1
|
Gu X, Ross PA, Yang Q, Gill A, Umina PA, Hoffmann AA. Influence of genetic and environmental factors on the success of endosymbiont transfers in pest aphids. Environ Microbiol 2024; 26:e16704. [PMID: 39358981 DOI: 10.1111/1462-2920.16704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
There is increasing interest in exploring how endosymbionts could be useful in pest control, including in aphids, which can carry a diversity of endosymbionts. Endosymbionts often have a large impact on host traits, and their presence can be self-sustaining. Identifying useful host-endosymbiont combinations for pest control is facilitated by the transfer of specific endosymbionts into target species, particularly if the species lacks the endosymbiont. Here, we complete a comprehensive literature review, which included 56 relevant papers on endosymbiont transfer experiments in aphids, to uncover factors that might influence transfer success. We then report on our own microinjection attempts of diverse facultative endosymbionts from a range of donor species into three agriculturally important aphid species as recipients: the green peach aphid (Myzus persicae), bird cherry-oat aphid (Rhopalosiphum padi), and Russian wheat aphid (Diuraphis noxia). Combining this information, we consider reasons that impact the successful establishment of lines carrying transferred endosymbionts. These include a lack of stability in donors, deleterious effects on host fitness, the absence of plant-based (versus vertical) transmission, high genetic variation in the endosymbiont, and susceptibility of an infection to environmental factors. Taking these factors into account should help in increasing success rates in future introductions.
Collapse
Affiliation(s)
- Xinyue Gu
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Alex Gill
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Paul A Umina
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
- Cesar Australia, Brunswick, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Zhang H, Zhu Y, Wang Y, Jiang L, Shi X, Cheng G. Microbial interactions shaping host attractiveness: insights into dynamic behavioral relationships. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101275. [PMID: 39332621 DOI: 10.1016/j.cois.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/18/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Insects discern the presence of hosts (host plants) by integrating chemosensory, gustatory, and visual cues, with olfaction playing a pivotal role in this process. Among these factors, volatile signals produced by host-associated microbial communities significantly affect insect attraction. Microorganisms are widely and abundantly found on the surfaces of humans, plants, and insects. Notably, these microorganisms can metabolize compounds from the host surface and regulate the production of characteristic volatiles, which may guide the use of host microorganisms to modulate insect behavior. Essentially, the attraction of hosts to insects is intricately linked to the presence of their symbiotic microorganisms. This review underscores the critical role of microorganisms in shaping the dynamics of attractiveness between insects and their hosts.
Collapse
Affiliation(s)
- Hong Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southwest United Graduate School, Kunming 650092, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southwest United Graduate School, Kunming 650092, China.
| |
Collapse
|
3
|
Sugiyama R, Moriyama M, Koga R, Fukatsu T. Host range of naturally and artificially evolved symbiotic bacteria for a specific host insect. mBio 2024; 15:e0134224. [PMID: 39082826 PMCID: PMC11389372 DOI: 10.1128/mbio.01342-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 09/12/2024] Open
Abstract
Diverse insects are intimately associated with specific symbiotic bacteria, where host and symbiont are integrated into an almost inseparable biological entity. These symbiotic bacteria usually exhibit host specificity, uncultivability, reduced genome size, and other peculiar traits relevant to their symbiotic lifestyle. How host-symbiont specificity is established at the very beginning of symbiosis is of interest but poorly understood. To gain insight into the evolutionary issue, we adopted an experimental approach using the recently developed evolutionary model of symbiosis between the stinkbug Plautia stali and Escherichia coli. Based on the laboratory evolution of P. stali-E. coli mutualism, we selected ΔcyaA mutant of E. coli as an artificial symbiont of P. stali that has established mutualism by a single mutation. In addition, we selected a natural cultivable symbiont of P. stali of relatively recent evolutionary origin. These artificial and natural symbiotic bacteria of P. stali were experimentally inoculated to symbiont-deprived newborn nymphs of diverse stinkbug species. Strikingly, the mutualistic E. coli was unable to establish infection and support growth and survival of all the stinkbug species except for P. stali, uncovering that host specificity can be established at a very early stage of symbiotic evolution. Meanwhile, the natural symbiont was able to establish infection and support growth and survival of several stinkbug species in addition to P. stali, unveiling that a broader host range of the symbiont has evolved in nature. Based on these findings, we discuss what factors are relevant to the establishment of host specificity in the evolution of symbiosis.IMPORTANCEHow does host-symbiont specificity emerge at the very beginning of symbiosis? This question is difficult to address because it is generally difficult to directly observe the onset of symbiosis. However, recent development of experimental evolutionary approaches to symbiosis has brought about a breakthrough. Here we tackled this evolutionary issue using a symbiotic Escherichia coli created in laboratory and a natural Pantoea symbiont, which are both mutualistic to the stinkbug Plautia stali. We experimentally replaced essential symbiotic bacteria of diverse stinkbugs with the artificial and natural symbionts of P. stali and evaluated whether the symbiotic bacteria, which evolved for a specific host, can establish infection and support the growth and survival of heterospecific hosts. Strikingly, the artificial symbiont showed strict host specificity to P. stali, whereas the natural symbiont was capable of symbiosis with diverse stinkbugs, which provide insight into how host-symbiont specificity can be established at early evolutionary stages of symbiosis.
Collapse
Affiliation(s)
- Ryuga Sugiyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Joly-Kukla C, Stachurski F, Duhayon M, Galon C, Moutailler S, Pollet T. Temporal dynamics of the Hyalomma marginatum-borne pathogens in southern France. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100213. [PMID: 39399650 PMCID: PMC11470478 DOI: 10.1016/j.crpvbd.2024.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Spatio-temporal scales have a clear influence on microbial community distribution and diversity and should thus be applied to study the dynamics of microorganisms. The invasive tick species Hyalomma marginatum has recently become established in southern France. It may carry pathogens of medical and veterinary interest including the Crimean-Congo haemorrhagic fever virus, Rickettsia aeschlimannii, Theileria equi and Anaplasma phagocytophilum. Pathogenic communities of H. marginatum have been identified and their spatial distribution characterized, but their temporal dynamics remain unknown. Hyalomma marginatum ticks were collected from hosts at monthly intervals from February to September 2022 in a site in southern France to study their presence and temporal dynamics. Of the 281 ticks analysed, we detected pathogens including R. aeschlimannii, Anaplasma spp. and T. equi with infection rates reaching 47.0%, 4.6% and 11.0%, respectively. A total of 14.6% of ticks were infected with at least Theileria or Anaplasma, with monthly fluctuations ranging from 2.9% to 28.6%. Strong temporal patterns were observed for each pathogen detected, particularly for R. aeschlimannii, whose infection rates increased dramatically at the beginning of summer, correlated with monthly mean temperatures at the site. Based on these results, we hypothesise that R. aeschlimannii may be a secondary symbiont of H. marginatum and could be involved in the stress response to temperature increase and mediate thermal tolerance of H. marginatum. Analysis of monthly and seasonal fluctuations in pathogens transmitted by H. marginatum led us to conclude that the risk of infection is low but persists throughout the period of H. marginatum activity, with a notable increase in summer.
Collapse
Affiliation(s)
- Charlotte Joly-Kukla
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700, Maisons-Alfort, France
| | - Frédéric Stachurski
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
| | - Maxime Duhayon
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700, Maisons-Alfort, France
| | - Thomas Pollet
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
5
|
Shang F, Ding BY, Niu J, Lu JM, Xie XC, Li CZ, Zhang W, Pan D, Jiang RX, Wang JJ. microRNA maintains nutrient homeostasis in the symbiont-host interaction. Proc Natl Acad Sci U S A 2024; 121:e2406925121. [PMID: 39196627 PMCID: PMC11388328 DOI: 10.1073/pnas.2406925121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/30/2024] [Indexed: 08/29/2024] Open
Abstract
Endosymbionts provide essential nutrients for hosts, promoting growth, development, and reproduction. However, the molecular regulation of nutrient transport from endosymbiont to host is not well understood. Here, we used bioinformatic analysis, RNA-Sequencing, luciferase assays, RNA immunoprecipitation, and in situ hybridization to show that a bacteriocyte-distributed MRP4 gene (multidrug resistance-associated protein 4) is negatively regulated by a host (aphid)-specific microRNA (miR-3024). Targeted metabolomics, microbiome analysis, vitamin B6 (VB6) supplements, 3D modeling/molecular docking, in vitro binding assays (voltage clamp recording and microscale thermophoresis), and functional complementation of Escherichia coli were jointly used to show that the miR-3024/MRP4 axis controls endosymbiont (Serratia)-produced VB6 transport to the host. The supplementation of miR-3024 increased the mortality of aphids, but partial rescue was achieved by providing an external source of VB6. The use of miR-3024 as part of a sustainable aphid pest-control strategy was evaluated by safety assessments in nontarget organisms (pollinators, predators, and entomopathogenic fungi) using virus-induced gene silencing assays and the expression of miR-3024 in transgenic tobacco. The supplementation of miR-3024 suppresses MRP4 expression, restricting the number of membrane channels, inhibiting VB6 transport, and ultimately killing the host. Under aphids facing stress conditions, the endosymbiont titer is decreased, and the VB6 production is also down-regulated, while the aphid's autonomous inhibition of miR-3024 enhances the expression of MRP4 and then increases the VB6 transport which finally ensures the VB6 homeostasis. The results confirm that miR-3024 regulates nutrient transport in the endosymbiont-host system and is a suitable target for sustainable pest control.
Collapse
Affiliation(s)
- Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Ming Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xiu-Cheng Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chuan-Zhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Rui-Xu Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Kho JW, Jung M, Lee DH. Effects of the symbiotic bacteria, Caballeronia insecticola, on the life history parameters of Riptortus pedestris (Hemiptera: Alydidae) and their implications for the host population growth. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:5. [PMID: 39417594 PMCID: PMC11483876 DOI: 10.1093/jisesa/ieae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
This study aimed to investigate the effects of symbiosis on the life history of host insects and address their implications at the host population level. We evaluated the effects of symbiotic bacteria Caballeronia insecticola on its host Riptortus pedestris (Fabricus) (Hemiptera: Alydidae) from cohorts for nymphal development, adult survivorship, and female reproduction. Then, life table parameters were compared between symbiotic and apo-symbiotic groups, and the effects of symbiosis on the abundance of R. pedestris were simulated for varying proportions of symbiotic individuals in host populations. We found that symbiosis significantly accelerated the nymphal development and reproductive maturation of females. However, symbiosis incurred survival cost on adult females, reducing their longevity by 28.6%. Nonetheless, symbiotic females laid significantly greater numbers of eggs than the apo-symbiotic during early adult ages. This early reproductive investment negated the adverse effect of their reduced longevity, resulting in the mean lifetime fecundity to not significantly differ between the 2 groups. Indeed, total cohort fecundity of the symbiotic group was 1.3-fold greater than that of the apo-symbiotic group. Life table analysis demonstrated shorter generation time and greater population growth rate in the symbiotic population. Finally, the simulation model results indicate that an increase in the proportion of symbiotic R. pedestris favored the population growth, increasing the population size by 1.9 times for every 25% increase in the proportion of symbiotic individuals. Our study demonstrates that symbiont-mediated changes in the life history parameters of host individuals favor the host population growth, despite substantial reduction in the female longevity.
