1
|
Zhang CY, Guo YR, Hou TY, Ning QR, Han WY, Zhao XY, Cui F, Li H. Formation of advanced glycation end products in glucose-amino acid models of Maillard reaction under dry- and wet-heating conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2342-2351. [PMID: 39501682 DOI: 10.1002/jsfa.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/05/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are compounds formed by non-enzymatic processes in the Maillard reaction and can cause various chronic diseases. This study explores the AGE formation process in a glucose-amino acid system under both wet- and dry-heating conditions, and analyzes the effect of cysteine in AGE formation. RESULTS Under wet-heating conditions, Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) concentrations rose for the initial 90 min and subsequently declined after 120 min; after 90 min of heating, the maximum yields in the absence of cysteine were 1151.04 ± 14.01 and 3386.90 ± 26.55 ng mL-1, respectively. The concentration of pyrraline (Pyr) increased after 30 min and then decreased after 60 min with a maximum yield of 777.68 ± 23.36 ng mL-1. However, in dry-heating models, the AGE concentrations consistently increased with increasing heating time; the maximum yields for CML, CEL and Pyr were 468.66 ± 10.96, 1993.57 ± 14.81 and 1085.74 ± 58.06 ng mL-1, respectively. The addition of cysteine showed an inhibitory effect on AGE formation, especially for Pyr in the dry-heating model, with inhibition rates ranging from 17.14% to 95.60%. CONCLUSION Although wet-heating models produced more CML and CEL, they produced less Pyr than dry-heating models. The AGE formation in wet-heating models positively correlated with the reaction rate; however, the dry-heating reaction demonstrated a more complex relationship between reaction rate and reaction protocol. Moreover, cysteine exhibited a significant inhibitory effect on AGE production, and the degree of inhibition was proportional to the cysteine concentration. This study provides important insights into the mechanisms for AGE formation under various heating conditions, such as those representing baking (dry-heating) and steaming conditions (wet-heating). © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen-Yang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Yu-Rong Guo
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Tian-Yu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Qian-Ru Ning
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Wan-Yu Han
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Xing-Yun Zhao
- Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Feng Cui
- Research and development center, Research Institute of Bozhou Hi-tech Pharmaceutical Industry Technology, Bozhou, China
| | - He Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| |
Collapse
|
2
|
Qiang X, Wang X, Liang S, Li S, Lv Y, Zhan J. Long-term effects of Nε-carboxymethyllysine intake on intestinal barrier permeability: Associations with gut microbiota and bile acids. Food Res Int 2025; 201:115543. [PMID: 39849698 DOI: 10.1016/j.foodres.2024.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2024] [Revised: 12/02/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Advanced glycation end products (AGEs) in processed foods are closely linked to intestinal injury. However, the long-term effects of exposure to free Nɛ-carboxymethyl lysine (CML), a prevalent AGE molecule, on intestinal barrier integrity have been rarely evaluated. This study investigated the temporal effects of CML exposure on intestinal barrier permeability in C57BL/6N mice at diet-related doses over 12, 14, and 16 weeks. No significant changes were observed at 12 weeks, but CML exposure significantly increased intestinal permeability at 14 and 16 weeks, accompanied by elevated serum LPS levels, colonic histological damage, and reduced tight junction protein expression at 16 weeks. CML exposure also altered gut microbiota composition and intestinal bile acid (BA) profiles, specifically reducing TDCA, GDCA, and GCDCA levels. Given the important role of colonic BA receptor signaling in maintaining the intestinal barrier integrity, the impact of CML on BA receptor signaling was assessed. CML exposure significantly downregulated BA receptor TGR5-YAP signaling in mice, while no significant effects were observed in vitro, suggesting that the changes observed in TGR5-YAP signaling in vivo may not result from the direct effects of CML. Spearman's correlation analysis revealed strong associations between altered gut microbiota, BA levels, TGR5-YAP signaling, and intestinal barrier injury. This study highlighted the chronic health risks of long-term CML intake and provided new insights into the links between CML-induced intestinal toxicity, gut microbiota, BA profiles, and BA receptor signaling.
Collapse
Affiliation(s)
- Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Shaogang Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
3
|
Arena S, De Pascale S, Ciaravolo V, Monroy MM, Gouw JW, Stahl B, Bäuerl C, Collado MC, De Filippo C, Scaloni A, Troise AD. Protein-bound and free glycation compounds in human milk: A comparative study with minimally processed infant formula and pasteurized bovine milk. Food Chem 2025; 463:141265. [PMID: 39293376 DOI: 10.1016/j.foodchem.2024.141265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
The role of the Maillard reaction and the accumulation of non-enzymatic glycation compounds in human milk have been scarcely considered. In this study, we investigated the proteins most susceptible to glycation, the identity of the corresponding modified residues and the quantitative relationship between protein-bound and free glycation compounds in raw human milk and, for comparison, in minimally processed infant formula and pasteurized bovine milk. In human milk, total protein-bound lysine modifications were up to 10% of the counterparts in infant formula, while Nε-carboxymethyllysine reached up to 27% of the concentration in the other two products. We demonstrated that the concentration of free pyrraline and methylglyoxal-hydroimidazolone were of the same order of magnitude in the three milk types. Our results delineate how the occurrence of some glycation compounds in human milk can be an unavoidable part of the breastfeeding and not an exclusive attribute of infant formulas and pasteurized bovine milk.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Sabrina De Pascale
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Valentina Ciaravolo
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Mariela Mejia Monroy
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Pisa, Italy; NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Joost W Gouw
- Danone Research & Innovation, 3584, CT, Utrecht, the Netherlands
| | - Bernd Stahl
- Danone Research & Innovation, 3584, CT, Utrecht, the Netherlands
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Pisa, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Antonio Dario Troise
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy.
