1
|
Haimson B, Mizrahi A. Integrating innate and learned behavior through brain circuits. Trends Neurosci 2025; 48:319-329. [PMID: 40169295 DOI: 10.1016/j.tins.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
Understanding how innate predispositions and learned experiences interact to shape behavior is a central question in systems neuroscience. Traditionally, innate behaviors, that is, those present without prior learning and governed by evolutionarily conserved neural circuits, have been studied separately from learned behaviors, which depend on experience and neural plasticity. This division has led to a compartmentalized view of behavior and neural circuit organization. Increasing evidence suggests that innate and learned behaviors are not independent, but rather deeply intertwined, with plasticity evident even in circuits classically considered 'innate'. In this opinion, we highlight examples across species that illustrate the dynamic interaction between these behavioral domains and discuss the implications for unifying theoretical and empirical frameworks. We argue that a more integrative approach, namely one that acknowledges the reciprocal influences of innate and learned processes, is essential for advancing our understanding of how neuronal activity drives complex behaviors.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Life Sciences, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
2
|
Zanola D, Czaczkes TJ, Josens R. Toxic bait abandonment by an invasive ant is driven by aversive memories. Commun Biol 2025; 8:486. [PMID: 40128336 PMCID: PMC11933468 DOI: 10.1038/s42003-025-07818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Social insects such as ants possess a battery of behavioural mechanisms protecting their colonies against pathogens and toxins. Recently, active abandonment of poisoned food was described in the invasive ant Linepithema humile. During this abandonment, foraging declines by 80% within 6-8 h after baits become toxic-a reduction not due to satiety, diminished motivation, or mortality. Here we explore the mechanisms behind this behaviour, testing two hypotheses: (1) the presence of 'no entry' pheromones near toxic food, and (2) the formation of aversive memories linked to the toxic food site. In field trials, we placed bridges leading to sucrose, nothing, or poisoned sucrose on an active trail. Within hours, 80% of ants abandoned poisoned bait bridges. By swapping bridges strategically, we confirmed that aversive memories formed at toxic bait sites, while no evidence of a 'no entry' pheromone was found. Then, in the laboratory, we asked how ants may be sensing the toxicity of the bait, hypothesising poison-induced malaise. Motility, used as a proxy for malaise, was 29% lower in toxicant-exposed ants after 3 h, linking malaise to abandonment. Developing toxicants with delayed malaise, not just delayed mortality, may improve toxic bait control protocols.
Collapse
Affiliation(s)
- Daniel Zanola
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentine
| | - Tomer J Czaczkes
- Animal Comparative Economics laboratory, Faculty of Biology and Preclinical Medicine, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Roxana Josens
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentine.
| |
Collapse
|
3
|
Mayorga-Martino V, Mansurova M, Calla-Quispe E, Ibáñez AJ. Unlocking the Secrets of Insects: The Role of Mass Spectrometry to Understand the Life of Insects. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39679754 DOI: 10.1002/mas.21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Chemical signaling is crucial during the insect lifespan, significantly affecting their survival, reproduction, and ecological interactions. Unfortunately, most chemical signals insects use are impossible for humans to perceive directly. Hence, mass spectrometry has become a vital tool by offering vital insight into the underlying chemical and biochemical processes in various variety of insect activities, such as communication, mate recognition, mating behavior, and adaptation (defense/attack mechanisms), among others. Here, we review different mass spectrometry-based strategies used to gain a deeper understanding of the chemicals involved in shaping the complex behaviors among insects and mass spectrometry-based research in insects that have direct impact in global economic activities.
Collapse
Affiliation(s)
- Vanessa Mayorga-Martino
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Madina Mansurova
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Erika Calla-Quispe
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
| | - Alfredo J Ibáñez
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| |
Collapse
|
4
|
Wei K, Wang J. The Post-Kelly Strategy: A Negative Feedback Model of Reallocating Ant Foragers. Bull Math Biol 2024; 87:3. [PMID: 39579193 DOI: 10.1007/s11538-024-01383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
In ant foraging, the manner of group-mass recruitment demonstrates remarkable adaptability between tandem running and mass recruitment. In contrast to tandem running, where a leader recruits only one worker, the first phase of group-mass recruitment is characterized by strong invitations from leaders that result in a large group of recruits leaving the nest together in a rush, thereby accelerating the process of recruiting towards discovered resources. Furthermore, unlike sole mass recruitment, the influence of leaders during this first phase enhances the accuracy of information about food qualities and ensures a more rational allocation of recruits compared to simply following a dominant pheromone trail. In this study, we propose a model that integrates the Kelly criterion for the first phase of group-mass recruitment, followed by a post-Kelly strategy incorporating a delayed Pólya urn with two stages for the second phase of group-mass recruitment. The analytical process and simulation demonstrate that the Kelly criterion aims to maximize recruitment intensity during the initial foraging phase, employing crowd tactics to capture all available food sources and enhance competitiveness with other food-exploiting species. On the other hand, the post-Kelly strategy elucidates how the crowding negative feedback mitigates congestion resulting from overexploitation and improves overall efficiency in food exploitation.
Collapse
Affiliation(s)
- Kun Wei
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| | - Jiecong Wang
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| |
Collapse
|
5
|
Narimanov N, Heuschele JM, Entling MH, Menzel F, Mestre L. Differential Effects of Ephemeral and Stable Predator Chemical Cues on Spider Antipredator Behaviour. J Chem Ecol 2024; 50:714-724. [PMID: 39305439 PMCID: PMC11543770 DOI: 10.1007/s10886-024-01543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 11/08/2024]
Abstract
Semiochemicals left by predators in their foraging area can be utilised by prey to avoid predation. The range of predators' chemical cues with contrasting degradation rates might provide information of different quality, potentially allowing prey to differentiate between the immediate and the longer-term presence of predators in a location. So far, knowledge about the roles of volatile versus stable chemical cues in informing predation risk is limited. We here seek to disentangle the role of ephemeral trail pheromones compared to persistent cuticular hydrocarbons of ants (predators) on the antipredator behaviour of juvenile spiders (prey), with the expectation that volatile semiochemicals induce avoidance behaviour in spiders at a higher rate compared to stable cues. We allowed the spiders to choose between sites with and without ant cues separately for volatile trail pheromones and stable hydrocarbons. Unexpectedly, spiders avoided the presence of persistent cuticular hydrocarbons more clearly than the highly volatile trail pheromone. This underscores the widespread impact of these stable cues on the avoidance behaviour of potential intraguild prey. The response to trail pheromones was unclear, possibly because spiders always encounter these cues simultaneously with visual and vibratory cues from ants; hence, trail pheromones may not contain any additional information, hindering the evolution of the ability to detect them.
Collapse
Affiliation(s)
- Nijat Narimanov
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, 76829, Landau (Pfalz), Germany.
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, 55128, Mainz, Germany.
| | - Jonna M Heuschele
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, 76829, Landau (Pfalz), Germany
- Department of Community Ecology, UFZ, Helmholtz Centre for Environmental Research, 06120, Halle (Saale), Germany
- iDiv, German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Martin H Entling
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, 76829, Landau (Pfalz), Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, 55128, Mainz, Germany
| | - Laia Mestre
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, 76829, Landau (Pfalz), Germany
| |
Collapse
|
6
|
Lourie E, Shamay T, Toledo S, Nathan R. Spatial memory obviates following behaviour in an information centre of wild fruit bats. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240060. [PMID: 39230458 PMCID: PMC11449202 DOI: 10.1098/rstb.2024.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 09/05/2024] Open
Abstract
According to the information centre hypothesis (ICH), colonial species use social information in roosts to locate ephemeral resources. Validating the ICH necessitates showing that uninformed individuals follow informed ones to the new resource. However, following behaviour may not be essential when individuals have a good memory of the resources' locations. For instance, Egyptian fruit bats forage on spatially predictable trees, but some bear fruit at unpredictable times. These circumstances suggest an alternative ICH pathway in which bats learn when fruits emerge from social cues in the roost but then use spatial memory to locate them without following conspecifics. Here, using an unique field manipulation and high-frequency tracking data, we test for this alternative pathway: we introduced bats smeared with the fruit odour of the unpredictably fruiting Ficus sycomorus trees to the roost, when they bore no fruits, and then tracked the movement of conspecifics exposed to the manipulated social cue. As predicted, bats visited the F. sycomorus trees with significantly higher probabilities than during routine foraging trips (of >200 bats). Our results show how the integration of spatial memory and social cues leads to efficient resource tracking and highlight the value of using large movement datasets and field experiments in behavioural ecology. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Emmanuel Lourie
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| | - Tomer Shamay
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel-Aviv University , Tel Aviv, Israel
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| |
Collapse
|
7
|
Staps M, Tarnita CE, Kawakatsu M. Ecological principles for the evolution of communication in collective systems. Proc Biol Sci 2024; 291:20241562. [PMID: 39381908 PMCID: PMC11462452 DOI: 10.1098/rspb.2024.1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024] Open
Abstract
Communication allows members of a collective to share information about their environment. Advanced collective systems, such as multicellular organisms and social insect colonies, vary in whether they use communication at all and, if they do, in what types of signals they use, but the origins of these differences are poorly understood. Here, we develop a theoretical framework to investigate the evolution and diversity of communication strategies under collective-level selection. We find that whether communication can evolve depends on a collective's external environment: communication only evolves in sufficiently stable environments, where the costs of sensing are high enough to disfavour independent sensing but not so high that the optimal strategy is to ignore the environment altogether. Moreover, we find that the evolution of diverse signalling strategies-including those relying on prolonged signalling (e.g. honeybee waggle dance), persistence of signals in the environment (e.g. ant trail pheromones) and brief but frequent communicative interactions (e.g. ant antennal contacts)-can be explained theoretically in terms of the interplay between the demands of the environment and internal constraints on the signal. Altogether, we provide a general framework for comparing communication strategies found in nature and uncover simple ecological principles that may contribute to their diversity.