Collapse
Affiliation(s)
- Jung-Wook Kho
- Department of Life Sciences, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Minhyung Jung
- Department of Life Sciences, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Doo-Hyung Lee
- Department of Life Sciences, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
7
|
Santana TDD, Rodrigues TM, Andrade LDA, Santos ER, Ardisson-Araújo DMP. Three picorna-like viruses found associated with the spider mite, Tetranychus truncatus (Acari: Tetranychidae). J Invertebr Pathol 2024; 206:108169. [PMID: 39019394 DOI: 10.1016/j.jip.2024.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Herbivorous arthropods, such as mites and insects, host a variety of microorganisms that significantly influence their ecology and evolution. While insect viruses have been extensively studied, our understanding of the diversity and composition of mite viromes and the interactions with mite hosts remains limited. The Asian spider mite, Tetranychus truncatus Ehara (Acari: Tetranychidae), a major agricultural pest, has not yet been reported to harbor any viruses. Here, using publicly available RNA-Seq data, we identified and characterized three picorna-like viruses associated with T. truncatus: Tetranychus truncatus-associated iflavirus 1 (TtAIV-1), Tetranychus truncatus-associated picorna-like virus 1 (TtAV-1), and Tetranychus truncatus-associated picorna-like virus 2 (TtAV-2). TtAIV-1 has a typical Iflaviridae genome structure with a single ORF, representing the first iflavirus associated with the Tetranychus genus. TtAV-1 and TtAV-2 exhibit bicistronic arrangements similar to dicistroviruses and other picorna-like viruses, with complex secondary structures in their non-coding regions. Phylogenetic analysis places TtAIV-1 within Iflaviridae, possibly as a new species, while TtAV-1 and TtAV-2 form distinct clades within unclassified picorna-like viruses, suggesting new families within Picornavirales. We analyzed in silico the presence and abundance of these viruses in T. truncatus across four bioproject SRAs, mostly finding them co-associated, with viral reads reaching up to 30% of total reads. Their presence and abundance varied by mite treatment and origin, with no significant impact from Wolbachia infection or abamectin exposure, although TtAV-2 was absent in abamectin-treated mites. Temperature influenced virus abundance, and variations were observed among Chinese mite populations based on geography and host plant association. Our findings offer insights into picorna-like virus diversity and dynamics in T. truncatus, revealing potential roles in mite biology and suggesting applications for mite population control, thereby enhancing agricultural productivity and food security.
Collapse
Affiliation(s)
| | - Thiago Magalhães Rodrigues
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Lucas de Araujo Andrade
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Ethiane R Santos
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Daniel M P Ardisson-Araújo
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF 70910-900, Brazil.
| |
Collapse
|
8
|
Dorai APS, Umina PA, Chirgwin E, Yang Q, Gu X, Thia J, Hoffmann A. Novel transinfections of Rickettsiella do not affect insecticide tolerance in Myzus persicae, Rhopalosiphum padi, or Diuraphis noxia (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1377-1384. [PMID: 38935037 PMCID: PMC11318624 DOI: 10.1093/jee/toae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Aphids (Hemiptera: Aphidoidea) are economically important crop pests worldwide. Because of growing issues with insecticide resistance and environmental contamination by insecticides, alternate methods are being explored to provide aphid control. Aphids contain endosymbiotic bacteria that affect host fitness and could be targeted as potential biocontrol agents, but such novel strategies should not impact the effectiveness of traditional chemical control. In this work, we used a novel endosymbiont transinfection to examine the impact of the endosymbiont Rickettsiella viridis on chemical tolerance in 3 important agricultural pest species of aphid: Myzus persicae (Sulzer) (Hemiptera: Aphididae), Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae), and Diuraphis noxia (Mordvilko ex Kurdjumov) (Hemiptera: Aphididae). We tested tolerance to the commonly used insecticides alpha-cypermethrin, bifenthrin, and pirimicarb using a leaf-dip bioassay. We found no observed effect of this novel endosymbiont transinfection on chemical tolerance, suggesting that the strain of Rickettsiella tested here could be used as a biocontrol agent without affecting sensitivity to insecticides. This may allow Rickettsiella transinfections to be used in combination with chemical applications for pest control. The impacts of other endosymbionts on insecticide tolerance should be considered, along with tests on multiple aphid clones with different inherent levels of chemical tolerance.
Collapse
Affiliation(s)
- Ashritha Prithiv Sivaji Dorai
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul A Umina
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Cesar Australia, Brunswick, VIC 3056, Australia
| | | | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xinyue Gu
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joshua Thia
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Li J, Ni B, Wu Y, Yang Y, Mu D, Wu K, Zhang A, Du Y, Li Q. The cultivable gut bacteria Enterococcus mundtii promotes early-instar larval growth of Conogethes punctiferalis via enhancing digestive enzyme activity. PEST MANAGEMENT SCIENCE 2024. [PMID: 39072862 DOI: 10.1002/ps.8346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Gut bacteria are crucial in influencing insect development and even phenotypic plasticity. The yellow peach moth Conogethes punctiferalis, as a significant borer pest, has been the subject of limited reports regarding the structural and diversification changes in its gut microbiota during feeding, and their potential impacts on the growth and development of the host insects. RESULTS This study, employing 16S rRNA sequencing, demonstrates distinct shifts in the larvae gut microbiome of C. punctiferalis between different feeding stages, highlighting a pronounced diversity in the early-instar with Enterococcus as a predominant genus in laboratory populations. Through in vitro cultivation and sequencing, three bacterial strains - Micrococcus sp., Brevibacterium sp. and Enterococcus mundtii - were isolated and characterized. Bioassays revealed that E. mundtii-infused corn significantly boosts early-instar larval growth, enhancing both body length and weight. Quantitative PCR and spectrophotometry confirmed a higher abundance of E. mundtii in younger larvae, correlating with increased digestive enzyme activity and total protein levels. CONCLUSION This study reveals the heightened gut microbiota diversity in early instars of C. punctiferalis larvae, highlighting that Enterococcus represent a predominant bacteria in laboratory populations. In vitro cultivation and bioassays unequivocally demonstrate the significant role of the cultivable gut bacteria E. mundtii in promoting the growth of early-instar larva. These findings provide a solid theoretical foundation for advancing the comprehension of the intricate interactions between gut microbiota and insect hosts, as well as for the development of eco-friendly pest control technologies based on targeted manipulation of insect gut microbial communities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiayu Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Boqing Ni
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yanan Wu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yueyue Yang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Dongli Mu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - KaiNing Wu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Aihuan Zhang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yanli Du
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Qian Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
10
|
Holt JR, Cavichiolli de Oliveira N, Medina RF, Malacrinò A, Lindsey ARI. Insect-microbe interactions and their influence on organisms and ecosystems. Ecol Evol 2024; 14:e11699. [PMID: 39041011 PMCID: PMC11260886 DOI: 10.1002/ece3.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Department of EntomologyTexas A&M University, Minnie Bell Heep CenterCollege StationTexasUSA
| | - Antonino Malacrinò
- Department of AgricultureUniversità Degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
| | | |
Collapse
|
11
|
Łukasik P, Kolasa MR. With a little help from my friends: the roles of microbial symbionts in insect populations and communities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230122. [PMID: 38705185 PMCID: PMC11070262 DOI: 10.1098/rstb.2023.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/14/2023] [Indexed: 05/07/2024] Open
Abstract
To understand insect abundance, distribution and dynamics, we need to understand the relevant drivers of their populations and communities. While microbial symbionts are known to strongly affect many aspects of insect biology, we lack data on their effects on populations or community processes, or on insects' evolutionary responses at different timescales. How these effects change as the anthropogenic effects on ecosystems intensify is an area of intense research. Recent developments in sequencing and bioinformatics permit cost-effective microbial diversity surveys, tracking symbiont transmission, and identification of functions across insect populations and multi-species communities. In this review, we explore how different functional categories of symbionts can influence insect life-history traits, how these effects could affect insect populations and their interactions with other species, and how they may affect processes and patterns at the level of entire communities. We argue that insect-associated microbes should be considered important drivers of insect response and adaptation to environmental challenges and opportunities. We also outline the emerging approaches for surveying and characterizing insect-associated microbiota at population and community scales. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michał R. Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
12
|
Kolp MR, de Anda Acosta Y, Brewer W, Nichols HL, Goldstein EB, Tallapragada K, Parker BJ. Pathogen-microbiome interactions and the virulence of an entomopathogenic fungus. Appl Environ Microbiol 2024; 90:e0229323. [PMID: 38786361 PMCID: PMC11218631 DOI: 10.1128/aem.02293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus called Pandora neoaphidis in the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance against Pandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show that Pandora can acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCE Entomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales-an important but understudied group of fungi.
Collapse
Affiliation(s)
- Matthew R. Kolp
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Richard A. Gillespie College of Veterinary Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA
| | | | - William Brewer
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Holly L. Nichols
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Keertana Tallapragada
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
| | - Benjamin J. Parker
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
13
|
Roldán EL, Stelinski LL, Pelz-Stelinski KS. Reduction of Wolbachia in Diaphorina citri (Hemiptera: Liviidae) increases phytopathogen acquisition and decreases fitness. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:733-749. [PMID: 38701242 DOI: 10.1093/jee/toae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Wolbachia pipientis is a maternally inherited intracellular bacterium that infects a wide range of arthropods. Wolbachia can have a significant impact on host biology and development, often due to its effects on reproduction. We investigated Wolbachia-mediated effects in the Asian citrus psyllid, Diaphorina citri Kuwayama, which transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease. Diaphorina citri are naturally infected with Wolbachia; therefore, investigating Wolbachia-mediated effects on D. citri fitness and CLas transmission required artificial reduction of this endosymbiont with the application of doxycycline. Doxycycline treatment of psyllids reduced Wolbachia infection by approximately 60% in both male and female D. citri. Psyllids treated with doxycycline exhibited higher CLas acquisition in both adults and nymphs as compared with negative controls. In addition, doxycycline-treated psyllids exhibited decreased fitness as measured by reduced egg and nymph production as well as adult emergence as compared with control lines without the doxycycline treatment. Our results indicate that Wolbachia benefits D. citri by improving fitness and potentially competes with CLas by interfering with phytopathogen acquisition. Targeted manipulation of endosymbionts in this phytopathogen vector may yield disease management tools.