| |
Collapse
|
4
|
Qi H, Fu W, Liu Y, Bai J, Wang R, Zou G, Shen H, Cai Y, Luo A. Electron beam irradiation coupled ultrasound-assisted natural deep eutectic solvents extraction: A green and efficient extraction strategy for proanthocyanidin from walnut green husk. Food Chem 2025; 463:141279. [PMID: 39326317 DOI: 10.1016/j.foodchem.2024.141279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Proanthocyanidin (PAC) is recognized as a potent natural antioxidant that prevents various diseases. As societal awareness increases, eco-friendly and efficient natural product extraction technologies are gaining more attention. In this study, an electron beam irradiation (EBI) coupled with ultrasound-assisted natural deep eutectic solvents (NADES) extraction method was developed to enable the green and highly efficient extraction of PAC from walnut green husk (WGH). NADES, prepared with choline chloride and ethylene glycol, demonstrated excellent extraction capacity and storage stability for PAC. Molecular dynamics simulations elucidated the high compatibility between NADES and PAC, attributed mainly to a higher SASA value (207.85 nm2), a greater number of hydrogen bonds (330.99), an extended hydrogen bonding lifetime (4.54 ps), and lower inter-molecular interaction energy. Based on these findings, the optimal conditions (13 kGy EBI, 42 mL/g liquid-solid ratio, 38 °C extraction temperature, 70 min extraction time) resulted in a maximum PAC extraction yield of 56.34 mg/g. Notably, this yield was 32.93 % higher than that observed in samples not treated with EBI and ultrasound-assisted extraction (UAE). Analysis of tissue morphology, extract functional groups and thermal behavior suggested a possible mechanism for the synergistically enhanced PAC extraction by the EBI-NADES-UAE method. Additionally, the PAC extracted using the NADES by the EBI coupled with ultrasound-assisted method exhibited outstanding antioxidant activity (comparable to Vc), digestive enzyme inhibition (IC50: 17-0.61 mg/mL), and anti-glycation capacity (IC50: 86.49 μg/mL). Overall, this work provided a green and efficient strategy for PAC extraction from WGH, elucidated the extraction mechanism and bioactivities, and offered valuable insights for potential industrial applications.
Collapse
Affiliation(s)
- Heting Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wanjia Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yujie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling 712100, China
| | - Ruolin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Guangming Zou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Heyu Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yingying Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Lu X, Ma R, Zhan J, Pan X, Liu C, Shen W, Zhang S, Zhou W, Tian Y. Thermally processed rice starch impacts glucose homeostasis in mice to different degrees via disturbing gut microbial structure and intestinal barrier function. Carbohydr Polym 2025; 348:122795. [PMID: 39562071 DOI: 10.1016/j.carbpol.2024.122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 11/21/2024]
Abstract
Long-term intake of thermally processed starch-based foods may impact glucose homeostasis, but the consistency of the effects of various thermal treatments and the reasons are not clear. In this study, thermal treatments, especially boiling, damaged the crystal structure and inter-molecular hydrogen bonds of starch-based blends, thus decreasing the structural order and stability. These thermally treated starch-based blends increased the appetite of mice, promoted food digestion, and enhanced postprandial glucose response. Normal C57BL/6J mice were treated with boiled, baked, and fried starch-based diets for ten weeks. Compared to the baked and fried starch-based diets, the boiled starch-based diet significantly (p < 0.05) elevated random blood glucose levels and disrupted insulin homeostasis, primarily due to the remarkable decrease in gut microbial diversity. Both baked and fried starch-based diets resulted in relatively high intestinal epithelial permeability (plasma lipopolysaccharide increased by 28.67 % and 21.85 %, respectively). They adversely affected islet β-cell function and evoked glucose metabolism disorder. Overall, results demonstrate a clear connection among the thermal processing of starch-based diets, disruption of intestinal homeostasis, and adverse glucose metabolism. This study lays a theoretical foundation for the formulation of food processing strategies to mitigate the adverse effects of thermally treated food on glucose homeostasis.
Collapse
Affiliation(s)
- Xiaoxue Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinling Zhan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuang Zhang
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Republic of Singapore
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Analysis and Testing Center, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Tang Y, Huang Y, Li M, Zhu W, Zhang W, Luo S, Zhang Y, Ma J, Jiang Y. Balancing Maillard reaction products formation and antioxidant activities for improved sensory quality and health benefit properties of pan baked buns. Food Res Int 2024; 195:114984. [PMID: 39277245 DOI: 10.1016/j.foodres.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
This study investigated the impact of processing temperatures (190 °C, 210 °C, and 230 °C) and durations (7 min, 10 min, and 14 min) on the formation of Maillard reaction products (MRPs) and antioxidant activities in pan baked buns. Key Maillard reaction indicators, including glyoxal (GO), methylglyoxal (MGO), 5-hydroxymethylfurfural (5-HMF), melanoidins, and fluorescent advanced glycation end products (AGEs) were quantified. The results demonstrated significant increases in GO, MGO, 5-HMF contents (p < 0.05), and antioxidant activities (p < 0.05) when the buns were baked at 210 °C for 14 min, 230 °C for 10 min and 14 min. However, the interior MRPs of baked buns were minimally affected by the baking temperature and duration. Prolonged heating temperatures and durations exacerbated MRPs production (43.8 %-1038 %) in the bottom crust. Nonetheless, this process promoted the release of bound phenolic compounds and enhanced the antioxidant activity. Heating induces the thermal degradation of macromolecules in food, such as proteins and polysaccharides, which releases bound phenolic compounds by disrupting their chemical bonds within the food matrix. Appropriate selections of baking parameters can effectively reduce the formation of MRPs while simultaneously improve sensory quality and health benefit of the pan baked buns. Considering the balance between higher antioxidant properties and lower MRPs, the optimal thermal parameters for pan baked buns were 210 °C for 10 min. Furthermore, a normalized analysis revealed a consistent trend for GO, MGO, 5-HMF, fluorescent AGEs, and melanoidins. Moreover, MRPs were positively correlated with total contents of phenolic compounds, ferric-reducing antioxidant power (FRAP), and color, but negatively correlated with moisture contents and reducing sugars. Additionally, the interaction between baking conditions and Maillard reactions probably contributed to enhanced primary flavors in the final product. This study highlights the importance of optimizing baking parameters to achieve desirable MRPs levels, higher antioxidant activity, and optimal sensory attributes in baked buns.