1
|
Ashori A, Chiani E, Shokrollahzadeh S, Sun F, Madadi M, Zhang X. Lignin-based nano-mimetic enzymes: A promising approach for wastewater remediation. Int J Biol Macromol 2025; 292:139323. [PMID: 39740722 DOI: 10.1016/j.ijbiomac.2024.139323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Lignin-based nano-mimetic enzymes have emerged as a promising approach for wastewater remediation, addressing the limitations of conventional treatment methods. This review article explores the potential of lignin, a renewable biomaterial, in developing these novel enzyme-inspired systems. The introduction highlights the rising pollution levels, stricter environmental regulations, and the need for innovative wastewater treatment technologies. The advantages of enzyme-based systems, such as high specificity, efficiency, and environmental friendliness, are discussed. The article then delves into the structure, extraction, and modification of lignin, as well as its applications in wastewater treatment. The concept of nano-mimetic enzymes and their advantages over traditional enzymes are presented, along with strategies for developing lignin-based nano-mimetic enzymes. The review examines the pollutant removal performance of these systems, covering the removal of organic and inorganic pollutants and the underlying mechanisms involved. Operational parameters, optimization strategies, and characterization techniques are also covered. The practical applications, challenges, and future research directions are discussed, emphasizing the significance, advantages, limitations, and potential benefits of lignin-based nano-mimetic enzymes for wastewater remediation. This comprehensive review highlights the promising potential of this innovative approach in addressing the pressing environmental issues related to wastewater treatment.
Collapse
Affiliation(s)
- Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Elahe Chiani
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Soheila Shokrollahzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Fubao Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Meysam Madadi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Knapp BD, Willis L, Gonzalez C, Vashistha H, Jammal-Touma J, Tikhonov M, Ram J, Salman H, Elias JE, Huang KC. Metabolic rearrangement enables adaptation of microbial growth rate to temperature shifts. Nat Microbiol 2025; 10:185-201. [PMID: 39672961 DOI: 10.1038/s41564-024-01841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/26/2024] [Indexed: 12/15/2024]
Abstract
Temperature is a key determinant of microbial behaviour and survival in the environment and within hosts. At intermediate temperatures, growth rate varies according to the Arrhenius law of thermodynamics, which describes the effect of temperature on the rate of a chemical reaction. However, the mechanistic basis for this behaviour remains unclear. Here we use single-cell microscopy to show that Escherichia coli exhibits a gradual response to temperature upshifts with a timescale of ~1.5 doublings at the higher temperature. The response was largely independent of initial or final temperature and nutrient source. Proteomic and genomic approaches demonstrated that adaptation to temperature is independent of transcriptional, translational or membrane fluidity changes. Instead, an autocatalytic enzyme network model incorporating temperature-sensitive Michaelis-Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, resulting in a transient temperature memory. The model successfully predicts alterations in the temperature response across nutrient conditions, diverse E. coli strains from hosts with different body temperatures, soil-dwelling Bacillus subtilis and fission yeast. In sum, our model provides a mechanistic framework for Arrhenius-dependent growth.
Collapse
Affiliation(s)
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Carlos Gonzalez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Jammal-Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St Louis, St Louis, MO, USA
| | - Jeffrey Ram
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Li M, Zhang Y, Zhang T, Miao M. Enhanced thermostability and catalytic activity for arginine deiminase from Enterobacter faecalis SK32.001 via combinatorial mutagenesis. Int J Biol Macromol 2025; 284:138004. [PMID: 39586434 DOI: 10.1016/j.ijbiomac.2024.138004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Arginine deiminase (ADI) exhibits potential for clinical and industrial applications, yet its low thermostability and catalytic efficiency under physiological conditions limit its utility. In this work, the ADI of Enterococcus faecalis SK32.001 was rationally designed. A total of 120 combinatorial mutants, ranging from two-point to six-point mutations, were constructed by sequentially stacking single-point positive mutants (F44W, N163P, E220L, N318E, A336G, T340I). Among them, the mutants S604, S700, S601, and S606 exhibited higher Tm values, while the mutants S605, S547, S602, S607, S517, and S557 demonstrated enhanced enzymatic activity. Notably, the five-point mutant S547 (F44W/N163P/E220I/A336G/T340I) exhibited remarkable pH tolerance (pH 4.5-9.5, with over 80 % residual enzyme activity). Its specific enzyme activity reached 131.60 U/mg, which was 2-fold higher than that of wild enzyme. The Tm value of this enzyme increases to 64.04 °C, 11.62 °C higher than that of the wild-type enzyme. The structure predicted by AlphaFold 2 revealed that the increased rigidity, formation of new hydrogen bonds, and an increase in hydrophobic residues may account for the enhanced enzyme activity and thermostability. This research demonstrates that rational design strategies can effectively optimize enzyme properties, providing insights for the development of microbial enzymes with industrial relevance.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yijing Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Contreras-Moll A, Obrador-Viel T, Molina RDI, Aguiló-Ferretjans MDM, Nogales B, Bosch R, Christie-Oleza JA. Lack of functional polyester-biodegrading potential in marine versus terrestrial environments evidenced by an innovative airbrushing technique. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137064. [PMID: 39754880 DOI: 10.1016/j.jhazmat.2024.137064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Biodegradable plastics, primarily aliphatic polyesters, degrade to varying extents in different environments. However, the absence of easily implementable techniques for screening microbial biodegradation potential -coupled with the limitations of non-functional omics analyses- has restricted comparative studies across diverse polymer types and ecosystems. In this study, we optimized a novel airbrushing method that facilitates functional analyses by simplifying the preparation of polyester-coated plates for biodegradation screening. By repurposing an airbrush kit, polyester microparticles (MPs) could be evenly sprayed onto solid media, enabling rapid detection of extracellular depolymerizing activity via clearing zone halos. This technique was effective in screening both isolated microbial cultures and natural environmental samples, demonstrating its versatility. The method was successfully applied across multiple environments, ranking the biodegradability of six polyesters, from most to least biodegradable: poly[(R)-3-hydroxybutyrate] (PHB), polycaprolactone (PCL), poly(ethylene succinate) (PES), poly(butylene succinate) (PBS), poly(lactic acid) (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). Most notably, it revealed a consistent 1,000-fold higher biodegradation potential in terrestrial compared to marine environments. This approach offers a valuable tool for isolating novel polyester-degrading microbes with significant biotechnological potential, paving the way for improved plastic waste management solutions.
Collapse
Affiliation(s)
| | - Theo Obrador-Viel
- Department of Biology, University of the Balearic Islands, Palma 07122, Spain
| | | | | | - Balbina Nogales
- Department of Biology, University of the Balearic Islands, Palma 07122, Spain
| | - Rafael Bosch
- Department of Biology, University of the Balearic Islands, Palma 07122, Spain
| | | |
Collapse
|
5
|
Rombouts J, Tavella F, Vandervelde A, Phong C, Ferrell JE, Yang Q, Gelens L. Mechanistic origins of temperature scaling in the early embryonic cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630245. [PMID: 39763717 PMCID: PMC11703202 DOI: 10.1101/2024.12.24.630245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Temperature profoundly impacts organismal physiology and ecological dynamics, particularly affecting ectothermic species and making them especially vulnerable to climate changes. Although complex physiological processes usually involve dozens of enzymes, empirically it is found that the rates of these processes often obey the Arrhenius equation, which was originally derived for single-enzyme-catalyzed reactions. Here we have examined the temperature scaling of the early embryonic cell cycle, with the goal of understanding why the Arrhenius equation approximately holds and why it breaks down at temperature extremes. Using experimental data from Xenopus laevis, Xenopus tropicalis, and Danio rerio, plus published data from Caenorhabditis elegans, Caenorhabditis briggsae, and Drosophila melanogaster, we find that the apparent activation energies ( E a values ) for the early embryonic cell cycle for diverse ectotherms are all similar, 76 ± 9 kJ / mol ( mean ± S . D . , n = 6 ) , which corresponds to aQ 10 value of 2.8 ± 0.4 ( mean ± S . D . , n = 6 ) . Using computational models, we find that the approximately Arrhenius scaling and the deviations from the Arrhenius relationship at high and low temperatures can be accounted for by biphasic temperature scaling in critical individual components of the cell cycle oscillator circuit, by imbalances in theE a values for different partially rate-determining enzymes, or by a combination of both. Experimental studies of cycling Xenopus extracts indicate that both of these mechanisms contribute to the general scaling of temperature, and in vitro studies of individual cell cycle regulators confirm that there is in fact a substantial imbalance in theirE a values. These findings provide mechanistic insights into the dynamic interplay between temperature and complex biochemical processes, and into why biological systems fail at extreme temperatures.
Collapse
Affiliation(s)
- Jan Rombouts
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
- Cell Biology and Biophysics Unit and Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Franco Tavella
- Department of Physics / Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra Vandervelde
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
| | - Connie Phong
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Qiong Yang
- Department of Physics / Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
| |
Collapse
|
6
|
Falkoski DL, de Rezende ST, Guimarães VM, de Queiroz MV, Almeida MN. Purification and characterization of α-galactosidases from Penicillium griseoroseum for efficient soymilk hydrolysis. Biochem Biophys Res Commun 2024; 737:150905. [PMID: 39486139 DOI: 10.1016/j.bbrc.2024.150905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Soybean utilization is limited by the presence of raffinose oligosaccharides (RFO), which are not digested by humans and cause gastrointestinal discomfort. This study explores the potential of α-galactosidases from Penicillium griseoroseum for RFO hydrolysis in soymilk. Two distinct α-galactosidase enzymes, designated α-Gal1 and α-Gal2, were purified using a combination of ion-exchange chromatography and native polyacrylamide gel electrophoresis. Both enzymes exhibited characteristics of multimeric proteins and displayed similar biochemical properties. Optimal activity was observed at a pH range of 4.5-5.0 and a temperature range of 40-45 °C. Notably, α-Gal1 demonstrated high thermostability with a half-life of 16 h at 40 °C. The α-galactosidases displayed different substrate affinitiesfor the substrates ρ-NP-αGal, o-NP-αGal, rD-raffinose, d-stachyose, and mD-melibiose. The Michaelis-Menten constant (Km) values for α-Gal1 were 1.06, 1.31, 28.74, 19.88, and 4.77 mmol/L, respectively, while those for α-Gal2 were 0.8, 1.26, 30.46, 21.74 and 5.01 mmol/L, respectively. Both α-Gal1 and α-Gal2 were strongly inhibited by metal ions (Ag⁺, Cu2⁺, Fe2⁺, and Hg2⁺) and moderately inhibited by d-melibiose. Importantly, both enzymes efficiently hydrolyzed RFOs, achieving complete d-stachyose elimination from soymilk after a 6-h incubation. These findings propose the promising application of these α-galactosidases in industrial soymilk production, potentially enhancing its nutritional value and alleviating gastrointestinal issues in consumers.