Collapse
Affiliation(s)
- Erik L Roldán
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Kirsten S Pelz-Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| |
Collapse
|
14
|
Gimmi E, Wallisch J, Vorburger C. Ecological divergence despite common mating sites: Genotypes and symbiotypes shed light on cryptic diversity in the black bean aphid species complex. Heredity (Edinb) 2024; 132:320-330. [PMID: 38745070 PMCID: PMC11167045 DOI: 10.1038/s41437-024-00687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Different host plants represent ecologically dissimilar environments for phytophagous insects. The resulting divergent selection can promote the evolution of specialized host races, provided that gene flow is reduced between populations feeding on different plants. In black bean aphids belonging to the Aphis fabae complex, several morphologically cryptic taxa have been described based on their distinct host plant preferences. However, host choice and mate choice are largely decoupled in these insects: they are host-alternating and migrate between specific summer host plants and shared winter hosts, with mating occurring on the shared hosts. This provides a yearly opportunity for gene flow among aphids using different summer hosts, and raises the question if and to what extent the ecologically defined taxa are reproductively isolated. Here, we analyzed a geographically and temporally structured dataset of microsatellite genotypes from A. fabae that were mostly collected from their main winter host Euonymus europaeus, and additionally from another winter host and fourteen summer hosts. The data reveals multiple, strongly differentiated genetic clusters, which differ in their association with different summer and winter hosts. The clusters also differ in the frequency of infection with two heritable, facultative endosymbionts, separately hinting at reproductive isolation and divergent ecological selection. Furthermore, we found evidence for occasional hybridization among genetic clusters, with putative hybrids collected more frequently in spring than in autumn. This suggests that similar to host races in other phytophagous insects, both prezygotic and postzygotic barriers including selection against hybrids maintain genetic differentiation among A. fabae taxa, despite a common mating habitat.
Collapse
Affiliation(s)
- Elena Gimmi
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
- D-USYS, Department of Environmental Systems Science, ETH Zürich, Switzerland.
| | - Jesper Wallisch
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- D-USYS, Department of Environmental Systems Science, ETH Zürich, Switzerland
| |
Collapse
|
15
|
Mulio SÅ, Zwolińska A, Klejdysz T, Prus‐Frankowska M, Michalik A, Kolasa M, Łukasik P. Limited variation in microbial communities across populations of Macrosteles leafhoppers (Hemiptera: Cicadellidae). ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13279. [PMID: 38855918 PMCID: PMC11163331 DOI: 10.1111/1758-2229.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Microbial symbionts play crucial roles in insect biology, yet their diversity, distribution, and temporal dynamics across host populations remain poorly understood. In this study, we investigated the spatio-temporal distribution of bacterial symbionts within the widely distributed and economically significant leafhopper genus Macrosteles, with a focus on Macrosteles laevis. Using host and symbiont marker gene amplicon sequencing, we explored the intricate relationships between these insects and their microbial partners. Our analysis of the cytochrome oxidase subunit I (COI) gene data revealed several intriguing findings. First, there was no strong genetic differentiation across M. laevis populations, suggesting gene flow among them. Second, we observed significant levels of heteroplasmy, indicating the presence of multiple mitochondrial haplotypes within individuals. Third, parasitoid infections were prevalent, highlighting the complex ecological interactions involving leafhoppers. The 16S rRNA data confirmed the universal presence of ancient nutritional endosymbionts-Sulcia and Nasuia-in M. laevis. Additionally, we found a high prevalence of Arsenophonus, another common symbiont. Interestingly, unlike most previously studied species, M. laevis exhibited only occasional cases of infection with known facultative endosymbionts and other bacteria. Notably, there was no significant variation in symbiont prevalence across different populations or among sampling years within the same population. Comparatively, facultative endosymbionts such as Rickettsia, Wolbachia, Cardinium and Lariskella were more common in other Macrosteles species. These findings underscore the importance of considering both host and symbiont dynamics when studying microbial associations. By simultaneously characterizing host and symbiont marker gene amplicons in large insect collections, we gain valuable insights into the intricate interplay between insects and their microbial partners. Understanding these dynamics contributes to our broader comprehension of host-microbe interactions in natural ecosystems.
Collapse
Affiliation(s)
- Sandra Åhlén Mulio
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Agnieszka Zwolińska
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
| | - Tomasz Klejdysz
- Institute of Plant Protection – National Research InstituteResearch Centre for Registration of AgrochemicalsPoznańPoland
| | - Monika Prus‐Frankowska
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Michał Kolasa
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
16
|
Gu M, Lv S, Hu M, Yang Z, Xiao Y, Wang X, Liang P, Zhang L. Sphingomonas bacteria could serve as an early bioindicator for the development of chlorantraniliprole resistance in Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105891. [PMID: 38685253 DOI: 10.1016/j.pestbp.2024.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
The fall armyworm (Spodoptera frugiperda) was found to have invaded China in December 2018, and in just one year, crops in 26 provinces were heavily affected. Currently, the most effective method for emergency control of fulminant pests is to use of chemical pesticides. Recently, most fall armyworm populations in China were begining to exhibite low level resistance to chlorantraniliprole. At present, it is not possible to sensitively reflect the low level resistance of S. frugiperda by detecting target mutation and detoxification enzyme activity. In this study we found that 12 successive generations of screening with chlorantraniliprole caused S. frugiperda to develop low level resistance to this insecticide, and this phenotype was not attribute to genetic mutations in S. frugiperda, but rather to a marked increase in the relative amount of the symbiotic bacteria Sphingomonas. Using FISH and qPCR assays, we determined the amount of Sphingomonas in the gut of S. frugiperda and found Sphingomonas accumulation to be highest in the 3rd-instar larvae. Additionally, Sphingomonas was observed to provide a protective effect to against chlorantraniliprole stress to S. frugiperda. With the increase of the resistance to chlorantraniliprole, the abundance of bacteria also increased, we propose Sphingomonas monitoring could be adapted into an early warning index for the development of chlorantraniliprole resistance in S. frugiperda populations, such that timely measures can be taken to delay or prevent the widespread propagation of resistance to this highly useful agricultural chemical in S. frugiperda field populations.
Collapse
Affiliation(s)
- Meng Gu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shenglan Lv
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mengfan Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ziyi Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuying Xiao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Liang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Gonzalez-Gonzalez A, Cabrera N, Rubio-Meléndez ME, Sepúlveda DA, Ceballos R, Fernández N, Francis F, Figueroa CC, Ramirez CC. Facultative endosymbionts modulate the aphid reproductive performance on wheat cultivars differing in contents of benzoxazinoids. PEST MANAGEMENT SCIENCE 2024; 80:1949-1956. [PMID: 38088471 DOI: 10.1002/ps.7932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 03/12/2024]
Abstract
BACKGROUND Facultative bacterial endosymbionts have the potential to influence the interactions between aphids, their natural enemies, and host plants. Among the facultative symbionts found in populations of the grain aphid Sitobion avenae in central Chile, the bacterium Regiella insecticola is the most prevalent. In this study, we aimed to investigate whether infected and cured aphid lineages exhibit differential responses to wheat cultivars containing varying levels of the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), which is a xenobiotic compound produced by plants. Specifically, we examined the reproductive performance responses of the most frequently encountered genotypes of Sitobion avenae when reared on wheat seedlings expressing low, medium, and high concentrations of DIMBOA. RESULTS Our findings reveal that the intrinsic rate of population increase (rm ) in cured lineages of Sitobion avenae genotypes exhibits a biphasic pattern, characterized by the lowest rm and an extended time to first reproduction on wheat seedlings with medium levels of DIMBOA. In contrast, the aphid genotypes harbouring Regiella insecticola display idiosyncratic responses, with the two most prevalent genotypes demonstrating improved performance on seedlings featuring an intermediate content of DIMBOA compared to their cured counterparts. CONCLUSION This study represents the first investigation into the mediating impact of facultative endosymbionts on aphid performance in plants exhibiting varying DIMBOA contents. These findings present exciting prospects for identifying novel targets for aphid control by manipulating the presence of aphid symbionts. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Angelica Gonzalez-Gonzalez
- Centre for Molecular and Functional Ecology, Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Nuri Cabrera
- Centre for Molecular and Functional Ecology, Institute of Biological Sciences, University of Talca, Talca, Chile
| | | | - Daniela A Sepúlveda
- Centre for Molecular and Functional Ecology, Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Ricardo Ceballos
- Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Chillán, Chile
| | - Natalí Fernández
- Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Chillán, Chile
| | - Frederic Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Christian C Figueroa
- Centre for Molecular and Functional Ecology, Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Claudio C Ramirez
- Centre for Molecular and Functional Ecology, Institute of Biological Sciences, University of Talca, Talca, Chile
| |
Collapse
|
18
|
Shi PQ, Wang L, Chen XY, Wang K, Wu QJ, Turlings TCJ, Zhang PJ, Qiu BL. Rickettsia transmission from whitefly to plants benefits herbivore insects but is detrimental to fungal and viral pathogens. mBio 2024; 15:e0244823. [PMID: 38315036 PMCID: PMC10936170 DOI: 10.1128/mbio.02448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Bacterial endosymbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction, and stress tolerance. How endosymbionts may affect the interactions between plants and insect herbivores is still largely unclear. Here, we show that endosymbiotic Rickettsia belli can provide mutual benefits also outside of their hosts when the sap-sucking whitefly Bemisia tabaci transmits them to plants. This transmission facilitates the spread of Rickettsia but is shown to also enhance the performance of the whitefly and co-infesting caterpillars. In contrast, Rickettsia infection enhanced plant resistance to several pathogens. Inside the plants, Rickettsia triggers the expression of salicylic acid-related genes and the two pathogen-resistance genes TGA 2.1 and VRP, whereas they repressed genes of the jasmonic acid pathway. Performance experiments using wild type and mutant tomato plants confirmed that Rickettsia enhances the plants' suitability for insect herbivores but makes them more resistant to fungal and viral pathogens. Our results imply that endosymbiotic Rickettsia of phloem-feeding insects affects plant defenses in a manner that facilitates their spread and transmission. This novel insight into how insects can exploit endosymbionts to manipulate plant defenses also opens possibilities to interfere with their ability to do so as a crop protection strategy. IMPORTANCE Most insects are associated with symbiotic bacteria in nature. These symbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction as well as stress tolerance. Rickettsia is one important symbiont to the agricultural pest whitefly Bemisia tabaci. Here, for the first time, we revealed that the persistence of Rickettsia symbionts in tomato leaves significantly changed the defense pattern of tomato plants. These changes benefit both sap-feeding and leaf-chewing herbivore insects, such as increasing the fecundity of whitefly adults, enhancing the growth and development of the noctuid Spodoptera litura, but reducing the pathogenicity of Verticillium fungi and TYLCV virus to tomato plants distinctively. Our study unraveled a new horizon for the multiple interaction theories among plant-insect-bacterial symbionts.