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengru Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sha Luo
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yingying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
| | - Jie Ma
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Wei X, Liu L, Zhang J, Kou Y, Du Y, Kong M, Xie J, Shen M. Evaluation of potentially harmful Maillard reaction products in different types of commercial formulae. Food Chem 2024; 456:139965. [PMID: 38852460 DOI: 10.1016/j.foodchem.2024.139965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Pasteurisation and spray drying are critical steps to ensure the safety and shelf-life of formulae, but these treatments also induce formation of some potentially harmful Maillard reaction products. In this study, the occurrence of potentially harmful Maillard reaction products and proximate compositions in different commercial formulae were analysed. Our results showed that infant formulae had significantly higher concentrations of furosine, Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) than follow-on/toddler formula. Specialty formulae had higher concentrations of glyoxal and CML than other types of formulae. Correlation analysis indicated that concentrations of 5-hydroxymethylfurfural, 3-deoxyglucosone, CML and CEL were closely related to fat contents. These results provided insight into concentrations of potentially harmful Maillard reaction products in different types of formulae and provide a theoretical basis for further optimisation of processing.
Collapse
Affiliation(s)
- Xiaoxiao Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Lei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jian Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yafei Kou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yanli Du
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mengru Kong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Connolly D, Minj J, Murphy KM, Solverson PM, Rust BM, Carbonero F. Impact of quinoa and food processing on gastrointestinal health: a narrative review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39422522 DOI: 10.1080/10408398.2024.2416476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2024]
Abstract
Due to exceptional nutritional quality, quinoa is an ideal candidate to solve food insecurity in many countries. Quinoa's profile of polyphenols, essential amino acids, and lipids make it ideal for digestive health. How the nutrient profile and bioavailability of quinoa metabolites differs across cooking methods such as heat, pressure, and time employed has yet to be elucidated. The objective of this review is to compile available research pertaining to the impact of various cooking methods on quinoa's nutritional properties with specific emphasis on how those properties affect gut health. Replacing small percentages of wheat flour with quinoa flour in baked bread increases the antioxidant activity, essential amino acids, fiber, minerals, and polyphenols. Extruding quinoa flour reduces amino acid, lipid, and polyphenol content of the raw seed, however direct quinoa and cereal grain extrudate comparisons are absent. Boiling quinoa leads to an increase of dietary fiber as well as exceptional retention of amino acids, lipids, and polyphenols. Baking and extruding with quinoa flour results in less optimal texture due to higher density, however minor substitutions can retain acceptable texture and even improve taste. Future research on quinoa's substitution in common processing methods will create equally desirable, yet more nutritious food products.
Collapse
Affiliation(s)
- Devin Connolly
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Jagrani Minj
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Kevin M Murphy
- Department of Crop and Soil Science, Washington State University, Pullman, Washington, USA
| | - Patrick M Solverson
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Bret M Rust
- Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- School of Food Science, Washington State University, Spokane, Washington, USA
| |
Collapse
|
9
|
Liu S, Sun H, Nagassa M, He X, Pei H, Gao L, Li X, He S. Enhancing bread anti-staling with glucose-derived Maillard reaction products: In-depth analysis of starches, gluten networks, and moisture status. Food Chem 2024; 455:139760. [PMID: 38824734 DOI: 10.1016/j.foodchem.2024.139760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
In this study, six types of amino acids (Ala, Phe, Glu, Gly, Ser, and Lys) were combined with glucose to produce Maillard reaction products (MRPs) named G-Ala, G-Phe, G-Glu, G-Gly, G-Ser and G-Lys. The effect of MRPs on bread staling was evaluated through texture and sensory analyses during storage. Furthermore, the study comprehensively analyzed the anti-staling mechanisms of MRPs by examining moisture content, starches, and gluten network changes. The results indicated that G-Gly and G-Glu delayed bread staling, with G-Gly showing the most significant effect. Compared with control, the staling rate and starch crystallinity of G-Gly bread decreased by 24.07% and 7.70%, respectively. Moreover, G-Gly increased the moisture content (3.48%), weakly bound water mobility (0.77%), and α-helix content (1.00%) of bread. Component identification and partial least squares regression further confirmed the aldonic acid, heterocyclic acids and heterocyclic ketones in MRPs inhibit water evaporation, gluten network loosening, and starch degradation, thereby delaying bread staling.
