1
|
Tian Y, Wu X, Luo S, Xiong D, Liu R, Hu L, Yuan Y, Shi G, Yao J, Huang Z, Fu F, Yang X, Tang Z, Zhang J, Hu K. A multi-omic single-cell landscape of cellular diversification in the developing human cerebral cortex. Comput Struct Biotechnol J 2024; 23:2173-2189. [PMID: 38827229 PMCID: PMC11141146 DOI: 10.1016/j.csbj.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The vast neuronal diversity in the human neocortex is vital for high-order brain functions, necessitating elucidation of the regulatory mechanisms underlying such unparalleled diversity. However, recent studies have yet to comprehensively reveal the diversity of neurons and the molecular logic of neocortical origin in humans at single-cell resolution through profiling transcriptomic or epigenomic landscapes, owing to the application of unimodal data alone to depict exceedingly heterogeneous populations of neurons. In this study, we generated a comprehensive compendium of the developing human neocortex by simultaneously profiling gene expression and open chromatin from the same cell. We computationally reconstructed the differentiation trajectories of excitatory projection neurons of cortical origin and inferred the regulatory logic governing lineage bifurcation decisions for neuronal diversification. We demonstrated that neuronal diversity arises from progenitor cell lineage specificity and postmitotic differentiation at distinct stages. Our data paves the way for understanding the primarily coordinated regulatory logic for neuronal diversification in the neocortex.
Collapse
Affiliation(s)
- Yuhan Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Xia Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Songhao Luo
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Dan Xiong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Rong Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Lanqi Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuchen Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjie Yao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiwei Huang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Yang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Public Platform Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
2
|
Wani AR, Chowdhury B, Luong J, Chaya GM, Patel K, Isaacman-Beck J, Kayser MS, Syed MH. Stem cell-specific ecdysone signaling regulates the development of dorsal fan-shaped body neurons and sleep homeostasis. Curr Biol 2024; 34:4951-4967.e5. [PMID: 39383867 PMCID: PMC11537841 DOI: 10.1016/j.cub.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Complex behaviors arise from neural circuits that assemble from diverse cell types. Sleep is a conserved behavior essential for survival, yet little is known about how the nervous system generates neuron types of a sleep-wake circuit. Here, we focus on the specification of Drosophila 23E10-labeled dorsal fan-shaped body (dFB) long-field tangential input neurons that project to the dorsal layers of the fan-shaped body neuropil in the central complex. We use lineage analysis and genetic birth dating to identify two bilateral type II neural stem cells (NSCs) that generate 23E10 dFB neurons. We show that adult 23E10 dFB neurons express ecdysone-induced protein 93 (E93) and that loss of ecdysone signaling or E93 in type II NSCs results in their misspecification. Finally, we show that E93 knockdown in type II NSCs impairs adult sleep behavior. Our results provide insight into how extrinsic hormonal signaling acts on NSCs to generate the neuronal diversity required for adult sleep behavior. These findings suggest that some adult sleep disorders might derive from defects in stem cell-specific temporal neurodevelopmental programs.
Collapse
Affiliation(s)
- Adil R Wani
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | - Budhaditya Chowdhury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | - Krishna Patel
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | | | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA.
| |
Collapse
|
3
|
Chen X. Reimagining Cortical Connectivity by Deconstructing Its Molecular Logic into Building Blocks. Cold Spring Harb Perspect Biol 2024; 16:a041509. [PMID: 38621822 PMCID: PMC11529856 DOI: 10.1101/cshperspect.a041509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Comprehensive maps of neuronal connectivity provide a foundation for understanding the structure of neural circuits. In a circuit, neurons are diverse in morphology, electrophysiology, gene expression, activity, and other neuronal properties. Thus, constructing a comprehensive connectivity map requires associating various properties of neurons, including their connectivity, at cellular resolution. A commonly used approach is to use the gene expression profiles as an anchor to which all other neuronal properties are associated. Recent advances in genomics and anatomical techniques dramatically improved the ability to determine and associate the long-range projections of neurons with their gene expression profiles. These studies revealed unprecedented details of the gene-projection relationship, but also highlighted conceptual challenges in understanding this relationship. In this article, I delve into the findings and the challenges revealed by recent studies using state-of-the-art neuroanatomical and transcriptomic techniques. Building upon these insights, I propose an approach that focuses on understanding the gene-projection relationship through basic features in gene expression profiles and projections, respectively, that associate with underlying cellular processes. I then discuss how the developmental trajectories of projections and gene expression profiles create additional challenges and necessitate interrogating the gene-projection relationship across time. Finally, I explore complementary strategies that, together, can provide a comprehensive view of the gene-projection relationship.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| |
Collapse
|
4
|
Yao M, Tudi A, Jiang T, An X, Jia X, Li A, Huang ZJ, Gong H, Li X, Luo Q. From Individual to Population: Circuit Organization of Pyramidal Tract and Intratelencephalic Neurons in Mouse Sensorimotor Cortex. RESEARCH (WASHINGTON, D.C.) 2024; 7:0470. [PMID: 39376961 PMCID: PMC11456696 DOI: 10.34133/research.0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 10/09/2024]
Abstract
The sensorimotor cortex participates in diverse functions with different reciprocally connected subregions and projection-defined pyramidal neuron types therein, while the fundamental organizational logic of its circuit elements at the single-cell level is still largely unclear. Here, using mouse Cre driver lines and high-resolution whole-brain imaging to selectively trace the axons and dendrites of cortical pyramidal tract (PT) and intratelencephalic (IT) neurons, we reconstructed the complete morphology of 1,023 pyramidal neurons and generated a projectome of 6 subregions within the sensorimotor cortex. Our morphological data revealed substantial hierarchical and layer differences in the axonal innervation patterns of pyramidal neurons. We found that neurons located in the medial motor cortex had more diverse projection patterns than those in the lateral motor and sensory cortices. The morphological characteristics of IT neurons in layer 5 were more complex than those in layer 2/3. Furthermore, the soma location and morphological characteristics of individual neurons exhibited topographic correspondence. Different subregions and layers were composed of different proportions of projection subtypes that innervate downstream areas differentially. While the axonal terminals of PT neuronal population in each cortical subregion were distributed in specific subdomains of the superior colliculus (SC) and zona incerta (ZI), single neurons selectively innervated a combination of these projection targets. Overall, our data provide a comprehensive list of projection types of pyramidal neurons in the sensorimotor cortex and begin to unveil the organizational principle of these projection types in different subregions and layers.
Collapse
Affiliation(s)
- Mei Yao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics,
Huazhong University of Science and Technology, Wuhan, China
| | - Ayizuohere Tudi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics,
Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xu An
- Department of Neurobiology,
Duke University Medical Center, Durham, NC, USA
| | - Xueyan Jia
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics,
Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Z. Josh Huang
- Department of Neurobiology,
Duke University Medical Center, Durham, NC, USA
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics,
Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiangning Li
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering,
Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province,
Hainan University, Haikou, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering,
Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province,
Hainan University, Haikou, China
| |
Collapse
|
5
|
Daniels N, Bindoff AD, Vickers JC, King AE, Collins JM. Vulnerability of neurofilament-expressing neurons in frontotemporal dementia. Mol Cell Neurosci 2024; 131:103974. [PMID: 39369804 DOI: 10.1016/j.mcn.2024.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
Frontotemporal dementia (FTD) is an umbrella term for several early onset dementias, that are caused by frontotemporal lobar degeneration (FTLD), which involves the atrophy of the frontal and temporal lobes of the brain. Neuron loss in the frontal and temporal lobes is a characteristic feature of FTLD, however the selective vulnerability of different neuronal populations in this group of diseases is not fully understood. Neurofilament-expressing neurons have been shown to be selectively vulnerable in other neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis, therefore we sought to investigate whether this neuronal population is vulnerable in FTLD. We also examined whether neuronal sub-type vulnerability differed between FTLD with TDP-43 inclusions (FTLD-TDP) and FTLD with tau inclusions (FTLD-Tau). Post-mortem human tissue from the superior frontal gyrus (SFG) of FTLD-TDP (n = 15), FTLD-Tau (n = 8) and aged Control cases (n = 6) was immunolabelled using antibodies against non-phosphorylated neurofilaments (SMI32 antibody), calretinin and NeuN, to explore neuronal cell loss. The presence of non-phosphorylated neurofilament immunolabelling in axons of the SFG white matter was also quantified as a measure of axon pathology, as axonal neurofilaments are normally phosphorylated. We demonstrate the selective loss of neurofilament-expressing neurons in both FTLD-TDP and FTLD-Tau cases compared to aged Controls. We also show that non-phosphorylated neurofilament axonal pathology in the SFG white matter was associated with increasing age, but not FTLD. This data suggests neurofilament-expressing neurons are vulnerable in both FTLD-TDP and FTLD-Tau.
Collapse
Affiliation(s)
- Nina Daniels
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia.
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
6
|
Barão S, Xu Y, Llongueras JP, Vistein R, Goff L, Nielsen KJ, Bae BI, Smith RS, Walsh CA, Stein-O'Brien G, Müller U. Conserved transcriptional regulation by BRN1 and BRN2 in neocortical progenitors drives mammalian neural specification and neocortical expansion. Nat Commun 2024; 15:8043. [PMID: 39271675 PMCID: PMC11399407 DOI: 10.1038/s41467-024-52443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors and the emergence of indirect neurogenesis during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological disorders remain largely unknown. Here we show that the transcription factors BRN1 and BRN2 have an evolutionary conserved function in neocortical progenitors to control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.