Collapse
Affiliation(s)
- Pei-Qiong Shi
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Lei Wang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Xin-Yi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Qing-Jun Wu
- Institute of Vegetables & Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ted C. J. Turlings
- FARCE Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Peng-Jun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Huangzhou, China
| | - Bao-Li Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| |
Collapse
|
19
|
Sun Y, Hao Y, Wang S, Chen X. Changes in the bacterial communities of Harmonia axyridis (Coleoptera: Coccinellidae) in response to long-term cold storage and progressive loss of egg viability in cold-stored beetles. Front Microbiol 2024; 15:1276668. [PMID: 38533331 PMCID: PMC10964723 DOI: 10.3389/fmicb.2024.1276668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteria have a profound influence on life history and reproduction of numerous insects, while the associations between hosts and bacteria are substantially influenced by environmental pressures. Cold storage is crucial for extending the shelf life of insects used as tools for biological control, but mostly causes detrimental effects. In this study, we observed a great decrease in egg hatch rate of cold-stored Harmonia axyridis during the later oviposition periods. Furthermore, most eggs produced by their F1 offspring exhibited complete loss of hatchability. We hypothesized that long-term exposure to cold may greatly alter the bacterial community within the reproductive tracts of H. axyridis, which may be an important factor contributing to the loss of egg viability. Through sequencing of the 16S rRNA gene, we discovered considerable changes in the bacterial structure within the reproductive tracts of female cold-stored beetles (LCS_F) compared to non-stored beetles (Control_F), with a notable increase in unclassified_f_Enterobacteriaceae in LCS_F. Furthermore, in accordance with the change of egg hatchability, we observed a slight variation in the microbial community of eggs produced by cold-stored beetles in early (Egg_E) and later (Egg_L) oviposition periods as well as in eggs produced by their F1 offspring (Egg_F1). Functional predictions of the microbial communities revealed a significant decrease in the relative abundance of substance dependence pathway in LCS_F. Moreover, this pathway exhibited relatively lower abundance levels in both Egg_L and Egg_F1 compared to Egg_E. These findings validate that long-term cold storage can greatly modify the bacterial composition within H. axyridis, thereby expanding our understanding of the intricate bacteria-insect host interactions.
Collapse
Affiliation(s)
- Yuanxing Sun
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | | | | | | |
Collapse
|
20
|
Donner SH, Slingerland M, Beekman MM, Comte A, Dicke M, Zwaan BJ, Pannebakker BA, Verhulst EC. Aphid populations are frequently infected with facultative endosymbionts. Environ Microbiol 2024; 26:e16599. [PMID: 38459641 DOI: 10.1111/1462-2920.16599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
The occurrence of facultative endosymbionts has been studied in many commercially important crop pest aphids, but their occurrence and effects in non-commercial aphid species in natural populations have received less attention. We screened 437 aphid samples belonging to 106 aphid species for the eight most common facultative aphid endosymbionts. We found one or more facultative endosymbionts in 53% (56 of 106) of the species investigated. This likely underestimates the situation in the field because facultative endosymbionts are often present in only some colonies of an aphid species. Oligophagous aphid species carried facultative endosymbionts significantly more often than monophagous species. We did not find a significant correlation between ant tending and facultative endosymbiont presence. In conclusion, we found that facultative endosymbionts are common among aphid populations. This study is, to our knowledge, the first of its kind in the Netherlands and provides a basis for future research in this field. For instance, it is still unknown in what way many of these endosymbionts affect their hosts, which is important for determining the importance of facultative endosymbionts to community dynamics.
Collapse
Affiliation(s)
- S Helena Donner
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Marijn Slingerland
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Mariska M Beekman
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Arthur Comte
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Bart A Pannebakker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Eveline C Verhulst
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
21
|
Cheng Z, Liu Q, Huang X. Partial Correspondence between Host Plant-Related Differentiation and Symbiotic Bacterial Community in a Polyphagous Insect. Animals (Basel) 2024; 14:283. [PMID: 38254452 PMCID: PMC10812459 DOI: 10.3390/ani14020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Host plants play a vital role in insect population differentiation, while symbiotic associations between bacteria and insects are ubiquitous in nature. However, existing studies have given limited attention to the connection between host-related differentiation and symbiotic bacterial communities in phytophagous insects. In this study, we collected 58 samples of Aphis odinae from different host plants in southern China and constructed phylogenetic trees to investigate their differentiation in relation to host plants. We also selected aphid samples from the five most preferred host plants and analyzed their symbiotic bacterial composition using Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The phylogeny and symbiotic bacterial community structure of A. odinae populations on different host plants showed that samples from Triadica sebifera (Euphorbiaceae) had a consistent presence of Wolbachia as the predominant secondary symbiont and suggested the possibility of undergoing differentiation. Conversely, although differentiation was observed in samples from Rhus chinensis (Anacardiaceae), no consistent presence of predominant secondary symbionts was found. Additionally, the samples from Heptapleurum heptaphyllum (Araliaceae) consistently carried Serratia, but no host differentiation was evident. In summary, this study reveals a partial correspondence between symbiotic bacterial communities and host-related differentiation in A. odinae. The findings contribute to our understanding of the microevolutionary influencing the macroevolutionary relationships between bacterial symbionts and phytophagous insects. The identification of specific symbionts associated with host-related differentiation provides valuable insights into the intricate dynamics of insect-bacteria interactions.
Collapse
Affiliation(s)
| | | | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.C.); (Q.L.)
| |
Collapse
|
22
|
Yasuda Y, Inoue H, Hirose Y, Nakabachi A. Highly Reduced Complementary Genomes of Dual Bacterial Symbionts in the Mulberry Psyllid Anomoneura mori. Microbes Environ 2024; 39:n/a. [PMID: 39245568 PMCID: PMC11427311 DOI: 10.1264/jsme2.me24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
The genomes of obligately host-restricted bacteria suffer from accumulating mildly deleterious mutations, resulting in marked size reductions. Psyllids (Hemiptera) are phloem sap-sucking insects with a specialized organ called the bacteriome, which typically harbors two vertically transmitted bacterial symbionts: the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria) and a secondary symbiont that is phylogenetically diverse among psyllid lineages. The genomes of several Carsonella lineages were revealed to be markedly reduced (158-174 kb), AT-rich (14.0-17.9% GC), and structurally conserved with similar gene inventories devoted to synthesizing essential amino acids that are scarce in the phloem sap. However, limited genomic information is currently available on secondary symbionts. Therefore, the present study investigated the genomes of the bacteriome-associated dual symbionts, Secondary_AM (Gammaproteobacteria) and Carsonella_AM, in the mulberry psyllid Anomoneura mori (Psyllidae). The results obtained revealed that the Secondary_AM genome is as small and AT-rich (229,822 bp, 17.3% GC) as those of Carsonella lineages, including Carsonella_AM (169,120 bp, 16.2% GC), implying that Secondary_AM is an evolutionarily ancient obligate mutualist, as is Carsonella. Phylogenomic ana-lyses showed that Secondary_AM is sister to "Candidatus Psyllophila symbiotica" of Cacopsylla spp. (Psyllidae), the genomes of which were recently reported (221-237 kb, 17.3-18.6% GC). The Secondary_AM and Psyllophila genomes showed highly conserved synteny, sharing all genes for complementing the incomplete tryptophan biosynthetic pathway of Carsonella and those for synthesizing B vitamins. However, sulfur assimilation and carotenoid-synthesizing genes were only retained in Secondary_AM and Psyllophila, respectively, indicating ongoing gene silencing. Average nucleotide identity, gene ortholog similarity, genome-wide synteny, and substitution rates suggest that the Secondary_AM/Psyllophila genomes are more labile than Carsonella genomes.
Collapse
Affiliation(s)
- Yuka Yasuda
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology
| |
Collapse
|
23
|
Renoz F. The nutritional dimension of facultative bacterial symbiosis in aphids: Current status and methodological considerations for future research. CURRENT RESEARCH IN INSECT SCIENCE 2023; 5:100070. [PMID: 38222793 PMCID: PMC10787254 DOI: 10.1016/j.cris.2023.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Aphids are valuable models for studying the functional diversity of bacterial symbiosis in insects. In addition to their ancestral obligate nutritional symbiont Buchnera aphidicola, these insects can host a myriad of so-called facultative symbionts. The diversity of these heritable bacterial associates is now well known, and some of the ecologically important traits associated with them have been well documented. Some twenty years ago, it was suggested that facultative symbionts could play an important role in aphid nutrition, notably by improving feeding performance on specific host plants, thus influencing the adaptation of these insects to host plants. However, the underlying mechanisms have never been elucidated, and the nutritional role that facultative symbionts might perform in aphids remains enigmatic. In this opinion piece, I put forward a series of arguments in support of the hypothesis that facultative symbionts play a central role in aphid nutrition and emphasize methodological considerations for testing this hypothesis in future work. In particular, I hypothesize that the metabolic capacities of B. aphidicola alone may not always be able to counterbalance the nutritional deficiencies of phloem sap. The association with one or several facultative symbionts with extensive metabolic capabilities would then be necessary to buffer the insect from host plant-derived nutrient deficiencies, thus enabling it to gain access to certain host plants.
Collapse
Affiliation(s)
- François Renoz
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
24
|
Patel V, Lynn-Bell N, Chevignon G, Kucuk RA, Higashi CHV, Carpenter M, Russell JA, Oliver KM. Mobile elements create strain-level variation in the services conferred by an aphid symbiont. Environ Microbiol 2023; 25:3333-3348. [PMID: 37864320 DOI: 10.1111/1462-2920.16520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
Heritable, facultative symbionts are common in arthropods, often functioning in host defence. Despite moderately reduced genomes, facultative symbionts retain evolutionary potential through mobile genetic elements (MGEs). MGEs form the primary basis of strain-level variation in genome content and architecture, and often correlate with variability in symbiont-mediated phenotypes. In pea aphids (Acyrthosiphon pisum), strain-level variation in the type of toxin-encoding bacteriophages (APSEs) carried by the bacterium Hamiltonella defensa correlates with strength of defence against parasitoids. However, co-inheritance creates difficulties for partitioning their relative contributions to aphid defence. Here we identified isolates of H. defensa that were nearly identical except for APSE type. When holding H. defensa genotype constant, protection levels corresponded to APSE virulence module type. Results further indicated that APSEs move repeatedly within some H. defensa clades providing a mechanism for rapid evolution in anti-parasitoid defences. Strain variation in H. defensa also correlates with the presence of a second symbiont Fukatsuia symbiotica. Predictions that nutritional interactions structured this coinfection were not supported by comparative genomics, but bacteriocin-containing plasmids unique to co-infecting strains may contribute to their common pairing. In conclusion, strain diversity, and joint capacities for horizontal transfer of MGEs and symbionts, are emergent players in the rapid evolution of arthropods.