Collapse
Affiliation(s)
- Shuyun Liu
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, PR China.
| | - Merga Nagassa
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, PR China
| | - Xinzhou He
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, PR China
| | - Hui Pei
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, PR China
| | - Lingyan Gao
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, PR China
| | - Xiao Li
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, PR China
| | - Shudong He
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
10
|
Wei Y, Wu J, Peng X, Hu X, Gong D, Zhang G. Protein glycosylation inhibitory effects and mechanisms of phloretin and phlorizin. FOOD BIOSCI 2024; 61:104971. [DOI: 10.1016/j.fbio.2024.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
11
|
Wu Y, Yang Y, Zhong Y, Wu Y, Zhang Z, Yan Z, Liu B, Wang W. Unveiling the dynamic processes of dietary advanced glycation end-products (dAGEs) in absorption, accumulation, and gut microbiota metabolism. Food Funct 2024; 15:9024-9036. [PMID: 39206822 DOI: 10.1039/d4fo01545b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/04/2024]
Abstract
This study delves into the dynamics of dietary advanced glycation end-products (dAGEs) on host health and gut microbiota. Using 13C-labeled carboxymethyllysine (CML) bound casein, we identify bound AGEs as the primary entry route, in contrast to free AGEs dominating urinary excretion. Specifically, our results show that the kidneys accumulate 1.5 times more dAGEs than the liver. A high AGE (HA) diet prompts rapid gut microbiota changes, with an initial stress-induced mutation phase, evidenced by a 20% increase in Bacteroides and Parabacteroides within the first week, followed by stabilization. These bacteria emerge as potential dAGE-utilizing bacteria, influencing the microbiota composition. Concurrent metabolic shifts affect lipid and carbohydrate pathways, with lipid metabolism alterations persisting over time, impacting host metabolic homeostasis. This study illuminates the intricate interplay between dietary AGEs, gut microbiota, and host health, offering insights into the health consequences of short- and long-term HA dietary patterns.
Collapse
Affiliation(s)
- Yi Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Yuqi Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yanhong Zhong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yongtai Wu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Zhenhui Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Zichen Yan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Bingxin Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
12
|
Li X, Bakker W, Sang Y, Rietjens IMCM. Absorption and intracellular accumulation of food-borne dicarbonyl precursors of advanced glycation end-product in a Caco-2 human cell transwell model. Food Chem 2024; 452:139532. [PMID: 38705120 DOI: 10.1016/j.foodchem.2024.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
This study aimed to better understand whether and how the reactive 1,2-dicarbonyl precursors of advanced glycation end products (AGEs), glyoxal (GO) and methylglyoxal (MGO), cross the intestinal barrier by studying their transport in the in vitro Caco-2 transwell system. The results reveal that GO, MGO and Nε-(carboxymethyl)lysine (CML), the latter studied for comparison, are transported across the intestinal cell layer via both active and passive transport and accumulate in the cells, albeit all to a limited extent. Besides, the transport of the dicarbonyl compounds was only partially affected by the presence of amino acids and protein, suggesting that scavenging by a food matrix will not fully prevent their intestinal absorption. Our study provides new insights into the absorption of the two major food-borne dicarbonyl AGE precursors and provides evidence of their potential systemic bioavailability but also of factors limiting their contribution to the overall exposome.
Collapse
Affiliation(s)
- Xiyu Li
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands; College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| |
Collapse
|
13
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Ede-Cintesun E, Çatak J, Ateş E, Yaman M. Glyoxal and methylglyoxal formation in chocolate and their bioaccessibility. Food Res Int 2024; 189:114552. [PMID: 38876591 DOI: 10.1016/j.foodres.2024.114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
The objective of this study was to assess the effects of simulated digestion on the formation of α-dicarbonyl compounds (α-DCs) in chocolates. For that purpose, the concentrations of glyoxal and methylglyoxal in chocolates were determined through High-Performance Liquid Chromatography (HPLC) analysis before and after in vitro digestion. The initial concentrations ranged from 0.0 and 228.2 µg/100 g, and 0.0 and 555.1 for glyoxal and methylglyoxal, respectively. Following digestion, there was a significant increase in both glyoxal and methylglyoxal levels, reaching up to 1804 % and 859 %, respectively. The findings indicate that digestive system conditions facilitate the formation of advanced glycation end product (AGE) precursors. Also, glyoxal and methylglyoxal levels were found to be low in chocolate samples containing dark chocolate. In contrast, they were found to be high in samples containing hazelnuts, almonds, pistache, and milk. Further studies should focus on α-DCs formation under digestive system conditions, including the colon, to determine the effects of gut microbiota.
Collapse
Affiliation(s)
- Elif Ede-Cintesun
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Sabahattin Zaim University, Istanbul, Halkalı Merkez Street, Halkalı Blvd, 34303 Küçükçekmece/İstanbul, Turkey.
| | - Jale Çatak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Sabahattin Zaim University, Istanbul, Halkalı Merkez Street, Halkalı Blvd, 34303 Küçükçekmece/İstanbul, Turkey.
| | - Esra Ateş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Sabahattin Zaim University, Istanbul, Halkalı Merkez Street, Halkalı Blvd, 34303 Küçükçekmece/İstanbul, Turkey.
| | - Mustafa Yaman
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim University, Istanbul, Halkalı Merkez Street, Halkalı Blvd, 34303 Küçükçekmece/İstanbul, Turkey.
| |
Collapse
|
15
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 PMCID: PMC11699537 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
16
|
Blidi S, Troise AD, Zazzaroni M, De Pascale S, Cottin S, Sturrock K, Scaloni A, Fiore A. Effect of brewer's spent grain melanoidins on maillard reaction products during storage of whey protein model systems. Curr Res Food Sci 2024; 8:100767. [PMID: 38774268 PMCID: PMC11107219 DOI: 10.1016/j.crfs.2024.100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Maillard reaction readily takes place in dairy products because of the association between thermal treatments, extended storage and the matrix composition. Along with the impairment of protein digestion, the formation of glycation and α-dicarbonyl compounds is a concern for quality attributes of whey proteins when used as ingredients. In this paper, we outline the capacity of brewer's spent grain melanoidins in reducing the accumulation of α-dicarbonyl compounds, thus controlling the formation of dietary advanced glycation end-products in accelerated shelf life at 35 °C. Results revealed that brewer's spent grain melanoidins targeted methylglyoxal and glyoxal reactivity leading to the reduction of N-ε-carboxymethyllysine and methylglyoxal-hydroimidazolone up to 27 and 60%, respectively. We here describe that the presence of melanoidins is instrumental in limiting the undesired effects of α-dicarbonyl compounds on whey proteins.