Collapse
Affiliation(s)
- D L Falkoski
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil; Department of Natural Science, Federal University of São João del-Rei, São João del-Rei, MG, 36301-160, Brazil
| | - S T de Rezende
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - V M Guimarães
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - M V de Queiroz
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - M N Almeida
- Department of Natural Science, Federal University of São João del-Rei, São João del-Rei, MG, 36301-160, Brazil.
| |
Collapse
|
7
|
Zhong C, Vyas A, Liu JDH, Oostenbrink C, Nidetzky B. Keeping the Distance: Activity Control in Solid-Supported Sucrose Phosphorylase by a Rigid α-Helical Linker of Tunable Spacer Length. ACS Catal 2024; 14:17090-17102. [PMID: 39569159 PMCID: PMC11574764 DOI: 10.1021/acscatal.4c05616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
Enzyme immobilization into carrier materials has broad importance in biotechnology, yet understanding the catalysis of enzymes bound to solid surfaces remains challenging. Here, we explore surface effects on the catalysis of sucrose phosphorylase through a fusion protein approach. We immobilize the enzyme via a structurally rigid α-helical linker [EA3K] n of tunable spacer length due to the variable number of pentapeptide repeats used (n = 6, 14, 19). Molecular modeling and simulation approaches delineate the conformational space sampled by each linker relative to its His-tag cap used for surface tethering. The population distribution of linker conformers gets broader, with a consequent shift of the enzyme-to-surface distance to larger values (≤15 nm), as the spacer length increases. Based on temperature kinetic studies, we obtain an energetic description of catalysis by the enzyme-to-linker fusions in solution and immobilize on Ni2+-chelate agarose. The solid-supported enzymes involve distinct changes in enthalpy-entropy partitioning within the frame of invariant Gibbs free energy of activation (ΔG ‡ = ∼61 kJ/mol at 30 °C). The entropic contribution (-TΔS ‡) to ΔG ‡ increases with the spacer length, from -16.4 kJ/mol in the linker-free enzyme to +7.9 kJ/mol in the [EA3K]19 linked fusion. The immobilized [EA3K]19 fusion protein is indistinguishable in its catalytic properties from the enzymes in solution, which behave identically regardless of their linker. Enzymes positioned closer to the surface arguably experience a higher degree of molecular organization ("rigidification") that must relax for catalysis through the additional uptake of heat, compensated by a gain in entropy. Increased thermostability of these enzymes (up to 2.8-fold) is consistent with the proposed rigidification effect. Collectively, our study reveals surface effects on the activation parameters of sucrose phosphorylase catalysis and shows their consistent dependence on the length of the surface-tethering linker. The fundamental insight here obtained, together with the successful extension of the principle to a different enzyme (nigerose phosphorylase), suggests that rigid linker-based control of the protein-surface distance can be used as an engineering strategy to optimize the activity characteristics of immobilized enzymes.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
| | - Anisha Vyas
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Krenngasse 37, Graz 8010, Austria
| | - Jakob D H Liu
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Krenngasse 37, Graz 8010, Austria
| |
Collapse
|
8
|
Zhang Z, Fan H, Yu Z, Luo X, Zhao J, Wang N, Li Z. Metagenomics-based gene exploration and biochemical characterization of novel glucoamylases and α-amylases in Daqu and Pu-erh tea microorganisms. Int J Biol Macromol 2024; 278:134182. [PMID: 39069062 DOI: 10.1016/j.ijbiomac.2024.134182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
α-Amylases and glucoamylases play a crucial role in starch degradation for various industrial applications. Further exploration of novel α-amylases and glucoamylases with diverse enzymatic characteristics is necessary. In this study, metagenomics analysis revealed a high abundance of these enzymes in the microorganisms of Daqu and Pu-erh tea, identifying 271 glucoamylases and 232 α-amylases with significant sequence identity to known enzymes. Functional studies indicated that these enzymes have broad optimal temperatures (30 °C to 70 °C) and acidic or neutral pH optima. Additionally, two novel low-temperature glucoamylases and one novel low-temperature α-amylases were characterized, demonstrating potential for use in industries operating under low temperature conditions. Further analysis suggested that fewer molecular interactions and more flexible coli regions may contribute to their high activity at low temperatures. In summary, this study not only highlights the feasibility of exploring enzymes through metagenomic approaches, but also presents a library of novel and diverse α-amylases and glucoamylases for potential industrial applications.
Collapse
Affiliation(s)
- Zhengjie Zhang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haiyue Fan
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhao Yu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Junqi Zhao
- Qilu Institute of Technology, Shandong 250200, PR China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
9
|
Hao M, Yao J, Chen J, Zhu R, Gu Z, Xin Y, Zhang L. Enhanced degradation of phenolic pollutants by a novel cold-adapted laccase from Peribacillus simplex. Int J Biol Macromol 2024; 277:134583. [PMID: 39122074 DOI: 10.1016/j.ijbiomac.2024.134583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Laccase (EC 1.10.3.2), as eco-friendly biocatalysts, holds immense potential for sustainable applications across various environmental and industrial sectors. Despite the growing interest, the exploration of cold-adapted laccases, especially their unique properties and applicability, remains limited. In this study, we have isolated, cloned, expressed, and purified a novel laccase from Peribacillus simplex (GenBank: PP430751), which was derived from permafrost layer. The recombinant laccase (PsLac) exhibited optimal activity at 30 °C and a pH optimum of 3.5. Remarkably, PsLac exhibited remarkable stability in the presence of organic solvents, with its enzyme activity increasing by 20 % after being incubated in a 30 % trichloromethane solution for 12 h, compared to its initial activity. Furthermore, the enzyme preserved 100 % of its activity after undergoing eight freeze-thaw cycles. Notably, the catalytic center of PsLac contains Zn2+ instead of the typically observed Cu2+ found in other laccases, and metal-ion substitution experiments raised the catalytic efficiency to 3-fold when Zn2+ was replaced with Fe2+. Additionally, PsLac has demonstrated a proficient ability to degrade phenolic pollutants, such as hydroquinone, even at a low temperature of 16 °C, positioning it as a promising candidate for environmental bioremediation and contributing to cleaner production processes.
Collapse
Affiliation(s)
- Mengyao Hao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China
| | - JiaXin Yao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China
| | - Jianxiong Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China
| | - Rui Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China
| | - Zhenghua Gu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China
| | - Yu Xin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China.
| | - Liang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China.
| |
Collapse
|
10
|
Adnan AI, Ong MY, Mohamed H, Chia SR, Milano J, Nomanbhay S. Multi-objectives optimization on microwave-assisted-biological-based biogas upgrading and bio-succinic acid production. BIORESOURCE TECHNOLOGY 2024; 406:131028. [PMID: 38914237 DOI: 10.1016/j.biortech.2024.131028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
This study represents the first investigation of bio-succinic acid (bio-SA) production with methane enrichment using carbon-dioxide-fixating bacteria in the co-culture of ragi tapai and macroalgae, Chaetomorpha. Microwave irradiation has also been introduced to enhance the biochemical processes as it could provide rapid and selective heating of substrates. In this research, microwave irradiation was applied on ragi tapai as a pre-treatment process. Factors such as microwave irradiation dose on ragi tapai, Chaetomorpha ratio in the co-culture, and pH value were studied. Optimal conditions were identified using Design-Expert software, resulting in optimal experimental biomethane and bio-SA production of 85.7 % and 0.65 g/L, respectively, at a microwave dose of 1.45 W/g, Chaetomorpha ratio of 0.9 and pH value of 7.8. The study provides valuable insights into microwave control for promoting simultaneous methane enrichment and bio-SA production, potentially reducing costs associated with CO2 capture and storage and biogas upgrading.
Collapse
Affiliation(s)
- Amir Izzuddin Adnan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| | - Mei Yin Ong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
| | - Hassan Mohamed
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| | - Shir Reen Chia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore.
| | - Jassinnee Milano
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| | - Saifuddin Nomanbhay
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
11
|
Chen S, Chen Z, O'Neill Rothenberg D, Long Y, Li H, Zeng X, Zeng Z, Mo X, Wu D, Liao Y, Huang Y, Xiao S, Zhang X. Short-term steaming during processing impacts the quality of Citri Reticulatae 'Chachi' peel. Food Chem 2024; 447:138964. [PMID: 38461715 DOI: 10.1016/j.foodchem.2024.138964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Citrus peel is a commonly used food-medicine material in the production of fast-moving consumer goods (FMCGs). For instance, Ganpu tea is manufactured by combining the peel of Citri Reticulatae 'Chachi' (PCRC) with Pu-erh tea. The alleviated irritation of PCRC through years of aging makes Citri reticulatae Pericarpium a traditional Chinese medicine. Herein, we introduced short-term steaming into the processing of PCRC to favor the quick removal of its irritation while retaining its food-medicine properties. Sensory evaluation and volatile component analysis showed that 60-s steaming reduced irritation of freshly prepared PCRC. Biological evaluations indicated no effects of steaming on the neuroprotective activity of PCRC. The process increased the contents of several bioactive ingredients, including hesperidin, nobiletin, tangeretin, and synephrine. In addition, physical indications of accelerating PCRC aging were observed. Taken together, our findings suggest that short-term steaming may offer a promising new possibility for enhancing the quality of citrus peel.
Collapse
Affiliation(s)
- Shiheng Chen
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ziying Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yong Long
- Center of Logistics Management, Shenzhen Customs, Shenzhen, China
| | - Huafeng Li
- Guangdong Maoming Agriculture & Forestry Technical College, Maoming, China
| | - Xiaoyang Zeng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhen Zeng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaoli Mo
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Dunying Wu
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yinghong Liao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yahui Huang
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Sui Xiao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Xu Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
12
|
Laughlin DC, McGill BJ. Trees have overlapping potential niches that extend beyond their realized niches. Science 2024; 385:75-80. [PMID: 38963858 DOI: 10.1126/science.adm8671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/09/2024] [Indexed: 07/06/2024]
Abstract
Tree species appear to prefer distinct climatic conditions, but the true nature of these preferences is obscured by species interactions and dispersal, which limit species' ranges. We quantified realized and potential thermal niches of 188 North American tree species to conduct a continental-scale test of the architecture of niches. We found strong and consistent evidence that species occurring at thermal extremes occupy less than three-quarters of their potential niches, and species' potential niches overlap at a mean annual temperature of ~12°C. These results clarify the breadth of thermal tolerances of temperate tree species and support the centrifugal organization of thermal niches. Accounting for the nonrealized components of ecological niches will advance theory and prediction in global change ecology.
