1
|
Shansky RM. Behavioral neuroscience's inevitable SABV growing pains. Trends Neurosci 2024; 47:669-676. [PMID: 39034262 DOI: 10.1016/j.tins.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
The field of rodent behavioral neuroscience is undergoing two major sea changes: an ever-growing technological revolution, and worldwide calls to consider sex as a biological variable (SABV) in experimental design. Both have enormous potential to improve the precision and rigor with which the brain can be studied, but the convergence of these shifts in scientific practice has exposed critical limitations in classic and widely used behavioral paradigms. While our tools have advanced, our behavioral metrics - mostly developed in males and often allowing for only binary outcomes - have not. This opinion article explores how this disconnect has presented challenges for the accurate depiction and interpretation of sex differences in brain function, arguing for the expansion of current behavioral constructs to better account for behavioral diversity.
Collapse
|
2
|
Yang F, Ma Y, Zhang A, Yao J, Jiang S, He C, Peng H, Ren G, Yang Y, Wu A. Engineering magnetic nanosystem for TRPV1 and TRPV4 channel activation. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1987. [PMID: 39136188 DOI: 10.1002/wnan.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024]
Abstract
Recently, physical tools for remotely stimulating mechanical force-sensitive and temperature-sensitive proteins to regulate intracellular pathways have opened up novel and exciting avenues for basic research and clinical applications. Among the numerous modes of physical stimulation, magnetic stimulation is significantly attractive for biological applications due to the advantages of depth penetration and spatial-temporally controlled transduction. Herein, the physicochemical parameters (e.g., shape, size, composition) that influence the magnetic properties of magnetic nanosystems as well as the characteristics of transient receptor potential vanilloid-1 (TRPV1) and transient receptor potential vanilloid-4 (TRPV4) channels are systematically summarized, which offer opportunities for magnetic manipulation of cell fate in a precise and effective manner. In addition, representative regulatory applications involving magnetic nanosystem-based TRPV1 and TRPV4 channel activation are highlighted, both at the cellular level and in animal models. Furthermore, perspectives on the further development of this magnetic stimulation mode are commented on, with emphasis on scientific limitations and possible directions for exploitation. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yaqi Ma
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoran Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Junlie Yao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Chenglong He
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Guiping Ren
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
3
|
Deng X, Peng D, Yao Y, Huang K, Wang J, Ma Z, Fu J, Xu Y. Optogenetic therapeutic strategies for diabetes mellitus. J Diabetes 2024; 16:e13557. [PMID: 38751366 PMCID: PMC11096815 DOI: 10.1111/1753-0407.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
Collapse
Affiliation(s)
- Xin Deng
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Dandan Peng
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yuanfa Yao
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Ke Huang
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Jinling Wang
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Zhihao Ma
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Junfen Fu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yingke Xu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Wang Y, Bi Z, Song Y, Duan L, Chen SC. Selective activation of photoactivatable fluorescent protein based on binary holography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3382-3393. [PMID: 38855656 PMCID: PMC11161383 DOI: 10.1364/boe.519531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 06/11/2024]
Abstract
The ability to deliver laser doses to different target locations with high spatial and temporal resolution has been a long-sought goal in photo-stimulation and optogenetics research via, for example, photoactivatable proteins. These light-sensitive proteins undergo conformational changes upon photoactivation, serving functions such as triggering fluorescence, modulating ion channel activities, or initiating biochemical reactions within cells. Conventionally, photo-stimulation on light-sensitive proteins is performed by serially scanning a laser focus or via 2D projection, which is limited by relatively low spatiotemporal resolution. In this work, we present a programmable two-photon stimulation method based on a digital micromirror device (DMD) and binary holography to perform the activation of photoactivatable green fluorescent protein (PAGFP) in live cells. This method achieved grayscale and 3D selective PAGFP activation with subcellular resolution. In the experiments, we demonstrated the 3D activation capability and investigated the diffusion dynamics of activated PAGFP on the cell membrane. A regional difference in cell membrane diffusivity was observed, indicating the great potential of our approach in interrogating the spatiotemporal dynamics of cellular processes inside living cells.
Collapse
Affiliation(s)
- Yintao Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
- Centre for Perceptual and Interactive Intelligence (CPII), Hong Kong Science Park, N.T., Hong Kong SAR, China
| | - Zhenyu Bi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
| | - Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
- Centre for Perceptual and Interactive Intelligence (CPII), Hong Kong Science Park, N.T., Hong Kong SAR, China
| |
Collapse
|
5
|
Aweidah H, Xi Z, Sahel JA, Byrne LC. PRPF31-retinitis pigmentosa: Challenges and opportunities for clinical translation. Vision Res 2023; 213:108315. [PMID: 37714045 PMCID: PMC10872823 DOI: 10.1016/j.visres.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
Mutations in pre-mRNA processing factor 31 cause autosomal dominant retinitis pigmentosa (PRPF31-RP), for which there is currently no efficient treatment, making this disease a prime target for the development of novel therapeutic strategies. PRPF31-RP exhibits incomplete penetrance due to haploinsufficiency, in which reduced levels of gene expression from the mutated allele result in disease. A variety of model systems have been used in the investigation of disease etiology and therapy development. In this review, we discuss recent advances in both in vivo and in vitro model systems, evaluating their advantages and limitations in the context of therapy development for PRPF31-RP. Additionally, we describe the latest approaches for treatment, including AAV-mediated gene augmentation, genome editing, and late-stage therapies such as optogenetics, cell transplantation, and retinal prostheses.
Collapse
Affiliation(s)
- Hamzah Aweidah
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhouhuan Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Stierschneider A, Wiesner C. Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front Immunol 2023; 14:1264889. [PMID: 38077393 PMCID: PMC10704247 DOI: 10.3389/fimmu.2023.1264889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Toll-like receptor 4 (TLR4) are part of the innate immune system. They are capable of recognizing pathogen-associated molecular patterns (PAMPS) of microbes, and damage-associated molecular patterns (DAMPs) of damaged tissues. Activation of TLR4 initiates downstream signaling pathways that trigger the secretion of cytokines, type I interferons, and other pro-inflammatory mediators that are necessary for an immediate immune response. However, the systemic release of pro-inflammatory proteins is a powerful driver of acute and chronic inflammatory responses. Over the past decades, immense progress has been made in clarifying the molecular and regulatory mechanisms of TLR4 signaling in inflammation. However, the most common strategies used to study TLR4 signaling rely on genetic manipulation of the TLR4 or the treatment with agonists such as lipopolysaccharide (LPS) derived from the outer membrane of Gram-negative bacteria, which are often associated with the generation of irreversible phenotypes in the target cells or unintended cytotoxicity and signaling crosstalk due to off-target or pleiotropic effects. Here, optogenetics offers an alternative strategy to control and monitor cellular signaling in an unprecedented spatiotemporally precise, dose-dependent, and non-invasive manner. This review provides an overview of the structure, function and signaling pathways of the TLR4 and its fundamental role in endothelial cells under physiological and inflammatory conditions, as well as the advances in TLR4 modulation strategies.
Collapse
Affiliation(s)
| | - Christoph Wiesner
- Department Science & Technology, Institute Biotechnology, IMC Krems University of Applied Sciences, Krems, Austria
| |
Collapse
|
7
|
McCulley CH, Walker AR. Dimer Interface Destabilization of Photodissociative Dronpa Driven by Asymmetric Monomer Dynamics. J Phys Chem B 2023; 127:9248-9257. [PMID: 37871275 DOI: 10.1021/acs.jpcb.3c03798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Photoswitchable Dronpa (psDronpa) is a unique member of the fluorescent protein family that can undergo reversible photoinduced switching between fluorescent and dark states and has recently been engineered into a dimer (pdDronpaV) that can dissociate and reassociate as part of its photoswitchable pathway. However, the specific details of the protein structure-function relationship of the dimer interface along with how the dimer proteins interact with each other upon chromophore isomerization are not yet clear. Classical molecular dynamics simulations were performed on psDronpa as monomers and dimers as well as the pdDronpaV dimer and with cis/trans chromophore structures. Analysis of the cis and trans isomers of the chromophore illustrated key differences between their interactions with residues in the protein in both the monomer and dimer forms of psDronpa. Examination of the psDronpa dimer showed nonidentical chromophore interactions between the domains, indicating domain directional favoring. Examination of the trans form of pdDronpaV illuminated the importance of hydrogen bonding between the monomeric domains in maintaining their association, as well as illustrating the motion of dissociation of the domains. This discovery offers important information for possible future mutations of pdDronpaV that might be made to accelerate dissociation.