Collapse
Affiliation(s)
- Slim Blidi
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Antonio Dario Troise
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Mattia Zazzaroni
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Sabrina De Pascale
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Sarah Cottin
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Keith Sturrock
- School of Applied Sciences, Division of Psychology and Forensic Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Alberto Fiore
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| |
Collapse
|
17
|
Wang L, Jiang Y, Zhao C. The effects of advanced glycation end-products on skin and potential anti-glycation strategies. Exp Dermatol 2024; 33:e15065. [PMID: 38563644 DOI: 10.1111/exd.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The advanced glycation end-products (AGEs) are produced through non-enzymatic glycation between reducing sugars and free amino groups, such as proteins, lipids or nucleic acids. AGEs can enter the body through daily dietary intake and can also be generated internally via normal metabolism and external stimuli. AGEs bind to cell surface receptors for AGEs, triggering oxidative stress and inflammation responses that lead to skin ageing and various diseases. Evidence shows that AGEs contribute to skin dysfunction and ageing. This review introduces the basic information, the sources, the metabolism and absorption of AGEs. We also summarise the detrimental mechanisms of AGEs to skin ageing and other chronic diseases. For the potential strategies for counteracting AGEs to skin and other organs, we summarised the pathways that could be utilised to resist glycation. Chemical and natural-derived anti-glycation approaches are overviewed. This work offers an understanding of AGEs to skin ageing and other chronic diseases and may provide perspectives for the development of anti-glycation strategies.
Collapse
Affiliation(s)
- Lingyu Wang
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| |
Collapse
|
18
|
Peng J, Liang G, Wen W, Huang W, Qiu Y, Xiao G, Wang Q. Blueberry anthocyanins extract inhibits advanced glycation end-products (AGEs) production and AGEs-stimulated inflammation in RAW264.7 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:75-82. [PMID: 37528063 DOI: 10.1002/jsfa.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/10/2022] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Pharmacological interference is considered to be a successful approach to inhibit advanced glycation end-products (AGEs) production and to block AGEs-induced diseases. Some synthetic medicines are effective for inhibiting the glycation reaction, but they cannot be widely applied in clinical as a result of their side effects and security concerns. The present study uses blueberry anthocyanins extract (BAE) to attenuate AGEs formation and AGEs-induced inflammatory response in vitro. RESULTS In a bovine serum albumin-glucose model, BAE showed similar inhibitory activity on AGEs compared to the synthetic anti-glycation agent (aminoguanidine). The results showed that BAE exhibit strong anti-glycative action by scavenging glycosylated intermediates (Schiff base, fructosamine and α-dicarbonyl compounds), attenuating the molecular aggregation and amyloid-like fibrils formation, and preventing conformational modification. Additionally, BAE was found to dose-dependently inhibit the AGEs-induced secretions of nitric oxide and pro-inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1 and tumor necrosis factor-α) in RAW264.7 cells. The anti-inflammation activity of BAE was mediated by down-regulating the expressions of critical inflammatory markers, inducible nitric oxide synthase and cyclooxygenase-2, through nuclear factor-kappa B signaling pathways inhibition. CONCLUSION BAE could serve as a natural inhibitor for controlling AGEs and AGEs-induced chronic inflammation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinming Peng
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guiqiang Liang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Wen
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenye Huang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuanxin Qiu
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qin Wang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
19
|
|
20
|
Aydemir ME, Arslan A, Takım K, Kılıç Altun S, Yılmaz MA, Çakır O. Inhibitory effect of Paliurus spina-christi Mill., Celtis tournefortii L. and Nigella sativa L. on N ε-(Carboxymethyl) lysine in meatballs. Meat Sci 2024; 207:109362. [PMID: 37871485 DOI: 10.1016/j.meatsci.2023.109362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2023] [Revised: 08/15/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
This study was conducted to examine the effect of cooking at different temperatures on the formation of Nε-(carboxymethyl) lysine (CML) after adding Paliurus spina-christi Mill. (PSC), Celtis tournefortii L. (CT) fruits, and Nigella Sativa L. (NS) seeds to the meatballs. Phytochemical and bioactivity properties were determined before adding PSC, CT fruits, and NS seeds to the meatballs. Then, PSC, CT fruits, and NS seeds were added to the meatballs at a rate of 2% and stored at 4 ± 1 °C for 16 days. CML, TBARS, pH, and aw analyses were performed on the meatballs. The highest phytochemical and bioactivity levels were detected in PSC fruit. The aw values detected in the meatball groups were found to be between 0.931 and 0.951 on the 0th day and between 0.963 and 0.985 on the 16th day, and the pH values ranged from 5.66 to 6.06 on the 0th day and from 6.10 to 6.74 on the 16th day. TBARS values of the meatballs were found to be between 1.17 and 1.98 on day 0 and 1.70-3.34 mg MDA/kg on day 16. CML levels in the meatballs were determined to be between 11.15 and 13.45 on day 0 and between 13.43 and 18.17 μg/g on day 16. The highest a* value was found in the meatballs with added CT fruit. It was determined that NS seeds had a negative effect on the a* value of the meatballs. In conclusion, adding PSC, CT fruits, and NS seeds can imbue meatballs with functional properties, thereby creating a more health-beneficial product for humans.
