological processes and serve as therapeutic targets for a vast array of contemporary medications. For membrane protein isolation and purification, detergents have historically been used. Despite this, detergents frequently result in protein instability. Consequently, their application was limited. Recent detergent-free approaches have been invented. Among these, styrene-maleic acid lipid particle (SMALP), diisobutylene-maleic acid lipid particle (DIBMALP), and native cell membrane nanoparticle (NCMN) systems are the most prevalent. The NCMN system intends to create a library of membrane-active polymers suitable for high-resolution structure determination of membrane protein. Design, synthesis, characterization, and comparative application evaluations of three novel classes of NCMN polymers, NCMNP13-x, NCMNP21-x, and NCMNP21b-x, are presented in this article. Although each NCMN polymer can solubilize distinct model membrane proteins and retain native lipids in NCMN particles, only the NCMNP21b-x family produces lipid-protein particles with ideal buffer compatibility and high homogeneity suitable for single-particle cryo-EM analysis. NCMNP21b-x polymers that generate high-quality NCMN particles are particularly desirable for membrane protein structural biology.
Collapse
Affiliation(s)
- Thi Kim Hoang Trinh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Claudio Catalano
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
46
|
Workman CE, Bag P, Cawthon B, Ali FH, Brady NG, Bruce BD, Long BK. Alternatives to Styrene- and Diisobutylene-Based Copolymers for Membrane Protein Solubilization via Nanodisc Formation. Angew Chem Int Ed Engl 2023; 62:e202306572. [PMID: 37682083 PMCID: PMC10591821 DOI: 10.1002/anie.202306572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Styrene-maleic acid copolymers (SMAs), and related amphiphilic copolymers, are promising tools for isolating and studying integral membrane proteins in a native-like state. However, they do not exhibit this ability universally, as several reports have found that SMAs and related amphiphilic copolymers show little to no efficiency when extracting specific membrane proteins. Recently, it was discovered that esterified SMAs could enhance the selective extraction of trimeric Photosystem I from the thylakoid membranes of thermophilic cyanobacteria; however, these polymers are susceptible to saponification that can result from harsh preparation or storage conditions. To address this concern, we herein describe the development of α-olefin-maleic acid copolymers (αMAs) that can extract trimeric PSI from cyanobacterial membranes with the highest extraction efficiencies observed when using any amphiphilic copolymers, including diisobutylene-co-maleic acid (DIBMA) and functionalized SMA samples. Furthermore, we will show that αMAs facilitate the formation of photosystem I-containing nanodiscs that retain an annulus of native lipids and a native-like activity. We also highlight how αMAs provide an agile, tailorable synthetic platform that enables fine-tuning hydrophobicity, controllable molar mass, and consistent monomer incorporation while overcoming shortcomings of prior amphiphilic copolymers.
Collapse
Affiliation(s)
| | - Pushan Bag
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Bridgie Cawthon
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Fidaa H Ali
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Nathan G Brady
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, USA
| | - Brian K Long
- Department of Chemistry, University of Tennessee, Knoxville, USA
| |
Collapse
|
47
|
Campuzano IDG. A Research Journey: Over a Decade of Denaturing and Native-MS Analyses of Hydrophobic and Membrane Proteins in Amgen Therapeutic Discovery. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2413-2431. [PMID: 37643331 DOI: 10.1021/jasms.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Membrane proteins and associated complexes currently comprise the majority of therapeutic targets and remain among the most challenging classes of proteins for analytical characterization. Through long-term strategic collaborations forged between industrial and academic research groups, there has been tremendous progress in advancing membrane protein mass spectrometry (MS) analytical methods and their concomitant application to Amgen therapeutic project progression. Herein, I will describe a detailed and personal account of how electrospray ionization (ESI) native mass spectrometry (nMS), ion mobility-MS (IM-MS), reversed phase liquid chromatographic mass spectrometry (RPLC-MS), high-throughput solid phase extraction mass spectrometry, and matrix-assisted laser desorption ionization mass spectrometry methods were developed, optimized, and validated within Amgen Research, and importantly, how these analytical methods were applied for membrane and hydrophobic protein analyses and ultimately therapeutic project support and progression. Additionally, I will discuss all the highly important and productive collaborative efforts, both internal Amgen and external academic, which were key in generating the samples, methods, and associated data described herein. I will also describe some early and previously unpublished nano-ESI (nESI) native-MS data from Amgen Research and the highly productive University of California Los Angeles (UCLA) collaboration. I will also present previously unpublished examples of real-life Amgen biotherapeutic membrane protein projects that were supported by all the MS (and IM) analytical techniques described herein. I will start by describing the initial nESI nMS experiments performed at Amgen in 2011 on empty nanodisc molecules, using a quadrupole time-of-flight MS, and how these experiments progressed on to the 15 Tesla Fourier transform ion cyclotron resonance MS at UCLA. Then described are monomeric and multimeric membrane protein data acquired in both nESI nMS and tandem-MS modes, using multiple methods of ion activation, resulting in dramatic spectral simplification. Also described is how we investigated the far less established and less published subject, that is denaturing RPLC-MS analysis of membrane proteins, and how we developed a highly robust and reproducible RPLC-MS method capable of effective separation of membrane proteins differing in only the presence or absence of an N-terminal post translational modification. Also described is the evolution of the aforementioned RPLC-MS method into a high-throughput solid phase extraction MS method. Finally, I will give my opinion on key developments and how the area of nMS of membrane proteins needs to evolve to a state where it can be applied within the biopharmaceutical research environment for routine therapeutic project support.
Collapse
Affiliation(s)
- Iain D G Campuzano
- Amgen Research, Center for Research Acceleration by Digital Innovation, Molecular Analytics, Thousand Oaks, California 91320, United States
| |
Collapse
|
48
|
Morstein J, Shrestha R, Van QN, López CA, Arora N, Tonelli M, Liang H, Chen D, Zhou Y, Hancock JF, Stephen AG, Turbyville TJ, Shokat KM. Direct Modulators of K-Ras-Membrane Interactions. ACS Chem Biol 2023; 18:2082-2093. [PMID: 37579045 PMCID: PMC10510109 DOI: 10.1021/acschembio.3c00413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Protein-membrane interactions (PMIs) are ubiquitous in cellular signaling. Initial steps of signal transduction cascades often rely on transient and dynamic interactions with the inner plasma membrane leaflet to populate and regulate signaling hotspots. Methods to target and modulate these interactions could yield attractive tool compounds and drug candidates. Here, we demonstrate that the conjugation of a medium-chain lipid tail to the covalent K-Ras(G12C) binder MRTX849 at a solvent-exposed site enables such direct modulation of PMIs. The conjugated lipid tail interacts with the tethered membrane and changes the relative membrane orientation and conformation of K-Ras(G12C), as shown by molecular dynamics (MD) simulation-supported NMR studies. In cells, this PMI modulation restricts the lateral mobility of K-Ras(G12C) and disrupts nanoclusters. The described strategy could be broadly applicable to selectively modulate transient PMIs.
Collapse
Affiliation(s)
- Johannes Morstein
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Rebika Shrestha
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Que N. Van
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - César A. López
- Theoretical
Biology and Biophysics Group, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Neha Arora
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Marco Tonelli
- National
Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Hong Liang
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - De Chen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Yong Zhou
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - John F. Hancock
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Andrew G. Stephen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Thomas J. Turbyville
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Kevan M. Shokat
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
49
|
Cserző M, Eisenhaber B, Eisenhaber F, Magyar C, Simon I. The First Quarter Century of the Dense Alignment Surface Transmembrane Prediction Method. Int J Mol Sci 2023; 24:14016. [PMID: 37762320 PMCID: PMC10531424 DOI: 10.3390/ijms241814016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The dense alignment surface (DAS) transmembrane (TM) prediction method was first published more than 25 years ago. DAS was the one of the earliest tools to discriminate TM proteins from globular ones and to predict the sequence positions of TM helices in proteins with high accuracy from their amino acid sequence alone. The algorithmic improvements that followed in 2002 (DAS-TMfilter) made it one of the best performing tools among those relying on local sequence information for TM prediction. Since then, many more experimental data about membrane proteins (including thousands of 3D structures of membrane proteins) have accumulated but there has been no significant improvement concerning performance in the area of TM helix prediction tools. Here, we report a new implementation of the DAS-TMfilter prediction web server. We reevaluated the performance of the method using a five-times-larger, updated test dataset. We found that the method performs at essentially the same accuracy as the original even without any change to the parametrization of the program despite the much larger dataset. Thus, the approach captures the physico-chemistry of TM helices well, essentially solving this scientific problem.