Collapse
Affiliation(s)
- Daniel C Laughlin
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Brian J McGill
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
- Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
13
|
Taher AY, Alizadeh M, Aslan Y. The covalent immobilization of β-galactosidase from Aspergillus oryzae and alkaline protease from Bacillus licheniformis on amino-functionalized multi-walled carbon nanotubes in milk. Heliyon 2024; 10:e32223. [PMID: 38873691 PMCID: PMC11170143 DOI: 10.1016/j.heliyon.2024.e32223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
This study aimed was to covalently immobilize β-galactosidase from Aspergillus oryzae and protease from Bacillus licheniformis on amino-functionalized multi-walled carbon nanotubes. In this study, a two-level factorial design was employed to investigate the impact of seven continuous variables (activation pH, glutaraldehyde molarity, activation time (0-8 h), buffer solution pH (8-0), buffer solution molarity, MWCNT-NH 2 -glutaraldehyde quantity, and stabilization time (0-180 h)) on the immobilization efficiency and enzymatic activity of protease and β-galactosidase. Furthermore, the effect of time on the percentage of enzymatic activity was examined during specific intervals (24, 48, 72, 96, and 120 h) of the immobilization process. The analysis of variance results for protease enzymatic activity revealed a notable influence of the seven variables on immobilization efficiency and enzymatic activity. Additionally, the findings indicate that activation time, buffer pH, MWCNT-NH 2 -glutaraldehyde quantity, and stabilization time significantly affect the activity of the protease enzyme. The interplay between buffer pH and stabilization time is also significant. Indeed, both activation time and the quantity of MWCNT-NH 2 -glutaraldehyde exert a reducing effect on enzyme activity. Notably, the influence of MWCNT-NH 2 -glutaraldehyde quantity is more significant (p < 0.05). In terms of beta-galactosidase enzymatic activity, the study results highlight that among the seven variables considered, only the glutaraldehyde molarity, activation time, and the interplay of activation time and the quantity of MWCNT-NH 2 -glutaraldehyde can exert a statistically significant positive impact on the enzyme's activity (p < 0.05). The combination of activation time and buffer solution molarity, as well as the interactive effect of buffer pH and MWCNT-NH2-glutaraldehyde, can lead to a significant improvement in the stabilization efficiency of the protease of carbon nanotubes. The analysis of variance results demonstrated that the efficiency of covalently immobilizing β-galactosidase from Aspergillus oryzae on amino-functionalized multi-walled carbon nanotubes is influenced by the molarity of glutaraldehyde, buffer pH, stabilization time, and the interplay of activation time + buffer pH, buffer pH + activation time, activation time + buffer molarity, and glutaraldehyde molarity + MWCNT-NH 2 -glutaraldehyde (p < 0.05). Through the optimization and selection of optimal formulations, the obtained results indicate enzyme activities and stabilization efficiencies of 64.09 % ± 72.63 % and 65.96 % ± 71.77 % for protease and beta-galactosidase, respectively. Moreover, increasing the enzyme stabilization time resulted in a reduction of enzyme activity. Furthermore, an increase in pH, temperature, and the duration of milk storage passing through the enzyme-immobilized carbon nanotubes led to a decrease in enzyme stabilization efficiency, and lactose hydrolysis declined progressively over 8-h. Hence, the covalent immobilization of β-galactosidase from Aspergillus oryzae and protease from Bacillus licheniformis onto amino-functionalized multi-walled carbon nanotubes is anticipated to be achievable for milk applications.
Collapse
Affiliation(s)
- Alan Yaseen Taher
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Alizadeh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Yakup Aslan
- Siirt University, Faculty of Engineering, Department of Food Engineering, Turkey
| |
Collapse
|
14
|
Lutz-Wahl S, Mozer H, Kussler A, Schulz A, Seitl I, Fischer L. A new β-galactosidase from Paenibacillus wynnii with potential for industrial applications. J Dairy Sci 2024; 107:3429-3442. [PMID: 38246536 DOI: 10.3168/jds.2023-24122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Commercial β-galactosidases exhibit undesirable kinetic properties regarding substrate affinity (Michaelis-Menten constant [KM] for lactose) and product inhibition (inhibitor constant [Ki] for galactose). An in silico screening of gene sequences was done and identified a putative β-galactosidase (Paenibacillus wynnii β-galactosidase, BgaPw) from the psychrophilic bacterium Paenibacillus wynnii. The cultivation of the wild-type P. wynnii strain resulted in very low β-galactosidase activities of a maximum of 150 nkat per liter of medium with o-nitrophenyl-β-d-galactopyranoside (oNPGal) as substrate. The recombinant production of BgaPw in Escherichia coli BL21(DE3) increased the yield ∼9,000-fold. Here, a volumetric activity of 1,350.18 ± 11.82 μkatoNPGal/Lculture was achieved in a bioreactor cultivation. The partly purified BgaPw showed a pH optimum at 7.0, a temperature maximum at 40°C, and an excellent stability at 8°C with a half-life of 77 d. Kinetic studies with BgaPw were done in milk or in milk-imitating synthetic buffer (Novo buffer), respectively. Remarkably, the KM value of BgaPw with lactose was as low as 0.63 ± 0.045 mM in milk. It was found that the resulting products of lactose hydrolysis, namely galactose and glucose, did not inhibit the β-galactosidase activity of BgaPw, but instead showed a striking activating effect in both cases (up to 144%). In a comparison study in milk, lactose was completely hydrolyzed by BgaPw in 72 h at 8°C, whereas 2 other known β-galactosidases were less powerful and converted only about 90% of lactose in the same time. Finally, the formation of galactooligosaccharides (GOS) was demonstrated with the new BgaPw, starting with pharma-lactose (400 g/L). A GOS production of about 144 g/L was achieved after 24 h (36.0% yield).
Collapse
Affiliation(s)
- Sabine Lutz-Wahl
- Department of Biotechnology and Enzyme Science, Institute for Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Hanna Mozer
- Department of Biotechnology and Enzyme Science, Institute for Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Alena Kussler
- Department of Biotechnology and Enzyme Science, Institute for Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Adriana Schulz
- Department of Biotechnology and Enzyme Science, Institute for Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ines Seitl
- Department of Biotechnology and Enzyme Science, Institute for Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Lutz Fischer
- Department of Biotechnology and Enzyme Science, Institute for Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
15
|
Rapp C, Borg A, Nidetzky B. Interplay of structural preorganization and conformational sampling in UDP-glucuronic acid 4-epimerase catalysis. Nat Commun 2024; 15:3897. [PMID: 38719841 PMCID: PMC11519531 DOI: 10.1038/s41467-024-48281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/26/2024] [Indexed: 10/30/2024] Open
Abstract
Understanding enzyme catalysis as connected to protein motions is a major challenge. Here, based on temperature kinetic studies combined with isotope effect measurements, we obtain energetic description of C-H activation in NAD-dependent UDP-glucuronic acid C4 epimerase. Approach from the ensemble-averaged ground state (GS) to the transition state-like reactive conformation (TSRC) involves, alongside uptake of heat (Δ H ‡ = 54 kJ mol-1), significant loss in entropy ( - T Δ S ‡ = 20 kJ mol-1; 298 K) and negative activation heat capacity (Δ C p ‡ = -0.64 kJ mol-1 K-1). Thermodynamic changes suggest the requirement for restricting configurational freedom at the GS to populate the TSRC. Enzyme variants affecting the electrostatic GS preorganization reveal active-site interactions important for precise TSRC sampling and H-transfer. Collectively, our study captures thermodynamic effects associated with TSRC sampling and establishes rigid positioning for C-H activation in an enzyme active site that requires conformational flexibility in fulfillment of its natural epimerase function.
Collapse
Affiliation(s)
- Christian Rapp
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Annika Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria.
| |
Collapse
|
16
|
Walker EJ, Hamill CJ, Crean R, Connolly MS, Warrender AK, Kraakman KL, Prentice EJ, Steyn-Ross A, Steyn-Ross M, Pudney CR, van der Kamp MW, Schipper LA, Mulholland AJ, Arcus VL. Cooperative Conformational Transitions Underpin the Activation Heat Capacity in the Temperature Dependence of Enzyme Catalysis. ACS Catal 2024; 14:4379-4394. [PMID: 38633402 PMCID: PMC11020164 DOI: 10.1021/acscatal.3c05584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 02/16/2024] [Indexed: 04/19/2024]
Abstract
Many enzymes display non-Arrhenius behavior with curved Arrhenius plots in the absence of denaturation. There has been significant debate about the origin of this behavior and recently the role of the activation heat capacity (ΔCP⧧) has been widely discussed. If enzyme-catalyzed reactions occur with appreciable negative values of ΔCP⧧ (arising from narrowing of the conformational space along the reaction coordinate), then curved Arrhenius plots are a consequence. To investigate these phenomena in detail, we have collected high precision temperature-rate data over a wide temperature interval for a model glycosidase enzyme MalL, and a series of mutants that change the temperature-dependence of the enzyme-catalyzed rate. We use these data to test a range of models including macromolecular rate theory (MMRT) and an equilibrium model. In addition, we have performed extensive molecular dynamics (MD) simulations to characterize the conformational landscape traversed by MalL in the enzyme-substrate complex and an enzyme-transition state complex. We have crystallized the enzyme in a transition state-like conformation in the absence of a ligand and determined an X-ray crystal structure at very high resolution (1.10 Å). We show (using simulation) that this enzyme-transition state conformation has a more restricted conformational landscape than the wildtype enzyme. We coin the term "transition state-like conformation (TLC)" to apply to this state of the enzyme. Together, these results imply a cooperative conformational transition between an enzyme-substrate conformation (ES) and a transition-state-like conformation (TLC) that precedes the chemical step. We present a two-state model as an extension of MMRT (MMRT-2S) that describes the data along with a convenient approximation with linear temperature dependence of the activation heat capacity (MMRT-1L) that can be used where fewer data points are available. Our model rationalizes disparate behavior seen for MalL and previous results for a thermophilic alcohol dehydrogenase and is consistent with a raft of data for other enzymes. Our model can be used to characterize the conformational changes required for enzyme catalysis and provides insights into the role of cooperative conformational changes in transition state stabilization that are accompanied by changes in heat capacity for the system along the reaction coordinate. TLCs are likely to be of wide importance in understanding the temperature dependence of enzyme activity and other aspects of enzyme catalysis.