Collapse
Affiliation(s)
- Mehmet Emin Aydemir
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Ali Arslan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Kasım Takım
- Department of Basic Sciences, Faculty of Veterinary, Harran University, Şanlıurfa, Turkey
| | - Serap Kılıç Altun
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Mustafa Abdullah Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Oğuz Çakır
- Dicle University Science and Technology Research and Application Center, Diyarbakir, Turkey
| |
Collapse
|
21
|
Raupbach J, Müller SK, Schnell V, Friedrich S, Hellwig A, Grune T, Henle T. The Effect of Free and Protein-Bound Maillard Reaction Products N-ε-Carboxymethyllysine, N-ε-Fructosyllysine, and Pyrraline on Nrf2 and NFκB in HCT 116 Cells. Mol Nutr Food Res 2023; 67:e2300137. [PMID: 37465844 DOI: 10.1002/mnfr.202300137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Indexed: 07/20/2023]
Abstract
SCOPE Maillard reaction products (MRPs) are believed to interact with the receptor for advanced glycation endproducts (RAGE) and lead to a pro-inflammatory cellular response. The structural basis for this interaction is scarcely understood. This study investigates the effect of individual lysine modifications in free form or bound to casein on human colon cancer cells. METHODS AND RESULTS Selectively glycated casein containing either protein-bound N-ε-carboxymethyllysine (CML), N-ε-fructosyllysine (FL), or pyrraline is prepared and up to 94%, 97%, and 61% of lysine modification could be attributed to CML, FL, or pyrraline, respectively. HCT 116 cells are treated with free CML, pyrraline, FL, or modified casein for 24 h. Native casein is used as control. Intracellular MRP content is analyzed by UPLC-MS/MS. Microscopic analysis of the transcription factors shows no activation of NFκB by free or protein-bound FL or CML, whereas casein containing protein-bound pyrraline activates Nrf2. RAGE expression is not influenced by free or casein-bound MRPs. Activation of Nrf2 by pyrraline-modified casein is confirmed by analyzing Nrf2 target proteins NAD(P)H dehydrogenase (quinone 1) (NQO1) and heme oxygenase-1 (HO-1). CONCLUSION Studies on the biological effects of glycated proteins require an individual consideration of defined structures. General statements on the effect of "AGEs" in biological systems are scientifically unsound.
Collapse
Affiliation(s)
- Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Stephan K Müller
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| | - Vanessa Schnell
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Suse Friedrich
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Anne Hellwig
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
22
|
Khan MI, Ashfaq F, Alsayegh AA, Hamouda A, Khatoon F, Altamimi TN, Alhodieb FS, Beg MMA. Advanced glycation end product signaling and metabolic complications: Dietary approach. World J Diabetes 2023; 14:995-1012. [PMID: 37547584 PMCID: PMC10401445 DOI: 10.4239/wjd.v14.i7.995] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous collection of compounds formed during industrial processing and home cooking through a sequence of nonenzymatic glycation reactions. The modern western diet is full of heat-treated foods that contribute to AGE intake. Foods high in AGEs in the contemporary diet include processed cereal products. Due to industrialization and marketing strategies, restaurant meals are modified rather than being traditionally or conventionally cooked. Fried, grilled, baked, and boiled foods have the greatest AGE levels. Higher AGE-content foods include dry nuts, roasted walnuts, sunflower seeds, fried chicken, bacon, and beef. Animal proteins and processed plant foods contain furosine, acrylamide, heterocyclic amines, and 5-hydroxymethylfurfural. Furosine (2-furoil-methyl-lysine) is an amino acid found in cooked meat products and other processed foods. High concentrations of carboxymethyl-lysine, carboxyethyl-lysine, and methylglyoxal-O are found in heat-treated nonvegetarian foods, peanut butter, and cereal items. Increased plasma levels of AGEs, which are harmful chemicals that lead to age-related diseases and physiological aging, diabetes, and autoimmune/inflammatory rheumatic diseases such as systemic lupus erythematosus and rheumatoid arthritis. AGEs in the pathophysiology of metabolic diseases have been linked to individuals with diabetes mellitus who have peripheral nerves with high amounts of AGEs and diabetes has been linked to increased myelin glycation. Insulin resistance and hyperglycemia can impact numerous human tissues and organs, leading to long-term difficulties in a number of systems and organs, including the cardiovascular system. Plasma AGE levels are linked to all-cause mortality in individuals with diabetes who have fatal or nonfatal coronary artery disease, such as ventricular dysfunction. High levels of tissue AGEs are independently associated with cardiac systolic dysfunction in diabetic patients with heart failure compared with diabetic patients without heart failure. It is widely recognized that AGEs and oxidative stress play a key role in the cardiovascular complications of diabetes because they both influence and are impacted by oxidative stress. All chronic illnesses involve protein, lipid, or nucleic acid modifications including crosslinked and nondegradable aggregates known as AGEs. Endogenous AGE formation or dietary AGE uptake can result in additional protein modifications and stimulation of several inflammatory signaling pathways. Many of these systems, however, require additional explanation because they are not entirely obvious. This review summarizes the current evidence regarding dietary sources of AGEs and metabolism-related complications associated with AGEs.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Alshaimaa Hamouda
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Tahani Nasser Altamimi
- Department of Family and Community Medicine, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | | |
Collapse
|
23
|
Çatak J, Özdoğan N, Ede-Cintesun E, Demirci M, Yaman M. Investigation of the effects of sugar type on the formation of α-dicarbonyl compounds in jams under in vitro digestive system model. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/07/2023]
|
24
|
Xie Y, van der Fels-Klerx HJ, van Leeuwen SPJ, Fogliano V. Occurrence of dietary advanced glycation end-products in commercial cow, goat and soy protein based infant formulas. Food Chem 2023; 411:135424. [PMID: 36652883 DOI: 10.1016/j.foodchem.2023.135424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Thermal treatment is a key step during infant formula (IF) processing which causes protein glycation and formation of dietary advanced glycation end-products (dAGEs). This study aimed to evaluate the glycation degree in IF in relation to the ingredients of the formula. dAGEs concentrations have been determined by UPLC-MS/MS in a range of commercial cow-based, goat-based, and soy-based IF. Results indicated that the protein source, protein composition, and amount and type of carbohydrates determines the level of protein glycation in IFs. The investigated soy-based formula had significant higher concentrations of arginine and arginine-derived dAGEs than cow-based and goat-based formulas. IF containing hydrolyzed proteins had higher dAGEs concentrations than those containing intact proteins. Lactose-containing formula was more prone to glycation than those containing sucrose and maltodextrin. Data showed glycation degree in IF cannot be estimated by a single compound, but the complete picture of the dAGEs should be considered.