Collapse
Affiliation(s)
- Merlijn Staps
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Corina E. Tarnita
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Mari Kawakatsu
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104, USA
- Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA19104, USA
| |
Collapse
|
8
|
Dittmann MA, Buczkowski G, Scharf M, Harpur BA. Comparative transcriptomics and phylostratigraphy of Argentine ant odorant receptors. PLoS One 2024; 19:e0307604. [PMID: 39226298 PMCID: PMC11371221 DOI: 10.1371/journal.pone.0307604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/09/2024] [Indexed: 09/05/2024] Open
Abstract
Nestmate recognition in ants is regulated through the detection of cuticular hydrocarbons by odorant receptors (ORs) in the antennae. These ORs are crucial for maintaining colony cohesion that allows invasive ant species to dominate colonized environments. In the invasive Argentine ant, Linepithema humile, ORs regulating nestmate recognition are thought to be present in a clade of nine-exon odorant receptors, but the identity of the specific genes remains unknown. We sought to narrow down the list of candidate genes using transcriptomics and phylostratigraphy. Comparative transcriptomic analyses were conducted on the antennae, head, thorax, and legs of Argentine ant workers. We have identified a set of twenty-one nine-exon odorant receptors enriched in the antennae compared to the other tissues, allowing for downstream verification of whether they can detect Argentine ant cuticular hydrocarbons. Further investigation of these ORs could allow us to further understand the mechanisms underlying nestmate recognition and colony cohesion in ants.
Collapse
Affiliation(s)
- Mathew A. Dittmann
- Department of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Grzegorz Buczkowski
- Department of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Michael Scharf
- University of Florida, Gainesville, FL, United States of America
| | - Brock A. Harpur
- Department of Entomology, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
9
|
Xiu C, Pan H, Zhang F, Luo Z, Bian L, Li Z, Fu N, Zhou L, Magsi FH, Cai X, Chen Z. Identification of aggregation pheromones released by the stick tea thrips (Dendrothrips minowai) larvae and their application for controlling thrips in tea plantations. PEST MANAGEMENT SCIENCE 2024; 80:2528-2538. [PMID: 38087822 DOI: 10.1002/ps.7928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND The stick tea thrips, Dendrothrips minowai Priesner, is one of the most important sucking pests that seriously infest tea plants (Camellia sinensis) in China. Given that D. minowai exhibit aggregation behaviors in tea plantations, this study evaluated the potential of aggregation pheromones for their control. RESULTS H-tube olfactometer assays showed that D. minowai larvae, adult females and adult males were significantly attracted to larvae rather than adult females and males under laboratory conditions. Subsequent gas chromatography-mass spectrometry analysis of volatiles from larvae, identified two larva-specific components: dodecyl acetate and tetradecyl acetate. Electrophysiological and behavioral experiments confirmed the positive response of females and males to dodecyl acetate, tetradecyl acetate, and their blend (1:1.5). Deployment of these aggregation pheromones on sticky traps resulted in a 1.2- to 3.0-fold increase in the capture of D. minowai adults compared with control traps. In addition, deployment of sticky traps baited with these aggregation pheromones within tea plantations resulted in a noteworthy reduction in the population of adult thrips per 100 leaves, 10 days following trap deployment. The reduction ranged from 29% to 59%, in comparison with the control. CONCLUSION D. minowai larvae produce aggregation pheromones, dodecyl acetate and tetradecyl acetate, that can be useful for controlling tea thrips. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunli Xiu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Hongsheng Pan
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Fengge Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Nanxia Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Fida Hussain Magsi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
10
|
Scarano F, Giannetti D, Trenti F, Giacomazzi F, Vigna J, Guella G, Grasso DA, Haase A. Trail pheromone identification in the ant Crematogaster scutellaris. Sci Rep 2024; 14:7883. [PMID: 38570567 PMCID: PMC10991323 DOI: 10.1038/s41598-024-58383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
In this work, we identified the trail pheromone of the ant Crematogaster scutellaris. We combined gas chromatography-mass spectrometry analysis of extracts from the hind tibia, the location of the respective glands, with automated trail following assays. The study found tridecan-2-ol to be the strongest discriminator between hind tibia and other body part extracts. Tridecan-2-ol elicited trail-following behaviour at concentrations of 1 ng/µL. A separation of the enantiomers showed responses to (R)-tridecan-2-ol already at 0.001 ng/µL and only at a 1000-fold higher concentration for (S)-tridecan-2-ol, suggesting that only the R enantiomer is used by C. scutellaris in its natural environment. We also found strong behavioural responses to 2-dodecanol, a substance that was not detectable in the hind tibia extract of C. scutellaris, but which has been reported to be the trail pheromone of the related species C. castanea. We discuss the contribution of these results to the 'dissection and reconstruction' of strategies and mechanisms underlying the social organization of ants.
Collapse
Affiliation(s)
- Florencia Scarano
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Daniele Giannetti
- Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, Parma, Italy
| | | | - Federico Giacomazzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Jacopo Vigna
- Department of Physics, University of Trento, Trento, Italy
| | | | - Donato A Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, Parma, Italy
| | - Albrecht Haase
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| |
Collapse
|
11
|
Renyard A, Gooding C, Chalissery JM, Petrov J, Gries G. Effects of macro- and micro-nutrients on momentary and season-long feeding responses by select species of ants. Sci Rep 2024; 14:5727. [PMID: 38459134 PMCID: PMC10923885 DOI: 10.1038/s41598-024-56133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Few studies have investigated the relative contribution of specific nutrients to momentary and season-long foraging responses by ants. Using western carpenter ants, Camponotus modoc, and European fire ants, Myrmica rubra, as model species, we: (1) tested preferential consumption of various macro- and micro-nutrients; (2) compared consumption of preferred macro-nutrients; (3) investigated seasonal shifts (late May to mid-September) in nutrient preferences; and (4) tested whether nutrient preferences of C. modoc and M. rubra pertain to black garden ants, Lasius niger, and thatching ants, Formica aserva. In laboratory and field experiments, we measured nutrient consumption by weighing Eppendorf tubes containing aqueous nutrient solutions before and after feeding by ants. Laboratory colonies of C. modoc favored nitrogenous urea and essential amino acids (EAAs), whereas M. rubra colonies favored sucrose. Field colonies of C. modoc and M. rubra preferentially consumed EAAs and sucrose, respectively, with no sustained shift in preferred macro-nutrient over the course of the foraging season. The presence of a less preferred macro-nutrient in a nutrient blend did not diminish the blend's 'appeal' to foraging ants. Sucrose and EAAs singly and in combination were equally consumed by L. niger, whereas F. aserva preferred EAAs. Baits containing both sucrose and EAAs were consistently consumed by the ants studied in this project and should be considered for pest ant control.