Collapse
Affiliation(s)
- Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Roy A Kucuk
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | | | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
25
|
Zeng B, Zhang F, Liu YT, Wu SF, Bass C, Gao CF. Symbiotic bacteria confer insecticide resistance by metabolizing buprofezin in the brown planthopper, Nilaparvata lugens (Stål). PLoS Pathog 2023; 19:e1011828. [PMID: 38091367 PMCID: PMC10718449 DOI: 10.1371/journal.ppat.1011828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Buprofezin, a chitin synthesis inhibitor, is widely used to control several economically important insect crop pests. However, the overuse of buprofezin has led to the evolution of resistance and exposed off-target organisms present in agri-environments to this compound. As many as six different strains of bacteria isolated from these environments have been shown to degrade buprofezin. However, whether insects can acquire these buprofezin-degrading bacteria from soil and enhance their own resistance to buprofezin remains unknown. Here we show that field strains of the brown planthopper, Nilaparvata lugens, have acquired a symbiotic bacteria, occurring naturally in soil and water, that provides them with resistance to buprofezin. We isolated a symbiotic bacterium, Serratia marcescens (Bup_Serratia), from buprofezin-resistant N. lugens and showed it has the capacity to degrade buprofezin. Buprofezin-susceptible N. lugens inoculated with Bup_Serratia became resistant to buprofezin, while antibiotic-treated N. lugens became susceptible to this insecticide, confirming the important role of Bup_Serratia in resistance. Sequencing of the Bup_Serratia genome identified a suite of candidate genes involved in the degradation of buprofezin, that were upregulated upon exposure to buprofezin. Our findings demonstrate that S. marcescens, an opportunistic pathogen of humans, can metabolize the insecticide buprofezin and form a mutualistic relationship with N. lugens to enhance host resistance to buprofezin. These results provide new insight into the mechanisms underlying insecticide resistance and the interactions between bacteria, insects and insecticides in the environment. From an applied perspective they also have implications for the control of highly damaging crop pests.
Collapse
Affiliation(s)
- Bin Zeng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People’s Republic of China
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Fan Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People’s Republic of China
| | - Ya-Ting Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People’s Republic of China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People’s Republic of China
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People’s Republic of China
| |
Collapse
|
26
|
Mouillaud T, Berger A, Buysse M, Rahola N, Daron J, Agbor J, Sango SN, Neafsey DE, Duron O, Ayala D. Limited association between Wolbachia and Plasmodium falciparum infections in natural populations of the major malaria mosquito Anopheles moucheti. Evol Appl 2023; 16:1999-2006. [PMID: 38143905 PMCID: PMC10739076 DOI: 10.1111/eva.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/26/2023] Open
Abstract
Since the discovery of natural malaria vector populations infected by the endosymbiont bacterium Wolbachia, a renewed interest has arisen for using this bacterium as an alternative for malaria control. Among naturally infected mosquitoes, Anopheles moucheti, a major malaria mosquito in Central Africa, exhibits one of the highest prevalences of Wolbachia infection. To better understand whether this maternally inherited bacterium could be used for malaria control, we investigated Wolbachia influence in An. moucheti populations naturally infected by the malaria parasite Plasmodium falciparum. To this end, we collected mosquitoes in a village from Cameroon, Central Africa, where this mosquito is the main malaria vector. We found that the prevalence of Wolbachia bacterium was almost fixed in the studied mosquito population, and was higher than previously recorded. We also quantified Wolbachia in whole mosquitoes and dissected abdomens, confirming that the bacterium is also elsewhere than in the abdomen, but at lower density. Finally, we analyzed the association of Wolbachia presence and density on P. falciparum infection. Wolbachia density was slightly higher in mosquitoes infected with the malaria parasite than in uninfected mosquitoes. However, we observed no correlation between the P. falciparum and Wolbachia densities. In conclusion, our study indicates that naturally occurring Wolbachia infection is not associated to P. falciparum development within An. moucheti mosquitoes.
Collapse
Affiliation(s)
| | - Audric Berger
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
| | - Marie Buysse
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
- Montpellier Ecology and Evolution of Disease Network (MEEDiN)MontpellierFrance
| | - Nil Rahola
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
| | - Josquin Daron
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
| | - Jean‐Pierre Agbor
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de DoualaDoualaCameroon
| | - Sandrine N. Sango
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de DoualaDoualaCameroon
| | - Daniel E. Neafsey
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Infectious Disease and Microbiome ProgramBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Olivier Duron
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
- Montpellier Ecology and Evolution of Disease Network (MEEDiN)MontpellierFrance
| | - Diego Ayala
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
- Medical Entomology UnitInstitut Pasteur de MadagascarAntananarivoMadagascar
| |
Collapse
|
27
|
Peng L, Hoban J, Joffe J, Smith AH, Carpenter M, Marcelis T, Patel V, Lynn-Bell N, Oliver KM, Russell JA. Cryptic community structure and metabolic interactions among the heritable facultative symbionts of the pea aphid. J Evol Biol 2023; 36:1712-1730. [PMID: 37702036 DOI: 10.1111/jeb.14216] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
Most insects harbour influential, yet non-essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi-species nature raises intriguing questions on roles for symbiont-symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species-defined symbiont community structure across US populations of the pea aphid, Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co-infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co-infection trends. To test whether within-host metabolic interactions predict common versus rare strain-defined communities, we leveraged the high relatedness of our dominant, community-defined symbiont strains vs. 12 pea aphid-derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts-Serratia symbiotica and Rickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligate Buchnera symbiont genomes, Serratia and Rickettsiella emerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi-party mutualism within their nutrient-limited, phloem-feeding hosts. Recent, complementary gene inactivation, within the biotin pathways of Serratia and Rickettsiella, raises further questions on the origins of mutualisms and host-symbiont interdependencies.
Collapse
Affiliation(s)
- Linyao Peng
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jessica Hoban
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Tracy Marcelis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Du L, Gao X, Zhao L, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J. Assessment of the risk of imidaclothiz to the dominant aphid parasitoid Binodoxys communis (Hymenoptera: Braconidae). ENVIRONMENTAL RESEARCH 2023; 238:117165. [PMID: 37739156 DOI: 10.1016/j.envres.2023.117165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The neonicotinoid of imidaclothiz insecticide with low resistance and high efficiency, has great potential for application in pest control in specifically cotton field. In this systematically evaluate the effects of sublethal doses of imidaclothiz (LC10: 11.48 mg/L; LC30: 28.03 mg/L) on the biology, transcriptome, and microbiome of Binodoxys communis, the predominant primary parasitic natural enemy of aphids. The findings indicated that imidaclothiz has significant deleterious effects on the survival rate, parasitic rate, and survival time of B. communis. Additionally, there was a marked reduction in the survival rate and survival time of the F1 generation, that is, the negative effect of imidaclothiz on B. communis was continuous and trans-generational. Transcriptome analysis revealed that imidaclothiz treatment elicited alterations in the expression of genes associated with energy and detoxification metabolism. In addition, 16S rRNA analysis revealed a significant increase in the relative abundance of Rhodococcus and Pantoea, which are associated with detoxification metabolism, due to imidaclothiz exposure. These findings provide evidence that B. communis may regulate gene expression in conjunction with symbiotic bacteria to enhance adaptation to imidaclothiz. Finally, this study precise evaluation of imidaclothiz's potential risk to B. communis and provides crucial theoretical support for increasing the assessment of imidaclothiz in integrated pest management.
Collapse
Affiliation(s)
- Lingen Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Likang Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
29
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
30
|
Liu W, Xia X, Hoffmann AA, Ding Y, Fang JC, Yu H. Evolution of Wolbachia reproductive and nutritional mutualism: insights from the genomes of two novel strains that double infect the pollinator of dioecious Ficus hirta. BMC Genomics 2023; 24:657. [PMID: 37914998 PMCID: PMC10621080 DOI: 10.1186/s12864-023-09726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Wolbachia is a genus of maternally inherited endosymbionts that can affect reproduction of their hosts and influence metabolic processes. The pollinator, Valisia javana, is common in the male syconium of the dioecious fig Ficus hirta. Based on a high-quality chromosome-level V. javana genome with PacBio long-read and Illumina short-read sequencing, we discovered a sizeable proportion of Wolbachia sequences and used these to assemble two novel Wolbachia strains belonging to supergroup A. We explored its phylogenetic relationship with described Wolbachia strains based on MLST sequences and the possibility of induction of CI (cytoplasmic incompatibility) in this strain by examining the presence of cif genes known to be responsible for CI in other insects. We also identified mobile genetic elements including prophages and insertion sequences, genes related to biotin synthesis and metabolism. A total of two prophages and 256 insertion sequences were found. The prophage WOjav1 is cryptic (structure incomplete) and WOjav2 is relatively intact. IS5 is the dominant transposon family. At least three pairs of type I cif genes with three copies were found which may cause strong CI although this needs experimental verification; we also considered possible nutritional effects of the Wolbachia by identifying genes related to biotin production, absorption and metabolism. This study provides a resource for further studies of Wolbachia-pollinator-host plant interactions.
Collapse
Affiliation(s)
- Wanzhen Liu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xue Xia
- Institute of Plant Protection, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Yamei Ding
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
31
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
32
|
Gong G, Hong Y, Wang X, De Mandal S, Zafar J, Huang L, Jin F, Xu X. Nicotine perturbs the microbiota of brown planthopper (Nilaparvata lugens stål Hemiptera: Delphinidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115383. [PMID: 37634480 DOI: 10.1016/j.ecoenv.2023.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Bacterial symbionts exhibiting co-evolutionary patterns with insect hosts play a vital role in the nutrient synthesis, metabolism, development, reproduction, and immunity of insects. The brown planthopper (BPH) has a strong ability to adapt to various environmental stresses and can develop resistance to broad-spectrum insecticides. We aimed to investigate whether gut symbionts of BPH play a major role in the detoxification of insecticides and host fitness in unfavorable environments. Nicotine-treated rice plants were exposed to BPH (early stage) and the gut microbiome of the emerging female adults were analyzed using high throughput sequencing (HTS). Nicotine administration altered the diversity and community structure of BPH symbionts with significant increases in bacterial members such as Microbacteriaceae, Comamondaceae, Enterobacteriaceae, and these changes may be associated with host survival strategies in adverse environments. Furthermore, the in-vitro study showed that four intestinal bacterial strains of BPH (Enterobacter NLB1, Bacillus cereus NL1, Ralstonia NLG26, and Delftia NLG11) could degrade nicotine when grown in a nicotine-containing medium, with the highest degradation (71%) observed in Delftia NLG11. RT-qPCR and ELISA analysis revealed an increased expression level of CYP6AY1 and P450 enzyme activities in Delftia NLG11, respectively. CYP6AY1 increased by 20% under the action of Delftia and nicotine, while P450 enzyme activity increased by 18.1%. After CYP6AY1 interference, nicotine tolerance decreased, and the mortality rate reached 76.65% on the first day and 100% on the third day. Moreover, Delftia NLG11 helped axenic BPHs to increase their survival rate when fed nicotine in the liquid-diet sac (LDS) feeding system. Compared with axenic BPHs, the survival rate improved by 25.11% on day 2% and 6.67% on day 3. These results revealed an altered gut microbiota and a cooperative relationship between Delftia NLG11 and CYP6AY1 in nicotine-treated BPH, suggesting that insects can adapt to a hostile environment by interacting with their symbionts and providing a new idea for integrated pest management strategies.