Collapse
Affiliation(s)
- Yajing Xie
- Food Quality and Design Group, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | | | | | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
25
|
Wronkowska M, Bączek N, Honke J, Topolska J, Wiczkowski W, Zieliński H. Wheat Roll Enhanced by Buckwheat Hull, a New Functional Food: Focus on the Retention of Bioactive Compounds. Molecules 2023; 28:molecules28114565. [PMID: 37299040 DOI: 10.3390/molecules28114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023] Open
Abstract
Wheat roll enhanced by buckwheat hull was used as a model for determining the retention of bioactive compounds during technological steps. The research included analysis of the formation of Maillard reaction products (MRPs) and retention of bioactive compounds such as tocopherols, glutathione, or antioxidant capacity. About a 30% decrease in the content of available lysine in the roll was observed compared to the value obtained for fermented dough. Free FIC, FAST index, and browning index were highest for the final products. The increase of analyzed tocopherols (α-, β-,γ-, and δ-T) was noticed during the technological steps, with the highest values found for the roll with 3% of buckwheat hull. A significant reduction in GSH and GSSG content occurred during the baking process. The observed increase in the value of the antioxidant capacity after the baking process may be the result of the formation of new antioxidant compounds.
Collapse
Affiliation(s)
- Małgorzata Wronkowska
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Natalia Bączek
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Honke
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Topolska
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Henryk Zieliński
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
26
|
Ashkar F, Wu J. Effects of Food Factors and Processing on Protein Digestibility and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267055 DOI: 10.1021/acs.jafc.3c00442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/04/2023]
Abstract
Protein is an essential macronutrient. The nutritional needs of dietary proteins are met by digestion and absorption in the small intestine. Indigestible proteins are further metabolized in the gut and produce metabolites via protein fermentation. Thus, protein indigestibility exerts a wide range of effects on gut microbiota composition and function. This review aims to discuss protein digestibility, the effects of food factors, such as protein sources, intake level, and amino acid composition, and making meat analogues. Besides, it provides an inventory of antinutritional factors and processing techniques that influence protein digestibility and, consequently, the diversity and composition of intestinal microbiota. Future studies are warranted to understand the implication of plant-based analogues on protein digestibility and gut microbiota and to elucidate the mechanisms concerning protein digestibility to host gut microbiota using various omics techniques.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
27
|
Yan S, Zhang M, Yuan Y, Mu G, Xu H, Zhao T, Wang Y, Xue X. Chaste honey in long term-storage: Occurrence and accumulation of Maillard reaction products, and safety assessment. Food Chem 2023; 424:136457. [PMID: 37247601 DOI: 10.1016/j.foodchem.2023.136457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Honey, a natural sweetener that can be stored long-term, is prone to Maillard reactions. Maillard reaction products (MRPs), such as 5-hydroxymethylfurfural (5-HMF), α-dicarbonyl compounds (α-DCs), and advanced glycation end products (AGEs), negatively affect human health. We analyzed MRP accumulation in chaste honey over four years. In the first year, α-DCs were dominant with total contents of 509.7 mg/kg. In the second year, Amadori compounds increased, accounting for the largest percentage. Their formation at the initial stage showed inhibition of the Maillard reaction over time. AGE contents were approximately 1.00 mg/kg over four years, which is negligible compared to other foods. Increased 5-HMF was significantly correlated with storage time (p < 0.01), making it a suitable indicator of honey quality. Due to the lack of MRP risk assessments, we compared our findings with daily intake of MRPs from other foods, and the levels of MRPs in honey over four years are acceptable.
Collapse
Affiliation(s)
- Sha Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Min Zhang
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuzhe Yuan
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Guodong Mu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Haitao Xu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Tian Zhao
- Animal Husbandry and Veterinary Medicine Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Yinchen Wang
- Animal Husbandry and Veterinary Medicine Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China.
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
28
|
Blidi S, Troise AD, Ledbetter M, Cottin S, Sturrock K, De Pascale S, Scaloni A, Fiore A. α-Dicarbonyl compounds trapping ability and antiglycative effect of high-molecular-weight brewer's spent grain melanoidins. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/30/2023]
|
29
|
Feng J, Schroën K, Guyot S, Gacel A, Fogliano V, Berton-Carabin CC. Physical and Oxidative Stabilization of Oil-In-Water Emulsions by Roasted Coffee Fractions: Interface- and Continuous Phase-Related Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4717-4728. [PMID: 36892016 PMCID: PMC10037332 DOI: 10.1021/acs.jafc.2c07365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/21/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Emulsions fortified with polyunsaturated fatty acids are highly relevant from a nutritional perspective; however, such products are prone to lipid oxidation. In the current work, this is mitigated by the use of natural antioxidants occurring in coffee. Coffee fractions with different molecular weights were extracted from roasted coffee beans. These components were positioned either at the interface or in the continuous phase of emulsions where they contributed to emulsion stability via different pathways. Coffee brew as a whole, and its high-molecular-weight fraction (HMWF), was able to form emulsions with good physical stability and excellent oxidative stability. When added post-homogenization to the continuous phase of dairy protein-stabilized emulsions, all coffee fractions were able to slow down lipid oxidation considerably without altering the physical stability of emulsions, though HMWF was more effective in retarding lipid oxidation than whole coffee brew or low-molecular-weight fraction. This is caused by various effects, such as the antioxidant properties of coffee extracts, the partitioning of components in the emulsions, and the nature of the phenolic compounds. Our research shows that coffee extracts can be used effectively as multifunctional stabilizers in dispersed systems leading to emulsion products with high chemical and physical stability.