Collapse
Affiliation(s)
- Emma J. Walker
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Carlin J. Hamill
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Rory Crean
- Centre
for Computational Chemistry, School of Chemistry,
University of Bristol, Bristol BS8 1TS, U.K.
| | - Michael S. Connolly
- Centre
for Computational Chemistry, School of Chemistry,
University of Bristol, Bristol BS8 1TS, U.K.
| | - Annmaree K. Warrender
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Kirsty L. Kraakman
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Erica J. Prentice
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | | | - Moira Steyn-Ross
- School
of Engineering, University of Waikato, Hamilton 3214, New Zealand
| | - Christopher R. Pudney
- Department
of Biology and Biochemistry, Centre for Biosensors, Bioelectronics
and Biodevices, University of Bath, Bath ST16 2TB, U.K.
| | - Marc W. van der Kamp
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Louis A. Schipper
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry,
University of Bristol, Bristol BS8 1TS, U.K.
| | - Vickery L. Arcus
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| |
Collapse
|
17
|
Zheng J, Guo N, Huang Y, Guo X, Wagner A. High temperature delays and low temperature accelerates evolution of a new protein phenotype. Nat Commun 2024; 15:2495. [PMID: 38553445 PMCID: PMC10980763 DOI: 10.1038/s41467-024-46332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
Since the origin of life, temperatures on earth have fluctuated both on short and long time scales. How such changes affect the rate at which Darwinian evolution can bring forth new phenotypes remains unclear. On the one hand, high temperature may accelerate phenotypic evolution because it accelerates most biological processes. On the other hand, it may slow phenotypic evolution, because proteins are usually less stable at high temperatures and therefore less evolvable. Here, to test these hypotheses experimentally, we evolved a green fluorescent protein in E. coli towards the new phenotype of yellow fluorescence at different temperatures. Yellow fluorescence evolved most slowly at high temperature and most rapidly at low temperature, in contradiction to the first hypothesis. Using high-throughput population sequencing, protein engineering, and biochemical assays, we determined that this is due to the protein-destabilizing effect of neofunctionalizing mutations. Destabilization is highly detrimental at high temperature, where neofunctionalizing mutations cannot be tolerated. Their detrimental effects can be mitigated through excess stability at low temperature, leading to accelerated adaptive evolution. By modifying protein folding stability, temperature alters the accessibility of mutational paths towards high-fitness genotypes. Our observations have broad implications for our understanding of how temperature changes affect evolutionary adaptations and innovations.
Collapse
Affiliation(s)
- Jia Zheng
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Ning Guo
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuxiang Huang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiang Guo
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- The Santa Fe Institute, Santa Fe, USA.
| |
Collapse
|
18
|
Liu Z, Nguyen TTT, Ding F. Protocol for building a user-friendly temperature control system to support microscopes, microfluidic chambers, and custom incubators. STAR Protoc 2024; 5:102862. [PMID: 38294908 PMCID: PMC10846474 DOI: 10.1016/j.xpro.2024.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Biological experiments require precise temperature control, necessitating an integrated adjustable temperature system for instruments such as microscopes, microfluidic chambers, or custom incubators. We present a protocol for building a user-friendly temperature control system suitable for both in vitro and in vivo assays. We describe steps for preparing materials, assembling the printed circuit board and enclosure, and fine-tuning the heating algorithm for accuracy. This system can maintain a stable temperature of up to 60°C with stabilities under 0.06°C.
Collapse
Affiliation(s)
- Ziteng Liu
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA 92697, USA.
| | - Thao Thi Thu Nguyen
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Fangyuan Ding
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, Center for Synthetic Biology, Chao Family Comprehensive Cancer Center, Department of Developmental and Cell Biology, and Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
19
|
Guo F, Liu B, Zhao J, Hou Y, Wu J, Zhou C, Hu H, Zhang T, Yang Z. Effects of polyethylene, polylactic acid, and tire particles on the sediment microbiome and metabolome at high and low temperatures. Appl Environ Microbiol 2024; 90:e0201623. [PMID: 38214515 PMCID: PMC10880613 DOI: 10.1128/aem.02016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
Global warming has led to a high incidence of extreme heat events, and the frequent occurrence of extreme heat events has had extensive and far-reaching impacts on wetland ecosystems. The widespread distribution of plastics in the environment, including polyethylene (PE), polylactic acid (PLA), and tire particles (TPs), has caused various environmental problems. Here, high-throughput sequencing techniques and metabolomics were used for the first time to investigate the effects of three popular microplastic types: PE, PLA, and TP, on the sediment microbiome and the metabolome at both temperatures. The microplastics were incorporated into the sediment at a concentration of 3% by weight of the dry sediment (wt/wt), to reflect environmentally relevant conditions. Sediment enzymatic activity and physicochemical properties were co-regulated by both temperatures and microplastics producing significant differences compared to controls. PE and PLA particles inhibited bacterial diversity at low temperatures and promoted bacterial diversity at high temperatures, and TP particles promoted both at both temperatures. For bacterial richness, only PLA showed inhibition at low temperature; all other treatments showed promotion. PE, PLA, and TP microplastics changed the community structure of sediment bacteria, forming two clusters at low and high temperatures. Furthermore, PE, PLA, and TP changed the sediment metabolic profiles, producing differential metabolites such as lipids and molecules, organic heterocyclic compounds, and organic acids and their derivatives, especially TP had the most significant effect. These findings contribute to a more comprehensive understanding of the potential impact of microplastic contamination.IMPORTANCEIn this study, we added 3% (wt/wt) microplastic particles, including polyethylene, polylactic acid, and tire particles, to natural sediments under simulated laboratory conditions. Subsequently, we simulated the sediment microbial and ecosystem responses under different temperature conditions by incubating them for 60 days at 15°C and 35°C, respectively. After synthesizing these results, our study strongly suggests that the presence of microplastics in sediment ecosystems and exposure under different temperature conditions may have profound effects on soil microbial communities, enzyme activities, and metabolite profiles. This is important for understanding the potential hazards of microplastic contamination on terrestrial ecosystems and for developing relevant environmental management strategies.
Collapse
Affiliation(s)
- Feng Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan, China
| | - Biao Liu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China
| | - Jiaying Zhao
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan, China
| | - Yiran Hou
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China
| | - Changrui Zhou
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China
| | - Hui Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China
| | - Tingting Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China
| | - Ziyan Yang
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Van Houten J, Dosajh A, Gulati S, Bhullar G, Copeman C, Ogata AF. Morphology Control of Self-Assembled Copper Coordination Polymers for Glucose Assays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320270 DOI: 10.1021/acs.langmuir.3c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Low-cost analytical assays enable accessible detection of clinically and environmentally important analytes; however, common enzyme-based assays suffer from high production and storage costs. Catalytically active synthetic materials serve as replacements for natural enzymes, but development of cost-effective, highly efficient synthetic strategies remains a challenge. Here, we utilized a facile synthesis for copper bipyridine coordination polymers (CuBpyCPs) and investigated structure-function relationships to achieve optimal catalytic properties for a glucose assay. We demonstrated the manipulation of CuBpyCP morphology, resulting in nanoscale petal-like structures and microscale high-index faceted structures, and identified three pure crystal morphologies exhibiting a comparable catalytic activity (Km = 0.3-0.5 mM) to horseradish peroxidase.
Collapse
Affiliation(s)
- Justin Van Houten
- Department of Chemistry, University of Toronto, UTM 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
| | - Advikaa Dosajh
- Department of Chemistry, University of Toronto, UTM 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
| | - Shriya Gulati
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
| | - Gurjap Bhullar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
| | - Christopher Copeman
- Department of Chemistry and Biochemistry, Centre for NanoScience, Concordia University, 7141 Sherbrooke St W., Montreal, QC H4N 1R6, Canada
| | - Alana F Ogata
- Department of Chemistry, University of Toronto, UTM 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
21
|
Guo F, Liu B, Zhao J, Hou Y, Wu J, Hu H, Zhou C, Hu H, Zhang T, Yang Z. Temperature-dependent effects of microplastics on sediment bacteriome and metabolome. CHEMOSPHERE 2024; 350:141190. [PMID: 38215830 DOI: 10.1016/j.chemosphere.2024.141190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
The increasing prevalence of microplastics in the environment has become a concern for various ecosystems, including wetland ecosystems. Here, we investigated the effects of three popular microplastic types: polyethylene, polylactic acid, and tire particles at 5 °C and 25 °C on the sediment microbiome and metabolome at the 3% (w/w) level. Results indicated that temperature greatly influenced catalase and neutral phosphatase activities, whereas the type of microplastic had a more significant impact on urease and dehydrogenase activities. The addition of microplastic, especially tire particles, increased microbial diversity and significantly altered the microbial community structure and metabolic profile, leading to the formation of different clusters of microbial communities depending on the temperature. Nonetheless, the effect of temperature on the metabolite composition was less significant. Functional prediction showed that the abundance of functional genes related to metabolism and biogeochemical cycling increased with increasing temperature, especially the tire particles treatment group affected the nitrogen cycling by inhibiting ureolysis and nitrogen fixation. These observations emphasize the need to consider microplastic type and ambient temperature to fully understand the ecological impact of microplastics on microbial ecosystems.
Collapse
Affiliation(s)
- Feng Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China; School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450011, PR China
| | - Biao Liu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China.
| | - Jiaying Zhao
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450011, PR China
| | - Yiran Hou
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Hongwei Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Changrui Zhou
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Hui Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Tingting Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Ziyan Yang
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450011, PR China
| |
Collapse
|
22
|
Rosangzuala K, Patlolla RR, Shaikh A, Naik KA, Raveena G, Nemali M, Reddy Mudiam MK, Banoth L. Streamlined Chemo-Enzymatic Synthesis of Molnupiravir via Lipase Catalyst. ACS OMEGA 2024; 9:4423-4428. [PMID: 38313533 PMCID: PMC10831972 DOI: 10.1021/acsomega.3c06872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
An enzymatic approach for the synthesis of Molnupiravir has been developed using immobilized lipase as a biocatalyst. This method involves a concise process of the regioselective esterification of uridine with isobutyric anhydride using Lipase (Addzyme-011). This efficient route gets 97% conversion of uridine 3, with an overall 73% yield of molnupiravir 1 in two steps. The use of inexpensive and easily available lipase makes the synthesis cost-effective and accessible globally, promoting the principles of green chemistry.