Collapse
Affiliation(s)
- Miklós Cserző
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (M.C.); (C.M.)
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; (B.E.); (F.E.)
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- LASA—Lausitz Advanced Scientific Applications gGmbH, 02943 Weißwasser, Germany
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; (B.E.); (F.E.)
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- LASA—Lausitz Advanced Scientific Applications gGmbH, 02943 Weißwasser, Germany
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore 637551, Singapore
| | - Csaba Magyar
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (M.C.); (C.M.)
| | - István Simon
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (M.C.); (C.M.)
| |
Collapse
|
50
|
Farrelly MD, Zhai J, Tiong AYJ, van 't Hag L, Yu HH, Li J, Martin LL, Thang SH. Membrane interaction and selectivity of novel alternating cationic lipid-nanodisc assembling polymers. Biomater Sci 2023; 11:5955-5969. [PMID: 37477383 DOI: 10.1039/d3bm00477e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Synthetic polymer nanodiscs are self-assembled structures formed from amphipathic copolymers encapsulating membrane proteins and surrounding phospholipids into water soluble discs. These nanostructures have served as an analytical tool for the detergent free solubilisation and structural study of membrane proteins (MPs) in their native lipid environment. We established the polymer-lipid nanodisc forming ability of a novel class of amphipathic copolymer comprised of an alternating sequence of N-alkyl functionalised maleimide (AlkylM) of systematically varied hydrocarbon chain length, and cationic N-methyl-4-vinyl pyridinium iodide (MVP). Using a combination of physicochemical techniques, the solubilisation efficiency, size, structure and shape of DMPC lipid containing poly(MVP-co-AlkylM) nanodiscs were determined. Lipid solubilisation increased with AlkylM hydrocarbon chain length from methyl (MM), ethyl (EtM), n-propyl (PM), iso-butyl (IBM) through to n-butyl (BM) maleimide bearing polymers. More hydrophobic derivatives formed smaller sized nanodiscs and lipid ordering within poly(MVP-co-AlkylM) nanodiscs was affected by nanodisc size. In dye-release assays, shorter N-alkyl substituted polymers, particularly poly(MVP-co-EtM), exhibited low activities against eukaryotic mimetic POPC membrane and increased their liposome disruption as POPC : POPG membrane mixtures increased in their anionic POPG component, resembling the charge profile of bacterial membranes. These trends in membrane selectivity were transferred towards native cell systems in which gram-positive Staphylococcus aureus and gram-negative Acenobacter baumannii bacterial strains were relatively susceptible to disruption by hydrophobic n-butyl- and n-propyl-poly(MVP-co-AlkylM) derivatives compared to human red blood cells (HRBCs), with a more pronounced selectivity resulting from poly(MVP-co-PM). Such selective membrane interaction by less hydrophobic polymers provides a framework for polymer design towards applications including selective membrane component solubilisation, biosensing and antimicrobial development.
Collapse
Affiliation(s)
| | - Jiali Zhai
- School of Science, STEM College, RMIT University Melbourne, VIC 3000, Australia
| | - Alice Y J Tiong
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Leonie van 't Hag
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Heidi H Yu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University Clayton, VIC 3800, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University Clayton, VIC 3800, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University Clayton, VIC 3800, Australia.
| | - San H Thang
- School of Chemistry, Monash University Clayton, VIC 3800, Australia.
| |
Collapse
|