Collapse
Affiliation(s)
- Gu Gong
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Yingying Hong
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Xuemei Wang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Surajit De Mandal
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Junaid Zafar
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Ling Huang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China.
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|
33
|
Liu Y, Liu J, Zhang X, Yun Y. Diversity of Bacteria Associated with Guts and Gonads in Three Spider Species and Potential Transmission Pathways of Microbes within the Same Spider Host. INSECTS 2023; 14:792. [PMID: 37887804 PMCID: PMC10607309 DOI: 10.3390/insects14100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Microbial symbiosis plays a crucial role in the ecological and evolutionary processes of animals. It is well known that spiders, with their unique and diverse predatory adaptations, assume an indispensable role in maintaining ecological balance and the food chain. However, our current understanding of spider microbiomes remains relatively limited. The gut microbiota and gonad microbiota of spiders can both potentially influence their physiology, ecology, and behavior, including aspects such as digestion, immunity, reproductive health, and reproductive behavior. In the current study, based on high-throughput sequencing of the 16S rRNA V3 and V4 regions, we detected the gut and gonad microbiota communities of three spider species captured from the same habitat, namely, Eriovixia cavaleriei, Larinioides cornutus, and Pardosa pseudoannulata. In these three species, we observed that, at the phylum level classification, the gut and gonad of E. cavaleriei are primarily composed of Proteobacteria, while those of L. cornutus and P. pseudoannulata are primarily composed of Firmicutes. At the genus level of classification, we identified 372 and 360 genera from the gut and gonad bacterial communities. It is noteworthy that the gut and gonad bacterial flora of E. cavaleriei and L. cornutus were dominated by Wolbachia and Spiroplasma. Results show that there were no differences in microbial communities between females and males of the same spider species. Furthermore, there is similarity between the gut and ovary microbial communities of female spiders, implying a potential avenue for microbial transmission between the gut and gonad within female spiders. By comprehensively studying these two microbial communities, we can establish the theoretical foundation for exploring the relationship between gut and gonad microbiota and their host, as well as the mechanisms through which microbes exert their effects.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jia Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaopan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
- Centre for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
34
|
Sessitsch A, Wakelin S, Schloter M, Maguin E, Cernava T, Champomier-Verges MC, Charles TC, Cotter PD, Ferrocino I, Kriaa A, Lebre P, Cowan D, Lange L, Kiran S, Markiewicz L, Meisner A, Olivares M, Sarand I, Schelkle B, Selvin J, Smidt H, van Overbeek L, Berg G, Cocolin L, Sanz Y, Fernandes WL, Liu SJ, Ryan M, Singh B, Kostic T. Microbiome Interconnectedness throughout Environments with Major Consequences for Healthy People and a Healthy Planet. Microbiol Mol Biol Rev 2023; 87:e0021222. [PMID: 37367231 PMCID: PMC10521359 DOI: 10.1128/mmbr.00212-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.
Collapse
Affiliation(s)
| | | | | | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Tomislav Cernava
- University of Southampton, Faculty of Environmental and Life Sciences, Southampton, United Kingdom
| | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | | | - Aicha Kriaa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pedro Lebre
- University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- University of Pretoria, Pretoria, South Africa
| | - Lene Lange
- LL-BioEconomy, Valby, Copenhagen, Denmark
| | | | - Lidia Markiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Immunology and Food Microbiology, Olsztyn, Poland
| | - Annelein Meisner
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Inga Sarand
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Tallinn, Estonia
| | | | | | - Hauke Smidt
- Wageningen University and Research, Laboratory of Microbiology, Wageningen, The Netherlands
| | - Leo van Overbeek
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | | | | | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | - S. J. Liu
- Chinese Academy of Sciences, Institute of Microbiology, Beijing, China
| | - Matthew Ryan
- Genetic Resources Collection, CABI, Egham, United Kingdom
| | - Brajesh Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
35
|
Peng X, Wang H, Yang Z. Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa. INSECTS 2023; 14:757. [PMID: 37754725 PMCID: PMC10532318 DOI: 10.3390/insects14090757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
(1) Background: Leptocybe invasa (Hymenoptera: Eulophidae) is a global invasive pest that seriously damages eucalyptus plants and has caused serious harm to forestry production in many countries. Two genotypically distinct lineages of L. invasa have been detected outside of Australia, namely, lineage A and lineage B. However, the composition and abundance of endosymbiotic bacteria in L. invasa are still unclear between lineages. Therefore, the purpose of this study was to compare the bacterial communities in female adults of L. invasa of different lineages distributed in the same domain; (2) Methods: The PacBio Sequel II platform was used to compare bacterial community composition between lineages of L. invasa by sequencing the V1-V9 region of the 16S rRNA gene, and fluorescence quantitative PCR was used to compare the relative expression of Rickettsia between lineages of L. invasa; (3) Results: A total of 437 operational taxonomic units (OTUs) were obtained. These OTUs were subdivided into 20 phyla, 32 classes, 77 orders, 129 families, and 217 genera. At the genus level, the dominant bacteria in lineage A and lineage B were Rickettsia and Bacteroides, respectively. There were differences in the bacterial community of L. invasa between lineages, and the abundance and relative expression of Rickettsia in lineage A were significantly higher than those in lineage B; (4) Conclusions: There were differences in the bacterial community of L. invasa between lineages, and the abundance and relative expression of Rickettsia in lineage A were significantly higher than those in lineage B.
Collapse
Affiliation(s)
| | | | - Zhende Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; (X.P.); (H.W.)
| |
Collapse
|
36
|
Zytynska SE, Sturm S, Hawes C, Weisser WW, Karley A. Floral presence and flower identity alter cereal aphid endosymbiont communities on adjacent crops. J Appl Ecol 2023; 60:1409-1423. [PMID: 38601947 PMCID: PMC11005096 DOI: 10.1111/1365-2664.14426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/18/2023] [Indexed: 04/12/2024]
Abstract
Floral plantings adjacent to crops fields can recruit populations of natural enemies by providing flower nectar and non-crop prey to increase natural pest regulation. Observed variation in success rates might be due to changes in the unseen community of endosymbionts hosted by many herbivorous insects, of which some can confer resistance to natural enemies, for example, parasitoid wasps. Reduced insect control may occur if highly protective symbiont combinations increase in frequency via selection effects, and this is expected to be stronger in lower diversity systems.We used a large-scale field trial to analyse the bacterial endosymbiont communities hosted by cereal aphids Sitobion avenae collected along transects into strip plots of barley plants managed by either conventional or integrated (including floral field margins and reduced inputs) methods. In addition, we conducted an outdoor pot experiment to analyse endosymbionts in S. avenae aphids collected on barley plants that were either grown alone or alongside one of three flowering plants, across three time points.In the field, aphids hosted up to four symbionts. The abundance of aphids and parasitoid wasps was reduced towards the middle of all fields while aphid symbiont species richness and diversity decreased into the field in conventional, but not integrated, field-strips. The proportion of aphids hosting different symbiont combinations varied across cropping systems, with distances into the fields, and were correlated with parasitoid wasp abundances.In the pot experiment, aphids hosted up to six symbionts. Flower presence increased natural enemy abundance and diversity, and decreased aphid abundance. The proportion of aphids hosting different symbiont combinations varied across the flower treatment and time, and were correlated with varying abundances of the different specialist parasitoid wasp species recruited by different flowers. Synthesis and applications. Floral plantings and flower identity had community-wide impacts on the combinations of bacterial endosymbionts hosted by herbivorous insects, which correlated with natural enemy diversity and abundance. We recommend that integrated management practices incorporate floral resources within field areas to support a more functionally diverse and resilient natural enemy community to mitigate selection for symbiont-mediated pest resistance throughout the cropping area.
Collapse
Affiliation(s)
- Sharon E. Zytynska
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life SciencesTechnical University of MunichFreisingGermany
| | - Sarah Sturm
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life SciencesTechnical University of MunichFreisingGermany
| | - Cathy Hawes
- Ecological Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life SciencesTechnical University of MunichFreisingGermany
| | - Alison Karley
- Ecological Sciences DepartmentThe James Hutton InstituteDundeeUK
| |
Collapse
|
37
|
Wang Z, Yong H, Zhang S, Liu Z, Zhao Y. Colonization Resistance of Symbionts in Their Insect Hosts. INSECTS 2023; 14:594. [PMID: 37504600 PMCID: PMC10380809 DOI: 10.3390/insects14070594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The symbiotic microbiome is critical in promoting insect resistance against colonization by exogenous microorganisms. The mechanisms by which symbionts contribute to the host's immune capacity is referred to as colonization resistance. Symbionts can protect insects from exogenous pathogens through a variety of mechanisms, including upregulating the expression of host immune-related genes, producing antimicrobial substances, and competitively excluding pathogens. Concordantly, insects have evolved fine-tuned regulatory mechanisms to avoid overactive immune responses against symbionts or specialized cells to harbor symbionts. Alternatively, some symbionts have evolved special adaptations, such as the formation of biofilms to increase their tolerance to host immune responses. Here, we provide a review of the mechanisms about colonization resistance of symbionts in their insect hosts. Adaptations of symbionts and their insect hosts that may maintain such symbiotic relationships, and the significance of such relationships in the coevolution of symbiotic systems are also discussed to provide insights into the in-depth study of the contribution of symbionts to host physiology and behavior.