Collapse
Affiliation(s)
- Khawlhring Rosangzuala
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ravinder Reddy Patlolla
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Asif Shaikh
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
- Department
of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Kethavath Anjali
Priya Naik
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Gajjala Raveena
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Manjula Nemali
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
| | - Mohana Krishna Reddy Mudiam
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
- Department
of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
- Institute
of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram, Haryana 122016, India
| | - Linga Banoth
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
23
|
Zhang B, Qin S, Wang N, Lu X, Jiao J, Zhang J, Zhao W. Diketopyrrolopyrrole-based fluorescent probe for visualizing over-expressed carboxylesterase in fever via ratiometric imaging. Talanta 2024; 266:124971. [PMID: 37480822 DOI: 10.1016/j.talanta.2023.124971] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Fever is the result of inflammation and the innate self-defense response of organisms, can cause abnormal changes in the activity of many enzymes in organisms, including the important carboxylesterase (CE). Monitoring the activity changes of CE in vivo during a fever will help to understand heat-related pathological mechanisms. In this paper, we designed diketopyrrolopyrrole-based ratiometric fluorescent probes DPP-FBC-P and DPP-FBO-P containing alkyl chain and diethylene glycol monomethyl ether chain respective for detection of CE. Both probes could realized fast response to CE and displayed good selectivity and high sensitivity. Compared with DPP-FBO-P, DPP-FBC-P had better biocompatibility, larger signal to noise ratio (225-fold vs 125-fold) and lower detection limit (1.6 × 10-5 U/mL vs 4.2 × 10-5 U/mL). Moreover, the probe DPP-FBC-P had been successfully applied to image the endogenous CE in HepG2 cells and solid tumors, and also visualized the over expressed CE in fever cells. Most importantly, the changes of CE level in the liver of fever mice model induced by LPS were monitored with the assistance of DPP-FBC-Pvia dual channel ratio imaging for the first time. In addition, fluorescence color signal in solution was captured by smart phone, and the linear relationship between RGB ratio (G/R) and CE concentration was established. This work will provide a potential approach for investigating the physiological and pathological processes of heat related diseases.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China
| | - Shuchun Qin
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China
| | - Xiaoyan Lu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China
| | - Junrong Jiao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China.
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China.
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China; School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
24
|
Peng Y, Ma L, Xu P, Tao F. High-Performance Production of N-Acetyl-d-Neuraminic Acid with Whole Cells of Fast-Growing Vibrio natriegens via a Thermal Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20198-20209. [PMID: 38051209 DOI: 10.1021/acs.jafc.3c07259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
High performance is the core objective that biotechnologists pursue, of which low efficiency, low titer, and side products are the chief obstacles. Here, a thermal strategy is proposed for simultaneously addressing the obstacles of whole-cell catalysis that is widely applied in the food industry. The strategy, by combining fast-growing Vibrio natriegens, thermophilic enzymes, and high-temperature whole-cell catalysis, was successfully applied for the high-performance production of N-acetyl-d-neuraminic acid (Neu5Ac) that plays essential roles in the fields of food (infant formulas), healthcare, and medicine. By using this strategy, we realized the highest Neu5Ac titer and productivity of 126.1 g/L and up to 71.6 g/(L h), respectively, 7.2-fold higher than the productivity of Escherichia coli. The major byproduct acetic acid was also eliminated via quenching complex metabolic side reactions enabled by temperature elevation. This study offers a broadly applicable strategy for producing chemicals relevant to the food industry, providing insights for its future development.
Collapse
Affiliation(s)
- Yuan Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lina Ma
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
25
|
Sahu S, Ghosh S, Sinha SK, Datta S, Sengupta N. Thermal Sensitivity of the Enzymatic Activity of β-Glucosidase: Simulations Lend Mechanistic Insights into Experimental Observations. Biochemistry 2023; 62:3440-3452. [PMID: 37997958 DOI: 10.1021/acs.biochem.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A crucial prerequisite for industrial applications of enzymes is the maintenance of specific activity across wide thermal ranges. β-Glucosidase (EC 3.2.1.21) is an essential enzyme for converting cellulose in biomass to glucose. While the reaction mechanisms of β-glucosidases from various thermal ranges (hyperthermophilic, thermophilic, and mesophilic) are similar, the factors underlying their thermal sensitivity remain obscure. The work presented here aims to unravel the molecular mechanisms underlying the thermal sensitivity of the enzymatic activity of the β-glucosidase BglB from the bacterium Paenibacillus polymyxa. Experiments reveal a maximum enzymatic activity at 315 K, with a marked decrease in the activity below and above this temperature. Employing in silico simulations, we identified the crucial role of the active site tunnel residues in the thermal sensitivity. Specific tunnel residues were identified via energetic decomposition and protein-substrate hydrogen bond analyses. The experimentally observed trends in specific activity with temperature coincide with variations in overall binding free energy changes, showcasing a predominantly electrostatic effect that is consistent with enhanced catalytic pocket-substrate hydrogen bonding (HB) at Topt. The entropic advantage owing to the HB substate reorganization was found to facilitate better substrate binding at 315 K. This study elicits molecular-level insights into the associative mechanisms between thermally enabled fluctuations and enzymatic activity. Crucial differences emerge between molecular mechanisms involving the actual substrate (cellobiose) and a commonly employed chemical analogue. We posit that leveraging the role of fluctuations may reveal unexpected insights into enzyme behavior and offer novel paradigms for enzyme engineering.
Collapse
Affiliation(s)
- Sneha Sahu
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sayani Ghosh
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sushant K Sinha
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Supratim Datta
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
- Center for the Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
- Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
26
|
Georgiou CD, McKay C, Reymond JL. Organic Catalytic Activity as a Method for Agnostic Life Detection. ASTROBIOLOGY 2023; 23:1118-1127. [PMID: 37523279 DOI: 10.1089/ast.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An ideal life detection instrument would have high sensitivity but be insensitive to abiotic processes and would be capable of detecting life with alternate molecular structures. In this study, we propose that catalytic activity can be the basis of a nearly ideal life detection instrument. There are several advantages to catalysis as an agnostic life detection method. Demonstrating catalysis does not necessarily require culturing/growing the alien life and in fact may persist even in dead biomass for some time, and the amplification by catalysis is large even by minute amounts of catalysts and, hence, can be readily detected against abiotic background rates. In specific, we propose a hydrolytic catalysis detection instrument that could detect activity in samples of extraterrestrial organic material from unknown life. The instrument uses chromogenic assay-based detection of various hydrolytic catalytic activities, which are matched to corresponding artificial substrates having the same, chromogenic (preferably fluorescent) upon release, group; D- and L-enantiomers of these substrates can be used to also answer the question whether unknown life is chiral. Since catalysis is a time-proportional product-concentration amplification process, hydrolytic catalytic activity can be measured on a sample of even a minute size, and with instruments based on, for example, optofluidic chip technology.
Collapse
Affiliation(s)
| | | | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 2023; 54:2259-2287. [PMID: 37477802 PMCID: PMC10484896 DOI: 10.1007/s42770-023-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carolina Villadóniga
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Cora Chalar
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
28
|
Evans RM, Beaton SE, Rodriguez Macia P, Pang Y, Wong KL, Kertess L, Myers WK, Bjornsson R, Ash PA, Vincent KA, Carr SB, Armstrong FA. Comprehensive structural, infrared spectroscopic and kinetic investigations of the roles of the active-site arginine in bidirectional hydrogen activation by the [NiFe]-hydrogenase 'Hyd-2' from Escherichia coli. Chem Sci 2023; 14:8531-8551. [PMID: 37592998 PMCID: PMC10430524 DOI: 10.1039/d2sc05641k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/01/2023] [Indexed: 08/19/2023] Open
Abstract
The active site of [NiFe]-hydrogenases contains a strictly-conserved pendant arginine, the guanidine head group of which is suspended immediately above the Ni and Fe atoms. Replacement of this arginine (R479) in hydrogenase-2 from E. coli results in an enzyme that is isolated with a very tightly-bound diatomic ligand attached end-on to the Ni and stabilised by hydrogen bonding to the Nζ atom of the pendant lysine and one of the three additional water molecules located in the active site of the variant. The diatomic ligand is bound under oxidising conditions and is removed only after a prolonged period of reduction with H2 and reduced methyl viologen. Once freed of the diatomic ligand, the R479K variant catalyses both H2 oxidation and evolution but with greatly decreased rates compared to the native enzyme. Key kinetic characteristics are revealed by protein film electrochemistry: most importantly, a very low activation energy for H2 oxidation that is not linked to an increased H/D isotope effect. Native electrocatalytic reversibility is retained. The results show that the sluggish kinetics observed for the lysine variant arise most obviously because the advantage of a more favourable low-energy pathway is massively offset by an extremely unfavourable activation entropy. Extensive efforts to establish the identity of the diatomic ligand, the tight binding of which is an unexpected further consequence of replacing the pendant arginine, prove inconclusive.
Collapse
Affiliation(s)
- Rhiannon M Evans
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Stephen E Beaton
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | | | - Yunjie Pang
- College of Chemistry, Beijing Normal University 100875 Beijing China
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Kin Long Wong
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Leonie Kertess
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - William K Myers
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire Chimie et Biologie des Métaux 17 Rue Des Martyrs F-38054 Grenoble Cedex France
| | - Philip A Ash
- School of Chemistry, The University of Leicester University Road Leicester LE1 7RH UK
| | - Kylie A Vincent
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Stephen B Carr
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Fraser A Armstrong
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| |
Collapse
|
29
|
Collins T, Feller G. Psychrophilic enzymes: strategies for cold-adaptation. Essays Biochem 2023; 67:701-713. [PMID: 37021674 DOI: 10.1042/ebc20220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Psychrophilic organisms thriving at near-zero temperatures synthesize cold-adapted enzymes to sustain cell metabolism. These enzymes have overcome the reduced molecular kinetic energy and increased viscosity inherent to their environment and maintained high catalytic rates by development of a diverse range of structural solutions. Most commonly, they are characterized by a high flexibility coupled with an intrinsic structural instability and reduced substrate affinity. However, this paradigm for cold-adaptation is not universal as some cold-active enzymes with high stability and/or high substrate affinity and/or even an unaltered flexibility have been reported, pointing to alternative adaptation strategies. Indeed, cold-adaptation can involve any of a number of a diverse range of structural modifications, or combinations of modifications, depending on the enzyme involved, its function, structure, stability, and evolutionary history. This paper presents the challenges, properties, and adaptation strategies of these enzymes.