Collapse
Affiliation(s)
- Asim Renyard
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Claire Gooding
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jaime M Chalissery
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jonathan Petrov
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
12
|
Freas CA, Spetch ML. Directed retreat and navigational mechanisms in trail following Formica obscuripes. Learn Behav 2024; 52:114-131. [PMID: 37752304 PMCID: PMC10923983 DOI: 10.3758/s13420-023-00604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Ant species exhibit behavioural commonalities when solving navigational challenges for successful orientation and to reach goal locations. These behaviours rely on a shared toolbox of navigational strategies that guide individuals under an array of motivational contexts. The mechanisms that support these behaviours, however, are tuned to each species' habitat and ecology with some exhibiting unique navigational behaviours. This leads to clear differences in how ant navigators rely on this shared toolbox to reach goals. Species with hybrid foraging structures, which navigate partially upon a pheromone-marked column, express distinct differences in their toolbox, compared to solitary foragers. Here, we explore the navigational abilities of the Western Thatching ant (Formica obscuripes), a hybrid foraging species whose navigational mechanisms have not been studied. We characterise their reliance on both the visual panorama and a path integrator for orientation, with the pheromone's presence acting as a non-directional reassurance cue, promoting continued orientation based on other strategies. This species also displays backtracking behaviour, which occurs with a combination of unfamiliar terrestrial cues and the absence of the pheromone, thus operating based upon a combination of the individual mechanisms observed in solitarily and socially foraging species. We also characterise a new form of goalless orientation in these ants, an initial retreating behaviour that is modulated by the forager's path integration system. The behaviour directs disturbed inbound foragers back along their outbound path for a short distance before recovering and reorienting back to the nest.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2113, Australia.
| | - Marcia L Spetch
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Goffinet AJ, Darragh K, Saleh N, Ostwald MM, Buchmann SL, Ramirez SR. Individual Variation in Male Pheromone Production in Xylocopa sonorina Correlates with size and Gland Color. J Chem Ecol 2024; 50:1-10. [PMID: 38110848 DOI: 10.1007/s10886-023-01466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
Sex pheromones are species-specific chemical signals that facilitate the location, identification, and selection of mating partners. These pheromones can vary between individuals, and act as signals of mate quality. Here, we investigate the variation of male pheromones in the mesosomal glands of the large carpenter bee Xylocopa sonorina, within a Northern California population. We tested the hypothesis that morphological traits are correlated with the observed variation in chemical blend composition of these bees. We also conducted behavioral assays to test whether these male pheromones act as long-range attractants to conspecifics. We found that larger males with darker mesosomal glands have a higher pheromone amount in their glands. Our analysis also suggests that this pheromone blend functions as a long-range attractant to both males and females. We show that both male body size and sexual maturation are important factors influencing pheromone abundance, and that this pheromone blend acts as a long-range attractant. We hypothesize that this recorded variation in male pheromone could be important for female choice.
Collapse
Affiliation(s)
- Andrew J Goffinet
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Kathy Darragh
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Nicholas Saleh
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
- School of Natural Sciences, Fresno Pacific University, Fresno, CA, 93702, USA
| | - Madeleine M Ostwald
- Cheadle Center for Biodiversity & Ecological Restoration, University of California, Santa Barbara, CA, 93106, USA
| | - Stephen L Buchmann
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Santiago R Ramirez
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Dias CS, Trivedi M, Volpe G, Araújo NAM, Volpe G. Environmental memory boosts group formation of clueless individuals. Nat Commun 2023; 14:7324. [PMID: 37957196 PMCID: PMC10643543 DOI: 10.1038/s41467-023-43099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The formation of groups of interacting individuals improves performance and fitness in many decentralised systems, from micro-organisms to social insects, from robotic swarms to artificial intelligence algorithms. Often, group formation and high-level coordination in these systems emerge from individuals with limited information-processing capabilities implementing low-level rules of communication to signal to each other. Here, we show that, even in a community of clueless individuals incapable of processing information and communicating, a dynamic environment can coordinate group formation by transiently storing memory of the earlier passage of individuals. Our results identify a new mechanism of indirect coordination via shared memory that is primarily promoted and reinforced by dynamic environmental factors, thus overshadowing the need for any form of explicit signalling between individuals. We expect this pathway to group formation to be relevant for understanding and controlling self-organisation and collective decision making in both living and artificial active matter in real-life environments.
Collapse
Affiliation(s)
- Cristóvão S Dias
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Manish Trivedi
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, UK
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96, Gothenburg, Sweden.
| | - Nuno A M Araújo
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, UK.
| |
Collapse
|
15
|
Buczkowski G. Termite cuticular extracts improve acceptance of bait for controlling invasive Asian needle ants, Brachyponera chinensis. PEST MANAGEMENT SCIENCE 2023; 79:4004-4010. [PMID: 37288874 DOI: 10.1002/ps.7601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND The Asian needle ant, Brachyponera chinensis, is an invasive ant currently spreading in urban and natural habitats throughout the eastern United States. Recent studies have documented the negative impact of B. chinensis on native ecosystems and human health, yet effective control strategies are lacking. Control difficulties are, in part, due to the unique biology of B. chinensis, which is a predatory ant and a termite specialist. Given that subterranean termites are an important nutritional resource for B. chinensis, the current study evaluated the potential of termite cuticular extract to improve the target-specificity and efficacy of commercial bait used for B. chinensis control. RESULTS The efficacy of bait augmented with termite cuticular extracts was evaluated in laboratory and field trials. In laboratory assays, B. chinensis colonies were offered granular bait treated with termite cuticular extract. Results demonstrated that the acceptance of commercial bait is significantly increased by the addition of termite cuticular extract or synthetic (Z)-9-pentacosene, a major component of termite cuticular extract. Foraging activity of Asian needle ants was significantly greater on baits augmented with termite cuticular extract or (Z)-9-pentacosene relative to standard bait. Furthermore, bait augmented with termite cuticular extract worked substantially faster relative to standard bait. To evaluate population effects, field studies were conducted in forested areas invaded by B. chinensis. Bait treated with termite cuticular extract scattered on the forest floor provided rapid control of B. chinensis and ant densities throughout the treated plots declined by 98% within 14 days. CONCLUSION The incorporation of termite cuticular extracts and individual cuticular hydrocarbons such as (Z)-9-pentacosene into traditional baits used for B. chinensis control may offer a novel tool to manage this increasingly problematic invasive ant. © 2023 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
|
16
|
Khajehnejad M, García J, Meyer B. Social Learning versus Individual Learning in the Division of Labour. BIOLOGY 2023; 12:biology12050740. [PMID: 37237552 DOI: 10.3390/biology12050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Division of labour, or the differentiation of the individuals in a collective across tasks, is a fundamental aspect of social organisations, such as social insect colonies. It allows for efficient resource use and improves the chances of survival for the entire collective. The emergence of large inactive groups of individuals in insect colonies sometimes referred to as laziness, has been a puzzling and hotly debated division-of-labour phenomenon in recent years that is counter to the intuitive notion of effectiveness. It has previously been shown that inactivity can be explained as a by-product of social learning without the need to invoke an adaptive function. While highlighting an interesting and important possibility, this explanation is limited because it is not yet clear whether the relevant aspects of colony life are governed by social learning. In this paper, we explore the two fundamental types of behavioural adaptation that can lead to a division of labour, individual learning and social learning. We find that inactivity can just as well emerge from individual learning alone. We compare the behavioural dynamics in various environmental settings under the social and individual learning assumptions, respectively. We present individual-based simulations backed up by analytic theory, focusing on adaptive dynamics for the social paradigm and cross-learning for the individual paradigm. We find that individual learning can induce the same behavioural patterns previously observed for social learning. This is important for the study of the collective behaviour of social insects because individual learning is a firmly established paradigm of behaviour learning in their colonies. Beyond the study of inactivity, in particular, the insight that both modes of learning can lead to the same patterns of behaviour opens new pathways to approach the study of emergent patterns of collective behaviour from a more generalised perspective.
Collapse
Affiliation(s)
- Moein Khajehnejad
- Department of Data Science and Artificial Intelligence, Monash University, Clayton, VIC 3168, Australia
| | - Julian García
- Department of Data Science and Artificial Intelligence, Monash University, Clayton, VIC 3168, Australia
| | - Bernd Meyer
- Department of Data Science and Artificial Intelligence, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
17
|
Avinery R, Aina KO, Dyson CJ, Kuan HS, Betterton MD, Goodisman MAD, Goldman DI. Agitated ants: regulation and self-organization of incipient nest excavation via collisional cues. J R Soc Interface 2023; 20:20220597. [PMID: 37194494 PMCID: PMC10189599 DOI: 10.1098/rsif.2022.0597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Ants are millimetres in scale yet collectively create metre-scale nests in diverse substrates. To discover principles by which ant collectives self-organize to excavate crowded, narrow tunnels, we studied incipient excavation in small groups of fire ants in quasi-two-dimensional arenas. Excavation rates displayed three stages: initially excavation occurred at a constant rate, followed by a rapid decay, and finally a slower decay scaling in time as t-1/2. We used a cellular automata model to understand such scaling and motivate how rate modulation emerges without global control. In the model, ants estimated their collision frequency with other ants, but otherwise did not communicate. To capture early excavation rates, we introduced the concept of 'agitation'-a tendency of individuals to avoid rest if collisions are frequent. The model reproduced the observed multi-stage excavation dynamics; analysis revealed how parameters affected features of multi-stage progression. Moreover, a scaling argument without ant-ant interactions captures tunnel growth power-law at long times. Our study demonstrates how individual ants may use local collisional cues to achieve functional global self-organization. Such contact-based decisions could be leveraged by other living and non-living collectives to perform tasks in confined and crowded environments.