Collapse
Affiliation(s)
- Christina H McCulley
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Alice R Walker
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
8
|
Kumar S, Anastassov S, Aoki SK, Falkenstein J, Chang CH, Frei T, Buchmann P, Argast P, Khammash M. Diya - A universal light illumination platform for multiwell plate cultures. iScience 2023; 26:107862. [PMID: 37810238 PMCID: PMC10551653 DOI: 10.1016/j.isci.2023.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform - Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast, and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
Collapse
Affiliation(s)
- Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Stanislav Anastassov
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Stephanie K. Aoki
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Johannes Falkenstein
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ching-Hsiang Chang
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Timothy Frei
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Paul Argast
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Repina NA, Johnson HJ, Bao X, Zimmermann JA, Joy DA, Bi SZ, Kane RS, Schaffer DV. Optogenetic control of Wnt signaling models cell-intrinsic embryogenic patterning using 2D human pluripotent stem cell culture. Development 2023; 150:dev201386. [PMID: 37401411 PMCID: PMC10399980 DOI: 10.1242/dev.201386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/β-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition and TGFβ signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish a hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.
Collapse
Affiliation(s)
- Nicole A. Repina
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Hunter J. Johnson
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Joshua A. Zimmermann
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - David A. Joy
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shirley Z. Bi
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Pal DS, Lin Y, Zhan H, Banerjee T, Kuhn J, Providence S, Devreotes PN. Optogenetic modulation of guanine nucleotide exchange factors of Ras superfamily proteins directly controls cell shape and movement. Front Cell Dev Biol 2023; 11:1195806. [PMID: 37492221 PMCID: PMC10363612 DOI: 10.3389/fcell.2023.1195806] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
In this article, we provide detailed protocols on using optogenetic dimerizers to acutely perturb activities of guanine nucleotide exchange factors (GEFs) specific to Ras, Rac or Rho small GTPases of the migratory networks in various mammalian and amoeba cell lines. These GEFs are crucial components of signal transduction networks which link upstream G-protein coupled receptors to downstream cytoskeletal components and help cells migrate through their dynamic microenvironment. Conventional approaches to perturb and examine these signaling and cytoskeletal networks, such as gene knockout or overexpression, are protracted which allows networks to readjust through gene expression changes. Moreover, these tools lack spatial resolution to probe the effects of local network activations. To overcome these challenges, blue light-inducible cryptochrome- and LOV domain-based dimerization systems have been recently developed to control signaling or cytoskeletal events in a spatiotemporally precise manner. We illustrate that, within minutes of global membrane recruitment of full-length GEFs or their catalytic domains only, widespread increases or decreases in F-actin rich protrusions and cell size occur, depending on the particular node in the networks targeted. Additionally, we demonstrate localized GEF recruitment as a robust assay system to study local network activation-driven changes in polarity and directed migration. Altogether, these optical tools confirmed GEFs of Ras superfamily GTPases as regulators of cell shape, actin dynamics, and polarity. Furthermore, this optogenetic toolbox may be exploited in perturbing complex signaling interactions in varied physiological contexts including mammalian embryogenesis.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jonathan Kuhn
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Stephenie Providence
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Ingenuity Research Program, Baltimore Polytechnic Institute, Baltimore, MD, United States
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
11
|
McNamara HM, Ramm B, Toettcher JE. Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems. Semin Cell Dev Biol 2023; 141:33-42. [PMID: 35484026 PMCID: PMC10332110 DOI: 10.1016/j.semcdb.2022.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Technological advances have driven many recent advances in developmental biology. Light sheet imaging can reveal single-cell dynamics in living three-dimensional tissues, whereas single-cell genomic methods open the door to a complete catalogue of cell types and gene expression states. An equally powerful but complementary set of approaches are also becoming available to define development processes from the bottom up. These synthetic approaches aim to reconstruct the minimal developmental patterns, signaling processes, and gene networks that produce the basic set of developmental operations: spatial polarization, morphogen interpretation, tissue movement, and cellular memory. In this review we discuss recent approaches at the intersection of synthetic biology and development, including synthetic circuits to deliver and record signaling stimuli and synthetic reconstitution of pattern formation on multicellular scales.
Collapse
Affiliation(s)
- Harold M McNamara
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA; Department of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Beatrice Ramm
- Department of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
12
|
Wu JY, Yeager K, Tavakol DN, Morsink M, Wang B, Soni RK, Hung CT, Vunjak-Novakovic G. Directed differentiation of human iPSCs into mesenchymal lineages by optogenetic control of TGF-β signaling. Cell Rep 2023; 42:112509. [PMID: 37178118 PMCID: PMC10278972 DOI: 10.1016/j.celrep.2023.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/28/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In tissue development and homeostasis, transforming growth factor (TGF)-β signaling is finely coordinated by latent forms and matrix sequestration. Optogenetics can offer precise and dynamic control of cell signaling. We report the development of an optogenetic human induced pluripotent stem cell system for TGF-β signaling and demonstrate its utility in directing differentiation into the smooth muscle, tenogenic, and chondrogenic lineages. Light-activated TGF-β signaling resulted in expression of differentiation markers at levels close to those in soluble factor-treated cultures, with minimal phototoxicity. In a cartilage-bone model, light-patterned TGF-β gradients allowed the establishment of hyaline-like layer of cartilage tissue at the articular surface while attenuating with depth to enable hypertrophic induction at the osteochondral interface. By selectively activating TGF-β signaling in co-cultures of light-responsive and non-responsive cells, undifferentiated and differentiated cells were simultaneously maintained in a single culture with shared medium. This platform can enable patient-specific and spatiotemporally precise studies of cellular decision making.
Collapse
Affiliation(s)
- Josephine Y Wu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
13
|
Huang Q, Zhu W, Gao X, Liu X, Zhang Z, Xing B. Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Adv Drug Deliv Rev 2023; 195:114763. [PMID: 36841331 DOI: 10.1016/j.addr.2023.114763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Ion channels are transmembrane proteins ubiquitously expressed in all cells that control various ions (e.g. Na+, K+, Ca2+ and Cl- etc) crossing cellular plasma membrane, which play critical roles in physiological processes including regulating signal transduction, cell proliferation as well as excitatory cell excitation and conduction. Abnormal ion channel function is usually associated with dysfunctions and many diseases, such as neurodegenerative disorders, ophthalmic diseases, pulmonary diseases and even cancers. The precise regulation of ion channels not only helps to decipher physiological and pathological processes, but also is expected to become cutting-edge means for disease treatment. Recently, nanoparticles-mediated ion channel manipulation emerges as a highly promising way to meet the increasing requirements with respect to their simple, efficient, precise, spatiotemporally controllable and non-invasive regulation in biomedicine and other research frontiers. Thanks the advantages of their unique properties, nanoparticles can not only directly block the pore sites or kinetics of ion channels through their tiny size effect, and perturb active voltage-gated ion channel by their charged surface, but they can also act as antennas to conduct or enhance external physical stimuli to achieve spatiotemporal, precise and efficient regulation of various ion channel activities (e.g. light-, mechanical-, and temperature-gated ion channels etc). So far, nanoparticles-mediated ion channel regulation has shown potential prospects in many biomedical fields at the interfaces of neuro- and cardiovascular modulation, physiological function regeneration and tumor therapy et al. Towards such important fields, in this typical review, we specifically outline the latest studies of different types of ion channels and their activities relevant to the diseases. In addition, the different types of stimulation responsive nanoparticles, their interaction modes and targeting strategies towards the plasma membrane ion channels will be systematically summarized. More importantly, the ion channel regulatory methods mediated by functional nanoparticles and their bioapplications associated with physiological modulation and therapeutic development will be discussed. Last but not least, current challenges and future perspectives in this field will be covered as well.