Collapse
Affiliation(s)
- Tony Collins
- Department of Biology, Center of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
| | - Georges Feller
- Department of Life Sciences, Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
30
|
Ramakrishnan K, Johnson RL, Winter SD, Worthy HL, Thomas C, Humer DC, Spadiut O, Hindson SH, Wells S, Barratt AH, Menzies GE, Pudney CR, Jones DD. Glycosylation increases active site rigidity leading to improved enzyme stability and turnover. FEBS J 2023; 290:3812-3827. [PMID: 37004154 PMCID: PMC10952495 DOI: 10.1111/febs.16783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Glycosylation is the most prevalent protein post-translational modification, with a quarter of glycosylated proteins having enzymatic properties. Yet, the full impact of glycosylation on the protein structure-function relationship, especially in enzymes, is still limited. Here, we show that glycosylation rigidifies the important commercial enzyme horseradish peroxidase (HRP), which in turn increases its turnover and stability. Circular dichroism spectroscopy revealed that glycosylation increased holo-HRP's thermal stability and promoted significant helical structure in the absence of haem (apo-HRP). Glycosylation also resulted in a 10-fold increase in enzymatic turnover towards o-phenylenediamine dihydrochloride when compared to its nonglycosylated form. Utilising a naturally occurring site-specific probe of active site flexibility (Trp117) in combination with red-edge excitation shift fluorescence spectroscopy, we found that glycosylation significantly rigidified the enzyme. In silico simulations confirmed that glycosylation largely decreased protein backbone flexibility, especially in regions close to the active site and the substrate access channel. Thus, our data show that glycosylation does not just have a passive effect on HRP stability but can exert long-range effects that mediate the 'native' enzyme's activity and stability through changes in inherent dynamics.
Collapse
Affiliation(s)
| | - Rachel L. Johnson
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| | | | - Harley L. Worthy
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterUK
| | | | - Diana C. Humer
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical EngineeringTU WienAustria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical EngineeringTU WienAustria
| | | | | | - Andrew H. Barratt
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| | | | - Christopher R. Pudney
- Department of Biology and BiochemistryUniversity of BathUK
- Centre for Therapeutic InnovationUniversity of BathUK
| | - D. Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| |
Collapse
|
31
|
Deng J, Cui Q. Second-Shell Residues Contribute to Catalysis by Predominately Preorganizing the Apo State in PafA. J Am Chem Soc 2023; 145:11333-11347. [PMID: 37172218 PMCID: PMC10810092 DOI: 10.1021/jacs.3c02423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Residues beyond the first coordination shell are often observed to make considerable cumulative contributions in enzymes. Due to typically indirect perturbations of multiple physicochemical properties of the active site, however, their individual and specific roles in enzyme catalysis and disease-causing mutations remain difficult to predict and understand at the molecular level. Here we analyze the contributions of several second-shell residues in phosphate-irrepressible alkaline phosphatase of flavobacterium (PafA), a representative system as one of the most efficient enzymes. By adopting a multifaceted approach that integrates quantum-mechanical/molecular-mechanical free energy computations, molecular-mechanical molecular dynamics simulations, and density functional theory cluster model calculations, we probe the rate-limiting phosphoryl transfer step and structural properties of all relevant enzyme states. In combination with available experimental data, our computational results show that mutations of the studied second-shell residues impact catalytic efficiency mainly by perturbation of the apo state and therefore substrate binding, while they do not affect the ground state or alter the nature of phosphoryl transfer transition state significantly. Several second-shell mutations also modulate the active site hydration level, which in turn influences the energetics of phosphoryl transfer. These mechanistic insights also help inform strategies that may improve the efficiency of enzyme design and engineering by going beyond the current focus on the first coordination shell.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
32
|
Dou Z, Sun Y, Jiang X, Wu X, Li Y, Gong B, Wang L. Data-driven strategies for the computational design of enzyme thermal stability: trends, perspectives, and prospects. Acta Biochim Biophys Sin (Shanghai) 2023; 55:343-355. [PMID: 37143326 PMCID: PMC10160227 DOI: 10.3724/abbs.2023033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/23/2022] [Indexed: 03/05/2023] Open
Abstract
Thermal stability is one of the most important properties of enzymes, which sustains life and determines the potential for the industrial application of biocatalysts. Although traditional methods such as directed evolution and classical rational design contribute greatly to this field, the enormous sequence space of proteins implies costly and arduous experiments. The development of enzyme engineering focuses on automated and efficient strategies because of the breakthrough of high-throughput DNA sequencing and machine learning models. In this review, we propose a data-driven architecture for enzyme thermostability engineering and summarize some widely adopted datasets, as well as machine learning-driven approaches for designing the thermal stability of enzymes. In addition, we present a series of existing challenges while applying machine learning in enzyme thermostability design, such as the data dilemma, model training, and use of the proposed models. Additionally, a few promising directions for enhancing the performance of the models are discussed. We anticipate that the efficient incorporation of machine learning can provide more insights and solutions for the design of enzyme thermostability in the coming years.
Collapse
Affiliation(s)
- Zhixin Dou
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Yuqing Sun
- School of SoftwareShandong UniversityJinan250101China
| | - Xukai Jiang
- National Glycoengineering Research CenterShandong UniversityQingdao266237China
| | - Xiuyun Wu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Yingjie Li
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Bin Gong
- School of SoftwareShandong UniversityJinan250101China
| | - Lushan Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| |
Collapse
|
33
|
Chánique AM, Polidori N, Sovic L, Kracher D, Assil-Companioni L, Galuska P, Parra LP, Gruber K, Kourist R. A Cold-Active Flavin-Dependent Monooxygenase from Janthinobacterium svalbardensis Unlocks Applications of Baeyer–Villiger Monooxygenases at Low Temperature. ACS Catal 2023; 13:3549-3562. [PMID: 36970468 PMCID: PMC10028610 DOI: 10.1021/acscatal.2c05160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Cold-active enzymes maintain a large part of their optimal activity at low temperatures. Therefore, they can be used to avoid side reactions and preserve heat-sensitive compounds. Baeyer-Villiger monooxygenases (BVMO) utilize molecular oxygen as a co-substrate to catalyze reactions widely employed for steroid, agrochemical, antibiotic, and pheromone production. Oxygen has been described as the rate-limiting factor for some BVMO applications, thereby hindering their efficient utilization. Considering that oxygen solubility in water increases by 40% when the temperature is decreased from 30 to 10 °C, we set out to identify and characterize a cold-active BVMO. Using genome mining in the Antarctic organism Janthinobacterium svalbardensis, a cold-active type II flavin-dependent monooxygenase (FMO) was discovered. The enzyme shows promiscuity toward NADH and NADPH and high activity between 5 and 25 °C. The enzyme catalyzes the monooxygenation and sulfoxidation of a wide range of ketones and thioesters. The high enantioselectivity in the oxidation of norcamphor (eeS = 56%, eeP > 99%, E > 200) demonstrates that the generally higher flexibility observed in the active sites of cold-active enzymes, which compensates for the lower motion at cold temperatures, does not necessarily reduce the selectivity of these enzymes. To gain a better understanding of the unique mechanistic features of type II FMOs, we determined the structure of the dimeric enzyme at 2.5 Å resolution. While the unusual N-terminal domain has been related to the catalytic properties of type II FMOs, the structure shows a SnoaL-like N-terminal domain that is not interacting directly with the active site. The active site of the enzyme is accessible only through a tunnel, with Tyr-458, Asp-217, and His-216 as catalytic residues, a combination not observed before in FMOs and BVMOs.
Collapse
Affiliation(s)
- Andrea M. Chánique
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7810000, Chile
| | - Nakia Polidori
- NAWI Graz, BioTechMed Graz, Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Lucija Sovic
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Daniel Kracher
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Leen Assil-Companioni
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- ACIB GmbH, Petersgasse 14/1, Graz 8010, Austria
| | - Philipp Galuska
- NAWI Graz, BioTechMed Graz, Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7810000, Chile
| | - Karl Gruber
- NAWI Graz, BioTechMed Graz, Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Robert Kourist
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- ACIB GmbH, Petersgasse 14/1, Graz 8010, Austria
| |
Collapse
|
34
|
Huang A, Lu F, Liu F. Discrimination of psychrophilic enzymes using machine learning algorithms with amino acid composition descriptor. Front Microbiol 2023; 14:1130594. [PMID: 36860491 PMCID: PMC9968940 DOI: 10.3389/fmicb.2023.1130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Psychrophilic enzymes are a class of macromolecules with high catalytic activity at low temperatures. Cold-active enzymes possessing eco-friendly and cost-effective properties, are of huge potential application in detergent, textiles, environmental remediation, pharmaceutical as well as food industry. Compared with the time-consuming and labor-intensive experiments, computational modeling especially the machine learning (ML) algorithm is a high-throughput screening tool to identify psychrophilic enzymes efficiently. Methods In this study, the influence of 4 ML methods (support vector machines, K-nearest neighbor, random forest, and naïve Bayes), and three descriptors, i.e., amino acid composition (AAC), dipeptide combinations (DPC), and AAC + DPC on the model performance were systematically analyzed. Results and discussion Among the 4 ML methods, the support vector machine model based on the AAC descriptor using 5-fold cross-validation achieved the best prediction accuracy with 80.6%. The AAC outperformed than the DPC and AAC + DPC descriptors regardless of the ML methods used. In addition, amino acid frequencies between psychrophilic and non-psychrophilic proteins revealed that higher frequencies of Ala, Gly, Ser, and Thr, and lower frequencies of Glu, Lys, Arg, Ile,Val, and Leu could be related to the protein psychrophilicity. Further, ternary models were also developed that could classify psychrophilic, mesophilic, and thermophilic proteins effectively. The predictive accuracy of the ternary classification model using AAC descriptor via the support vector machine algorithm was 75.8%. These findings would enhance our insight into the cold-adaption mechanisms of psychrophilic proteins and aid in the design of engineered cold-active enzymes. Moreover, the proposed model could be used as a screening tool to identify novel cold-adapted proteins.
Collapse
Affiliation(s)
- Ailan Huang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China,*Correspondence: Fufeng Liu, ✉ ;
| |
Collapse
|
35
|
Zhang F, Li Y, Xiong Q, Chai J, Jiang S. β-glucosidase, driven by porcine transthyretin promoter, specific expression in the liver of transgenic mice. Anim Sci J 2023; 94:e13890. [PMID: 38087778 DOI: 10.1111/asj.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 12/18/2023]
Abstract
Under the background of food security, using non-grain feed instead of corn-soybean-based feed is an effective measure to alleviate the food-feed competition. While, non-grain feeds are often rich in fiber, which cannot be digested by non-ruminants. Producing heterologous enzymes in non-ruminants to improve cellulose utilization rate is a new research strategy by transgenic technology. In this study, porcine transthyretin (TTR) promoter, signal peptide-coding sequence (CDS), Saccharomycopsis fibuligera β-glucosidase gene (BGL1)-CDS, 6×His sequences fragments were fused into pGL3-control vector to generate transgenic vector. Then, transgenic mice were generated by pronuclear microinjection of the linearized expression vectors. Transgenic mice and their offspring were examined by PCR-based genotyping and copy number variation. Results showed that BGL1 was successfully integrated into the mouse genome and transmitted stably. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and β-glucosidase activity assay demonstrated that BGL1 was specifically expressed in the liver, and β-glucosidase activity significantly increased. In addition, liver weight index, cellular morphology, and collagen fiber content of the liver showed that exogenous gene insertion did not cause any lesions to live. Taken together, our findings suggest that β-glucosidase driven by TTR promoter was specifically expressed in the liver of transgenic mice.