Collapse
Affiliation(s)
- Ram Avinery
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kehinde O. Aina
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| | - Carl J. Dyson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hui-Shun Kuan
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Daniel I. Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
18
|
Social and individual learners use different pathways to success in an ant minisociety. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
19
|
Akhoundi M, Chebbah D, Elissa N, Brun S, Jan J, Lacaze I, Izri A. Volatile Organic Compounds: A Promising Tool for Bed Bug Detection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5214. [PMID: 36982123 PMCID: PMC10048870 DOI: 10.3390/ijerph20065214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The recent decades' resurgence of bed bugs as a public health concern in industrialized countries has driven an increased interest on new sustainable insecticide-free methods to monitor and control these ectoparasites. Current methods of detection rely mainly on visual inspection or canine scent detection, which are methods that are time-consuming, require experience, are non-specific or require costly mission repetitions. Volatile organic compounds (VOCs) are considered an environmentally friendly alternative and a promising approach for bed bug detection. An overview of the released literature on VOCs, their chemical characteristics and their role in bed bugs' intra- and inter-species communications allowed us to highlight the identification of 49 VOCs in Cimex lectularius (23 molecules) and C. hemipterus (26), which are emitted by both sexes during diverse compartments including aggregation (46), mating (11), defense (4), etc., and all life stages including exuviae or dead bed bugs as a principal indicator of infestation. The latter has a great importance for application of these semiochemicals in successful detection and control management of bed bugs and to prevent their further dispersion. This approach has the advantage of more reliability compared to conventional detection methods with no need for repeated inspections, household furniture moving or resident rehousing for bed bugs' VOC detection, which are commonly performed by active or passive sampling with absorbing tubes and analyzed by gas chromatography-based analytical platforms.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Dahlia Chebbah
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
- Service Parisien de Santé Environnementale (SPSE), Sous-Direction de la Santé Environnementale et de la Prévention (SDSEP), Direction de la Santé Publique (DSP)—Mairie de Paris, 75019 Paris, France
| | - Nohal Elissa
- Service Parisien de Santé Environnementale (SPSE), Sous-Direction de la Santé Environnementale et de la Prévention (SDSEP), Direction de la Santé Publique (DSP)—Mairie de Paris, 75019 Paris, France
| | - Sophie Brun
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Julie Jan
- Agence Régionale de Santé (ARS) Île-de-France, 35, Rue de la Gare, CEDEX 19, 75935 Paris, France
| | - Isabelle Lacaze
- Centre Scientifique et Technique du Bâtiment (CSTB), Direction Santé Confort, Division Qualité Sanitaire des Ouvrages, 84, Avenue Jean Jaurès, CEDEX F-77447, 77420 Marne-la-Vallée, France
| | - Arezki Izri
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), 13000 Marseille, France
| |
Collapse
|
20
|
Araújo NAM, Janssen LMC, Barois T, Boffetta G, Cohen I, Corbetta A, Dauchot O, Dijkstra M, Durham WM, Dussutour A, Garnier S, Gelderblom H, Golestanian R, Isa L, Koenderink GH, Löwen H, Metzler R, Polin M, Royall CP, Šarić A, Sengupta A, Sykes C, Trianni V, Tuval I, Vogel N, Yeomans JM, Zuriguel I, Marin A, Volpe G. Steering self-organisation through confinement. SOFT MATTER 2023; 19:1695-1704. [PMID: 36779972 PMCID: PMC9977364 DOI: 10.1039/d2sm01562e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.
Collapse
Affiliation(s)
- Nuno A M Araújo
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Liesbeth M C Janssen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Thomas Barois
- University of Bordeaux, CNRS, LOMA, UMR 5798, F-33400, Talence, France
| | - Guido Boffetta
- Department of Physics and INFN, University of Torino, via Pietro Giuria 1, 10125, Torino, Italy
| | - Itai Cohen
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, New York, USA
| | - Alessandro Corbetta
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Olivier Dauchot
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005, Paris, France
| | - Marjolein Dijkstra
- Soft condensed matter, Department of Physics, Debye institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - William M Durham
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, 31062, AD, France
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Hanneke Gelderblom
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Applied Physics and J. M. Burgers Center for Fluid Dynamics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077, Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, D-14476, Potsdam-Golm, Germany
| | - Marco Polin
- Mediterranean Institute for Advanced Studies, IMEDEA UIB-CSIC, C/Miquel Marqués 21, 07190, Esporles, Spain
- Department of Physics, University of Warwick, Gibbet Hill road, CV4 7AL, Coventry, UK
| | - C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005, Paris, France
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, L-1511, Luxembourg
| | - Cécile Sykes
- Laboratoire de Physique de lÉcole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Vito Trianni
- Institute of Cognitive Sciences and Technologies, CNR, Via San Martino della Battaglia 44, 00185, Rome, Italy
| | - Idan Tuval
- Mediterranean Institute for Advanced Studies, IMEDEA UIB-CSIC, C/Miquel Marqués 21, 07190, Esporles, Spain
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Iker Zuriguel
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Alvaro Marin
- Physics of Fluids Group, Mesa+ Institute, Max Planck Center for Complex Fluid Dynamics and J. M. Burgers Center for Fluid Dynamics, University of Twente, 7500AE, Enschede, The Netherlands.
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
21
|
A Single-Pheromone Model Accounts for Empirical Patterns of Ant Colony Foraging Previously Modeled Using Two Pheromones. COGN SYST RES 2023. [DOI: 10.1016/j.cogsys.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
22
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
23
|
Oberhauser FB, Bogenberger K, Czaczkes TJ. Ants prefer the option they are trained to first. J Exp Biol 2022; 225:286063. [PMID: 36524433 PMCID: PMC10088526 DOI: 10.1242/jeb.243984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The temporal order in which experiences occur can have a profound influence on their salience. Humans and other vertebrates usually memorise the first and last items of a list most readily. Studies on serial position learning in insects, mainly in bees, showed preference for last encountered items. In bees, pheromone presence can also influence motivation, and thus learning. However, neither serial position learning nor the effect of recruitment pheromones on learning have been well investigated in ants. We trained Lasius niger ants to make multiple visits to sucrose on a runway which alternated between lemon or rosemary odour, and the presence or absence of trail pheromone, and then tested for preference between the odours on a Y-maze, in order to investigate the effect of pheromone presence on learning. Pheromone presence did not affect ant choice. However, unexpectedly, the ants strongly preferred the first odour encountered. This was explored by the addition of a familiarisation visit without pheromone or odour. The familiarisation visit disabled or reversed this preference for the first odour encountered, with ants now mostly taking their 'default' preference by choosing the left side of the maze. Our study found no effect of trail pheromone on learning, but a strong yet fragile preference for the first odour experienced. These different preferences could lead to spatial segregation of foraging activity depending on prior experience and might facilitate efficient resource exploitation by colonies.
Collapse
Affiliation(s)
- Felix B Oberhauser
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Katharina Bogenberger
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Tomer J Czaczkes
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
24
|
Notomi Y, Kazawa T, Maezawa S, Kanzaki R, Haupt SS. Use of Visual Information by Ant Species Occurring in Similar Urban Anthropogenic Environments. Zoolog Sci 2022; 39:529-544. [PMID: 36495488 DOI: 10.2108/zs220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Many insects, including ants, are known to respond visually to conspicuous objects. In this study, we compared orientation in an arena containing only a black target beacon as local information in six species of ants of widely varying degree of phylogenic relatedness, foraging strategy, and eye morphology (Aphaenogaster, Brachyponera, Camponotus, Formica, and two Lasius spp.), often found associated in similar urban anthropogenic habitats. Four species of ants displayed orientation toward the beacon, with two orienting toward it directly, while the other two approached it via convoluted paths. The two remaining species did not show any orientation with respect to the beacon. The results did not correlate with morphological parameters of the visual systems and could not be fully interpreted in terms of the species' ecology, although convoluted paths are linked to higher significance of chemical signals. Beacon aiming was shown to be an innate behavior in visually naive Formica workers, which, however, were less strongly attracted to the beacon than older foragers. Thus, despite sharing the same habitats and supposedly having similar neural circuits, even a very simple stimulus-related behavior in the absence of other information can differ widely in ants but is likely an ancestral trait retained especially in species with smaller eyes. The comparative analysis of nervous systems opens the possibility of determining general features of circuits responsible for innate and possibly learned attraction toward particular stimuli.
Collapse
Affiliation(s)
- Yusuke Notomi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Tomoki Kazawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Stephan Shuichi Haupt
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan,
| |
Collapse
|
25
|
Kendall LK, Mola JM, Portman ZM, Cariveau DP, Smith HG, Bartomeus I. The potential and realized foraging movements of bees are differentially determined by body size and sociality. Ecology 2022; 103:e3809. [PMID: 35792515 PMCID: PMC9786665 DOI: 10.1002/ecy.3809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022]
Abstract
Reversing biodiversity declines requires a better understanding of organismal mobility, as movement processes dictate the scale at which species interact with the environment. Previous studies have demonstrated that species foraging ranges, and therefore, habitat use increases with body size. Yet, foraging ranges are also affected by other life-history traits, such as sociality, which influence the need of and ability to detect resources. We evaluated the effect of body size and sociality on potential and realized foraging ranges using a compiled dataset of 383 measurements for 81 bee species. Potential ranges were larger than realized ranges and increased more steeply with body size. Highly eusocial species had larger realized foraging ranges than primitively eusocial or solitary taxa. We contend that potential ranges describe species movement capabilities, whereas realized ranges depict how foraging movements result from interactions between species traits and environmental conditions. Furthermore, the complex communication strategies and large colony sizes in highly eusocial species may facilitate foraging over wider areas in response to resource depletion. Our findings should contribute to a greater understanding of landscape ecology and conservation, as traits that influence movement mediate species vulnerability to habitat loss and fragmentation.