Collapse
Affiliation(s)
- Qiwen Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weisheng Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyin Gao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Liu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhijun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
14
|
Younas T, Liu C, Struwe WB, Kukura P, He L. Engineer RNA-Protein Nanowires as Light-Responsive Biomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206513. [PMID: 36642821 DOI: 10.1002/smll.202206513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Indexed: 06/17/2023]
Abstract
RNA molecules have emerged as increasingly attractive biomaterials with important applications such as RNA interference (RNAi) for cancer treatment and mRNA vaccines against infectious diseases. However, it remains challenging to engineer RNA biomaterials with sophisticated functions such as non-covalent light-switching ability. Herein, light-responsive RNA-protein nanowires are engineered to have such functions. It first demonstrates that the high affinity of RNA aptamer enables the formation of long RNA-protein nanowires through designing a dimeric RNA aptamer and an engineered green fluorescence protein (GFP) that contains two TAT-derived peptides at N- and C- termini. GFP is then replaced with an optogenetic protein pair system, LOV2 (light-oxygen-voltage) protein and its binding partner ZDK (Z subunit of protein A), to confer blue light-controlled photo-switching ability. The light-responsive nanowires are long (>500 nm) in the dark, but small (20-30 nm) when exposed to light. Importantly, the co-assembly of this RNA-protein hybrid biomaterial does not rely on the photochemistry commonly used for light-responsive biomaterials, such as bond formation, cleavage, and isomerization, and is thus reversible. These RNA-protein structures can serve as a new class of light-controlled biocompatible frameworks for incorporating versatile elements such as RNA, DNA, and enzymes.
Collapse
Affiliation(s)
- Tayyaba Younas
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Chang Liu
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Lizhong He
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
15
|
Johnson HE. Application of Optogenetics to Probe the Signaling Dynamics of Cell Fate Decision-Making. Methods Mol Biol 2023; 2634:315-326. [PMID: 37074585 DOI: 10.1007/978-1-0716-3008-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The development of optogenetic control over signaling pathways has provided a unique opportunity to decode the role of signaling dynamics in cell fate programing. Here I present a protocol for decoding cell fates through systematic interrogation with optogenetics and visualization of signaling with live biosensors. Specifically, this is written for Erk control of cell fates using the optoSOS system in mammalian cells or Drosophila embryos, though it is intended to be adapted to apply generally for several optogenetic tools, pathways, and model systems. This guide focuses on calibrating these tools, tricks of their use, and using them to interrogate features which program cell fates.
Collapse
Affiliation(s)
- Heath E Johnson
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
| |
Collapse
|
16
|
Zhang C, Kikushima K, Endo M, Kahyo T, Horikawa M, Matsudaira T, Tanaka T, Takanashi Y, Sato T, Takahashi Y, Xu L, Takayama N, Islam A, Mamun MA, Ozawa T, Setou M. Imaging and Manipulation of Plasma Membrane Fatty Acid Clusters Using TOF-SIMS Combined Optogenetics. Cells 2022; 12:cells12010010. [PMID: 36611804 PMCID: PMC9818728 DOI: 10.3390/cells12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The plasma membrane (PM) serves multiple functions to support cell activities with its heterogeneous molecular distribution. Fatty acids (FAs) are hydrophobic components of the PM whose saturation and length determine the membrane's physical properties. The FA distribution contributes to the PM's lateral heterogeneity. However, the distribution of PM FAs is poorly understood. Here, we proposed the FA cluster hypothesis, which suggested that FAs on the PM exist as clusters. By the optogenetic tool translocating the endoplasmic reticulum (ER), we were able to manipulate the distribution of PM FAs. We used time-of-flight combined secondary ion mass spectrometry (TOF-SIMS) to image PM FAs and discovered that PM FAs were presented and distributed as clusters and are also manipulated as clusters. We also found the existence of multi-FA clusters formed by the colocalization of more than one FA. Our optogenetic tool also decreased the clustering degree of FA clusters and the formation probability of multi-FA clusters. This research opens up new avenues and perspectives to study PM heterogeneity from an FA perspective. This research also suggests a possible treatment for diseases caused by PM lipid aggregation and furnished a convenient tool for therapeutic development.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mizuki Endo
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Makoto Horikawa
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takaomi Matsudaira
- Foundation for Promotion of Material Science and Technology of Japan, 1-18-6 Kitami, Setagaya-ku, Tokyo 157-0067, Japan
| | - Tatsuya Tanaka
- Foundation for Promotion of Material Science and Technology of Japan, 1-18-6 Kitami, Setagaya-ku, Tokyo 157-0067, Japan
| | - Yusuke Takanashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Naoki Takayama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence:
| |
Collapse
|
17
|
Qin C, Yue Z, Wallace GG, Chen J. Bipolar Electrochemical Stimulation Using Conducting Polymers for Wireless Electroceuticals and Future Directions. ACS APPLIED BIO MATERIALS 2022; 5:5041-5056. [PMID: 36260917 DOI: 10.1021/acsabm.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Electrochemistry has become a powerful strategy to modulate cellular behavior and biological activity by manipulating electrical signals. Subsequent electrical stimulus-responsive conducting polymers (CPs) have advanced traditional wired electrochemical stimulation (ES) systems and developed wireless cell stimulation systems due to their electroconductivity, biocompatibility, stability, and flexibility. Bipolar electrochemistry (BPE), i.e., wireless electrochemistry, offers an effective pathway to modify wired ES systems into a desirable contactless mode, turning out a potential technique to offer fundamental insights into neural cell stimulation and neural network formation. This review commences with a brief discussion of the BPE technique and also the advantages of a bipolar electrochemical stimulation (BPES) system compared to traditional wired ES systems and other wireless ES systems. Then, the BPES system is elucidated through four aspects: the benefits of BPES, the key factors to establish BPES platforms for cell stimulation, the limits/barriers to overcome for current rigid materials in particular metals-based systems, and a brief overview of the concept proved by CPs-based systems. Furthermore, how to refine the existing BPES system from materials/devices modification that combine CP compositions with 3D fabrication/bioprinting technologies is elaborately discussed as well. Finally, the review ends together with future research directions, picturing the potential of BPES system in biomedical applications.
Collapse
Affiliation(s)
- Chunyan Qin
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| |
Collapse
|
18
|
Ferreira MJS, Mancini FE, Humphreys PA, Ogene L, Buckley M, Domingos MAN, Kimber SJ. Pluripotent stem cells for skeletal tissue engineering. Crit Rev Biotechnol 2022; 42:774-793. [PMID: 34488516 DOI: 10.1080/07388551.2021.1968785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we review the use of human pluripotent stem cells for skeletal tissue engineering. A number of approaches have been used for generating cartilage and bone from both human embryonic stem cells and induced pluripotent stem cells. These range from protocols relying on intrinsic cell interactions and signals from co-cultured cells to those attempting to recapitulate the series of steps occurring during mammalian skeletal development. The importance of generating authentic tissues rather than just differentiated cells is emphasized and enabling technologies for doing this are reported. We also review the different methods for characterization of skeletal cells and constructs at the tissue and single-cell level, and indicate newer resources not yet fully utilized in this field. There have been many challenges in this research area but the technologies to overcome these are beginning to appear, often adopted from related fields. This makes it more likely that cost-effective and efficacious human pluripotent stem cell-engineered constructs may become available for skeletal repair in the near future.
Collapse
Affiliation(s)
- Miguel J S Ferreira
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul A Humphreys
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Buckley
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Marco A N Domingos
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Toh PJY, Lai JKH, Hermann A, Destaing O, Sheetz MP, Sudol M, Saunders TE. Optogenetic control of YAP cellular localisation and function. EMBO Rep 2022; 23:e54401. [PMID: 35876586 PMCID: PMC9442306 DOI: 10.15252/embr.202154401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
YAP, an effector of the Hippo signalling pathway, promotes organ growth and regeneration. Prolonged YAP activation results in uncontrolled proliferation and cancer. Therefore, exogenous regulation of YAP activity has potential translational applications. We present a versatile optogenetic construct (optoYAP) for manipulating YAP localisation, and consequently its activity and function. We attach a LOV2 domain that photocages a nuclear localisation signal (NLS) to the N-terminus of YAP. In 488 nm light, the LOV2 domain unfolds, exposing the NLS, which shuttles optoYAP into the nucleus. Nuclear import of optoYAP is reversible and tuneable by light intensity. In cell culture, activated optoYAP promotes YAP target gene expression and cell proliferation. Similarly, optofYap can be used in zebrafish embryos to modulate target genes. We demonstrate that optoYAP can override a cell's response to substrate stiffness to generate anchorage-independent growth. OptoYAP is functional in both cell culture and in vivo, providing a powerful tool to address basic research questions and therapeutic applications in regeneration and disease.