Collapse
Affiliation(s)
- Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Hanzi Yong
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyuan Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yaru Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
38
|
Zhao Y, Song Q, Song Y. The role of insect intestinal microbes in controlling of Empoasca onukii Matsuda (Hemiptera: Cicadellidae) pest infestations in the production of tea garden: a review. Arch Microbiol 2023; 205:267. [PMID: 37351731 DOI: 10.1007/s00203-023-03609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Pests like the phytophagous bug Empoasca onukii Matsuda frequently harm tea plants. The harm this insect does to agricultural and environmentally sensitive places is extremely harmful since physical and chemical prevention and control are still the primary methods of handling it. Therefore, it is important to develop pest management strategies. Recent research has demonstrated that pathogenic fungus and the gut microbiota interact to induce host and death, and that the gut microbiota, which has a dramatic effect on the host, can engage in pest control. The advancement of genome editing technologies is also new to the field of pest management. The diversity, function, and research methodologies of insect gut microbiota are summarized in this work, and discusses E. onukii Matsuda control options as well as the importance of insect gut microbiome in pest management. In comparison to traditional pesticides and physical prevention and control, the interaction between pathogenic fungi represented by Beauveria bassiana and intestinal microorganisms, as well as their participation in pest management, causes physiological stress on the host, which meets the new requirements of modern agricultural green development and has a protective effect on habitat fragmentation areas (Karst region). Exploring additional harmful fungus for pest management and fully using the specific traits of insect gut microbiota to achieve "killing insects with bacteria" would be a promising technique from this standpoint.
Collapse
Affiliation(s)
- Yuanqi Zhao
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Qingfa Song
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China.
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China.
| |
Collapse
|
39
|
Huang Q, Shan HW, Chen JP, Wu W. Diversity and Dynamics of Bacterial Communities in the Digestive and Excretory Systems across the Life Cycle of Leafhopper, Recilia dorsalis. INSECTS 2023; 14:545. [PMID: 37367361 DOI: 10.3390/insects14060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Recilia dorsalis is a notorious rice pest that harbors numerous symbiotic microorganisms. However, the structure and dynamics of bacterial communities in various tissues of R. dorsalis throughout its life cycle remain unclear. In this study, we used high-throughput sequencing technology to analyze the bacterial communities in the digestive, excretory, and reproductive systems of R. dorsalis at different developmental stages. The results showed that the initial microbiota in R. dorsalis mostly originated from vertical transmission via the ovaries. After the second-instar nymphs, the diversity of bacterial communities in the salivary gland and Malpighian tubules gradually decreased, while the midgut remained stable. Principal coordinate analysis revealed that the structure of bacterial communities in R. dorsalis was primarily influenced by the developmental stage, with minimal variation in bacterial species among different tissues but significant variation in bacterial abundance. Tistrella was the most abundant bacterial genus in most developmental stages, followed by Pantoea. The core bacterial community in R. dorsalis continuously enriched throughout development and contributed primarily to food digestion and nutrient supply. Overall, our study enriches our knowledge of the bacterial community associated with R. dorsalis and provides clues for developing potential biological control technologies against this rice pest.
Collapse
Affiliation(s)
- Qiuyan Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
40
|
Shu Y, Wang Y, Wei Z, Gao N, Wang S, Li C, Xing Q, Hu X, Zhang X, Zhang Y, Zhang W, Bao Z, Ding W. A bacterial symbiont in the gill of the marine scallop Argopecten irradians irradians metabolizes dimethylsulfoniopropionate. MLIFE 2023; 2:178-189. [PMID: 38817626 PMCID: PMC10989825 DOI: 10.1002/mlf2.12072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/23/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2024]
Abstract
Microbial lysis of dimethylsulfoniopropionate (DMSP) is a key step in marine organic sulfur cycling and has been recently demonstrated to play an important role in mediating interactions between bacteria, algae, and zooplankton. To date, microbes that have been found to lyse DMSP are largely confined to free-living and surface-attached bacteria. In this study, we report for the first time that a symbiont (termed "Rhodobiaceae bacterium HWgs001") in the gill of the marine scallop Argopecten irradians irradians can lyse and metabolize DMSP. Analysis of 16S rRNA gene sequences suggested that HWgs001 accounted for up to 93% of the gill microbiota. Microscopic observations suggested that HWgs001 lived within the gill tissue. Unlike symbionts of other bivalves, HWgs001 belongs to Alphaproteobacteria rather than Gammaproteobacteria, and no genes for carbon fixation were identified in its small genome. Moreover, HWgs001 was found to possess a dddP gene, responsible for the lysis of DMSP to acrylate. The enzymatic activity of dddP was confirmed using the heterologous expression, and in situ transcription of the gene in scallop gill tissues was demonstrated using reverse-transcription PCR. Together, these results revealed a taxonomically and functionally unique symbiont, which represents the first-documented DMSP-metabolizing symbiont likely to play significant roles in coastal marine ecosystems.
Collapse
Affiliation(s)
- Yi Shu
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic InstitutionOcean University of ChinaSanyaChina
| | - Yongming Wang
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic InstitutionOcean University of ChinaSanyaChina
| | - Zhongcheng Wei
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
| | - Ning Gao
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic InstitutionOcean University of ChinaSanyaChina
| | - Shuyan Wang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Chun‐Yang Li
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic InstitutionOcean University of ChinaSanyaChina
| | - Xiao‐Hua Zhang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Yu‐Zhong Zhang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Weipeng Zhang
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic InstitutionOcean University of ChinaSanyaChina
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| |
Collapse
|
41
|
Alsufyani T, Al-Otaibi N, Alotaibi NJ, M'sakni NH, Alghamdi EM. GC Analysis, Anticancer, and Antibacterial Activities of Secondary Bioactive Compounds from Endosymbiotic Bacteria of Pomegranate Aphid and Its Predator and Protector. Molecules 2023; 28:molecules28104255. [PMID: 37241995 DOI: 10.3390/molecules28104255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial secondary metabolites are a valuable source of various molecules that have antibacterial and anticancer activity. In this study, ten endosymbiotic bacteria of aphids, aphid predators and ants were isolated. Bacterial strains were identified according to the 16S rRNA gene. Ethyl acetate fractions of methanol extract (EA-ME) were prepared from each isolated bacterium and tested for their antibacterial activities using the disk diffusion method. The EA-ME of three bacterial species, Planococcus sp., Klebsiella aerogenes, Enterococcus avium, from the pomegranate aphids Aphis punicae, Chrysoperia carnea, and Tapinoma magnum, respectively, exhibited elevated antibacterial activity against one or several of the five pathogenic bacteria tested. The inhibition zones ranged from 10.00 ± 0.13 to 20.00 ± 1.11 mm, with minimum inhibitory concentration (MIC) values ranging from 0.156 mg/mL to 1.25 mg/mL. The most notable antibacterial activity was found in the EA-ME of K. aerogenes against Klebsiella pneumonia and Escherichia coli, with an MIC value of 0.156 mg/mL. The cytotoxic activity of EA-ME was dependent on the cell line tested. The most significant cytotoxicity effect was observed for extracts of K. aerogenes and E. avium, at 12.5 µg/mL, against the epithelial cells of lung carcinoma (A549), with a cell reduction of 79.4% and 67.2%, respectively. For the EA-ME of K. aerogenes and Pantoea agglomerans at 12.5 µg/mL, 69.4% and 67.8% cell reduction were observed against human colon cancer (Hct116), respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of three EA-ME revealed the presence of several bioactive secondary metabolites that have been reported previously to possess antibacterial and anticancer properties. To the best of our knowledge, this is the first study to examine the biological activities of endosymbiotic bacteria in aphids, aphid predators and ants. The promising data presented in this study may pave the way for alternative drugs to overcome the continued emergence of multidrug-resistant bacteria, and find alternative drugs to conventional cancer therapies.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najwa Al-Otaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noura J Alotaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of the Interfaces and Advanced Materials (LIMA), Science Faculty, Monastir University, P.O. Box 05019, Monastir 5019, Tunisia
| | - Eman M Alghamdi
- Chemistry Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
42
|
Oliver KM. Flies co-opt bacterial toxins for use in defense against parasitoids. Proc Natl Acad Sci U S A 2023; 120:e2304493120. [PMID: 37126694 PMCID: PMC10175828 DOI: 10.1073/pnas.2304493120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA30602
| |
Collapse
|
43
|
Chang G, Xue H, Ji J, Wang L, Zhu X, Zhang K, Li D, Gao X, Niu L, Gao M, Luo J, Cui J. Risk assessment of predatory lady beetle Propylea japonica's multi-generational exposure to three non-insecticidal agrochemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163931. [PMID: 37156379 DOI: 10.1016/j.scitotenv.2023.163931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
The effects of non-insecticidal agrochemicals on pest natural predators remain largely unexplored except bees and silkworm. The herbicide quizalofop-p-ethyl (QpE), fungicide thiophanate-methyl (TM), and plant growth regulator mepiquat chloride (MC) have been extensively applied as non-insecticidal agrochemicals. Here, we systematically evaluated multiple effects of these 3 non-insecticidal agrochemicals on three generations of Propylea japonica, an important agroforestry predatory beetle, including the effects on its development, reproduction, enterobacteria, and transcriptomic response. The results showed that QpE exhibited a hormetic effect on P. japonica, thus significantly increasing the survival rate of generation 2 (F2) females, generation 3 (F3) females, and F3 males and body weight of F3 males. However, three successive generations exposed to TM and MC had no significant effect on longevity, body weight, survival rate, pre-oviposition period, and fecundity of P. japonica. Additionally, we investigated the effects of MC, TM, and QpE exposure on gene expression and gut bacterial community of F3 P. japonica. Under MC, TM, and QpE exposure, the overwhelming genes of P. japonica (99.90 %, 99.45 %, and 99.7 %) remained unaffected, respectively. Under TM and MC exposure, differentially expressed genes (DEGs) were not significantly enriched in any KEGG pathway, indicating TM and MC did not significantly affect functions of P. japonica, but under QpE exposure, the expression levels of drug metabolism-related genes were down-regulated. Although QpE treatment did not affect gut dominant bacterial community composition, it significantly increased relative abundances of detoxification metabolism-related bacteria such as Wolbachia, Pseudomonas and Burkholderia in P. japonica. However, TM and MC had no significant effect on the gut bacterial community composition and relative abundance in P. japonica. This study revealed for the first time the mechanism by which P. japonica might compensate for gene downregulation-induced detoxification metabolism decline through altering symbiotic bacteria under QpE exposure. Our findings provide reference for the rational application of non-insecticidal agrochemicals.