Collapse
Affiliation(s)
- Soraia Barão
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Yijun Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - José P Llongueras
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Vistein
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Loyal Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristina J Nielsen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Byoung-Il Bae
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06032, USA
| | - Richard S Smith
- Northwestern University, Feinberg School of Medicine, Department of Pharmacology, Chicago, IL, 60611, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Genevieve Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
8
|
Falace A, Corbieres L, Palminha C, Guarnieri FC, Schaller F, Buhler E, Tuccari di San Carlo C, Montheil A, Watrin F, Manent JB, Represa A, de Chevigny A, Pallesi-Pocachard E, Cardoso C. FLNA regulates neuronal maturation by modulating RAC1-Cofilin activity in the developing cortex. Neurobiol Dis 2024; 198:106558. [PMID: 38852754 DOI: 10.1016/j.nbd.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024] Open
Abstract
Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive. It has been hypothesized that dysfunctional cortical circuitry, rather than ectopic neurons, may explain the clinical manifestations. To address this issue, we depleted FLNA from cortical pyramidal neurons of a conditional Flnaflox/flox mice by timed in utero electroporation of Cre recombinase. We found that FLNA regulates dendritogenesis and spinogenesis thus promoting an appropriate excitatory/inhibitory inputs balance. We demonstrated that FLNA modulates RAC1 and cofilin activity through its interaction with the Rho-GTPase Activating Protein 24 (ARHGAP24). Collectively, we disclose an uncharacterized role of FLNA and provide strong support for neural circuit dysfunction being a consequence of FLNA mutations.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genova, Italy.
| | - Lea Corbieres
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Catia Palminha
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Fabrizia Claudia Guarnieri
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro (MB), Italy; IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Fabienne Schaller
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Emmanuelle Buhler
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Clara Tuccari di San Carlo
- Pediatric Neurology Unit and Laboratories, IRCCS Meyer Children's Hospital University of Florence, Firenze, Italy
| | - Aurelie Montheil
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France; INMED, INSERM UMR1249, Aix Marseille University, Molecular and Cellular Biology Platform, Parc Scientifique de Luminy, Marseille, France
| | - Françoise Watrin
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Jean Bernard Manent
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Alfonso Represa
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Antoine de Chevigny
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Emilie Pallesi-Pocachard
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France; INMED, INSERM UMR1249, Aix Marseille University, Molecular and Cellular Biology Platform, Parc Scientifique de Luminy, Marseille, France
| | - Carlos Cardoso
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France.
| |
Collapse
|
9
|
Li K, Gu L, Cai H, Lu HC, Mackie K, Guo F. Human brain organoids for understanding substance use disorders. Drug Metab Pharmacokinet 2024; 58:101031. [PMID: 39146603 DOI: 10.1016/j.dmpk.2024.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding their neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUDs using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUDs in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.
Collapse
Affiliation(s)
- Kangle Li
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Longjun Gu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Hui-Chen Lu
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States.
| |
Collapse
|
10
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
Wang Y, Woyshner K, Sriworarat C, Stein-O’Brie G, Goff LA, Hansen KD. Multi-sample non-negative spatial factorization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.599554. [PMID: 39005356 PMCID: PMC11244884 DOI: 10.1101/2024.07.01.599554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
It is important to model biological variation when analyzing spatial transcriptomics data from multiple samples. One approach to multi-sample analysis is to spatially align samples, but this is a challenging problem. Here, we provide an alignment-free framework for generalizing a one-sample spatial factorization model to multi-sample data. Using this framework, we develop a method, called multi-sample non-negative spatial factorization (mNSF) that extends the one-sample non-negative spatial factorization (NSF) framework to a multi-sample dataset. Our model allows for a sample-specific model for the spatial correlation structure and extracts a low-dimensional representation of the data. We illustrate the performance of mNSF by simulation studies and real data. mNSF identifies true factors in simulated data, identifies shared anatomical regions across samples in real data and reveals region-specific biological functions. mNSFs performance is similar to alignment based methods when alignment is possible, but extends analysis to situations where spatial alignment is impossible. We expect multi-sample factorization methods to be a powerful class of methods for analyzing spatially resolved transcriptomics data.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Kyla Woyshner
- Department of Genetic Medicine, Johns Hopkins School of Medicine
| | | | - Genevieve Stein-O’Brie
- Department of Genetic Medicine, Johns Hopkins School of Medicine
- Department of Neuroscience, Johns Hopkins School of Medicine
- Kavli Neurodiscovery Institute, Johns Hopkins School of Medicine
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins School of Medicine
| | - Loyal A Goff
- Department of Genetic Medicine, Johns Hopkins School of Medicine
- Department of Neuroscience, Johns Hopkins School of Medicine
- Kavli Neurodiscovery Institute, Johns Hopkins School of Medicine
| | - Kasper D. Hansen
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
- Department of Genetic Medicine, Johns Hopkins School of Medicine
- Department of Biomedical Engineering, Johns Hopkins School of Medicine
| |
Collapse
|
12
|
He C, Zhou H, Chen L, Liu Z. NEAT1 Promotes Valproic Acid-Induced Autism Spectrum Disorder by Recruiting YY1 to Regulate UBE3A Transcription. Mol Neurobiol 2024:10.1007/s12035-024-04309-y. [PMID: 38922486 DOI: 10.1007/s12035-024-04309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in autism. Herein, we explored the functional role and possible molecular mechanisms of NEAT1 in valproic acid (VPA)-induced autism spectrum disorder (ASD). A VPA-induced ASD rat model was constructed, and a series of behavioral tests were performed to examine motor coordination and learning-memory abilities. qRT-PCR and western blot assays were used to evaluate target gene expression levels. Loss-and-gain-of-function assays were conducted to explore the functional role of NEAT1 in ASD development. Furthermore, a combination of mechanistic experiments and bioinformatic tools was used to assess the relationship and regulatory role of the NEAT1-YY1-UBE3A axis in ASD cellular processes. Results showed that VPA exposure induced autism-like developmental delays and behavioral abnormalities in the VPA-induced ASD rat model. We found that NEAT1 was elevated in rat hippocampal tissues after VPA exposure. NEAT1 promoted VPA-induced autism-like behaviors and mitigated apoptosis, oxidative stress, and inflammation in VPA-induced ASD rats. Notably, NEAT1 knockdown improved autism-related behaviors and ameliorated hippocampal neuronal damage. Mechanistically, it was observed that NEAT1 recruited the transcription factor YY1 to regulate UBE3A expression. Additionally, in vitro experiments further confirmed that NEAT1 knockdown mitigated hippocampal neuronal damage, oxidative stress, and inflammation through the YY1/UBE3A axis. In conclusion, our study demonstrates that NEAT1 is highly expressed in ASD, and its inhibition prominently suppresses hippocampal neuronal injury and oxidative stress through the YY1/UBE3A axis, thereby alleviating ASD development. This provides a new direction for ASD-targeted therapy.
Collapse
Affiliation(s)
- Chuping He
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China
| | - Huimei Zhou
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China.
| | - Lei Chen
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China
| | - Zeying Liu
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China
| |
Collapse
|
13
|
Cortés BI, Meza RC, Ancatén-González C, Ardiles NM, Aránguiz MI, Tomita H, Kaplan DR, Cornejo F, Nunez-Parra A, Moya PR, Chávez AE, Cancino GI. Loss of protein tyrosine phosphatase receptor delta PTPRD increases the number of cortical neurons, impairs synaptic function and induces autistic-like behaviors in adult mice. Biol Res 2024; 57:40. [PMID: 38890753 PMCID: PMC11186208 DOI: 10.1186/s40659-024-00522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The brain cortex is responsible for many higher-level cognitive functions. Disruptions during cortical development have long-lasting consequences on brain function and are associated with the etiology of brain disorders. We previously found that the protein tyrosine phosphatase receptor delta Ptprd, which is genetically associated with several human neurodevelopmental disorders, is essential to cortical brain development. Loss of Ptprd expression induced an aberrant increase of excitatory neurons in embryonic and neonatal mice by hyper-activating the pro-neurogenic receptors TrkB and PDGFRβ in neural precursor cells. However, whether these alterations have long-lasting consequences in adulthood remains unknown. RESULTS Here, we found that in Ptprd+/- or Ptprd-/- mice, the developmental increase of excitatory neurons persists through adulthood, affecting excitatory synaptic function in the medial prefrontal cortex. Likewise, heterozygosity or homozygosity for Ptprd also induced an increase of inhibitory cortical GABAergic neurons and impaired inhibitory synaptic transmission. Lastly, Ptprd+/- or Ptprd-/- mice displayed autistic-like behaviors and no learning and memory impairments or anxiety. CONCLUSIONS These results indicate that loss of Ptprd has long-lasting effects on cortical neuron number and synaptic function that may aberrantly impact ASD-like behaviors.