Collapse
Affiliation(s)
- Feng Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yujiao Li
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shandong Provincial Animal Products Quality & Safety Center (Shandong Provincial Livestock & Poultry Slaughtering Technology Center), Jinan, China
| | - Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jin Chai
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
Laye VJ, Solieva S, Voelz VA, DasSarma S. Effects of Salinity and Temperature on the Flexibility and Function of a Polyextremophilic Enzyme. Int J Mol Sci 2022; 23:15620. [PMID: 36555259 PMCID: PMC9779221 DOI: 10.3390/ijms232415620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The polyextremophilic β-galactosidase enzyme of the haloarchaeon Halorubrum lacusprofundi functions in extremely cold and hypersaline conditions. To better understand the basis of polyextremophilic activity, the enzyme was studied using steady-state kinetics and molecular dynamics at temperatures ranging from 10 °C to 50 °C and salt concentrations from 1 M to 4 M KCl. Kinetic analysis showed that while catalytic efficiency (kcat/Km) improves with increasing temperature and salinity, Km is reduced with decreasing temperatures and increasing salinity, consistent with improved substrate binding at low temperatures. In contrast, kcat was similar from 2-4 M KCl across the temperature range, with the calculated enthalpic and entropic components indicating a threshold of 2 M KCl to lower the activation barrier for catalysis. With molecular dynamics simulations, the increase in per-residue root-mean-square fluctuation (RMSF) was observed with higher temperature and salinity, with trends like those seen with the catalytic efficiency, consistent with the enzyme's function being related to its flexibility. Domain A had the smallest change in flexibility across the conditions tested, suggesting the adaptation to extreme conditions occurs via regions distant to the active site and surface accessible residues. Increased flexibility was most apparent in the distal active sites, indicating their importance in conferring salinity and temperature-dependent effects.
Collapse
Affiliation(s)
- Victoria J. Laye
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD 21202, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Shahlo Solieva
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Shiladitya DasSarma
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD 21202, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| |
Collapse
|
37
|
Gao S, Zhang W, Barrow SL, Iavarone AT, Klinman JP. Temperature-dependent hydrogen deuterium exchange shows impact of analog binding on adenosine deaminase flexibility but not embedded thermal networks. J Biol Chem 2022; 298:102350. [PMID: 35933011 PMCID: PMC9483566 DOI: 10.1016/j.jbc.2022.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
The analysis of hydrogen deuterium exchange by mass spectrometry as a function of temperature and mutation has emerged as a generic and efficient tool for the spatial resolution of protein networks that are proposed to function in the thermal activation of catalysis. In this work, we extend temperature-dependent hydrogen deuterium exchange from apo-enzyme structures to protein-ligand complexes. Using adenosine deaminase as a prototype, we compared the impacts of a substrate analog (1-deaza-adenosine) and a very tight-binding inhibitor/transition state analog (pentostatin) at single and multiple temperatures. At a single temperature, we observed different hydrogen deuterium exchange-mass spectrometry properties for the two ligands, as expected from their 106-fold differences in strength of binding. By contrast, analogous patterns for temperature-dependent hydrogen deuterium exchange mass spectrometry emerge in the presence of both 1-deaza-adenosine and pentostatin, indicating similar impacts of either ligand on the enthalpic barriers for local protein unfolding. We extended temperature-dependent hydrogen deuterium exchange to a function-altering mutant of adenosine deaminase in the presence of pentostatin and revealed a protein thermal network that is highly similar to that previously reported for the apo-enzyme (Gao et al., 2020, JACS 142, 19936-19949). Finally, we discuss the differential impacts of pentostatin binding on overall protein flexibility versus site-specific thermal transfer pathways in the context of models for substrate-induced changes to a distributed protein conformational landscape that act in synergy with embedded protein thermal networks to achieve efficient catalysis.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA
| | - Wenju Zhang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Samuel L Barrow
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anthony T Iavarone
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|
38
|
Zhang W, Xu R, Jin X, Wang Y, Hu L, Zhang T, Du G, Kang Z. Enzymatic Production of Chondroitin Oligosaccharides and Its Sulfate Derivatives. Front Bioeng Biotechnol 2022; 10:951740. [PMID: 35910011 PMCID: PMC9326237 DOI: 10.3389/fbioe.2022.951740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulfate (CS) has a wide range of physiological functions and clinical applications. However, the biosynthesis of chondroitin oligosaccharides (o-CHs) and sulfate derivatives with specific length is always challenging. Herein, we report enzymatic strategies for producing homogeneous o-CHs and its sulfate derivatives from microbial sourced chondroitin. Chondroitin disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, and decasaccharides with defined structure were produced by controllably depolymerizing microbial sourced chondroitin with an engineered chondroitinase ABC I. The highest conversion rates of the above corresponding o-CHs were 65.5%, 32.1%, 12.7%, 7.2%, and 16.3%, respectively. A new efficient enzymatic sulfation system that directly initiates from adenosine 5′-triphosphate (ATP) and sulfate was developed and improved the sulfation of chondroitin from 8.3% to 85.8% by optimizing the temperature, sulfate and ATP concentration. o-CHs decasaccharide, octasaccharide, hexasaccharide, tetrasaccharide and disaccharide were modified and the corresponding sulfate derivatives with one sulfate group were prepared. The enzymatic approaches constructed here for preparing o-CHs and its sulfate derivatives pave the way for the study of structure-activity relationship and applications.
Collapse
Affiliation(s)
- Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xuerong Jin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Tianmeng Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Guocheng Du, ; Zhen Kang,
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Guocheng Du, ; Zhen Kang,
| |
Collapse
|
39
|
Li Q, Yin G, Wang J, Li L, Liang Q, Zhao X, Chen Y, Zheng X, Zhao X. An emerging paradigm to develop analytical methods based on immobilized transmembrane proteins and its applications in drug discovery. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
41
|
Sawall Y, Nicosia AM, McLaughlin K, Ito M. Physiological responses and adjustments of corals to strong seasonal temperature variations (20-28°C). J Exp Biol 2022; 225:275704. [PMID: 35702952 DOI: 10.1242/jeb.244196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Temperature is a key driver of metabolic rates. So far, we know little about potential physiological adjustments of subtropical corals to seasonal temperature changes (>8°) that substantially exceed temperature fluctuation experienced by their counterparts in the tropics. This study investigated the effect of temperature reductions on Montastrea cavernosa and Porites astreoides in Bermuda (32°N; SST: ∼19-29°C) over 5 weeks applying the following treatments: (i) constant control temperature at 28°C, and (ii) temperature reduction (0.5 °C/day) followed by constant temperature (20 days; acclimatization period) at 24 °C and (iii) at 20 °C. Both species decreased photosynthesis and respiration during temperature reduction as expected, which continued to decrease during the acclimatization period, indicating adjustment to a low energy turnover rather than thermal compensation. Trajectories of physiological adjustments and level of thermal compensation, however, differed between species: M. cavernosa zooxanthellae metrics showed a strong initial response to temperature reduction, followed by a return to close to control values during the acclimatization period, reflecting a high physiological flexibility and low thermal compensation. P. astreoides zooxanthellae, in contrast, showed no initial response, but an increase in pigment concentration zooxanthellae-1 and similar photosynthesis rates at 24° and 20°C at the end of the experiment, indicating low acute thermal sensitivity and the ability for thermal compensation at the lowest temperature. Respiration decreased more strongly than photosynthesis leading to significant build-up of biomass in both species (energy reserves). Results are important in the light of potential poleward migration of corals and of potential latitudinal and species-specific differences in coral thermal tolerance.
Collapse
Affiliation(s)
- Yvonne Sawall
- Bermuda Institute of Ocean Sciences (BIOS), 17 Ferry Reach, St. George's GE01, Bermuda
| | - Anna M Nicosia
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Kathryn McLaughlin
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Maysa Ito
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| |
Collapse
|
42
|
Some Clues about Enzymes from Psychrophilic Microorganisms. Microorganisms 2022; 10:microorganisms10061161. [PMID: 35744679 PMCID: PMC9227589 DOI: 10.3390/microorganisms10061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Enzymes purified from psychrophilic microorganisms prove to be efficient catalysts at low temperatures and possess a great potential for biotechnological applications. The low-temperature catalytic activity has to come from specific structural fluctuations involving the active site region, however, the relationship between protein conformational stability and enzymatic activity is subtle. We provide a survey of the thermodynamic stability of globular proteins and their rationalization grounded in a theoretical approach devised by one of us. Furthermore, we provide a link between marginal conformational stability and protein flexibility grounded in the harmonic approximation of the vibrational degrees of freedom, emphasizing the occurrence of long-wavelength and excited vibrations in all globular proteins. Finally, we offer a close view of three enzymes: chloride-dependent α-amylase, citrate synthase, and β-galactosidase.
Collapse
|
43
|
Abstract
Temperature impacts biological systems across all length and timescales. Cells and the enzymes that comprise them respond to temperature fluctuations on short timescales, and temperature can affect protein folding, the molecular composition of cells, and volume expansion. Entire ecosystems exhibit temperature-dependent behaviors, and global warming threatens to disrupt thermal homeostasis in microbes that are important for human and planetary health. Intriguingly, the growth rate of most species follows the Arrhenius law of equilibrium thermodynamics, with an activation energy similar to that of individual enzymes but with maximal growth rates and over temperature ranges that are species specific. In this review, we discuss how the temperature dependence of critical cellular processes, such as the central dogma and membrane fluidity, contributes to the temperature dependence of growth. We conclude with a discussion of adaptation to temperature shifts and the effects of temperature on evolution and on the properties of microbial ecosystems.