Collapse
Affiliation(s)
- Pearlyn J Y Toh
- Mechanobiology InstituteNational University of SingaporeSingapore
| | - Jason K H Lai
- Mechanobiology InstituteNational University of SingaporeSingapore
| | - Anke Hermann
- Department of Nephrology, Hypertension and RheumatologyUniversity Hospital MünsterMünsterGermany
| | - Olivier Destaing
- Institute for Advanced BiosciencesUniversité Grenoble AlpesGrenobleFrance,INSERM U1209Institute for Advanced BiosciencesLa TroncheFrance,CNRS UMR 5039Institute for Advanced BiosciencesLa TroncheFrance
| | - Michael P Sheetz
- Mechanobiology InstituteNational University of SingaporeSingapore,Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Marius Sudol
- Mechanobiology InstituteNational University of SingaporeSingapore,Icahn School of Medicine at Mount SinaiNew York CityNYUSA
| | - Timothy E Saunders
- Mechanobiology InstituteNational University of SingaporeSingapore,Institute of Molecular and Cell BiologyA*STARSingapore,Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
20
|
Kuznetsov IA, Berlew EE, Glantz ST, Hannanta-Anan P, Chow BY. Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment. CELL REPORTS METHODS 2022; 2:100245. [PMID: 35880018 PMCID: PMC9308134 DOI: 10.1016/j.crmeth.2022.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022]
Abstract
We describe a modular computational framework for analyzing cell-wide spatiotemporal signaling dynamics in single-cell microscopy experiments that accounts for the experiment-specific geometric and diffractive complexities that arise from heterogeneous cell morphologies and optical instrumentation. Inputs are unique cell geometries and protein concentrations derived from confocal stacks and spatiotemporally varying environmental stimuli. After simulating the system with a model of choice, the output is convolved with the microscope point-spread function for direct comparison with the observable image. We experimentally validate this approach in single cells with BcLOV4, an optogenetic membrane recruitment system for versatile control over cell signaling, using a three-dimensional non-linear finite element model with all parameters experimentally derived. The simulations recapitulate observed subcellular and cell-to-cell variability in BcLOV4 signaling, allowing for inter-experimental differences of cellular and instrumentation origins to be elucidated and resolved for improved interpretive robustness. This single-cell approach will enhance optogenetics and spatiotemporally resolved signaling studies.
Collapse
Affiliation(s)
- Ivan A. Kuznetsov
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin E. Berlew
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Spencer T. Glantz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pimkhuan Hannanta-Anan
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Brian Y. Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Chen B, Cui M, Wang Y, Shi P, Wang H, Wang F. Recent advances in cellular optogenetics for photomedicine. Adv Drug Deliv Rev 2022; 188:114457. [PMID: 35843507 DOI: 10.1016/j.addr.2022.114457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Meihui Cui
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
22
|
Kumar S, Khammash M. Platforms for Optogenetic Stimulation and Feedback Control. Front Bioeng Biotechnol 2022; 10:918917. [PMID: 35757811 PMCID: PMC9213687 DOI: 10.3389/fbioe.2022.918917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Harnessing the potential of optogenetics in biology requires methodologies from different disciplines ranging from biology, to mechatronics engineering, to control engineering. Light stimulation of a synthetic optogenetic construct in a given biological species can only be achieved via a suitable light stimulation platform. Emerging optogenetic applications entail a consistent, reproducible, and regulated delivery of light adapted to the application requirement. In this review, we explore the evolution of light-induction hardware-software platforms from simple illumination set-ups to sophisticated microscopy, microtiter plate and bioreactor designs, and discuss their respective advantages and disadvantages. Here, we examine design approaches followed in performing optogenetic experiments spanning different cell types and culture volumes, with induction capabilities ranging from single cell stimulation to entire cell culture illumination. The development of automated measurement and stimulation schemes on these platforms has enabled researchers to implement various in silico feedback control strategies to achieve computer-controlled living systems—a theme we briefly discuss in the last part of this review.
Collapse
Affiliation(s)
- Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
| |
Collapse
|
23
|
Zubi YS, Seki K, Li Y, Hunt AC, Liu B, Roux B, Jewett MC, Lewis JC. Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches. Nat Commun 2022; 13:1864. [PMID: 35387988 PMCID: PMC8987029 DOI: 10.1038/s41467-022-29239-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic control over protein function is a central challenge in synthetic biology. To address this challenge, we describe the development of an integrated computational and experimental workflow to incorporate a metal-responsive chemical switch into proteins. Pairs of bipyridinylalanine (BpyAla) residues are genetically encoded into two structurally distinct enzymes, a serine protease and firefly luciferase, so that metal coordination biases the conformations of these enzymes, leading to reversible control of activity. Computational analysis and molecular dynamics simulations are used to rationally guide BpyAla placement, significantly reducing experimental workload, and cell-free protein synthesis coupled with high-throughput experimentation enable rapid prototyping of variants. Ultimately, this strategy yields enzymes with a robust 20-fold dynamic range in response to divalent metal salts over 24 on/off switches, demonstrating the potential of this approach. We envision that this strategy of genetically encoding chemical switches into enzymes will complement other protein engineering and synthetic biology efforts, enabling new opportunities for applications where precise regulation of protein function is critical.
Collapse
Affiliation(s)
- Yasmine S Zubi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Kosuke Seki
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Ying Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Andrew C Hunt
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Bingqing Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
24
|
Kneuttinger AC. A guide to designing photocontrol in proteins: methods, strategies and applications. Biol Chem 2022; 403:573-613. [PMID: 35355495 DOI: 10.1515/hsz-2021-0417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
25
|
Allen JR, Wilkinson EG, Strader LC. Creativity comes from interactions: modules of protein interactions in plants. FEBS J 2022; 289:1492-1514. [PMID: 33774929 PMCID: PMC8476656 DOI: 10.1111/febs.15847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey R. Allen
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Edward G. Wilkinson
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
26
|
Xu Y, Gao C, Andreasson M, Håversen L, Carrasco M, Fleming C, Lundbäck T, Andréasson J, Grøtli M. Design and development of photoswitchable DFG-Out RET kinase inhibitors. Eur J Med Chem 2022; 234:114226. [DOI: 10.1016/j.ejmech.2022.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022]
|
27
|
Hoffman SM, Tang AY, Avalos JL. Optogenetics Illuminates Applications in Microbial Engineering. Annu Rev Chem Biomol Eng 2022; 13:373-403. [PMID: 35320696 DOI: 10.1146/annurev-chembioeng-092120-092340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optogenetics has been used in a variety of microbial engineering applications, such as chemical and protein production, studies of cell physiology, and engineered microbe-host interactions. These diverse applications benefit from the precise spatiotemporal control that light affords, as well as its tunability, reversibility, and orthogonality. This combination of unique capabilities has enabled a surge of studies in recent years investigating complex biological systems with completely new approaches. We briefly describe the optogenetic tools that have been developed for microbial engineering, emphasizing the scientific advancements that they have enabled. In particular, we focus on the unique benefits and applications of implementing optogenetic control, from bacterial therapeutics to cybergenetics. Finally, we discuss future research directions, with special attention given to the development of orthogonal multichromatic controls. With an abundance of advantages offered by optogenetics, the future is bright in microbial engineering. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon M Hoffman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , ,
| | - Allison Y Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , ,
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , , .,The Andlinger Center for Energy and the Environment, Department of Molecular Biology, and High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
28
|
Zhu D, Johnson HJ, Chen J, Schaffer DV. Optogenetic Application to Investigating Cell Behavior and Neurological Disease. Front Cell Neurosci 2022; 16:811493. [PMID: 35273478 PMCID: PMC8902366 DOI: 10.3389/fncel.2022.811493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cells reside in a dynamic microenvironment that presents them with regulatory signals that vary in time, space, and amplitude. The cell, in turn, interprets these signals and accordingly initiates downstream processes including cell proliferation, differentiation, migration, and self-organization. Conventional approaches to perturb and investigate signaling pathways (e.g., agonist/antagonist addition, overexpression, silencing, knockouts) are often binary perturbations that do not offer precise control over signaling levels, and/or provide limited spatial or temporal control. In contrast, optogenetics leverages light-sensitive proteins to control cellular signaling dynamics and target gene expression and, by virtue of precise hardware control over illumination, offers the capacity to interrogate how spatiotemporally varying signals modulate gene regulatory networks and cellular behaviors. Recent studies have employed various optogenetic systems in stem cell, embryonic, and somatic cell patterning studies, which have addressed fundamental questions of how cell-cell communication, subcellular protein localization, and signal integration affect cell fate. Other efforts have explored how alteration of signaling dynamics may contribute to neurological diseases and have in the process created physiologically relevant models that could inform new therapeutic strategies. In this review, we focus on emerging applications within the expanding field of optogenetics to study gene regulation, cell signaling, neurodevelopment, and neurological disorders, and we comment on current limitations and future directions for the growth of the field.