Collapse
Affiliation(s)
- Bastián I Cortés
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Rodrigo C Meza
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
- Programa de Doctorado en Ciencias mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Nicolás M Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - María-Ignacia Aránguiz
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Hideaki Tomita
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
- Ludna Biotech Co., Ltd, Suita, Osaka, 565-0871, Japan
| | - David R Kaplan
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1X8, Canada
| | - Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile
| | - Alexia Nunez-Parra
- Cell Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, 7800003, Chile
| | - Pablo R Moya
- Centro de Estudios Traslacionales en Estrés y Salud Mental (C-ESTRES), Universidad de Valparaíso, Valparaíso, 2340000, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Gonzalo I Cancino
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
| |
Collapse
|
14
|
Gonzalez-Ferrer J, Lehrer J, O'Farrell A, Paten B, Teodorescu M, Haussler D, Jonsson VD, Mostajo-Radji MA. SIMS: A deep-learning label transfer tool for single-cell RNA sequencing analysis. CELL GENOMICS 2024; 4:100581. [PMID: 38823397 PMCID: PMC11228957 DOI: 10.1016/j.xgen.2024.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Cell atlases serve as vital references for automating cell labeling in new samples, yet existing classification algorithms struggle with accuracy. Here we introduce SIMS (scalable, interpretable machine learning for single cell), a low-code data-efficient pipeline for single-cell RNA classification. We benchmark SIMS against datasets from different tissues and species. We demonstrate SIMS's efficacy in classifying cells in the brain, achieving high accuracy even with small training sets (<3,500 cells) and across different samples. SIMS accurately predicts neuronal subtypes in the developing brain, shedding light on genetic changes during neuronal differentiation and postmitotic fate refinement. Finally, we apply SIMS to single-cell RNA datasets of cortical organoids to predict cell identities and uncover genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.
Collapse
Affiliation(s)
- Jesus Gonzalez-Ferrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Julian Lehrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Ash O'Farrell
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Benedict Paten
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - David Haussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Vanessa D Jonsson
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Mohammed A Mostajo-Radji
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| |
Collapse
|
15
|
Barão S, Xu Y, Llongueras JP, Vistein R, Goff L, Nielsen K, Bae BI, Smith RS, Walsh CA, Stein-O'Brien G, Müller U. BRN1/2 Function in Neocortical Size Determination and Microcephaly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565322. [PMID: 37961182 PMCID: PMC10635068 DOI: 10.1101/2023.11.02.565322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian neocortex differs vastly in size and complexity between mammalian species, yet the mechanisms that lead to an increase in brain size during evolution are not known. We show here that two transcription factors coordinate gene expression programs in progenitor cells of the neocortex to regulate their proliferative capacity and neuronal output in order to determine brain size. Comparative studies in mice, ferrets and macaques demonstrate an evolutionary conserved function for these transcription factors to regulate progenitor behaviors across the mammalian clade. Strikingly, the two transcriptional regulators control the expression of large numbers of genes linked to microcephaly suggesting that transcriptional deregulation as an important determinant of the molecular pathogenesis of microcephaly, which is consistent with the finding that genetic manipulation of the two transcription factors leads to severe microcephaly.
Collapse
|
16
|
Cesari E, Farini D, Medici V, Ehrmann I, Guerra M, Testa E, Naro C, Geloso MC, Pagliarini V, La Barbera L, D’Amelio M, Orsini T, Vecchioli SF, Tamagnone L, Fort P, Viscomi MT, Elliott DJ, Sette C. Differential expression of paralog RNA binding proteins establishes a dynamic splicing program required for normal cerebral cortex development. Nucleic Acids Res 2024; 52:4167-4184. [PMID: 38324473 PMCID: PMC11077083 DOI: 10.1093/nar/gkae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.
Collapse
Affiliation(s)
- Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ingrid Ehrmann
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Erika Testa
- Department of Life Science and Public Health, Section of Histology and Embryology, Catholic University of the Sacred Heart, Rome
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Livia La Barbera
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Marcello D’Amelio
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
- Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC/CNR), Monterotondo, 00015 Rome, Italy
| | - Stefano Farioli Vecchioli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC/CNR), Monterotondo, 00015 Rome, Italy
| | - Luca Tamagnone
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
- Department of Life Science and Public Health, Section of Histology and Embryology, Catholic University of the Sacred Heart, Rome
| | - Philippe Fort
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 05, France
| | - Maria Teresa Viscomi
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
- Department of Life Science and Public Health, Section of Histology and Embryology, Catholic University of the Sacred Heart, Rome
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| |
Collapse
|
17
|
Deng H, Tong S, Shen D, Zhang S, Fu Y. The characteristics of excitatory lineage differentiation and the developmental conservation in Reeler neocortex. Cell Prolif 2024; 57:e13587. [PMID: 38084819 PMCID: PMC11056708 DOI: 10.1111/cpr.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 04/30/2024] Open
Abstract
The majority of neocortical projection neurons are generated indirectly from radial glial cells (RGCs) mediated by intermediate progenitor cells (IPCs) in mice. IPCs are thought to be a great breakthrough in the evolutionary expansion of the mammalian neocortex. However, the precise ratio of neuron production from IPCs and characteristics of RGC differentiation process are still unclear. Our study revealed that direct neurogenesis was seldom observed and increased slightly at late embryonic stage. Besides, we conducted retrovirus sparse labelling combined carboxyfluorescein diacetate succinimide ester (CFSE) and Tbr2-CreER strain to reconstruct individual lineage tree in situ. The lineage trees simulated the output of RGCs at per round of division in sequence with high temporal, spatial and cellular resolution at P7. We then demonstrated that only 1.90% of neurons emanated from RGCs directly in mouse cerebral neocortex and 79.33% of RGCs contributed to the whole clones through IPCs. The contribution of indirect neurogenesis was underestimated previously because approximately a quarter of IPC-derived neurons underwent apoptosis. Here, we also showed that abundant IPCs from first-generation underwent self-renewing division and generated four neurons ultimately. We confirmed that the intermediate proliferative progenitors expressed higher Cux2 characteristically at early embryonic stage. Finally, we validated that the characteristics of neurogenetic process in lineages and developmental fate of neurons were conserved in Reeler mice. This study contributes to further understanding of neurogenesis in neocortical development.
Collapse
Affiliation(s)
- Huan‐Huan Deng
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Shi‐Yuan Tong
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Dan Shen
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Shu‐Qing Zhang
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yinghui Fu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
18
|
Lindenhofer D, Haendeler S, Esk C, Littleboy JB, Brunet Avalos C, Naas J, Pflug FG, van de Ven EGP, Reumann D, Baffet AD, von Haeseler A, Knoblich JA. Cerebral organoids display dynamic clonal growth and tunable tissue replenishment. Nat Cell Biol 2024; 26:710-718. [PMID: 38714853 PMCID: PMC11098754 DOI: 10.1038/s41556-024-01412-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
During brain development, neural progenitors expand through symmetric divisions before giving rise to differentiating cell types via asymmetric divisions. Transition between those modes varies among individual neural stem cells, resulting in clones of different sizes. Imaging-based lineage tracing allows for lineage analysis at high cellular resolution but systematic approaches to analyse clonal behaviour of entire tissues are currently lacking. Here we implement whole-tissue lineage tracing by genomic DNA barcoding in 3D human cerebral organoids, to show that individual stem cell clones produce progeny on a vastly variable scale. By using stochastic modelling we find that variable lineage sizes arise because a subpopulation of lineages retains symmetrically dividing cells. We show that lineage sizes can adjust to tissue demands after growth perturbation via chemical ablation or genetic restriction of a subset of cells in chimeric organoids. Our data suggest that adaptive plasticity of stem cell populations ensures robustness of development in human brain organoids.
Collapse
Affiliation(s)
- Dominik Lindenhofer
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna BioCenter, Vienna, Austria
- Vienna Biocenter PhD Program, University of Vienna and the Medical University of Vienna, Vienna, Austria
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simon Haendeler
- Vienna Biocenter PhD Program, University of Vienna and the Medical University of Vienna, Vienna, Austria
- Center of Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Christopher Esk
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna BioCenter, Vienna, Austria.
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria.
| | - Jamie B Littleboy
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna BioCenter, Vienna, Austria
- Vienna Biocenter PhD Program, University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Julia Naas
- Vienna Biocenter PhD Program, University of Vienna and the Medical University of Vienna, Vienna, Austria
- Center of Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Florian G Pflug
- Center of Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Eline G P van de Ven
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna BioCenter, Vienna, Austria
| | - Daniel Reumann
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna BioCenter, Vienna, Austria
| | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
- Institut national de la santé et de la recherche médicale, Paris, France
| | - Arndt von Haeseler
- Vienna Biocenter PhD Program, University of Vienna and the Medical University of Vienna, Vienna, Austria
- Faculty of Computer Science, Bioinformatics and Computational Biology, University of Vienna, Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna BioCenter, Vienna, Austria.