Collapse
Affiliation(s)
- Benjamin D Knapp
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA;
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA; .,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
44
|
Laye VJ, DasSarma S. Double mutations far from the active site affect cold activity in an Antarctic halophilic β-galactosidase. Protein Sci 2022; 31:677-687. [PMID: 34939242 PMCID: PMC8862438 DOI: 10.1002/pro.4264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Abstract
The Antarctic haloarchaeon, Halorubrum lacusprofundi, contains a polyextremophilic family 42 β-galactosidase, which we are using as a model for cold-active enzymes. Divergent amino acid residues in this 78 kDa protein were identified through comparative genomics and hypothesized to be important for cold activity. Six amino acid residues were previously mutated and five were shown by steady-state kinetic analysis to have altered temperature-dependent catalytic activity profiles via effects on Km and/or kcat compared to the wild-type enzyme. In this follow-up study, double-mutated enzymes were constructed and tested for temperature effects, including two new tandem residue pairs (N180T/A181T and T383A/S384A), and pairwise combination of the single residue mutations (N251D, F387L, I476V, and V482L). All double-mutated enzymes were found to be more catalytically active at moderate and/or less active at colder temperatures than wild-type, with both Km and kcat effects observed for the two tandem mutations. For pairwise combinations, a Km effect was seen when the surface exposed F387L mutation located in a domain A TIM barrel α helix 19 Å from the active site was combined with two internal residues, N251D or V482L. When another surface exposed mutation I476V located in a coiled region of domain B 25 Å from the active site was paired with N251D or V482L, a kcat effect was observed. These results indicate that temperature-dependent kinetic effects may be complex and subtle and are mediated by a combination of a small number of residues distant from the active site via changes to the hydration shell and/or perturbation of internal packing.
Collapse
Affiliation(s)
- Victoria J. Laye
- Institute of Marine and Environmental TechnologyUniversity System of MarylandBaltimoreMarylandUSA,Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Shiladitya DasSarma
- Institute of Marine and Environmental TechnologyUniversity System of MarylandBaltimoreMarylandUSA,Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
45
|
Placenti MA, Roman EA, González Flecha FL, González-Lebrero RM. Functional characterization of Legionella pneumophila Cu + transport ATPase. The activation by Cu + and ATP. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183822. [PMID: 34826402 DOI: 10.1016/j.bbamem.2021.183822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Cu+-ATPases are integral membrane proteins belonging to the IB subfamily of the P-type ATPases that couple Cu+ transport to the hydrolysis of ATP. As some structural and functional particularities arise for Cu+-ATPases, several authors suggest that some of the reaction steps of the Albers-Post model postulated for other P-ATPases may be different. In this work we describe a functional characterization of Legionella pneumophila Cu+-ATPase (LpCopA), the first PIB-ATPase whose structure was determined by X-ray crystallography. Cu+-ATPase activity of the enzyme presents a maximum at ∼37 °C and pH 6.6-6.8. Phospholipids enhance LpCopA Cu+-ATPase activity in a non-essential mode where optimal activity is achieved at an asolectin molar fraction of 0.15 and an amphiphile-protein ratio of ~30,000. As described for other P-ATPases, Mg2+ acts as an essential activator. Furthermore, Cu+-ATPase activity dependence on [Cu+] and [ATP] can both be described by a sum of two hyperbolic functions. Based on that, and the [Cu+] and [ATP] dependencies of the best fitting parameters of the hyperbolae pointed above, we propose a minimal reaction scheme for the catalytic mechanism that shares the basic reaction steps of the Albers-Post model for P-type ATPases. The reaction scheme postulated contemplates two different binding affinities for a single ATP (apparent affinities of 0.66 and 550 μM at [Cu+] → ∞) and binding of at least 2 Cu+ with different affinities as well (apparent affinities of 1.4 and 102.5 μM at [ATP] → ∞).
Collapse
Affiliation(s)
- M Agueda Placenti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - Ernesto A Roman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - F Luis González Flecha
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| | - Rodolfo M González-Lebrero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Nägele T. Metabolic regulation of subcellular sucrose cleavage inferred from quantitative analysis of metabolic functions. QUANTITATIVE PLANT BIOLOGY 2022; 3:e10. [PMID: 37077978 PMCID: PMC10095975 DOI: 10.1017/qpb.2022.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 05/03/2023]
Abstract
Quantitative analysis of experimental metabolic data is frequently challenged by non-intuitive, complex patterns which emerge from regulatory networks. The complex output of metabolic regulation can be summarised by metabolic functions which comprise information about dynamics of metabolite concentrations. In a system of ordinary differential equations, metabolic functions reflect the sum of biochemical reactions which affect a metabolite concentration, and their integration over time reveals metabolite concentrations. Further, derivatives of metabolic functions provide essential information about system dynamics and elasticities. Here, invertase-driven sucrose hydrolysis was simulated in kinetic models on a cellular and subcellular level. Both Jacobian and Hessian matrices of metabolic functions were derived for quantitative analysis of kinetic regulation of sucrose metabolism. Model simulations suggest that transport of sucrose into the vacuole represents a central regulatory element in plant metabolism during cold acclimation which preserves control of metabolic functions and limits feedback-inhibition of cytosolic invertases by elevated hexose concentrations.
Collapse
Affiliation(s)
- Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Author for correspondence: T. Nägele, E-mail:
| |
Collapse
|
47
|
Winter SD, Jones HBL, Răsădean DM, Crean RM, Danson MJ, Pantoş GD, Katona G, Prentice E, Arcus VL, van der Kamp MW, Pudney CR. Chemical Mapping Exposes the Importance of Active Site Interactions in Governing the Temperature Dependence of Enzyme Turnover. ACS Catal 2021; 11:14854-14863. [PMID: 34956689 PMCID: PMC8689651 DOI: 10.1021/acscatal.1c04679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Indexed: 12/26/2022]
Abstract
Uncovering the role of global protein dynamics in enzyme turnover is needed to fully understand enzyme catalysis. Recently, we have demonstrated that the heat capacity of catalysis, ΔC P ‡, can reveal links between the protein free energy landscape, global protein dynamics, and enzyme turnover, suggesting that subtle changes in molecular interactions at the active site can affect long-range protein dynamics and link to enzyme temperature activity. Here, we use a model promiscuous enzyme (glucose dehydrogenase from Sulfolobus solfataricus) to chemically map how individual substrate interactions affect the temperature dependence of enzyme activity and the network of motions throughout the protein. Utilizing a combination of kinetics, red edge excitation shift (REES) spectroscopy, and computational simulation, we explore the complex relationship between enzyme-substrate interactions and the global dynamics of the protein. We find that changes in ΔC P ‡ and protein dynamics can be mapped to specific substrate-enzyme interactions. Our study reveals how subtle changes in substrate binding affect global changes in motion and flexibility extending throughout the protein.
Collapse
Affiliation(s)
- Samuel D. Winter
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Hannah B. L. Jones
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | | | - Rory M. Crean
- Science for Life Laboratory, Department of Chemistry − BMC, Uppsala University, Uppsala 752 37, Sweden
| | - Michael J. Danson
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - G. Dan Pantoş
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Gergely Katona
- Department of Chemistry and Biology, University of Gothenburg, Göteborg 412 96, Sweden
| | - Erica Prentice
- School of Science, University of Waikato, Hamilton 3216, New Zealand
| | - Vickery L. Arcus
- School of Science, University of Waikato, Hamilton 3216, New Zealand
| | | | | |
Collapse
|
48
|
Crapse J, Pappireddi N, Gupta M, Shvartsman SY, Wieschaus E, Wühr M. Evaluating the Arrhenius equation for developmental processes. Mol Syst Biol 2021; 17:e9895. [PMID: 34414660 PMCID: PMC8377445 DOI: 10.15252/msb.20209895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022] Open
Abstract
The famous Arrhenius equation is well suited to describing the temperature dependence of chemical reactions but has also been used for complicated biological processes. Here, we evaluate how well the simple Arrhenius equation predicts complex multi-step biological processes, using frog and fruit fly embryogenesis as two canonical models. We find that the Arrhenius equation provides a good approximation for the temperature dependence of embryogenesis, even though individual developmental intervals scale differently with temperature. At low and high temperatures, however, we observed significant departures from idealized Arrhenius Law behavior. When we model multi-step reactions of idealized chemical networks, we are unable to generate comparable deviations from linearity. In contrast, we find the two enzymes GAPDH and β-galactosidase show non-linearity in the Arrhenius plot similar to our observations of embryonic development. Thus, we find that complex embryonic development can be well approximated by the simple Arrhenius equation regardless of non-uniform developmental scaling and propose that the observed departure from this law likely results more from non-idealized individual steps rather than from the complexity of the system.
Collapse
Affiliation(s)
- Joseph Crapse
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| | - Nishant Pappireddi
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| | - Meera Gupta
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
- Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonNJUSA
| | - Stanislav Y Shvartsman
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
- Center for Computational BiologyFlatiron InstituteSimons FoundationNew YorkNYUSA
| | - Eric Wieschaus
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| | - Martin Wühr
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| |
Collapse
|
49
|
Abstract
Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching.
Collapse
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
50
|
Kaspar F, Wolff DS, Neubauer P, Kurreck A, Arcus VL. pH-Independent Heat Capacity Changes during Phosphorolysis Catalyzed by the Pyrimidine Nucleoside Phosphorylase from Geobacillus thermoglucosidasius. Biochemistry 2021; 60:1573-1577. [PMID: 33955225 DOI: 10.1021/acs.biochem.1c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enzyme-catalyzed reactions sometimes display curvature in their Eyring plots in the absence of denaturation, indicative of a change in activation heat capacity. However, the effects of pH and (de)protonation on this phenomenon have remained unexplored. Herein, we report a kinetic characterization of the thermophilic pyrimidine nucleoside phosphorylase from Geobacillus thermoglucosidasius across a two-dimensional working space covering 35 °C and 3 pH units with two substrates displaying different pKa values. Our analysis revealed the presence of a measurable activation heat capacity change ΔCp⧧ in this reaction system, which showed no significant dependence on medium pH or substrate charge. Our results further describe the remarkable effects of a single halide substitution that has a minor influence on ΔCp⧧ but conveys a significant kinetic effect by decreasing the activation enthalpy, causing a >10-fold rate increase. Collectively, our results present an important piece in the understanding of enzymatic systems across multidimensional working spaces where the choice of reaction conditions can affect the rate, affinity, and thermodynamic phenomena independently of one another.
Collapse
Affiliation(s)
- Felix Kaspar
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany.,BioNukleo GmbH, Ackerstraße 76, D-13355 Berlin, Germany
| | - Darian S Wolff
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany.,BioNukleo GmbH, Ackerstraße 76, D-13355 Berlin, Germany
| | - Vickery L Arcus
- Te Aka Ma̅tuatua-School of Science, Te Whare Wa̅nanga o Waikato-University of Waikato, Hamilton 3240, New Zealand
| |
Collapse
|