Collapse
Affiliation(s)
- Danqing Zhu
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
| | - Hunter J. Johnson
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
- Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, United States
- Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Jun Chen
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
| | - David V. Schaffer
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: David V. Schaffer
| |
Collapse
|
29
|
Del Sol-Fernández S, Martínez-Vicente P, Gomollón-Zueco P, Castro-Hinojosa C, Gutiérrez L, Fratila RM, Moros M. Magnetogenetics: remote activation of cellular functions triggered by magnetic switches. NANOSCALE 2022; 14:2091-2118. [PMID: 35103278 PMCID: PMC8830762 DOI: 10.1039/d1nr06303k] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/13/2021] [Indexed: 05/03/2023]
Abstract
During the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to novel and exciting applications, both in basic research and clinical applications. Indeed, the use of physical and non-invasive stimuli such as light, electricity or magnetic fields offers the possibility of manipulating biological processes with spatial and temporal resolution in a remote fashion. The use of magnetic fields is especially appealing for in vivo applications because they can penetrate deep into tissues, as opposed to light. In combination with magnetic actuators they are emerging as a new instrument to precisely manipulate biological functions. This approach, coined as magnetogenetics, provides an exclusive tool to study how cells transform mechanical stimuli into biochemical signalling and offers the possibility of activating intracellular pathways connected to temperature-sensitive proteins. In this review we provide a critical overview of the recent developments in the field of magnetogenetics. We discuss general topics regarding the three main components for magnetic field-based actuation: the magnetic fields, the magnetic actuators and the cellular targets. We first introduce the main approaches in which the magnetic field can be used to manipulate the magnetic actuators, together with the most commonly used magnetic field configurations and the physicochemical parameters that can critically influence the magnetic properties of the actuators. Thereafter, we discuss relevant examples of magneto-mechanical and magneto-thermal stimulation, used to control stem cell fate, to activate neuronal functions, or to stimulate apoptotic pathways, among others. Finally, although magnetogenetics has raised high expectations from the research community, to date there are still many obstacles to be overcome in order for it to become a real alternative to optogenetics for instance. We discuss some controversial aspects related to the insufficient elucidation of the mechanisms of action of some magnetogenetics constructs and approaches, providing our opinion on important challenges in the field and possible directions for the upcoming years.
Collapse
Affiliation(s)
- Susel Del Sol-Fernández
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pablo Martínez-Vicente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pilar Gomollón-Zueco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Christian Castro-Hinojosa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Analítica, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Orgánica, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - María Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
30
|
Zhou Y, Kong D, Wang X, Yu G, Wu X, Guan N, Weber W, Ye H. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat Biotechnol 2022; 40:262-272. [PMID: 34608325 DOI: 10.1038/s41587-021-01036-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Optogenetic technologies have transformed our ability to precisely control biological processes in time and space. Yet, current eukaryotic optogenetic systems are limited by large or complex optogenetic modules, long illumination times, low tissue penetration or slow activation and deactivation kinetics. Here, we report a red/far-red light-mediated and miniaturized Δphytochrome A (ΔPhyA)-based photoswitch (REDMAP) system based on the plant photoreceptor PhyA, which rapidly binds the shuttle protein far-red elongated hypocotyl 1 (FHY1) under illumination with 660-nm light with dissociation occurring at 730 nm. We demonstrate multiple applications of REDMAP, including dynamic on/off control of the endogenous Ras/Erk mitogen-activated protein kinase (MAPK) cascade and control of epigenetic remodeling using a REDMAP-mediated CRISPR-nuclease-deactivated Cas9 (CRISPR-dCas9) (REDMAPcas) system in mice. We also demonstrate the utility of REDMAP tools for in vivo applications by activating the expression of transgenes delivered by adeno-associated viruses (AAVs) or incorporated into cells in microcapsules implanted into mice, rats and rabbits illuminated by light-emitting diodes (LEDs). Further, we controlled glucose homeostasis in type 1 diabetic (T1D) mice and rats using REDMAP to trigger insulin expression. REDMAP is a compact and sensitive tool for the precise spatiotemporal control of biological activities in animals with applications in basic biology and potentially therapy.
Collapse
Affiliation(s)
- Yang Zhou
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinyi Wang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guiling Yu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
31
|
Wang S, Luo Y, Jiang W, Li X, Qi Q, Liang Q. Development of Optogenetic Dual-Switch System for Rewiring Metabolic Flux for Polyhydroxybutyrate Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030617. [PMID: 35163885 PMCID: PMC8838604 DOI: 10.3390/molecules27030617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022]
Abstract
Several strategies, including inducer addition and biosensor use, have been developed for dynamical regulation. However, the toxicity, cost, and inflexibility of existing strategies have created a demand for superior technology. In this study, we designed an optogenetic dual-switch system and applied it to increase polyhydroxybutyrate (PHB) production. First, an optimized chromatic acclimation sensor/regulator (RBS10–CcaS#10–CcaR) system (comprising an optimized ribosomal binding site (RBS), light sensory protein CcaS, and response regulator CcaR) was selected for a wide sensing range of approximately 10-fold between green-light activation and red-light repression. The RBS10–CcaS#10–CcaR system was combined with a blue light-activated YF1–FixJ–PhlF system (containing histidine kinase YF1, response regulator FixJ, and repressor PhlF) engineered with reduced crosstalk. Finally, the optogenetic dual-switch system was used to rewire the metabolic flux for PHB production by regulating the sequences and intervals of the citrate synthase gene (gltA) and PHB synthesis gene (phbCAB) expression. Consequently, the strain RBS34, which has high gltA expression and a time lag of 3 h, achieved the highest PHB content of 16.6 wt%, which was approximately 3-fold that of F34 (expressed at 0 h). The results indicate that the optogenetic dual-switch system was verified as a practical and convenient tool for increasing PHB production.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Yue Luo
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Xiaomeng Li
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Correspondence: (Q.Q.); (Q.L.)
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
- Correspondence: (Q.Q.); (Q.L.)
| |
Collapse
|
32
|
Huang P, Zhao Z, Duan L. Optogenetic activation of intracellular signaling based on light-inducible protein-protein homo-interactions. Neural Regen Res 2022; 17:25-30. [PMID: 34100422 PMCID: PMC8451544 DOI: 10.4103/1673-5374.314293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dynamic protein-protein interactions are essential for proper cell functioning. Homo-interaction events—physical interactions between the same type of proteins—represent a pivotal subset of protein-protein interactions that are widely exploited in activating intracellular signaling pathways. Capacities of modulating protein-protein interactions with spatial and temporal resolution are greatly desired to decipher the dynamic nature of signal transduction mechanisms. The emerging optogenetic technology, based on genetically encoded light-sensitive proteins, provides promising opportunities to dissect the highly complex signaling networks with unmatched specificity and spatiotemporal precision. Here we review recent achievements in the development of optogenetic tools enabling light-inducible protein-protein homo-interactions and their applications in optical activation of signaling pathways.