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Ozkan A, Padmanabhan HK, Shipman SL, Azim E, Kumar P, Sadegh C, Basak AN, Macklis JD. Directed differentiation of functional corticospinal-like neurons from endogenous SOX6+/NG2+ cortical progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590488. [PMID: 38712174 PMCID: PMC11071355 DOI: 10.1101/2024.04.21.590488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Corticospinal neurons (CSN) centrally degenerate in amyotrophic lateral sclerosis (ALS), along with spinal motor neurons, and loss of voluntary motor function in spinal cord injury (SCI) results from damage to CSN axons. For functional regeneration of specifically affected neuronal circuitry in vivo , or for optimally informative disease modeling and/or therapeutic screening in vitro , it is important to reproduce the type or subtype of neurons involved. No such appropriate in vitro models exist with which to investigate CSN selective vulnerability and degeneration in ALS, or to investigate routes to regeneration of CSN circuitry for ALS or SCI, critically limiting the relevance of much research. Here, we identify that the HMG-domain transcription factor Sox6 is expressed by a subset of NG2+ endogenous cortical progenitors in postnatal and adult cortex, and that Sox6 suppresses a latent neurogenic program by repressing inappropriate proneural Neurog2 expression by progenitors. We FACS-purify these genetically accessible progenitors from postnatal mouse cortex and establish a pure culture system to investigate their potential for directed differentiation into CSN. We then employ a multi-component construct with complementary and differentiation-sharpening transcriptional controls (activating Neurog2, Fezf2 , while antagonizing Olig2 with VP16:Olig2 ). We generate corticospinal-like neurons from SOX6+/NG2+ cortical progenitors, and find that these neurons differentiate with remarkable fidelity compared with corticospinal neurons in vivo . They possess appropriate morphological, molecular, transcriptomic, and electrophysiological characteristics, without characteristics of the alternate intracortical or other neuronal subtypes. We identify that these critical specifics of differentiation are not reproduced by commonly employed Neurog2 -driven differentiation. Neurons induced by Neurog2 instead exhibit aberrant multi-axon morphology and express molecular hallmarks of alternate cortical projection subtypes, often in mixed form. Together, this developmentally-based directed differentiation from genetically accessible cortical progenitors sets a precedent and foundation for in vitro mechanistic and therapeutic disease modeling, and toward regenerative neuronal repopulation and circuit repair.
Collapse
|
20
|
Miyoshi G, Ueta Y, Yagasaki Y, Kishi Y, Fishell G, Machold RP, Miyata M. Developmental trajectories of GABAergic cortical interneurons are sequentially modulated by dynamic FoxG1 expression levels. Proc Natl Acad Sci U S A 2024; 121:e2317783121. [PMID: 38588430 PMCID: PMC11032493 DOI: 10.1073/pnas.2317783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.
Collapse
Affiliation(s)
- Goichi Miyoshi
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi city, Gunma371-8511, Japan
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Yoshifumi Ueta
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yuki Yagasaki
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Tokyo113-0032, Japan
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo, Tokyo113-0033, Japan
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Stanley Center at the Broad Institute, Cambridge, MA02142
| | - Robert P. Machold
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Mariko Miyata
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| |
Collapse
|
21
|
Díaz-Piña DA, Rivera-Ramírez N, García-López G, Díaz NF, Molina-Hernández A. Calcium and Neural Stem Cell Proliferation. Int J Mol Sci 2024; 25:4073. [PMID: 38612887 PMCID: PMC11012558 DOI: 10.3390/ijms25074073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.
Collapse
Affiliation(s)
- Dafne Astrid Díaz-Piña
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
- Facultad de Medicina, Circuito Exterior Universitario, Universidad Nacional Autónoma de México Universitario, Copilco Universidad, Coyoacán, Ciudad de México 04360, Mexico
| | - Nayeli Rivera-Ramírez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| |
Collapse
|
22
|
Ding W, Li X, Zhang J, Ji M, Zhang M, Zhong X, Cao Y, Liu X, Li C, Xiao C, Wang J, Li T, Yu Q, Mo F, Zhang B, Qi J, Yang JC, Qi J, Tian L, Xu X, Peng Q, Zhou WZ, Liu Z, Fu A, Zhang X, Zhang JJ, Sun Y, Hu B, An NA, Zhang L, Li CY. Adaptive functions of structural variants in human brain development. SCIENCE ADVANCES 2024; 10:eadl4600. [PMID: 38579006 DOI: 10.1126/sciadv.adl4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Quantifying the structural variants (SVs) in nonhuman primates could provide a niche to clarify the genetic backgrounds underlying human-specific traits, but such resource is largely lacking. Here, we report an accurate SV map in a population of 562 rhesus macaques, verified by in-house benchmarks of eight macaque genomes with long-read sequencing and another one with genome assembly. This map indicates stronger selective constrains on inversions at regulatory regions, suggesting a strategy for prioritizing them with the most important functions. Accordingly, we identified 75 human-specific inversions and prioritized them. The top-ranked inversions have substantially shaped the human transcriptome, through their dual effects of reconfiguring the ancestral genomic architecture and introducing regional mutation hotspots at the inverted regions. As a proof of concept, we linked APCDD1, located on one of these inversions and down-regulated specifically in humans, to neuronal maturation and cognitive ability. We thus highlight inversions in shaping the human uniqueness in brain development.
Collapse
Affiliation(s)
- Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xiangshang Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Mingjun Ji
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xiaoming Zhong
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chunqiong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qing Yu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie-Chun Yang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Juntian Qi
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Lu Tian
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qi Peng
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Aisi Fu
- Wuhan Dgensee Clinical Laboratory, Wuhan, China
| | - Xiuqin Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jian-Jun Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
23
|
Stepien BK, Wielockx B. From Vessels to Neurons-The Role of Hypoxia Pathway Proteins in Embryonic Neurogenesis. Cells 2024; 13:621. [PMID: 38607059 PMCID: PMC11012138 DOI: 10.3390/cells13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Embryonic neurogenesis can be defined as a period of prenatal development during which divisions of neural stem and progenitor cells give rise to neurons. In the central nervous system of most mammals, including humans, the majority of neocortical neurogenesis occurs before birth. It is a highly spatiotemporally organized process whose perturbations lead to cortical malformations and dysfunctions underlying neurological and psychiatric pathologies, and in which oxygen availability plays a critical role. In case of deprived oxygen conditions, known as hypoxia, the hypoxia-inducible factor (HIF) signaling pathway is activated, resulting in the selective expression of a group of genes that regulate homeostatic adaptations, including cell differentiation and survival, metabolism and angiogenesis. While a physiological degree of hypoxia is essential for proper brain development, imbalanced oxygen levels can adversely affect this process, as observed in common obstetrical pathologies such as prematurity. This review comprehensively explores and discusses the current body of knowledge regarding the role of hypoxia and the HIF pathway in embryonic neurogenesis of the mammalian cortex. Additionally, it highlights existing gaps in our understanding, presents unanswered questions, and provides avenues for future research.
Collapse
Affiliation(s)
- Barbara K. Stepien
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Experimental Centre, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
24
|
Rudenko A, Kim IJ. Supermultipotency and unpredictability in the developing superior colliculus. Trends Neurosci 2024; 47:239-240. [PMID: 38514350 PMCID: PMC11047761 DOI: 10.1016/j.tins.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
A recent study by Cheung, Pauler, Koppensteiner et al. combining lineage tracing with single-cell RNA sequencing (scRNA-seq) has revealed unexpected features of the developing superior colliculus (SC). Extremely multipotent individual progenitors generate all types of SC neurons and glial cells that were found to localize in a non-predetermined pattern, demonstrating a remarkable degree of unpredictability in SC development.
Collapse
Affiliation(s)
- Andrii Rudenko
- Department of Biology, Graduate Programs in Biology and Biochemistry, City College and City University of New York, New York, NY, USA.
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
Lin L, Huang P, Cheng Y, Jiang S, Zhang J, Li M, Zheng J, Pan X, Wang Y. Brain white matter changes and their associations with non-motor dysfunction in orthostatic hypotension in α-synucleinopathy: A NODDI study. CNS Neurosci Ther 2024; 30:e14712. [PMID: 38615364 PMCID: PMC11016347 DOI: 10.1111/cns.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND The specific non-motor symptoms associated with α-synucleinopathies, including orthostatic hypotension (OH), cognitive impairment, and emotional abnormalities, have been a subject of ongoing controversy over the mechanisms underlying the development of a vicious cycle among them. The distinct structural alterations in white matter (WM) in patients with α-synucleinopathies experiencing OH, alongside their association with other non-motor symptoms, remain unexplored. This study employs axial diffusivity and density imaging (NODDI) to investigate WM damage specific to α-synucleinopathies with concurrent OH, delivering fresh evidence to supplement our understanding of the pathogenic mechanisms and pathological rationales behind the occurrence of a spectrum of non-motor functional impairments in α-synucleinopathies. METHODS This study recruited 49 individuals diagnosed with α-synucleinopathies, stratified into an α-OH group (n = 24) and an α-NOH group (without OH, n = 25). Additionally, 17 healthy controls were included for supine and standing blood pressure data collection, as well as neuropsychological assessments. Magnetic resonance imaging (MRI) was utilized for the calculation of NODDI parameters, and tract-based spatial statistics (TBSS) were employed to explore differential clusters. The fibers covered by these clusters were defined as regions of interest (ROI) for the extraction of NODDI parameter values and the analysis of their correlation with neuropsychological scores. RESULTS The TBSS analysis unveiled specific cerebral regions exhibiting disparities within the α-OH group as compared to both the α-NOH group and the healthy controls. These differences were evident in clusters that indicated a decrease in the acquisition of the neurite density index (NDI), a reduction in the orientation dispersion index (ODI), and an increase in the isotropic volume fraction (FISO) (p < 0.05). The extracted values from these ROIs demonstrated significant correlations with clinically assessed differences in supine and standing blood pressure, overall cognitive scores, and anxiety-depression ratings (p < 0.05). CONCLUSION Patients with α-synucleinopathies experiencing OH exhibit distinctive patterns of microstructural damage in the WM as revealed by the NODDI model, and there is a correlation with the onset and progression of non-motor functional impairments.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Peilin Huang
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Yingzhe Cheng
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Shaofan Jiang
- Department of RadiologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for TumorsFujian Medical UniversityFuzhou CityChina
| | - Jiejun Zhang
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
- Center for GeriatricsHainan General HospitalHainanChina
| | - Man Li
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Jiahao Zheng
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Yanping Wang
- Department of EndocrinologyFujian Medical University Union HospitalFuzhou CityChina
| |
Collapse
|
26
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of differential sublaminar feedforward inhibitory circuits in CA1 hippocampus requires Satb2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576902. [PMID: 38328190 PMCID: PMC10849736 DOI: 10.1101/2024.01.23.576902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying PC differentiation and the development of this inhibitory circuit motif. We found that expression of the transcriptional regulator SATB2 is biased towards superficial PCs during early postnatal development and necessary to suppress PV+ interneuron synapse formation. In the absence of SATB2, the number of PV+ interneuron synaptic puncta surrounding superficial PCs increases during development to match deep PCs. This results in equivalent inhibitory current strength observed in paired whole-cell recordings, and equivalent feedforward inhibition of Schaffer collateral input. Thus, SATB2 is necessary for superficial PC differentiation and biased feedforward inhibition in CA1.