Collapse
Affiliation(s)
- Liam K. Kendall
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| | - John M. Mola
- U.S. Geological Survey, Fort Collins Science CenterFort CollinsColoradoUSA
| | | | | | - Henrik G. Smith
- Centre for Environmental and Climate ScienceLund UniversityLundSweden,Department of BiologyLund UniversityLundSweden
| | | |
Collapse
|
26
|
Drone flocking optimization using NSGA-II and principal component analysis. SWARM INTELLIGENCE 2022. [DOI: 10.1007/s11721-022-00216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Traniello JF, Linksvayer TA, Coto ZN. Social complexity and brain evolution: insights from ant neuroarchitecture and genomics. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100962. [PMID: 36028191 DOI: 10.1016/j.cois.2022.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Brain evolution is hypothesized to be driven by requirements to adaptively respond to environmental cues and social signals. Diverse models describe how sociality may have influenced eusocial insect-brain evolution, but specific impacts of social organization and other selective forces on brain architecture have been difficult to distinguish. Here, we evaluate predictions derived from and/or inferences made by models of social organization concerning the effects of individual and collective behavior on brain size, structure, and function using results of neuroanatomical and genomic studies. In contrast to the predictions of some models, we find that worker brains in socially complex species have great behavioral and cognitive capacity. We also find that colony size, the evolution of worker physical castes, and task specialization affect brain size and mosaicism, supporting the idea that sensory, processing and motor requirements for behavioral performance select for adaptive allometries of functionally specialized brain centers. We review available transcriptomic and comparative genomic studies seeking to elucidate the molecular pathways functionally associated with social life and the genetic changes that occurred during the evolution of social complexity. We discuss ways forward, using comparative neuroanatomy, transcriptomics, and comparative genomics, to distinguish among multiple alternative explanations for the relationship between the evolution of neural systems and social complexity.
Collapse
Affiliation(s)
- James Fa Traniello
- Department of Biology, Boston University, Boston, MA, USA; Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| | | | - Zachary N Coto
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
28
|
Xu H, Yu Y, Gao Y, Hassan A, Jia B, Huang Q. The cGMP-dependent protein kinase gene can regulate trail-following behaviour and locomotion in the termite Reticulitermes chinensis Snyder. INSECT MOLECULAR BIOLOGY 2022; 31:585-592. [PMID: 35506165 DOI: 10.1111/imb.12781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Social behaviours in termites are closely related to the chemical communication between individuals. It is well known that foraging worker termites can use trail pheromones to orient and locomote along trails so as to take food resources back to the nest. However, it is still unclear how termites recognize trail pheromones. Here, we cloned and sequenced the cGMP-dependent protein kinase (PKG) gene from the termite Reticulitermes chinensis Snyder, and then examined the response of termites to trail pheromones after silencing PKG through RNA interference. We found that PKG knockdown impaired termite ability to follow trail pheromones accurately and exhibited irregular behavioural trajectories in response to the trail pheromone in the termite R. chinensis. Our locomotion assays further showed that PKG knockdown significantly increased the turn angle and angular velocity in the termite R. chinensis. These findings help us better understanding the molecular regulatory mechanism of foraging communications in termites.
Collapse
Affiliation(s)
- Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yichun Yu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bao Jia
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- Nanning Institute of Termite Control, Nanning, Guangxi, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
29
|
Hojo MK. Evolution of chemical interactions between ants and their mutualist partners. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100943. [PMID: 35691585 DOI: 10.1016/j.cois.2022.100943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Mutualism is the reciprocal exploitation of interacting participants and is vulnerable to nonrewarding cheating. Ants are dominant insects in most terrestrial ecosystems, and some aphids and lycaenid butterfly species provide them with nutritional nectar rewards and employ ants as bodyguards. In this review, I discuss how chemical communication based on condition-dependent signaling and recognition plasticity regulate the payoff of interacting participants. I argue that the selfishness of both participants explains the signaling and communication among participants and contributes to the stability of these mutualisms. Uncovering the origin and maintenance of mutualistic association of ants will come from future research on ant collective behavior, the genetic and neural basis of cooperation, and a deeper understanding of the costs and benefits of these interactions.
Collapse
Affiliation(s)
- Masaru K Hojo
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
30
|
Nicolis SC, Deneubourg JL. The effect of idiosyncrasy on aggregation in group-living organisms. J Theor Biol 2022; 542:111120. [DOI: 10.1016/j.jtbi.2022.111120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022]
|
31
|
Pulliainen U, Morandin C, Bos N, Sundström L, Schultner E. Social environment affects sensory gene expression in ant larvae. INSECT MOLECULAR BIOLOGY 2022; 31:1-9. [PMID: 34418191 DOI: 10.1111/imb.12732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Social insects depend on communication to regulate social behaviour. This also applies to their larvae, which are commonly exposed to social interactions and can react to social stimulation. However, how social insect larvae sense their environment is not known. Using RNAseq, we characterized expression of sensory-related genes in larvae of the ant Formica fusca, upon exposure to two social environments: isolation without contact to other individuals, and stimulation via the presence of other developing individuals. Expression of key sensory-related genes was higher following social stimulation, and larvae expressed many of the same sensory-related genes as adult ants and larvae of other insects, including genes belonging to the major insect chemosensory gene families. Our study provides first insights into the molecular changes associated with social information perception in social insect larvae.
Collapse
Affiliation(s)
- U Pulliainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - C Morandin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - N Bos
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Biology, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L Sundström
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - E Schultner
- Zoology and Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
32
|
Abstract
Ants have outstanding capacity to mediate inter- and intraspecific interactions by producing structurally diverse metabolites from numerous secretory glands. Since Murray Blum's pioneering studies dating from the 1950s, there has been a growing interest in arthropod toxins as natural products. Over a dozen different alkaloid classes have been reported from approximately 40 ant genera in five subfamilies, with peak diversity within the Myrmicinae tribe Solenopsidini. Most ant alkaloids function as venom, but some derive from other glands with alternative functions. They are used in defense (e.g., alarm, repellants) or offense (e.g., toxins) but also serve as antimicrobials and pheromones. We provide an overview of ant alkaloid diversity and function with an evolutionary perspective. We conclude that more directed integrative research is needed. We suggest that comparative phylogenetics will illuminate compound diversification, while molecular approaches will elucidate genetic origins. Biological context, informed by natural history, remains critical not only for research about focal species, but also to guide applied research.
Collapse
Affiliation(s)
- Eduardo Gonçalves Paterson Fox
- Departamento de Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21044-020, Brazil;
| | - Rachelle M M Adams
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio 43210, USA;
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC 20560, USA
| |
Collapse
|
33
|
Chalissery JM, Gries R, Alamsetti SK, Ardiel MJ, Gries G. Identification of the Trail Pheromone of the Pavement Ant Tetramorium immigrans (Hymenoptera: Formicidae). J Chem Ecol 2021; 48:302-311. [PMID: 34738201 DOI: 10.1007/s10886-021-01317-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/25/2022]
Abstract
Four species of Tetramorium pavement ants are known to guide foraging activities of nestmates via trail pheromones secreted from the poison gland of worker ants, but the trail pheromone of T. immigrans is unknown. Our objectives were to (1) determine whether poison gland extract of T. immigrans workers induces trail-following behavior of nestmates, (2) identify the trail pheromone, and (3) test whether synthetic trail pheromone induces trail-following behavior of workers. In laboratory no-choice bioassays, ants followed poison-gland-extract trails farther than they followed whole-body-extract trails or solvent-control trails. Gas chromatographic-electroantennographic detection (GC-EAD) analyses of poison gland extract revealed a single candidate pheromone component (CPC) that elicited responses from worker ant antennae. The CPC mass spectrum indicated, and an authentic standard confirmed, that the CPC was methyl 2-methoxy-6-methylbenzoate (MMMB). In further laboratory no-choice bioassays, ants followed poison-gland-extract trails (tested at 1 ant equivalent) and synthetic MMMB trails (tested at 0.35 ant equivalents) equally far, indicating that MMMB is the single-component trail pheromone of T. immigrans. Moreover, in laboratory two-choice bioassays, ants followed MMMB trails ~ 21-times farther than solvent-control trails. In field settings, when T. immigrans colonies were offered a choice between two paper strips treated with a synthetic MMMB trail or a solvent-control trail, each leading to an apple bait, the MMMB trails efficiently recruited nestmates to baits.