Collapse
Affiliation(s)
- Guofeng Chang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hui Xue
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Mengxue Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
44
|
Tang XF, Huang YH, Sun YF, Zhang PF, Huo LZ, Li HS, Pang H. The transcriptome of Icerya aegyptiaca (Hemiptera: Monophlebidae) and comparison with neococcoids reveal genetic clues of evolution in the scale insects. BMC Genomics 2023; 24:231. [PMID: 37138224 PMCID: PMC10158165 DOI: 10.1186/s12864-023-09327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Scale insects are worldwide sap-sucking parasites, which can be distinguished into neococcoids and non-neococcoids. Neococcoids are monophyletic with a peculiar reproductive system, paternal genome elimination (PGE). Different with neococcoids, Iceryini, a tribe in non-neococcoids including several damaging pests, has abdominal spiracles, compound eyes in males, relatively abundant wax, unique hermaphrodite system, and specific symbionts. However, the current studies on the gene resources and genomic mechanism of scale insects are mainly limited in the neococcoids, and lacked of comparison in an evolution frame. RESULT We sequenced and de novo assembled a transcriptome of Icerya aegyptiaca (Douglas), a worldwide pest of Iceryini, and used it as representative of non-neococcoids to compare with the genomes or transcriptomes of other six species from different families of neococcoids. We found that the genes under positive selection or negative selection intensification (simplified as "selected genes" below) in I. aegyptiaca included those related to neurogenesis and development, especially eye development. Some genes related to fatty acid biosynthesis were unique in its transcriptome with relatively high expression and not detected in neococcoids. These results may indicate a potential link to the unique structures and abundant wax of I. aegyptiaca compared with neococcoids. Meanwhile, genes related to DNA repair, mitosis, spindle, cytokinesis and oogenesis, were included in the selected genes in I. aegyptiaca, which is possibly associated with cell division and germ cell formation of the hermaphrodite system. Chromatin-related process were enriched from selected genes in neococcoids, along with some mitosis-related genes also detected, which may be related to their unique PGE system. Moreover, in neococcoid species, male-biased genes tend to undergo negative selection relaxation under the PGE system. We also found that the candidate horizontally transferred genes (HTGs) in the scale insects mainly derived from bacteria and fungi. bioD and bioB, the two biotin-synthesizing HTGs were exclusively found in the scale insects and neococcoids, respectively, which possibly show potential demand changes in the symbiotic relationships. CONCLUSION Our study reports the first I. aegyptiaca transcriptome and provides preliminary insights for the genetic change of structures, reproductive systems and symbiont relationships at an evolutionary aspect. This will provide a basis for further research and control of scale insects.
Collapse
Affiliation(s)
- Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Pei-Fang Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Li-Zhi Huo
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
45
|
Gu X, Ross PA, Gill A, Yang Q, Ansermin E, Sharma S, Soleimannejad S, Sharma K, Callahan A, Brown C, Umina PA, Kristensen TN, Hoffmann AA. A rapidly spreading deleterious aphid endosymbiont that uses horizontal as well as vertical transmission. Proc Natl Acad Sci U S A 2023; 120:e2217278120. [PMID: 37094148 PMCID: PMC10161079 DOI: 10.1073/pnas.2217278120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
Endosymbiotic bacteria that live inside the cells of insects are typically only transmitted maternally and can spread by increasing host fitness and/or modifying reproduction in sexual hosts. Transinfections of Wolbachia endosymbionts are now being used to introduce useful phenotypes into sexual host populations, but there has been limited progress on applications using other endosymbionts and in asexual populations. Here, we develop a unique pathway to application in aphids by transferring the endosymbiont Rickettsiella viridis to the major crop pest Myzus persicae. Rickettsiella infection greatly reduced aphid fecundity, decreased heat tolerance, and modified aphid body color, from light to dark green. Despite inducing host fitness costs, Rickettsiella spread rapidly through caged aphid populations via plant-mediated horizontal transmission. The phenotypic effects of Rickettsiella were sensitive to temperature, with spread only occurring at 19 °C and not 25 °C. Body color modification was also lost at high temperatures despite Rickettsiella maintaining a high density. Rickettsiella shows the potential to spread through natural M. persicae populations by horizontal transmission and subsequent vertical transmission. Establishment of Rickettsiella in natural populations could reduce crop damage by modifying population age structure, reducing population growth and providing context-dependent effects on host fitness. Our results highlight the importance of plant-mediated horizontal transmission and interactions with temperature as drivers of endosymbiont spread in asexual insect populations.
Collapse
Affiliation(s)
- Xinyue Gu
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| | - Alex Gill
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Eloïse Ansermin
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Sonia Sharma
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Safieh Soleimannejad
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kanav Sharma
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashley Callahan
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Courtney Brown
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul A. Umina
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Cesar Australia, Brunswick, VIC 3052, Australia
| | - Torsten N. Kristensen
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| |
Collapse
|
46
|
Xu W, Liu W, Li J, Zhu X, Wang L, Li D, Zhang K, Ji J, Gao X, Luo J, Cui J. Buchnera breaks the specialization of the cotton-specialized aphid ( Aphis gossypii) by providing nutrition through zucchini. Front Nutr 2023; 10:1128272. [PMID: 37025616 PMCID: PMC10071829 DOI: 10.3389/fnut.2023.1128272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The cotton aphid, Aphis gossypii Glover, is a species of polyphagous aphid with many biotypes, and its host transfer has always been the focus of research on the control of cotton aphid. An important factor affecting aphid specialization is the nutritional association with microbial symbionts that provide the host with nutrients lacking in the diet. We analyzed the microbial composition and biodiversity of reared on zucchini for 10 generations (T1-T10) and cotton as a control (CK), by high-throughput Illumina sequencing of 16S ribosomal RNA genes. The findings showed that the change in plant hosts decreased the richness and variety of microbial species. Regardless of whether the plant host is altered or not, Proteobacteria and Firmicutes are the predominate phyla in cotton-specialized aphid. Additionally, cotton-specialized aphids that live in zucchini had considerably lower relative abundances of non-dominant phyla (Bacteroidetes) than cotton hosts. At the genus level the dominant communities were Buchnera, Acinetobacter, and Arsenophonus. The relative abundance of Buchnera was significantly higher in aphids reared on zucchini than those on cotton, whereas the opposite was observed for Acinetobacter, as well as for some non-dominant communities (Stenotrophomonas, Pseudomons, Flavobacterium, Novosphingobium). Collectively, this study clarifies the dynamic changes of symbiotic bacteria in cotton-specialized aphids reared on zucchini for multiple generations. Among them, Buchnera is crucial for the cotton-specialized aphid to get nutrients during the transfer of the host and has a favorable impact on the colonization of cotton-specialized aphid populations on zucchini hosts. It not only enriches our understanding of the relationship between the bacterial microbiota of aphids and their adaptability to new hosts, zucchini, but also expands the current body of research on the mechanisms underlying the host shifting ability of cotton-specialized aphids.
Collapse
Affiliation(s)
- Weili Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Weijiao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jinming Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
47
|
Unraveling the Role of Antimicrobial Peptides in Insects. Int J Mol Sci 2023; 24:ijms24065753. [PMID: 36982826 PMCID: PMC10059942 DOI: 10.3390/ijms24065753] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens.
Collapse
|
48
|
Li H, Jiang Z, Zhou J, Liu X, Zhang Y, Chu D. Ecological Factors Associated with the Distribution of Bemisia tabaci Cryptic Species and Their Facultative Endosymbionts. INSECTS 2023; 14:252. [PMID: 36975937 PMCID: PMC10053707 DOI: 10.3390/insects14030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The sweetpotato whitefly, Bemisia tabaci species complex, comprises at least 44 morphologically indistinguishable cryptic species, whose endosymbiont infection patterns often varied at the spatial and temporal dimension. However, the effects of ecological factors (e.g., climatic or geographical factors) on the distribution of whitefly and the infection frequencies of their endosymbionts have not been fully elucidated. We, here, analyzed the associations between ecological factors and the distribution of whitefly and their three facultative endosymbionts (Candidatus Cardinium hertigii, Candidatus Hamiltonella defensa, and Rickettsia sp.) by screening 665 individuals collected from 29 geographical localities across China. The study identified eight B. tabaci species via mitochondrial cytochrome oxidase I (mtCOI) gene sequence alignment: two invasive species, MED (66.9%) and MEAM1 (12.2%), and six native cryptic species (20.9%), which differed in distribution patterns, ecological niches, and high suitability areas. The infection frequencies of the three endosymbionts in different cryptic species were distinct and multiple infections were relatively common in B. tabaci MED populations. Furthermore, the annual mean temperature positively affected Cardinium sp. and Rickettsia sp. infection frequencies in B. tabaci MED but negatively affected the quantitative distribution of B. tabaci MED, which indicates that Cardinium sp. and Rickettsia sp. maybe play a crucial role in the thermotolerance of B. tabaci MED, although the host whitefly per se exhibits no resistance to high temperature. Our findings revealed the complex effects of ecological factors on the expansion of the invasive whitefly.
Collapse
Affiliation(s)
- Hongran Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 515100, China
| | - Zhihui Jiang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jincheng Zhou
- Department of Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
49
|
Higashi CHV, Nichols WL, Chevignon G, Patel V, Allison SE, Kim KL, Strand MR, Oliver KM. An aphid symbiont confers protection against a specialized RNA virus, another increases vulnerability to the same pathogen. Mol Ecol 2023; 32:936-950. [PMID: 36458425 PMCID: PMC10107813 DOI: 10.1111/mec.16801] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiont Hamiltonella defensa confers protection against the parasitoid, Aphidius ervi, and Regiella insecticola protects against aphid-specific fungal pathogens, including Pandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virus A. pisum virus (APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont-free aphids and these costs were elevated in aphids also housing H. defensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids with R. insecticola. To our knowledge, R. insecticola is the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of either R. insecticola or H. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont-mediated interactions.
Collapse
Affiliation(s)
| | - William L Nichols
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Germain Chevignon
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Suzanne E Allison
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Kyungsun Lee Kim
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| |
Collapse
|
50
|
The Known and Unknowns of Aphid Biotypes, and Their Role in Mediating Host Plant Defenses. DIVERSITY 2023. [DOI: 10.3390/d15020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insect species are subjected to disparate selection pressure due to various biotic and abiotic stresses. Management practices including the heavy use of chemical insecticides and introduction of insect-resistant plant cultivars have been found to accelerate these processes. Clearly, natural selection coupled with human intervention have led to insect adaptations that alter phenotypes and genetic structure over time, producing distinct individuals with specialized traits, within the populations, commonly defined as biotypes. Biotypes are commonly found to have better fitness in the new environment and, in the case of aphids, the most commonly studied system for biotypes, have the ability to successfully infest previously resistant host plants and new species of host plants. Although a large number of studies have explored biotypes, the concept for defining biotypes varies among scientists, as we lack a consistency in estimating biotype behavior and their variation within and between biotypes. The concept of biotypes is even more complicated in aphid species (Aphidoidea), as they undergo parthenogenetic reproduction, making it difficult to understand the source of variation or quantify gene flow. In this review, we aim to illuminate the concept of biotype and how it has been used in the study of aphids. We intend to further elaborate and document the existence of aphid biotypes using sugarcane aphid (Melanaphis sacchari) as a model to understand their differences, level of variation, evolution, and significance in pest management.
Collapse
|