Collapse
|
27
|
Mestres I, Atabay A, Escolano JC, Arndt S, Schmidtke K, Einsiedel M, Patsonis M, Bolaños-Castro LA, Yun M, Bernhardt N, Taubenberger A, Calegari F. Manipulation of the nuclear envelope-associated protein SLAP during mammalian brain development affects cortical lamination and exploratory behavior. Biol Open 2024; 13:bio060359. [PMID: 38466184 PMCID: PMC10958201 DOI: 10.1242/bio.060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Here, we report the first characterization of the effects resulting from the manipulation of Soluble-Lamin Associated Protein (SLAP) expression during mammalian brain development. We found that SLAP localizes to the nuclear envelope and when overexpressed causes changes in nuclear morphology and lengthening of mitosis. SLAP overexpression in apical progenitors of the developing mouse brain altered asymmetric cell division, neurogenic commitment and neuronal migration ultimately resulting in unbalance in the proportion of upper, relative to deeper, neuronal layers. Several of these effects were also recapitulated upon Cas9-mediated knockdown. Ultimately, SLAP overexpression during development resulted in a reduction in subcortical projections of young mice and, notably, reduced their exploratory behavior. Our study shows the potential relevance of the previously uncharacterized nuclear envelope protein SLAP in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Mestres
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Azra Atabay
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Joan-Carles Escolano
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Solveig Arndt
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Klara Schmidtke
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Maximilian Einsiedel
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Melina Patsonis
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Lizbeth Airais Bolaños-Castro
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Maximina Yun
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
28
|
Geller E, Noble MA, Morales M, Gockley J, Emera D, Uebbing S, Cotney JL, Noonan JP. Massively parallel disruption of enhancers active in human neural stem cells. Cell Rep 2024; 43:113693. [PMID: 38271204 PMCID: PMC11078116 DOI: 10.1016/j.celrep.2024.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Changes in gene regulation have been linked to the expansion of the human cerebral cortex and to neurodevelopmental disorders, potentially by altering neural progenitor proliferation. However, the effects of genetic variation within regulatory elements on neural progenitors remain obscure. We use sgRNA-Cas9 screens in human neural stem cells (hNSCs) to disrupt 10,674 genes and 26,385 conserved regions in 2,227 enhancers active in the developing human cortex and determine effects on proliferation. Genes with proliferation phenotypes are associated with neurodevelopmental disorders and show biased expression in specific fetal human brain neural progenitor populations. Although enhancer disruptions overall have weaker effects than gene disruptions, we identify enhancer disruptions that severely alter hNSC self-renewal. Disruptions in human accelerated regions, implicated in human brain evolution, also alter proliferation. Integrating proliferation phenotypes with chromatin interactions reveals regulatory relationships between enhancers and their target genes contributing to neurogenesis and potentially to human cortical evolution.
Collapse
Affiliation(s)
- Evan Geller
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mark A Noble
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Matheo Morales
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jake Gockley
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Deena Emera
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Justin L Cotney
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
Hamid A, Gattuso H, Caglar AN, Pillai M, Steele T, Gonzalez A, Nagel K, Syed MH. The conserved RNA-binding protein Imp is required for the specification and function of olfactory navigation circuitry in Drosophila. Curr Biol 2024; 34:473-488.e6. [PMID: 38181792 PMCID: PMC10872534 DOI: 10.1016/j.cub.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic programs for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects, which governs many higher-order behaviors and largely derives from a small number of type II neural stem cells (NSCs). Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in type II NSCs, plays a role in specifying essential components of CX olfactory navigation circuitry. We show the following: (1) that multiple components of olfactory navigation circuitry arise from type II NSCs. (2) Manipulating Imp expression in type II NSCs alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body (FB). (3) Imp regulates the specification of Tachykinin-expressing ventral FB input neurons. (4) Imp is required in type II NSCs for establishing proper morphology of the CX neuropil structures. (5) Loss of Imp in type II NSCs abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our findings establish that a temporally expressed gene can regulate the expression of a complex behavior by developmentally regulating the specification of multiple circuit components and provides a first step toward a developmental dissection of the CX and its roles in behavior.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Hannah Gattuso
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Aysu Nora Caglar
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Midhula Pillai
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Theresa Steele
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Alexa Gonzalez
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Katherine Nagel
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA.
| | - Mubarak Hussain Syed
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA.
| |
Collapse
|
30
|
Zhang W, Zhang M, Ma L, Jariyasakulroj S, Chang Q, Lin Z, Lu Z, Chen JF. Recapitulating and reversing human brain ribosomopathy defects via the maladaptive integrated stress response. SCIENCE ADVANCES 2024; 10:eadk1034. [PMID: 38306425 PMCID: PMC10836730 DOI: 10.1126/sciadv.adk1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Animal or human models recapitulating brain ribosomopathies are incomplete, hampering development of urgently needed therapies. Here, we generated genetic mouse and human cerebral organoid models of brain ribosomopathies, caused by mutations in small nucleolar RNA (snoRNA) SNORD118. Both models exhibited protein synthesis loss, proteotoxic stress, and p53 activation and led to decreased proliferation and increased death of neural progenitor cells (NPCs), resulting in brain growth retardation, recapitulating features in human patients. Loss of SNORD118 function resulted in an aberrant upregulation of p-eIF2α, the mediator of integrated stress response (ISR). Using human iPSC cell-based screen, we identified small-molecule 2BAct, an ISR inhibitor, which potently reverses mutant NPC defects. Targeting ISR by 2BAct mitigated ribosomopathy defects in both cerebral organoid and mouse models. Thus, our SNORD118 mutant organoid and mice recapitulate human brain ribosomopathies and cross-validate maladaptive ISR as a key disease-driving mechanism, pointing to a therapeutic intervention strategy.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Supawadee Jariyasakulroj
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Qing Chang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ziying Lin
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
31
|
Pal S, Lim JWC, Richards LJ. Diverse axonal morphologies of individual callosal projection neurons reveal new insights into brain connectivity. Curr Opin Neurobiol 2024; 84:102837. [PMID: 38271848 PMCID: PMC11265515 DOI: 10.1016/j.conb.2023.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
In the mature brain, functionally distinct areas connect to specific targets, mediating network activity required for function. New insights are still occurring regarding how specific connectivity occurs in the developing brain. Decades of work have revealed important insights into the molecular and genetic mechanisms regulating cell type specification in the brain. This work classified long-range projection neurons of the cerebral cortex into three major classes based on their primary target (e.g. subcortical, intracortical, and interhemispheric projections). However, painstaking single-cell mapping reveals that long-range projection neurons of the corpus callosum connect to multiple and overlapping ipsilateral and contralateral targets with often highly branched axons. In addition, their scRNA transcriptomes are highly variable, making it difficult to identify meaningful subclasses. This work has prompted us to reexamine how cortical projection neurons that comprise the corpus callosum are currently classified and how this stunning array of variability might be achieved during development.
Collapse
Affiliation(s)
- Suranjana Pal
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA. https://twitter.com/PalSuranjana
| | - Jonathan W C Lim
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Linda J Richards
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
32
|
Matsuoka M, Sakai D, Shima H, Watanabe T. Neuron-specific loss of Ppp6c induces neonatal death and decreases the number of cortical neurons and interneurons. Biochem Biophys Res Commun 2024; 693:149353. [PMID: 38101002 DOI: 10.1016/j.bbrc.2023.149353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Protein phosphatase 6 (PP6) is a Ser/Thr protein phosphatase with the catalytic subunit Ppp6c. Recent cell-level studies have revealed that Ppp6c knockdown suppresses neurite outgrowth, suggesting that Ppp6c is involved in the development of the nervous system. We found that the function of PP6 in neurons is essential for mouse survival after birth, as all neural-stem-cell-specific KO (Ppp6cNKO) and neuron-specific KO mice died within 2 days of birth. By contrast, approximately 40 % of oligodendrocyte-specific KO mice died within 2 days of birth, whereas others survived until weaning or later, suggesting that the lethality of PP6 loss differs between neurons and oligodendrocytes. Furthermore, the fetal brain of Ppp6cNKO mice exhibited decreased numbers of neurons in layers V-VI and interneurons in layer I of the neocortex. These results suggest for the first time that Ppp6c is essential for neonatal survival and proper development of neurons and interneurons in the neocortex.