Collapse
Affiliation(s)
- Jaime M Chalissery
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Santosh K Alamsetti
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Madison J Ardiel
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
34
|
I’Anson Price R, Segers F, Berger A, Nascimento FS, Grüter C. An exploration of the relationship between recruitment communication and foraging in stingless bees. Curr Zool 2021; 67:551-560. [PMID: 34616953 PMCID: PMC8489157 DOI: 10.1093/cz/zoab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
Social information is widely used in the animal kingdom and can be highly adaptive. In social insects, foragers can use social information to find food, avoid danger, or choose a new nest site. Copying others allows individuals to obtain information without having to sample the environment. When foragers communicate information they will often only advertise high-quality food sources, thereby filtering out less adaptive information. Stingless bees, a large pantropical group of highly eusocial bees, face intense inter- and intra-specific competition for limited resources, yet display disparate foraging strategies. Within the same environment there are species that communicate the location of food resources to nest-mates and species that do not. Our current understanding of why some species communicate foraging sites while others do not is limited. Studying freely foraging colonies of several co-existing stingless bee species in Brazil, we investigated if recruitment to specific food locations is linked to 1) the sugar content of forage, 2) the duration of foraging trips, and 3) the variation in activity of a colony from 1 day to another and the variation in activity in a species over a day. We found that, contrary to our expectations, species with recruitment communication did not return with higher quality forage than species that do not recruit nestmates. Furthermore, foragers from recruiting species did not have shorter foraging trip durations than those from weakly recruiting species. Given the intense inter- and intraspecific competition for resources in these environments, it may be that recruiting species favor food resources that can be monopolized by the colony rather than food sources that offer high-quality rewards.
Collapse
Affiliation(s)
- Robbie I’Anson Price
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Centre for Affective Sciences, University of Geneva, Genève 1201, Switzerland
| | - Francisca Segers
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt 60438, Germany
| | - Amelia Berger
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Fabio S Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-901, Brazil
| | - Christoph Grüter
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
35
|
Gao Y, Wen P, Cardé RT, Xu H, Huang Q. In addition to cryptochrome 2, magnetic particles with olfactory co-receptor are important for magnetic orientation in termites. Commun Biol 2021; 4:1121. [PMID: 34556782 PMCID: PMC8460727 DOI: 10.1038/s42003-021-02661-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
The volatile trail pheromone is an ephemeral chemical cue, whereas the geomagnetic field (GMF) provides a stable positional reference. However, it is unclear whether and how the cryptic termites perceive the GMF for orientation in light or darkness until now. Here, we found that the two termite species, Reticulitermes chinensis and Odontotermes formosanus, use the GMF for orientation. Our silencing cryptochrome 2 (Cry2) impaired magnetic orientation in white light but had no significant impact in complete darkness, suggesting that Cry2 can mediate magnetic orientation in termites only under light. Coincidentally, the presence of magnetic particles enabled the magnetic orientation of termites in darkness. When knock-downing the olfactory co-receptor (Orco) to exclude the effect of trail pheromone, unexpectedly, we found that the Orco participated in termite magnetic orientation under both light and darkness. Our findings revealed a novel magnetoreception model depending on the joint action of radical pair, magnetic particle, and olfactory co-receptor. Gao et al. analyze the role of magnetoreceptor candidates cryptochrome 2 (Cry2), magnetic particles and olfactory coreceptor (Orco) in magnetic orientation in two termite species. They report that termites use Cry2 for directional preference in white light, magnetic particles in darkness, and Orco participates in termite magnetic orientation under both light and darkness.
Collapse
Affiliation(s)
- Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, 650223, China
| | - Ring T Cardé
- Department of Entomology, University of California Riverside, Riverside, CA, 92521, USA
| | - Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
36
|
Renyard A, Gries R, Lee J, Chalissery JM, Damin S, Britton R, Gries G. All sugars ain't sweet: selection of particular mono-, di- and trisaccharides by western carpenter ants and European fire ants. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210804. [PMID: 34430049 PMCID: PMC8371376 DOI: 10.1098/rsos.210804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Ants select sustained carbohydrate resources, such as aphid honeydew, based on many factors including sugar type, volume and concentration. We tested the hypotheses (H1-H3) that western carpenter ants, Camponotus modoc, seek honeydew excretions from Cinara splendens aphids based solely on the presence of sugar constituents (H1), prefer sugar solutions containing aphid-specific sugars (H2) and preferentially seek sugar solutions with higher sugar content (H3). We further tested the hypothesis (H4) that workers of both Ca. modoc and European fire ants, Myrmica rubra, selectively consume particular mono-, di- and trisaccharides. In choice bioassays with entire ant colonies, sugar constituents in honeydew (but not aphid-specific sugar) as well as sugar concentration affected foraging decisions by Ca. modoc. Both Ca. modoc and M. rubra foragers preferred fructose to other monosaccharides (xylose, glucose) and sucrose to other disaccharides (maltose, melibiose, trehalose). Conversely, when offered a choice between the aphid-specific trisaccharides raffinose and melezitose, Ca. modoc and M. rubra favoured raffinose and melezitose, respectively. Testing the favourite mono-, di- and trisaccharide head-to-head, both ant species favoured sucrose. While both sugar type and sugar concentration are the ultimate cause for consumption by foraging ants, strong recruitment of nest-mates to superior sources is probably the major proximate cause.
Collapse
Affiliation(s)
- Asim Renyard
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Jan Lee
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Jaime M. Chalissery
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Sebastian Damin
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
37
|
Friedman DA, Tschantz A, Ramstead MJD, Friston K, Constant A. Active Inferants: An Active Inference Framework for Ant Colony Behavior. Front Behav Neurosci 2021; 15:647732. [PMID: 34248515 PMCID: PMC8264549 DOI: 10.3389/fnbeh.2021.647732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
In this paper, we introduce an active inference model of ant colony foraging behavior, and implement the model in a series of in silico experiments. Active inference is a multiscale approach to behavioral modeling that is being applied across settings in theoretical biology and ethology. The ant colony is a classic case system in the function of distributed systems in terms of stigmergic decision-making and information sharing. Here we specify and simulate a Markov decision process (MDP) model for ant colony foraging. We investigate a well-known paradigm from laboratory ant colony behavioral experiments, the alternating T-maze paradigm, to illustrate the ability of the model to recover basic colony phenomena such as trail formation after food location discovery. We conclude by outlining how the active inference ant colony foraging behavioral model can be extended and situated within a nested multiscale framework and systems approaches to biology more generally.
Collapse
Affiliation(s)
- Daniel Ari Friedman
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
- Active Inference Lab, University of California, Davis, Davis, CA, United States
| | - Alec Tschantz
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Maxwell J. D. Ramstead
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Culture, Mind, and Brain Program, McGill University, Montreal, QC, Canada
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
- Spatial Web Foundation, Los Angeles, CA, United States
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Axel Constant
- Theory and Method in Biosciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Wenig K, Bach R, Czaczkes TJ. Hard limits to cognitive flexibility: ants can learn to ignore but not avoid pheromone trails. J Exp Biol 2021; 224:jeb242454. [PMID: 34086906 PMCID: PMC8214833 DOI: 10.1242/jeb.242454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 01/08/2023]
Abstract
Learning allows animals to respond to changes in their environment within their lifespan. However, many responses to the environment are innate, and need not be learned. Depending on the level of cognitive flexibility an animal shows, such responses can either be modified by learning or not. Many ants deposit pheromone trails to resources, and innately follow such trails. Here, we investigated cognitive flexibility in the ant Lasius niger by asking whether ants can overcome their innate tendency and learn to avoid conspecific pheromone trails when these predict a negative stimulus. Ants were allowed to repeatedly visit a Y-maze, one arm of which was marked with a strong but realistic pheromone trail and led to a punishment (electric shock and/or quinine solution), and the other arm of which was unmarked and led to a 1 mol l-1 sucrose reward. After ca. 10 trials, ants stopped relying on the pheromone trail, but even after 25 exposures they failed to improve beyond chance levels. However, the ants did not choose randomly: rather, most ants began to favour just one side of the Y-maze, a strategy which resulted in more efficient food retrieval over time, when compared with the first visits. Even when trained in a go/no-go paradigm which precludes side bias development, ants failed to learn to avoid a pheromone trail. These results show rapid learning flexibility towards an innate social signal, but also demonstrate a rarely seen hard limit to this flexibility.