Collapse
Affiliation(s)
- Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region, China
| | - Zhihao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region, China
| | - Liting Duan
- Department of Biomedical Engineering; Shun Hing Institute of Advanced Engineering (SHIAE), The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region, China
| |
Collapse
|
33
|
Chavoshinezhad S, Zibaii MI, Seyed Nazari MH, Ronaghi A, Asgari Taei A, Ghorbani A, Pandamooz S, Salehi MS, Valian N, Motamedi F, Haghparast A, Dargahi L. Optogenetic stimulation of entorhinal cortex reveals the implication of insulin signaling in adult rat's hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110344. [PMID: 33964323 DOI: 10.1016/j.pnpbp.2021.110344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022]
Abstract
Adult neurogenesis in the hippocampal dentate gyrus plays a critical role in learning and memory. Projections originating from entorhinal cortex, known as the perforant pathway, provide the main input to the dentate gyrus and promote neurogenesis. However, neuromodulators and molecular changes mediating neurogenic effects of this pathway are not yet fully understood. Here, by means of an optogenetic approach, we investigated neurogenesis and synaptic plasticity in the hippocampus of adult rats induced by stimulation of the perforant pathway. The lentiviruses carrying hChR2 (H134R)-mCherry gene under the control of the CaMKII promoter were injected into the medial entorhinal cortex region of adult rats. After 21 days, the entorhinal cortex region was exposed to the blue laser (473 nm) for five consecutive days (30 min/day). The expression of synaptic plasticity and neurogenesis markers in the hippocampus were evaluated using molecular and histological approaches. In parallel, the changes in the gene expression of insulin and its signaling pathway, trophic factors, and components of mitochondrial biogenesis were assessed. Our results showed that optogenetic stimulation of the entorhinal cortex promotes hippocampal neurogenesis and synaptic plasticity concomitant with the increased levels of insulin mRNA and its signaling markers, neurotrophic factors, and activation of mitochondrial biogenesis. These findings suggest that effects of perforant pathway stimulation on the hippocampus, at least in part, are mediated by insulin increase in the dentate gyrus and subsequently activation of its downstream signaling pathway.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | | | - Abdolaziz Ronaghi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Asgari Taei
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Matsubara T, Yamashita T. Remote Optogenetics Using Up/Down-Conversion Phosphors. Front Mol Biosci 2021; 8:771717. [PMID: 34805279 PMCID: PMC8602066 DOI: 10.3389/fmolb.2021.771717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial rhodopsins widely used for optogenetics are sensitive to light in the visible spectrum. As visible light is heavily scattered and absorbed by tissue, stimulating light for optogenetic control does not reach deep in the tissue irradiated from outside the subject body. Conventional optogenetics employs fiber optics inserted close to the target, which is highly invasive and poses various problems for researchers. Recent advances in material science integrated with neuroscience have enabled remote optogenetic control of neuronal activities in living animals using up- or down-conversion phosphors. The development of these methodologies has stimulated researchers to test novel strategies for less invasive, wireless control of cellular functions in the brain and other tissues. Here, we review recent reports related to these new technologies and discuss the current limitations and future perspectives toward the establishment of non-invasive optogenetics for clinical applications.
Collapse
Affiliation(s)
- Takanori Matsubara
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
35
|
Du N, Ye F, Sun J, Liu K. Stimuli-Responsive Natural Proteins and Their Applications. Chembiochem 2021; 23:e202100416. [PMID: 34773331 DOI: 10.1002/cbic.202100416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Natural proteins are essential biomacromolecules that fulfill versatile functions in the living organism, such as their usage as cytoskeleton, nutriment transporter, homeostasis controller, catalyzer, or immune guarder. Due to the excellent mechanical properties and good biocompatibility/biodegradability, natural protein-based biomaterials are well equipped for prospective applications in various fields. Among these natural proteins, stimuli-responsive proteins can be reversibly and precisely manipulated on demand, rendering the protein-based biomaterials promising candidates for numerous applications, including disease detection, drug delivery, bio-sensing, and regenerative medicine. Therefore, we present some typical natural proteins with diverse physical stimuli-responsive properties, including temperature, light, force, electrical, and magnetic sensing in this review. The structure-function mechanism of these proteins is discussed in detail. Finally, we give a summary and perspective for the development of stimuli-responsive proteins.
Collapse
Affiliation(s)
- Na Du
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
36
|
Kropp C, Bruckmann A, Babinger P. Controlling Enzymatic Activity by Modulating the Oligomerization State via Chemical Rescue and Optical Control. Chembiochem 2021; 23:e202100490. [PMID: 34633135 PMCID: PMC9298306 DOI: 10.1002/cbic.202100490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Selective switching of enzymatic activity has been a longstanding goal in synthetic biology. Drastic changes in activity upon mutational manipulation of the oligomerization state of enzymes have frequently been reported in the literature, but scarcely exploited for switching. Using geranylgeranylglyceryl phosphate synthase as a model, we demonstrate that catalytic activity can be efficiently controlled by exogenous modulation of the association state. We introduced a lysine‐to‐cysteine mutation, leading to the breakdown of the active hexamer into dimers with impaired catalytic efficiency. Addition of bromoethylamine chemically rescued the enzyme by restoring hexamerization and activity. As an alternative method, we incorporated the photosensitive unnatural amino acid o‐nitrobenzyl‐O‐tyrosine (ONBY) into the hexamerization interface. This again led to inactive dimers, but the hexameric state and activity could be recovered by UV‐light induced cleavage of ONBY. For both approaches, we obtained switching factors greater than 350‐fold, which compares favorably with previously reported activity changes that were caused by site‐directed mutagenesis.
Collapse
Affiliation(s)
- Cosimo Kropp
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
37
|
Stierschneider A, Grünstäudl P, Colleselli K, Atzler J, Klein CT, Hundsberger H, Wiesner C. Light-Inducible Spatio-Temporal Control of TLR4 and NF-κB-Gluc Reporter in Human Pancreatic Cell Line. Int J Mol Sci 2021; 22:ijms22179232. [PMID: 34502140 PMCID: PMC8431472 DOI: 10.3390/ijms22179232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Augmented Toll-like receptor 4 (TLR4) expression was found in nearly 70% of patients with pancreatic adenocarcinoma, which is correlated with increased tumorigenesis and progression. In this study, we engineered a new light-oxygen-voltage-sensing (LOV) domain-based optogenetic cell line (opto-TLR4 PANC-1) that enables time-resolved activation of the NF-κB and extracellular-signal regulated kinases (ERK)1/2 signalling pathway upon blue light-sensitive homodimerisation of the TLR4-LOV fusion protein. Continuous stimulation with light indicated strong p65 and ERK1/2 phosphorylation even after 24 h, whereas brief light exposure peaked at 8 h and reached the ground level 24 h post-illumination. The cell line further allows a voltage-dependent TLR4 activation, which can be continuously monitored, turned on by light or off in the dark. Using this cell line, we performed different phenotypic cell-based assays with 2D and 3D cultures, with the aim of controlling cellular activity with spatial and temporal precision. Light exposure enhanced cell attachment, the formation and extension of invadopodia, and cell migration in 3D spheroid cultures, but no significant changes in proliferation or viability could be detected. We conclude that the opto-TLR4 PANC-1 cell line is an ideal tool for investigating the underlying molecular mechanisms of TLR4, thereby providing strategies for new therapeutic options.