Collapse
Affiliation(s)
- Miki Matsuoka
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, 981-1293, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan.
| |
Collapse
|
33
|
Cheung G, Pauler FM, Koppensteiner P, Krausgruber T, Streicher C, Schrammel M, Gutmann-Özgen N, Ivec AE, Bock C, Shigemoto R, Hippenmeyer S. Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron 2024; 112:230-246.e11. [PMID: 38096816 DOI: 10.1016/j.neuron.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 01/21/2024]
Abstract
The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.
Collapse
Affiliation(s)
- Giselle Cheung
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences; 1090 Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, 1090 Vienna, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin Schrammel
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Natalie Gutmann-Özgen
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Alexis E Ivec
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences; 1090 Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, 1090 Vienna, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
34
|
Nevue AA, Zemel BM, Friedrich SR, von Gersdorff H, Mello CV. Cell type specializations of the vocal-motor cortex in songbirds. Cell Rep 2023; 42:113344. [PMID: 37910500 PMCID: PMC10752865 DOI: 10.1016/j.celrep.2023.113344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Identifying molecular specializations in cortical circuitry supporting complex behaviors, like learned vocalizations, requires understanding of the neuroanatomical context from which these circuits arise. In songbirds, the robust arcopallial nucleus (RA) provides descending cortical projections for fine vocal-motor control. Using single-nuclei transcriptomics and spatial gene expression mapping in zebra finches, we have defined cell types and molecular specializations that distinguish RA from adjacent regions involved in non-vocal motor and sensory processing. We describe an RA-specific projection neuron, differential inhibitory subtypes, and glia specializations and have probed predicted GABAergic interneuron subtypes electrophysiologically within RA. Several cell-specific markers arise developmentally in a sex-dependent manner. Our interactive apps integrate cellular data with developmental and spatial distribution data from the gene expression brain atlas ZEBrA. Users can explore molecular specializations of vocal-motor neurons and support cells that likely reflect adaptations key to the physiology and evolution of vocal control circuits and refined motor skills.
Collapse
Affiliation(s)
- Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin M Zemel
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samantha R Friedrich
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
35
|
Gonzalez-Ferrer J, Lehrer J, O’Farrell A, Paten B, Teodorescu M, Haussler D, Jonsson VD, Mostajo-Radji MA. Unraveling Neuronal Identities Using SIMS: A Deep Learning Label Transfer Tool for Single-Cell RNA Sequencing Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.529615. [PMID: 36909548 PMCID: PMC10002667 DOI: 10.1101/2023.02.28.529615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Large single-cell RNA datasets have contributed to unprecedented biological insight. Often, these take the form of cell atlases and serve as a reference for automating cell labeling of newly sequenced samples. Yet, classification algorithms have lacked the capacity to accurately annotate cells, particularly in complex datasets. Here we present SIMS (Scalable, Interpretable Machine Learning for Single-Cell), an end-to-end data-efficient machine learning pipeline for discrete classification of single-cell data that can be applied to new datasets with minimal coding. We benchmarked SIMS against common single-cell label transfer tools and demonstrated that it performs as well or better than state of the art algorithms. We then use SIMS to classify cells in one of the most complex tissues: the brain. We show that SIMS classifies cells of the adult cerebral cortex and hippocampus at a remarkably high accuracy. This accuracy is maintained in trans-sample label transfers of the adult human cerebral cortex. We then apply SIMS to classify cells in the developing brain and demonstrate a high level of accuracy at predicting neuronal subtypes, even in periods of fate refinement, shedding light on genetic changes affecting specific cell types across development. Finally, we apply SIMS to single cell datasets of cortical organoids to predict cell identities and unveil genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. When cell types are obscured by stress signals, label transfer from primary tissue improves the accuracy of cortical organoid annotations, serving as a reliable ground truth. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.
Collapse
Affiliation(s)
- Jesus Gonzalez-Ferrer
- These authors contributed equally to this work
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Julian Lehrer
- These authors contributed equally to this work
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Ash O’Farrell
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Benedict Paten
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - David Haussler
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Vanessa D. Jonsson
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Co-senior authors
| | - Mohammed A. Mostajo-Radji
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Co-senior authors
| |
Collapse
|
36
|
Wani AR, Chowdhury B, Luong J, Chaya GM, Patel K, Isaacman-Beck J, Shafer O, Kayser MS, Syed MH. Stem cell-specific ecdysone signaling regulates the development and function of a Drosophila sleep homeostat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560022. [PMID: 37873323 PMCID: PMC10592846 DOI: 10.1101/2023.09.29.560022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Complex behaviors arise from neural circuits that are assembled from diverse cell types. Sleep is a conserved and essential behavior, yet little is known regarding how the nervous system generates neuron types of the sleep-wake circuit. Here, we focus on the specification of Drosophila sleep-promoting neurons-long-field tangential input neurons that project to the dorsal layers of the fan-shaped body neuropil in the central complex (CX). We use lineage analysis and genetic birth dating to identify two bilateral Type II neural stem cells that generate these dorsal fan-shaped body (dFB) neurons. We show that adult dFB neurons express Ecdysone-induced protein E93, and loss of Ecdysone signaling or E93 in Type II NSCs results in the misspecification of the adult dFB neurons. Finally, we show that E93 knockdown in Type II NSCs affects adult sleep behavior. Our results provide insight into how extrinsic hormonal signaling acts on NSCs to generate neuronal diversity required for adult sleep behavior. These findings suggest that some adult sleep disorders might derive from defects in stem cell-specific temporal neurodevelopmental programs.
Collapse
Affiliation(s)
- Adil R Wani
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | - Budhaditya Chowdhury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | - Krishna Patel
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | | | - Orie Shafer
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| |
Collapse
|
37
|
Galazo MJ, Sweetser DA, Macklis JD. Tle4 controls both developmental acquisition and early post-natal maturation of corticothalamic projection neuron identity. Cell Rep 2023; 42:112957. [PMID: 37561632 PMCID: PMC10542749 DOI: 10.1016/j.celrep.2023.112957] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Identities of distinct neuron subtypes are specified during embryonic development, then maintained during post-natal maturation. In cerebral cortex, mechanisms controlling early acquisition of neuron-subtype identities have become increasingly understood. However, mechanisms controlling neuron-subtype identity stability during post-natal maturation are largely unexplored. We identify that Tle4 is required for both early acquisition and post-natal stability of corticothalamic neuron-subtype identity. Embryonically, Tle4 promotes acquisition of corticothalamic identity and blocks emergence of core characteristics of subcerebral/corticospinal projection neuron identity, including gene expression and connectivity. During the first post-natal week, when corticothalamic innervation is ongoing, Tle4 is required to stabilize corticothalamic neuron identity, limiting interference from differentiation programs of developmentally related neuron classes. We identify a deacetylation-based epigenetic mechanism by which TLE4 controls Fezf2 expression level by corticothalamic neurons. This contributes to distinction of cortical output subtypes and ensures identity stability for appropriate maturation of corticothalamic neurons.
Collapse
Affiliation(s)
- Maria J Galazo
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - David A Sweetser
- Department of Pediatrics, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
38
|
Huilgol D, Russ JB, Srivas S, Huang ZJ. The progenitor basis of cortical projection neuron diversity. Curr Opin Neurobiol 2023; 81:102726. [PMID: 37148649 PMCID: PMC10557529 DOI: 10.1016/j.conb.2023.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
Diverse glutamatergic projection neurons (PNs) mediate myriad processing streams and output channels of the cerebral cortex. Yet, how different types of neural progenitors, such as radial glia (RGs) and intermediate progenitors (IPs), produce PN diversity, and hierarchical organization remains unclear. A fundamental issue is whether RGs constitute a homogeneous, multipotent lineage capable of generating all major PN types through a temporally regulated developmental program, or whether RGs comprise multiple transcriptionally heterogenous pools, each fated to generate a subset of PNs. Beyond RGs, the role of IPs in PN diversification remains underexplored. Addressing these questions requires tracking PN developmental trajectories with cell-type resolution - from transcription factor-defined RGs and IPs to their PN progeny, which are defined not only by laminar location but also by projection patterns and gene expression. Advances in cell-type resolution genetic fate mapping, axon tracing, and spatial transcriptomics may provide the technical capability for answering these fundamental questions.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey B Russ
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pediatrics, Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sweta Srivas
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27708, USA.