Collapse
Affiliation(s)
- Katharina Wenig
- Department of Behavioural and Cognitive Biology, University of Vienna, 1090Vienna, Austria
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Richard Bach
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Tomer J. Czaczkes
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
39
|
Goy N, Glaser SM, Grüter C. The adaptive value of tandem communication in ants: Insights from an agent-based model. J Theor Biol 2021; 526:110762. [PMID: 33992692 DOI: 10.1016/j.jtbi.2021.110762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Social animals often share information about the location of resources, such as a food source or a new nest-site. One well-studied communication strategy in ants is tandem running, whereby a leader guides a recruit to a resource. Tandem running is considered an example of animal teaching because a leader adjusts her behaviour and invests time to help another ant to learn the location of a resource more efficiently. Tandem running also has costs, such as waiting inside the nest for a leader and a reduced walking speed. Whether and when these costs outweigh the benefits of tandem running is not well understood. We developed an agent-based simulation model to investigate the conditions that favour communication by tandem running during foraging. We predicted that the spatio-temporal distribution of food sources, colony size and the ratio of scouts and recruits affect colony foraging success. Our results suggest that tandem running is favoured when food sources are hard to find, differ in energetic value and are long lasting. These results mirror the findings of simulations of honeybee communication. Scouts locate food sources faster than tandem followers in some environments, suggesting that tandem running may fulfil the criteria of teaching only in some situations. Furthermore, tandem running was only beneficial above a critical colony size threshold. Taken together, our model suggests that there is a considerable parameter range that favours colonies that do not use communication by tandem running, which could explain why many ants with small colony sizes forage solitarily.
Collapse
Affiliation(s)
- Natascha Goy
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany.
| | - Simone M Glaser
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany; School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BS8 1TQ Bristol, UK
| |
Collapse
|
40
|
Irrational risk aversion in an ant. Anim Cogn 2021; 24:1237-1245. [PMID: 33939043 PMCID: PMC8492575 DOI: 10.1007/s10071-021-01516-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/02/2022]
Abstract
Animals must often decide between exploiting safe options or risky options with a chance for large gains. Both proximate theories based on perceptual mechanisms, and evolutionary ones based on fitness benefits, have been proposed to explain decisions under risk. Eusocial insects represent a special case of risk sensitivity, as they must often make collective decisions based on resource evaluations from many individuals. Previously, colonies of the ant Lasius niger were found to be risk-neutral, but the risk preference of individual foragers was unknown. Here, we tested individual L. niger in a risk sensitivity paradigm. Ants were trained to associate one scent with 0.55 M sucrose solution and another with an equal chance of either 0.1 or 1.0 M sucrose. Preference was tested in a Y-maze. Ants were extremely risk-averse, with 91% choosing the safe option. Based on the psychophysical Weber-Fechner law, we predicted that ants evaluate resources depending on their logarithmic difference. To test this hypothesis, we designed 4 more experiments by varying the relative differences between the alternatives, making the risky option less, equally or more valuable than the safe one. Our results support the logarithmic origin of risk aversion in ants, and demonstrate that the behaviour of individual foragers can be a very poor predictor of colony-level behaviour.
Collapse
|
41
|
Kennedy A, Peng T, Glaser SM, Linn M, Foitzik S, Grüter C. Use of waggle dance information in honey bees is linked to gene expression in the antennae, but not in the brain. Mol Ecol 2021; 30:2676-2688. [PMID: 33742503 DOI: 10.1111/mec.15893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Communication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e., private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression differences in different parts of the nervous system. We trained bees to collect food from sugar water feeders and observed whether they utilize social or private information when exposed to dances for a new food source. We performed transcriptome analysis of four brain parts (11-16 bees per tissue type) critical for cognition: the subesophageal ganglion, the central brain, the mushroom bodies, and the antennal lobes but, unexpectedly, detected no differences between social or private information users. In contrast, we found 413 differentially expressed genes in the antennae, suggesting that variation in sensory perception mediates the decision to use social information. Social information users were characterized by the upregulation of biogenic amine genes, while private information users upregulated several genes coding for odour perception. These results highlight that decision-making in honey bees might also depend on peripheral processes of perception rather than higher-order brain centres of information integration.
Collapse
Affiliation(s)
- Anissa Kennedy
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tianfei Peng
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.,College of Plant Science, Jilin University, Changchun, China
| | - Simone M Glaser
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melissa Linn
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.,School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
42
|
Chang J, Powell S, Robinson EJH, Donaldson-Matasci MC. Nest choice in arboreal ants is an emergent consequence of network creation under spatial constraints. SWARM INTELLIGENCE 2021. [DOI: 10.1007/s11721-021-00187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractBiological transportation networks must balance competing functional priorities. The self-organizing mechanisms used to generate such networks have inspired scalable algorithms to construct and maintain low-cost and efficient human-designed transport networks. The pheromone-based trail networks of ants have been especially valuable in this regard. Here, we use turtle ants as our focal system: In contrast to the ant species usually used as models for self-organized networks, these ants live in a spatially constrained arboreal environment where both nesting options and connecting pathways are limited. Thus, they must solve a distinct set of challenges which resemble those faced by human transport engineers constrained by existing infrastructure. Here, we ask how a turtle ant colony’s choice of which nests to include in a network may be influenced by their potential to create connections to other nests. In laboratory experiments with Cephalotes varians and Cephalotes texanus, we show that nest choice is influenced by spatial constraints, but in unexpected ways. Under one spatial configuration, colonies preferentially occupied more connected nest sites; however, under another spatial configuration, this preference disappeared. Comparing the results of these experiments to an agent-based model, we demonstrate that this apparently idiosyncratic relationship between nest connectivity and nest choice can emerge without nest preferences via a combination of self-reinforcing random movement along constrained pathways and density-dependent aggregation at nests. While this mechanism does not consistently lead to the de-novo construction of low-cost, efficient transport networks, it may be an effective way to expand a network, when coupled with processes of pruning and restructuring.
Collapse
|
43
|
Freas CA, Plowes NJR, Spetch ML. Traveling through light clutter: Path integration and panorama guided navigation in the Sonoran Desert ant, Novomessor cockerelli. Behav Processes 2021; 186:104373. [PMID: 33684462 DOI: 10.1016/j.beproc.2021.104373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 11/15/2022]
Abstract
Foraging ants use multiple navigational strategies, including path integration and visual panorama cues, which are used simultaneously and weighted based upon context, the environment and the species' sensory ecology. In particular, the amount of visual clutter in the habitat predicts the weighting given to the forager's path integrator and surrounding panorama cues. Here, we characterize the individual cue use and cue weighting of the Sonoran Desert ant, Novomessor cockerelli, by testing foragers after local and distant displacement. Foragers attend to both a path-integration-based vector and the surrounding panorama to navigate, on and off foraging routes. When both cues were present, foragers initially oriented to their path integrator alone, yet weighting was dynamic, with foragers abandoning the vector and switching to panorama-based navigation after a few meters. If displaced to unfamiliar locations, experienced foragers travelled almost their full homeward vector (∼85 %) before the onset of search. Through panorama analysis, we show views acquired on-route provide sufficient information for orientation over only short distances, with rapid parallel decreases in panorama similarity and navigational performance after even small local displacements. These findings are consistent with heavy path integrator weighting over the panorama when the local habitat contains few prominent terrestrial cues.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, Alberta, Canada.
| | - Nicola J R Plowes
- Department of Biology, Mesa Community College, Mesa, AZ, United States
| | - Marcia L Spetch
- Department of Psychology, University of Alberta, Alberta, Canada
| |
Collapse
|
44
|
Abstract
The termite nest is one of the architectural wonders of the living world, built by the collective action of workers in a colony. Each nest has several characteristic structural motifs that allow for efficient ventilation, cooling, and traversal. We use tomography to quantify the nest architecture of the African termite Apicotermes lamani, consisting of regularly spaced floors connected by scattered linear and helicoidal ramps. To understand how these elaborate structures are built and arranged, we formulate a minimal model for the spatiotemporal evolution of three hydrodynamic fields-mud, termites, and pheromones-linking environmental physics to collective building behavior using simple local rules based on experimental observations. We find that floors and ramps emerge as solutions of the governing equations, with statistics consistent with observations of A. lamani nests. Our study demonstrates how a local self-reinforcing biotectonic scheme is capable of generating an architecture that is simultaneously adaptable and functional, and likely to be relevant for a range of other animal-built structures.
Collapse
|
45
|
Miller JS. Collective decision-making when quantity is more important than quality: Lessons from a kidnapping social parasite. J Anim Ecol 2021; 90:943-954. [PMID: 33426684 DOI: 10.1111/1365-2656.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
Identifying the general principles that shape mechanisms of collective decision-making requires studies that span a diversity of ecological contexts. However, collective decision-making has only been explored in a handful of systems. Here, I investigate the ecologically mediated costs and benefits of collective decisions by socially parasitic kidnapping ants Temnothorax americanus over where to launch raids to steal host brood. I first investigate their sampling strategies and preferences with choice tests. Using more realistic spatial scales, I confirm the findings of others that colonies use a sequential choice strategy, and do not compare options simultaneously. I then ask which ecological conditions could favour the evolution of this strategy by testing the following hypotheses from optimal foraging and mate choice theories: (a) raiding decisions are time constrained or (b) search payoffs are low due to resource uniformity. Spatial distribution and phenological data on nest contents support the time constraints hypothesis. Host nests contain an optimal ratio of brood and workers for a brief period relative to discovery rates. Colonies therefore benefit from raiding most nests they find in this period rather than deliberating over the best choice, favouring host quantity over quality. The decision strategy for raids uncovered here contrasts with best-of-n collective decision-making found in other systems. These findings demonstrate that ecological constraints on information acquisition can alter how collectives process information.