Collapse
Affiliation(s)
- Anna Stierschneider
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
| | - Petra Grünstäudl
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
| | - Katrin Colleselli
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
| | - Josef Atzler
- Molecular Devices, LLC, 5071 Wals-Siezenheim, Austria;
| | - Christian T. Klein
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
| | - Harald Hundsberger
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
- Correspondence:
| |
Collapse
|
38
|
Shenshin VA, Lescanne C, Gines G, Rondelez Y. A small-molecule chemical interface for molecular programs. Nucleic Acids Res 2021; 49:7765-7774. [PMID: 34223901 PMCID: PMC8287923 DOI: 10.1093/nar/gkab470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/03/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
In vitro molecular circuits, based on DNA-programmable chemistries, can perform an increasing range of high-level functions, such as molecular level computation, image or chemical pattern recognition and pattern generation. Most reported demonstrations, however, can only accept nucleic acids as input signals. Real-world applications of these programmable chemistries critically depend on strategies to interface them with a variety of non-DNA inputs, in particular small biologically relevant chemicals. We introduce here a general strategy to interface DNA-based circuits with non-DNA signals, based on input-translating modules. These translating modules contain a DNA response part and an allosteric protein sensing part, and use a simple design that renders them fully tunable and modular. They can be repurposed to either transmit or invert the response associated with the presence of a given input. By combining these translating-modules with robust and leak-free amplification motifs, we build sensing circuits that provide a fluorescent quantitative time-response to the concentration of their small-molecule input, with good specificity and sensitivity. The programmability of the DNA layer can be leveraged to perform DNA based signal processing operations, which we demonstrate here with logical inversion, signal modulation and a classification task on two inputs. The DNA circuits are also compatible with standard biochemical conditions, and we show the one-pot detection of an enzyme through its native metabolic activity. We anticipate that this sensitive small-molecule-to-DNA conversion strategy will play a critical role in the future applications of molecular-level circuitry.
Collapse
Affiliation(s)
- Vasily A Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| | - Camille Lescanne
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
39
|
Keshmiri Neghab H, Soheilifar MH, Grusch M, Ortega MM, Esmaeeli Djavid G, Saboury AA, Goliaei B. The state of the art of biomedical applications of optogenetics. Lasers Surg Med 2021; 54:202-216. [PMID: 34363230 DOI: 10.1002/lsm.23463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Optogenetics has opened new insights into biomedical research with the ability to manipulate and control cellular activity using light in combination with genetically engineered photosensitive proteins. By stimulating with light, this method provides high spatiotemporal and high specificity resolution, which is in contrast to conventional pharmacological or electrical stimulation. Optogenetics was initially introduced to control neural activities but was gradually extended to other biomedical fields. STUDY DESIGN In this paper, firstly, we summarize the current optogenetic tools stimulated by different light sources, including lasers, light-emitting diodes, and laser diodes. Second, we outline the variety of biomedical applications of optogenetics not only for neuronal circuits but also for various kinds of cells and tissues from cardiomyocytes to ganglion cells. Furthermore, we highlight the potential of this technique for treating neurological disorders, cardiac arrhythmia, visual impairment, hearing loss, and urinary bladder diseases as well as clarify the mechanisms underlying cancer progression and control of stem cell differentiation. CONCLUSION We sought to summarize the various types of promising applications of optogenetics to treat a broad spectrum of disorders. It is conceivable to expect that optogenetics profits a growing number of patients suffering from a range of different diseases in the near future.
Collapse
Affiliation(s)
- Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Gholamreza Esmaeeli Djavid
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
40
|
Heckmeier PJ, Langosch D. Site-Specific Fragmentation of Green Fluorescent Protein Induced by Blue Light. Biochemistry 2021; 60:2457-2462. [PMID: 34314163 DOI: 10.1021/acs.biochem.1c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Green fluorescent protein (GFP) and related fluorescent proteins have multiple applications in cell biology, and elucidating their functions has been at the focus of biophysical research for about three decades. Fluorescent proteins can be bleached by intense irradiation, and a number of them undergo photoconversion. Rare cases have been reported where distant functional relatives of GFP exhibit UV-light-induced protein fragmentation. Here, we show that irreversible bleaching of two different variants of GFP (sfGFP, EGFP) with visible light is paralleled by successive backbone fragmentation of the protein. Mass spectrometry revealed that the site of fragmentation resides at the fluorophore, between residue positions 65 and 66.
Collapse
Affiliation(s)
- Philipp J Heckmeier
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
41
|
Berlew EE, Kuznetsov IA, Yamada K, Bugaj LJ, Boerckel JD, Chow BY. Single-Component Optogenetic Tools for Inducible RhoA GTPase Signaling. Adv Biol (Weinh) 2021; 5:e2100810. [PMID: 34288599 DOI: 10.1002/adbi.202100810] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/08/2021] [Indexed: 01/31/2023]
Abstract
Optogenetic tools are created to control RhoA GTPase, a central regulator of actin organization and actomyosin contractility. RhoA GTPase, or its upstream activator ARHGEF11, is fused to BcLOV4, a photoreceptor that can be dynamically recruited to the plasma membrane by a light-regulated protein-lipid electrostatic interaction with the inner leaflet. Direct membrane recruitment of these proteins induces potent contractile signaling sufficient to separate adherens junctions with as little as one pulse of blue light. Induced cytoskeletal morphology changes are dependent on the alignment of the spatially patterned stimulation with the underlying cell polarization. RhoA-mediated cytoskeletal activation drives yes-associated protein (YAP) nuclear localization within minutes and consequent mechanotransduction verified by YAP-transcriptional enhanced associate domain transcriptional activity. These single-transgene tools do not require protein binding partners for dynamic membrane localization and permit spatiotemporally precise control over RhoA signaling to advance the study of its diverse regulatory roles in cell migration, morphogenesis, and cell cycle maintenance.
Collapse
Affiliation(s)
- Erin E Berlew
- Department of Bioengineering, University of Pennsylvania, 210 South 33 rd Street, Philadelphia, PA, 19104, USA
| | - Ivan A Kuznetsov
- Department of Bioengineering, University of Pennsylvania, 210 South 33 rd Street, Philadelphia, PA, 19104, USA
| | - Keisuke Yamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8050, Japan
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, 210 South 33 rd Street, Philadelphia, PA, 19104, USA
| | - Joel D Boerckel
- Department of Bioengineering, University of Pennsylvania, 210 South 33 rd Street, Philadelphia, PA, 19104, USA.,Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, 210 South 33 rd Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
42
|
Optogenetically-inspired neuromodulation: Translating basic discoveries into therapeutic strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:187-219. [PMID: 34446246 DOI: 10.1016/bs.irn.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Optogenetic tools allow for the selective activation, inhibition or modulation of genetically-defined neural circuits with incredible temporal precision. Over the past decade, application of these tools in preclinical models of psychiatric disease has advanced our understanding the neural circuit basis of maladaptive behaviors in these disorders. Despite their power as an investigational tool, optogenetics cannot yet be applied in the clinical for the treatment of neurological and psychiatric disorders. To date, deep brain stimulation (DBS) is the only clinical treatment that can be used to achieve circuit-specific neuromodulation in the context of psychiatric. Despite its increasing clinical indications, the mechanisms underlying the therapeutic effects of DBS for psychiatric disorders are poorly understood, which makes optimization difficult. We discuss the variety of optogenetic tools available for preclinical research, and how these tools have been leveraged to reverse-engineer the mechanisms underlying DBS for movement and compulsive disorders. We review studies that have used optogenetics to induce plasticity within defined basal ganglia circuits, to alter neural circuit function and evaluate the corresponding effects on motor and compulsive behaviors. While not immediately applicable to patient populations, the translational power of optogenetics is in inspiring novel DBS protocols by providing a rationale for targeting defined neural circuits to ameliorate specific behavioral symptoms, and by establishing optimal stimulation paradigms that could selectively compensate for pathological synaptic plasticity within these defined neural circuits.
Collapse
|
43
|
Zhao P, Huo S, Fan J, Chen J, Kiessling F, Boersma AJ, Göstl R, Herrmann A. Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound. Angew Chem Int Ed Engl 2021; 60:14707-14714. [PMID: 33939872 PMCID: PMC8252103 DOI: 10.1002/anie.202105404] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/11/2022]
Abstract
The regulation of enzyme activity is a method to control biological function. We report two systems enabling the ultrasound-induced activation of thrombin, which is vital for secondary hemostasis. First, we designed polyaptamers, which can specifically bind to thrombin, inhibiting its catalytic activity. With ultrasound generating inertial cavitation and therapeutic medical focused ultrasound, the interactions between polyaptamer and enzyme are cleaved, restoring the activity to catalyze the conversion of fibrinogen into fibrin. Second, we used split aptamers conjugated to the surface of gold nanoparticles (AuNPs). In the presence of thrombin, these assemble into an aptamer tertiary structure, induce AuNP aggregation, and deactivate the enzyme. By ultrasonication, the AuNP aggregates reversibly disassemble releasing and activating the enzyme. We envision that this approach will be a blueprint to control the function of other proteins by mechanical stimuli in the sonogenetics field.