| |
Collapse
|
39
|
Song ZH, Song XJ, Yang CL, Cao P, Mao Y, Jin Y, Xu MY, Wang HT, Zhu X, Wang W, Zhang Z, Tao WJ. Up-regulation of microglial chemokine CXCL12 in anterior cingulate cortex mediates neuropathic pain in diabetic mice. Acta Pharmacol Sin 2023; 44:1337-1349. [PMID: 36697977 PMCID: PMC10310783 DOI: 10.1038/s41401-022-01046-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetic patients frequently experience neuropathic pain, which currently lacks effective treatments. The mechanisms underlying diabetic neuropathic pain remain unclear. The anterior cingulate cortex (ACC) is well-known to participate in the processing and transformation of pain information derived from internal and external sensory stimulation. Accumulating evidence shows that dysfunction of microglia in the central nervous system contributes to many diseases, including chronic pain and neurodegenerative diseases. In this study, we investigated the role of microglial chemokine CXCL12 and its neuronal receptor CXCR4 in diabetic pain development in a mouse diabetic model established by injection of streptozotocin (STZ). Pain sensitization was assessed by the left hindpaw pain threshold in von Frey filament test. Iba1+ microglia in ACC was examined using combined immunohistochemistry and three-dimensional reconstruction. The activity of glutamatergic neurons in ACC (ACCGlu) was detected by whole-cell recording in ACC slices from STZ mice, in vivo multi-tetrode electrophysiological and fiber photometric recordings. We showed that microglia in ACC was significantly activated and microglial CXCL12 expression was up-regulated at the 7-th week post-injection, resulting in hyperactivity of ACCGlu and pain sensitization. Pharmacological inhibition of microglia or blockade of CXCR4 in ACC by infusing minocycline or AMD3100 significantly alleviated diabetic pain through preventing ACCGlu hyperactivity in STZ mice. In addition, inhibition of microglia by infusing minocycline markedly decreased STZ-induced upregulation of microglial CXCL12. Together, this study demonstrated that microglia-mediated ACCGlu hyperactivity drives the development of diabetic pain via the CXCL12/CXCR4 signaling, thus revealing viable therapeutic targets for the treatment of diabetic pain.
Collapse
Affiliation(s)
- Zi-Hua Song
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Xiang-Jie Song
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Chen-Ling Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China
- College & Hospital of stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230022, China
| | - Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yan Jin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Meng-Yun Xu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hai-Tao Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xia Zhu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wen-Juan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China.
- College & Hospital of stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230022, China.
| |
Collapse
|
40
|
Hamid A, Gutierrez A, Munroe J, Syed MH. The Drivers of Diversity: Integrated genetic and hormonal cues regulate neural diversity. Semin Cell Dev Biol 2023; 142:23-35. [PMID: 35915026 DOI: 10.1016/j.semcdb.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
Abstract
Proper functioning of the nervous system relies not only on the generation of a vast repertoire of distinct neural cell types but also on the precise neural circuitry within them. How the generation of highly diverse neural populations is regulated during development remains a topic of interest. Landmark studies in Drosophila have identified the genetic and temporal cues regulating neural diversity and thus have provided valuable insights into our understanding of temporal patterning of the central nervous system. The development of the Drosophila central complex, which is mostly derived from type II neural stem cell (NSC) lineages, showcases how a small pool of NSCs can give rise to vast and distinct progeny. Similar to the human outer subventricular zone (OSVZ) neural progenitors, type II NSCs generate intermediate neural progenitors (INPs) to expand and diversify lineages that populate higher brain centers. Each type II NSC has a distinct spatial identity and timely regulated expression of many transcription factors and mRNA binding proteins. Additionally, INPs derived from them show differential expression of genes depending on their birth order. Together type II NSCs and INPs display a combinatorial temporal patterning that expands neural diversity of the central brain lineages. We cover advances in current understanding of type II NSC temporal patterning and discuss similarities and differences in temporal patterning mechanisms of various NSCs with a focus on how cell-intrinsic and extrinsic hormonal cues regulate temporal transitions in NSCs during larval development. Cell extrinsic ligands activate conserved signaling pathways and extrinsic hormonal cues act as a temporal switch that regulate temporal progression of the NSCs. We conclude by elaborating on how a progenitor's temporal code regulates the fate specification and identity of distinct neural types. At the end, we also discuss open questions in linking developmental cues to neural identity, circuits, and underlying behaviors in the adult fly.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, University of New Mexico, Albuquerque, NM 87113, USA
| | - Andrew Gutierrez
- Department of Biology, University of New Mexico, Albuquerque, NM 87113, USA
| | - Jordan Munroe
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
41
|
Amin ND, Kelley KW, Hao J, Miura Y, Narazaki G, Li T, McQueen P, Kulkarni S, Pavlov S, Paşca SP. Generating human neural diversity with a multiplexed morphogen screen in organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.541819. [PMID: 37398073 PMCID: PMC10312596 DOI: 10.1101/2023.05.31.541819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Morphogens choreograph the generation of remarkable cellular diversity in the developing nervous system. Differentiation of stem cells toward particular neural cell fates in vitro often relies upon combinatorial modulation of these signaling pathways. However, the lack of a systematic approach to understand morphogen-directed differentiation has precluded the generation of many neural cell populations, and knowledge of the general principles of regional specification remain in-complete. Here, we developed an arrayed screen of 14 morphogen modulators in human neural organoids cultured for over 70 days. Leveraging advances in multiplexed RNA sequencing technology and annotated single cell references of the human fetal brain we discovered that this screening approach generated considerable regional and cell type diversity across the neural axis. By deconvoluting morphogen-cell type relationships, we extracted design principles of brain region specification, including critical morphogen timing windows and combinatorics yielding an array of neurons with distinct neuro-transmitter identities. Tuning GABAergic neural subtype diversity unexpectedly led to the derivation of primate-specific interneurons. Taken together, this serves as a platform towards an in vitro morphogen atlas of human neural cell differentiation that will bring insights into human development, evolution, and disease.
Collapse
|
42
|
Hamid A, Gattuso H, Caglar AN, Pillai M, Steele T, Gonzalez A, Nagel K, Syed MH. The RNA-binding protein, Imp specifies olfactory navigation circuitry and behavior in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542522. [PMID: 37398350 PMCID: PMC10312496 DOI: 10.1101/2023.05.26.542522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic prograssms for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects that governs many higher order behaviors and largely derives from a small number of Type II neural stem cells. Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in Type II neural stem cells, specifies components of CX olfactory navigation circuitry. We show: (1) that multiple components of olfactory navigation circuitry arise from Type II neural stem cells and manipulating Imp expression in Type II neural stem cells alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body. (2) Imp regulates the specification of Tachykinin expressing ventral fan-shaped body input neurons. (3) Imp in Type II neural stem cells alters the morphology of the CX neuropil structures. (4) Loss of Imp in Type II neural stem cells abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our work establishes that a single temporally expressed gene can regulate the expression of a complex behavior through the developmental specification of multiple circuit components and provides a first step towards a developmental dissection of the CX and its roles in behavior.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM 87131, USA
| | - Hannah Gattuso
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Aysu Nora Caglar
- Current address: Biochemistry & Molecular Biology, 915 Camino De Salud NE, Albuquerque, NM 87132, USA
| | - Midhula Pillai
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Theresa Steele
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Alexa Gonzalez
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM 87131, USA
| | - Katherine Nagel
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Mubarak Hussain Syed
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
43
|
Lupan BM, Solecki RA, Musso CM, Alsina FC, Silver DL. The exon junction complex component EIF4A3 is essential for mouse and human cortical progenitor mitosis and neurogenesis. Development 2023; 150:dev201619. [PMID: 37139782 PMCID: PMC10233715 DOI: 10.1242/dev.201619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Mutations in components of the exon junction complex (EJC) are associated with neurodevelopment and disease. In particular, reduced levels of the RNA helicase EIF4A3 cause Richieri-Costa-Pereira syndrome (RCPS) and copy number variations are linked to intellectual disability. Consistent with this, Eif4a3 haploinsufficient mice are microcephalic. Altogether, this implicates EIF4A3 in cortical development; however, the underlying mechanisms are poorly understood. Here, we use mouse and human models to demonstrate that EIF4A3 promotes cortical development by controlling progenitor mitosis, cell fate and survival. Eif4a3 haploinsufficiency in mice causes extensive cell death and impairs neurogenesis. Using Eif4a3;p53 compound mice, we show that apoptosis has the most impact on early neurogenesis, while additional p53-independent mechanisms contribute to later stages. Live imaging of mouse and human neural progenitors reveals that Eif4a3 controls mitosis length, which influences progeny fate and viability. These phenotypes are conserved, as cortical organoids derived from RCPS iPSCs exhibit aberrant neurogenesis. Finally, using rescue experiments we show that EIF4A3 controls neuron generation via the EJC. Altogether, our study demonstrates that EIF4A3 mediates neurogenesis by controlling mitosis duration and cell survival, implicating new mechanisms that underlie EJC-mediated disorders.