Collapse
Affiliation(s)
- Julie S Miller
- Ecology & Evolutionary Biology, University of California - Los Angeles, Los Angeles, CA, USA.,Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
46
|
Mouratidis A, Vacas S, Herrero J, Navarro-Llopis V, Dicke M, Tena A. Parasitic wasps avoid ant-protected hemipteran hosts via the detection of ant cuticular hydrocarbons. Proc Biol Sci 2021; 288:20201684. [PMID: 33402070 PMCID: PMC7892424 DOI: 10.1098/rspb.2020.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
One of the most studied and best-known mutualistic relationships between insects is that between ants and phloem-feeding insects. Ants feed on honeydew excreted by phloem-feeding insects and, in exchange, attack the phloem feeders' natural enemies, including parasitic wasps. However, parasitic wasps are under selection to exploit information on hazards and avoid them. Here, we tested whether parasitic wasps detect the previous presence of ants attending colonies of phloem feeders. Behavioural assays demonstrate that wasps left colonies previously attended by ants more frequently than control colonies. This behaviour has a potential cost for the parasitic wasp as females inserted their ovipositor in fewer hosts per colony. In a further bioassay, wasps spent less time on papers impregnated with extracts of the ant cues than on control papers. Gas chromatography coupled with mass spectrometry analyses demonstrated that ants left a blend of cuticular hydrocarbons when they attended colonies of phloem feeders. These cuticular hydrocarbons are deposited passively when ants search for food. Overall, these results suggest, for the first time, that parasitic wasps of honeydew producers detect the previous presence of mutualistic ants through contact infochemicals. We anticipate such interactions to be widespread and to have implications in numerous ecosystems, as phloem feeders are usually tended by ants.
Collapse
Affiliation(s)
- Angelos Mouratidis
- Instituto Valenciano de Investigaciones Agrarias, Plant Protection and Biotechnology Research Center, Moncada, Spain.,Wageningen University, Laboratory of Entomology, Wageningen, The Netherlands
| | - Sandra Vacas
- Centro de Ecología Química Agrícola, Instituto Agroforestal del Mediterráneo, Universitat Politècnica de València, València, Spain
| | - Julieta Herrero
- Instituto Valenciano de Investigaciones Agrarias, Plant Protection and Biotechnology Research Center, Moncada, Spain
| | - Vicente Navarro-Llopis
- Centro de Ecología Química Agrícola, Instituto Agroforestal del Mediterráneo, Universitat Politècnica de València, València, Spain
| | - Marcel Dicke
- Wageningen University, Laboratory of Entomology, Wageningen, The Netherlands
| | - Alejandro Tena
- Instituto Valenciano de Investigaciones Agrarias, Plant Protection and Biotechnology Research Center, Moncada, Spain
| |
Collapse
|
47
|
Mitaka Y, Akino T. A Review of Termite Pheromones: Multifaceted, Context-Dependent, and Rational Chemical Communications. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.595614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Termite colonies, composed of large numbers of siblings, develop an important caste-based division of labor; individuals in these societies interact via intra- or intercaste chemical communications. For more than 50 years, termites have been known to use a variety of pheromones to perform tasks necessary for maintenance of their societies, similar to eusocial hymenopterans. Although trail-following pheromones have been chemically identified in various termites, other types of pheromones have not been elucidated chemically or functionally. In the past decade, however, chemical compositions and biological functions have been successfully identified for several types of termite pheromones; accordingly, the details of the underlying pheromone communications have been gradually revealed. In this review, we summarize both the functions of all termite pheromones identified so far and the chemical interactions among termites and other organisms. Subsequently, we argue how termites developed their sophisticated pheromone communication. We hypothesize that termites have diverted defensive and antimicrobial substances to pheromones associated in caste recognition and caste-specific roles. Furthermore, termites have repeatedly used a pre-existing pheromone or have added supplementary compounds to it in accordance with the social context, leading to multifunctionalization of pre-existing pheromones and emergence of new pheromones. These two mechanisms may enable termites to transmit various context-dependent information with a small number of chemicals, thus resulting in formation of coordinated, complex, and rational chemical communication systems.
Collapse
|
48
|
Silva ANF, Silva CR, Santos REC, Arce CCM, Araújo APA, Cristaldo PF. Resource selection in nasute termite: The role of social information. Ethology 2020. [DOI: 10.1111/eth.13125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Aline Nascimento Filgueira Silva
- Synanthropic Insect Laboratory Department of Agronomy Federal Rural University of Pernambuco Recife Brazil
- Post Graduate Program in Entomology Department of Agronomy Federal Rural University of Pernambuco Recife Brazil
| | - Cátila Regina Silva
- Synanthropic Insect Laboratory Department of Agronomy Federal Rural University of Pernambuco Recife Brazil
| | - Renan Edson Campelo Santos
- Synanthropic Insect Laboratory Department of Agronomy Federal Rural University of Pernambuco Recife Brazil
| | - Carla Cristina Marques Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology University of Neuchâtel Neuchâtel Switzerland
| | - Ana Paula Albano Araújo
- Ecological Interactions Laboratory Post Graduate Program in Ecology and Conservation Federal University of Sergipe São Cristóvão Brazil
| | - Paulo Fellipe Cristaldo
- Synanthropic Insect Laboratory Department of Agronomy Federal Rural University of Pernambuco Recife Brazil
- Post Graduate Program in Entomology Department of Agronomy Federal Rural University of Pernambuco Recife Brazil
| |
Collapse
|
49
|
Gao Y, Huang Q, Xu H. Silencing Orco Impaired the Ability to Perceive Trail Pheromones and Affected Locomotion Behavior in Two Termite Species. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2941-2949. [PMID: 33128448 DOI: 10.1093/jee/toaa248] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Sophisticated social behaviors in termite colonies are mainly regulated via chemical communication of a wide range of pheromones. Trail pheromones play important roles in foraging behavior and building tunnels and nests in termites. However, it is almost unclear how termites perceive trail pheromones. Here, we cloned and sequenced of olfactory co-receptor (Orco) genes from the two termites Reticulitermes chinensis Snyder (Isoptera: Rhinotermitidae) and Odontotermes formosanus (Shiraki) (Isoptera: Termitidae), and then examined their responses to trail pheromones after silencing Orco through RNA interference (RNAi). We found that Orco knockdown impaired their ability to perceive trail pheromones and resulted in the disability of following pheromone trails in the two termite species. Our locomotion behavior assays further showed that Orco knockdown significantly decreased the distance and velocity in the two termite species, but significantly increased the angular velocity and turn angle in the termite R. chinensis. These findings strongly demonstrated that Orco is essential for termites to perceive their trail pheromones, which provides a potential way to control termite pests by damaging olfactory system.
Collapse
Affiliation(s)
- Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
50
|
The Ant Who Cried Wolf? Short-Term Repeated Exposure to Alarm Pheromone Reduces Behavioral Response in Argentine Ants. INSECTS 2020; 11:insects11120871. [PMID: 33302371 PMCID: PMC7762586 DOI: 10.3390/insects11120871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022]
Abstract
Simple Summary A significant challenge of chemical communication between ants is to maintain accurate communication of information in a variety of contexts. Argentine ants use volatile (airborne) compounds for a variety of functions, but one very important function is to elicit alarm via alarm pheromones. Given the importance of accurately responding to this signal, we expected Argentine ants to consistently show an alarm response to repeated exposure of alarm pheromones from their nestmates. However, we instead observed a reduction in their alarm behaviors over time. We speculate that a consistent response to repeated alarm signaling might require reinforcement from an actual alarming stimulus (e.g., the presence of predators or rival colonies). Argentine ants are considered a pest and several integrated pest management regimes use pheromones (i.e., mating disruption, aggregation pheromones, etc.) to reduce pest populations. Our results could be important to consider in the development of such control strategies because if ants habituate to their alarm pheromone over continuous exposure (without actually alarming stimuli) it might prove to be an ineffective strategy to repel them. Abstract In this study we test whether Argentine ants (Linepithema humile) progressively reduce their response to a salient stimulus (alarm pheromone) with increased exposure over time. First, we used a two-chamber olfactometer to demonstrate three focal behaviors of Argentine ants that indicate an alarmed state in response to conspecific alarm pheromone and pure synthetic iridomyrmecin (a dominant component of L. humile alarm pheromone). We then measured how these behaviors changed after repeated exposure to conspecific alarm pheromone from live ants. In addition, we investigate whether there is a difference in the ants’ behavioral response after “short” (3 min) versus “long” (6 min) intervals between treatments. Our results show that Argentine ants do exhibit reduced responses to their own alarm pheromone, temporarily ceasing their response to it after four or five exposures, and this pattern holds whether exposure is repeated after “short” or “long” intervals. We suggest alarm pheromones may be perceived as false alarms unless threatening stimuli warrant a continued state of alarm. These results should be kept in mind while developing pheromone-based integrated pest management strategies.
Collapse
|