Collapse
Affiliation(s)
- Pengkun Zhao
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Shuaidong Huo
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical ScienceXiamen University361102XiamenChina
| | - Jilin Fan
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Junlin Chen
- Institute for Experimental Molecular ImagingUniversity Hospital AachenForckenbeckstr. 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingUniversity Hospital AachenForckenbeckstr. 5552074AachenGermany
| | - Arnold J. Boersma
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Robert Göstl
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| |
Collapse
|
44
|
Zhao P, Huo S, Fan J, Chen J, Kiessling F, Boersma AJ, Göstl R, Herrmann A. Aktivierung der katalytischen Aktivität von Thrombin für die Bildung von Fibrin durch Ultraschall. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pengkun Zhao
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Shuaidong Huo
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
- Fujian Provincial Key Laboratory of Innovative Drug Target Research School of Pharmaceutical Science Xiamen University 361102 Xiamen China
| | - Jilin Fan
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Junlin Chen
- Institut für Experimentelle Molekulare Bildgebung Uniklinik Aachen Forckenbeckstr. 55 52074 Aachen Deutschland
| | - Fabian Kiessling
- Institut für Experimentelle Molekulare Bildgebung Uniklinik Aachen Forckenbeckstr. 55 52074 Aachen Deutschland
| | - Arnold J. Boersma
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Robert Göstl
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
| |
Collapse
|
45
|
Abstract
Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.
Collapse
Affiliation(s)
- Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea;
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
46
|
A LexA-based yeast two-hybrid system for studying light-switchable interactions of phytochromes with their interacting partners. ABIOTECH 2021; 2:105-116. [PMID: 36304755 PMCID: PMC9590525 DOI: 10.1007/s42994-021-00034-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
Phytochromes are a family of photoreceptors in plants that perceive the red (R) and far-red (FR) components of their light environment. Phytochromes exist in vivo in two forms, the inactive Pr form and the active Pfr form, that are interconvertible by treatments with R or FR light. It is believed that phytochromes transduce light signals by interacting with their signaling partners. A GAL4-based light-switchable yeast two-hybrid (Y2H) system was developed two decades ago and has been successfully employed in many studies to determine phytochrome interactions with their signaling components. However, several pairs of interactions between phytochromes and their interactors, such as the phyA-COP1 and phyA-TZP interactions, were demonstrated by other assay systems but were not detected by this GAL4 Y2H system. Here, we report a modified LexA Y2H system, in which the LexA DNA-binding domain is fused to the C-terminus of a phytochrome protein. The conformational changes of phytochromes in response to R and FR light are achieved in yeast cells by exogenously supplying phycocyanobilin (PCB) extracted from Spirulina. The well-defined interaction pairs, including phyA-FHY1 and phyB-PIFs, are well reproducible in this system. Moreover, we show that our system is successful in detecting the phyA-COP1 and phyA-TZP interactions. Together, our study provides an alternative Y2H system that is highly sensitive and reproducible for detecting light-switchable interactions of phytochromes with their interacting partners. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00034-5.
Collapse
|
47
|
Repina NA, McClave T, Johnson HJ, Bao X, Kane RS, Schaffer DV. Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics. Cell Rep 2021; 31:107737. [PMID: 32521262 PMCID: PMC9357365 DOI: 10.1016/j.celrep.2020.107737] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 10/31/2022] Open
Abstract
Spatially and temporally varying patterns of morphogen signals during development drive cell fate specification at the proper location and time. However, current in vitro methods typically do not allow for precise, dynamic spatiotemporal control of morphogen signaling and are thus insufficient to readily study how morphogen dynamics affect cell behavior. Here, we show that optogenetic Wnt/β-catenin pathway activation can be controlled at user-defined intensities, temporal sequences, and spatial patterns using engineered illumination devices for optogenetic photostimulation and light activation at variable amplitudes (LAVA). By patterning human embryonic stem cell (hESC) cultures with varying light intensities, LAVA devices enabled dose-responsive control of optoWnt activation and Brachyury expression. Furthermore, time-varying and spatially localized patterns of light revealed tissue patterning that models the embryonic presentation of Wnt signals in vitro. LAVA devices thus provide a low-cost, user-friendly method for high-throughput and spatiotemporal optogenetic control of cell signaling for applications in developmental and cell biology.
Collapse
Affiliation(s)
- Nicole A Repina
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas McClave
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hunter J Johnson
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ravi S Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
48
|
Dreier MA, Althoff P, Norahan MJ, Tennigkeit SA, El-Mashtoly SF, Lübben M, Kötting C, Rudack T, Gerwert K. Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin. Commun Biol 2021; 4:578. [PMID: 33990694 PMCID: PMC8121809 DOI: 10.1038/s42003-021-02101-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023] Open
Abstract
Channelrhodopsins are widely used in optogenetic applications. High photocurrents and low current inactivation levels are desirable. Two parallel photocycles evoked by different retinal conformations cause cation-conducting channelrhodopsin-2 (CrChR2) inactivation: one with efficient conductivity; one with low conductivity. Given the longer half-life of the low conducting photocycle intermediates, which accumulate under continuous illumination, resulting in a largely reduced photocurrent. Here, we demonstrate that for channelrhodopsin-1 of the cryptophyte Guillardia theta (GtACR1), the highly conducting C = N-anti-photocycle was the sole operating cycle using time-resolved step-scan FTIR spectroscopy. The correlation between our spectroscopic measurements and previously reported electrophysiological data provides insights into molecular gating mechanisms and their role in the characteristic high photocurrents. The mechanistic importance of the central constriction site amino acid Glu-68 is also shown. We propose that canceling out the poorly conducting photocycle avoids the inactivation observed in CrChR2, and anticipate that this discovery will advance the development of optimized optogenetic tools.
Collapse
Affiliation(s)
- Max-Aylmer Dreier
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Bochum, Germany
| | - Philipp Althoff
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Bochum, Germany
| | - Mohamad Javad Norahan
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Bochum, Germany
| | - Stefan Alexander Tennigkeit
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Bochum, Germany
| | - Samir F El-Mashtoly
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Bochum, Germany
| | - Mathias Lübben
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Bochum, Germany
| | - Carsten Kötting
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Bochum, Germany
| | - Till Rudack
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, Bochum, Germany.
- Department of Biophysics, Ruhr University Bochum, Bochum, Germany.
| | - Klaus Gerwert
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, Bochum, Germany.
- Department of Biophysics, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
49
|
Vigano MA, Ell CM, Kustermann MMM, Aguilar G, Matsuda S, Zhao N, Stasevich TJ, Affolter M, Pyrowolakis G. Protein manipulation using single copies of short peptide tags in cultured cells and in Drosophila melanogaster. Development 2021; 148:dev191700. [PMID: 33593816 PMCID: PMC7990863 DOI: 10.1242/dev.191700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Cellular development and function rely on highly dynamic molecular interactions among proteins distributed in all cell compartments. Analysis of these interactions has been one of the main topics in cellular and developmental research, and has been mostly achieved by the manipulation of proteins of interest (POIs) at the genetic level. Although genetic strategies have significantly contributed to our current understanding, targeting specific interactions of POIs in a time- and space-controlled manner or analysing the role of POIs in dynamic cellular processes, such as cell migration or cell division, would benefit from more-direct approaches. The recent development of specific protein binders, which can be expressed and function intracellularly, along with advancement in synthetic biology, have contributed to the creation of a new toolbox for direct protein manipulations. Here, we have selected a number of short-tag epitopes for which protein binders from different scaffolds have been generated and showed that single copies of these tags allowed efficient POI binding and manipulation in living cells. Using Drosophila, we also find that single short tags can be used for POI manipulation in vivo.
Collapse
Affiliation(s)
- M Alessandra Vigano
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Manuela M M Kustermann
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Gustavo Aguilar
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Shinya Matsuda
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - George Pyrowolakis
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| |
Collapse
|
50
|
Abreu N, Levitz J. Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. Methods Mol Biol 2021; 2173:21-51. [PMID: 32651908 DOI: 10.1007/978-1-0716-0755-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
Collapse
Affiliation(s)
- Nohely Abreu
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|