Collapse
Affiliation(s)
- Bianca M. Lupan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rachel A. Solecki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Camila M. Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Fernando C. Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
44
|
Sun YM, Chen J. Editorial: New insights into schizophrenia-related neural and behavioral phenotypes. Front Cell Neurosci 2023; 17:1202230. [PMID: 37234917 PMCID: PMC10206298 DOI: 10.3389/fncel.2023.1202230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Affiliation(s)
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
45
|
Hippenmeyer S. Principles of neural stem cell lineage progression: Insights from developing cerebral cortex. Curr Opin Neurobiol 2023; 79:102695. [PMID: 36842274 DOI: 10.1016/j.conb.2023.102695] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
How to generate a brain of correct size and with appropriate cell-type diversity during development is a major question in Neuroscience. In the developing neocortex, radial glial progenitor (RGP) cells are the main neural stem cells that produce cortical excitatory projection neurons, glial cells, and establish the prospective postnatal stem cell niche in the lateral ventricles. RGPs follow a tightly orchestrated developmental program that when disrupted can result in severe cortical malformations such as microcephaly and megalencephaly. The precise cellular and molecular mechanisms instructing faithful RGP lineage progression are however not well understood. This review will summarize recent conceptual advances that contribute to our understanding of the general principles of RGP lineage progression.
Collapse
Affiliation(s)
- Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
46
|
Pilaz LJ, Liu J, Joshi K, Tsunekawa Y, Musso CM, D'Arcy BR, Suzuki IK, Alsina FC, Kc P, Sethi S, Vanderhaeghen P, Polleux F, Silver DL. Subcellular mRNA localization and local translation of Arhgap11a in radial glial progenitors regulates cortical development. Neuron 2023; 111:839-856.e5. [PMID: 36924763 PMCID: PMC10132781 DOI: 10.1016/j.neuron.2023.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2022] [Accepted: 02/10/2023] [Indexed: 03/17/2023]
Abstract
mRNA localization and local translation enable exquisite spatial and temporal control of gene expression, particularly in polarized, elongated cells. These features are especially prominent in radial glial cells (RGCs), which are neural and glial precursors of the developing cerebral cortex and scaffolds for migrating neurons. Yet the mechanisms by which subcellular RGC compartments accomplish their diverse functions are poorly understood. Here, we demonstrate that mRNA localization and local translation of the RhoGAP ARHGAP11A in the basal endfeet of RGCs control their morphology and mediate neuronal positioning. Arhgap11a transcript and protein exhibit conserved localization to RGC basal structures in mice and humans, conferred by the 5' UTR. Proper RGC morphology relies upon active Arhgap11a mRNA transport and localization to the basal endfeet, where ARHGAP11A is locally synthesized. This translation is essential for positioning interneurons at the basement membrane. Thus, local translation spatially and acutely activates Rho signaling in RGCs to compartmentalize neural progenitor functions.
Collapse
Affiliation(s)
- Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jing Liu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kaumudi Joshi
- Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, USA
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brooke R D'Arcy
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ikuo K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pratiksha Kc
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Sahil Sethi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium; Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA; Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY 10027, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
47
|
Gamma oscillations provide insights into cortical circuit development. Pflugers Arch 2023; 475:561-568. [PMID: 36864347 PMCID: PMC10105678 DOI: 10.1007/s00424-023-02801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Rhythmic coordination in gamma oscillations provides temporal structure to neuronal activity. Gamma oscillations are commonly observed in the mammalian cerebral cortex, are altered early on in several neuropsychiatric disorders, and provide insights into the development of underlying cortical networks. However, a lack of knowledge on the developmental trajectory of gamma oscillations prevented the combination of findings from the immature and the adult brain. This review is intended to provide an overview on the development of cortical gamma oscillations, the maturation of the underlying network, and the implications for cortical function and dysfunction. The majority of information is drawn from work in rodents with particular emphasis on the prefrontal cortex, the developmental trajectory of gamma oscillations, and potential implications for neuropsychiatric disorders. Current evidence supports the idea that fast oscillations during development are indeed an immature form of adult gamma oscillations and can help us understand the pathology of neuropsychiatric disorders.
Collapse
|
48
|
Wu X, Palaniyappan L, Yu G, Zhang K, Seidlitz J, Liu Z, Kong X, Schumann G, Feng J, Sahakian BJ, Robbins TW, Bullmore E, Zhang J. Morphometric dis-similarity between cortical and subcortical areas underlies cognitive function and psychiatric symptomatology: a preadolescence study from ABCD. Mol Psychiatry 2023; 28:1146-1158. [PMID: 36473996 DOI: 10.1038/s41380-022-01896-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Preadolescence is a critical period characterized by dramatic morphological changes and accelerated cortico-subcortical development. Moreover, the coordinated development of cortical and subcortical regions underlies the emerging cognitive functions during this period. Deviations in this maturational coordination may underlie various psychiatric disorders that begin during preadolescence, but to date these deviations remain largely uncharted. We constructed a comprehensive whole-brain morphometric similarity network (MSN) from 17 neuroimaging modalities in a large preadolescence sample (N = 8908) from Adolescent Brain Cognitive Development (ABCD) study and investigated its association with 10 cognitive subscales and 27 psychiatric subscales or diagnoses. Based on the MSNs, each brain was clustered into five modules with distinct cytoarchitecture and evolutionary relevance. While morphometric correlation was positive within modules, it was negative between modules, especially between isocortical and paralimbic/subcortical modules; this developmental dissimilarity was genetically linked to synapse and neurogenesis. The cortico-subcortical dissimilarity becomes more pronounced longitudinally in healthy children, reflecting developmental differentiation of segregated cytoarchitectonic areas. Higher cortico-subcortical dissimilarity (between the isocortical and paralimbic/subcortical modules) were related to better cognitive performance. In comparison, children with poor modular differentiation between cortex and subcortex displayed higher burden of externalizing and internalizing symptoms. These results highlighted cortical-subcortical morphometric dissimilarity as a dynamic maturational marker of cognitive and psychiatric status during the preadolescent stage and provided insights into brain development.
Collapse
Affiliation(s)
- Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, QC, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Gechang Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, 999077, Hong Kong SAR, China
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, 200062, Shanghai, China
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhaowen Liu
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zhejiang, China
| | - Gunter Schumann
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, China
- PONS Centre and SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- PONS Centre, Charite Mental Health, Dept. of Psychiatry and Psychotherapie, CCM, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, 200433, China
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Barbara J Sahakian
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Cambridge shire and Peterborough NHS Trust, Elizabeth House, Fulbourn Hospital, Cambridge, UK
| | - Edward Bullmore
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| |
Collapse
|
49
|
Lupan BM, Solecki RA, Musso CM, Alsina FC, Silver DL. The exon junction complex component EIF4A3 is essential for mouse and human cortical progenitor mitosis and neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524010. [PMID: 36711736 PMCID: PMC9882224 DOI: 10.1101/2023.01.13.524010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mutations in components of the exon junction complex (EJC) are associated with neurodevelopment and disease. In particular, reduced levels of the RNA helicase EIF4A3 cause Richieri-Costa-Pereira Syndrome (RCPS) and CNVs are linked to intellectual disability. Consistent with this, Eif4a3 haploinsufficient mice are microcephalic. Altogether, this implicates EIF4A3 in cortical development; however, the underlying mechanisms are poorly understood. Here, we use mouse and human models to demonstrate that EIF4A3 promotes cortical development by controlling progenitor mitosis, cell fate, and survival. Eif4a3 haploinsufficiency in mice causes extensive cell death and impairs neurogenesis. Using Eif4a3 ; p53 compound mice, we show that apoptosis is most impactful for early neurogenesis, while additional p53-independent mechanisms contribute to later stages. Live imaging of mouse and human neural progenitors reveals Eif4a3 controls mitosis length, which influences progeny fate and viability. These phenotypes are conserved as cortical organoids derived from RCPS iPSCs exhibit aberrant neurogenesis. Finally, using rescue experiments we show that EIF4A3 controls neuron generation via the EJC. Altogether, our study demonstrates that EIF4A3 mediates neurogenesis by controlling mitosis duration and cell survival, implicating new mechanisms underlying EJC-mediated disorders. Summary statement This study shows that EIF4A3 mediates neurogenesis by controlling mitosis duration in both mouse and human neural progenitors, implicating new mechanisms underlying neurodevelopmental disorders.
Collapse
|
50
|
Cremisi F, Vignali R. Translational control in cortical development. Front Neuroanat 2023; 16:1087949. [PMID: 36699134 PMCID: PMC9868627 DOI: 10.3389/fnana.2022.1087949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Differentiation of specific neuronal types in the nervous system is worked out through a complex series of gene regulation events. Within the mammalian neocortex, the appropriate expression of key transcription factors allocates neurons to different cortical layers according to an inside-out model and endows them with specific properties. Precise timing is required to ensure the proper sequential appearance of key transcription factors that dictate the identity of neurons within the different cortical layers. Recent evidence suggests that aspects of this time-controlled regulation of gene products rely on post-transcriptional control, and point at micro-RNAs (miRs) and RNA-binding proteins as important players in cortical development. Being able to simultaneously target many different mRNAs, these players may be involved in controlling the global expression of gene products in progenitors and post-mitotic cells, in a gene expression framework where parallel to transcriptional gene regulation, a further level of control is provided to refine and coordinate the appearance of the final protein products. miRs and RNA-binding proteins (RBPs), by delaying protein appearance, may play heterochronic effects that have recently been shown to be relevant for the full differentiation of cortical neurons and for their projection abilities. Such heterochronies may be the base for evolutionary novelties that have enriched the spectrum of cortical cell types within the mammalian clade.
Collapse
Affiliation(s)
- Federico Cremisi
- Laboratory of Biology, Department of Sciences, Scuola Normale Superiore, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| | - Robert Vignali
- Department of Biology, University of Pisa, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| |
Collapse
|