Collapse
Affiliation(s)
- Jilu Feng
- Food
Quality and Design Group, Wageningen University
and Research, 6708WG Wageningen, Netherlands
- Food
Process and Engineering Group, Wageningen
University and Research, 6708WG Wageningen, Netherlands
| | - Karin Schroën
- Food
Process and Engineering Group, Wageningen
University and Research, 6708WG Wageningen, Netherlands
| | | | | | - Vincenzo Fogliano
- Food
Quality and Design Group, Wageningen University
and Research, 6708WG Wageningen, Netherlands
| | - Claire C. Berton-Carabin
- Food
Process and Engineering Group, Wageningen
University and Research, 6708WG Wageningen, Netherlands
- INRAE,
UR BIA, F-44316 Nantes, France
| |
Collapse
|
30
|
Dong L, Li Y, Chen Q, Liu Y, Qiao Z, Sang S, Zhang J, Zhan S, Wu Z, Liu L. Research advances of advanced glycation end products in milk and dairy products: Formation, determination, control strategy and immunometabolism via gut microbiota. Food Chem 2023; 417:135861. [PMID: 36906946 DOI: 10.1016/j.foodchem.2023.135861] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2022] [Revised: 01/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Advanced glycosylation end products (AGEs) are a series of complex compounds which generate in the advanced phase of Maillard reaction, which can pose a non-negligible risk to human health. This article systematically encompasses AGEs in milk and dairy products under different processing conditions, influencing factors, inhibition mechanism and levels among the different categories of dairy products. In particular, it describes the effects of various sterilization techniques on the Maillard reaction. Different processing techniques have a significant effect on AGEs content. In addition, it clearly articulates the determination methods of AGEs and even discusses its immunometabolism via gut microbiota. It is observed that the metabolism of AGEs can affect the composition of the gut microbiota, which further has an impact on intestinal function and the gut-brain axis. This research also provides a suggestion for AGEs mitigation strategies, which are beneficial to optimize the dairy production, especially innovative processing technology application.
Collapse
Affiliation(s)
- Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zhaohui Qiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jingshun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Shengnan Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
31
|
Tagliamonte S, Troise AD, Ferracane R, Vitaglione P. The Maillard reaction end product Nε-carboxymethyllysine is metabolized in humans and the urinary levels of the microbial metabolites are associated with individual diet. Food Funct 2023; 14:2074-2081. [PMID: 36728638 DOI: 10.1039/d2fo03480h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023]
Abstract
During food processing most of the thermally-driven chemical reactions start off on the side chain amino group of lysine generating structurally modified compounds with specific metabolic routes. Upon human digestion, dietary Nε-carboxymethyllysine (CML) may enter the colon and undergo gut microbial metabolism. However, little is known about the in vivo metabolic fate of dietary CML and its relationship with the habitual diet. We explored by hydrophilic interaction liquid chromatography tandem mass spectrometry the metabolites of CML in urine samples collected from 46 healthy subjects and studied the associations with diet. Mean concentration of N-carboxymethylcadaverine (CM-CAD), N-carboxymethylaminopentanoic acid (CM-APA), N-carboxymethylaminopentanol (CM-APO), and the N-carboxymethyl-Δ1-piperideinium ion were 0.49 nmol mg-1 creatinine, 1.45 nmol mg-1 creatinine, 4.43 nmol mg-1 creatinine and 4.79 nmol mg-1 creatinine, respectively. The urinary concentration of CML, its metabolites and lysine were positively correlated. Dietary intake of meat products negatively correlated with urinary excretion of CML and CM-APA; conversely dietary plant-to-animal proteins ratio positively correlated with urinary CML and its metabolites. The identification and quantification of CML metabolites in urine and the associations with diet corroborate the hypothesis that CML, an advanced glycation end-product, can undergo further biochemical transformations in vivo. The gut microbiome may have a major role in human metabolism of dietary CML.
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| |
Collapse
|
32
|
Díaz-Morales N, Cavia-Saiz M, Rivero-Perez MD, Gómez I, Salazar-Mardones G, Jaime I, González-SanJosé ML, Muñiz P. Bread melanoidins as potential new sustainable bakery ingredients: a study using fat and fat-free bakery food models. Food Funct 2023; 14:1785-1794. [PMID: 36723046 DOI: 10.1039/d2fo03909e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
Abstract
Melanoidins isolated from bakery by-products are proposed as new sustainable ingredients for bakery products. The colour, odour profile, texture, water activity, and antioxidant capacity of two bakery food models, fat and fat-free, enriched with 2% and 4% soft bread and common bread melanoidins, were analysed. The colour of the bakery food models with melanoidins was darker than that of the respective control; the fat-free models with melanoidins showed higher values of hardness than the control, while no significant effect was observed in the fat models; the water activity did not change compared to the control; the odour profile was significantly modified with different effects depending on the type of melanoidin quantity added and the food model (fat or fat-free); and the antioxidant capacity increased proportionally to the quantity of melanoidin added. In general, melanoidins from soft bread exhibited a higher effect than the melanoidins from common bread. The melanoidins isolated from both fat and fat-free bakery food models did not show cytotoxicity nor did they modify the levels of reactive oxygen species in Caco-2 cells. Therefore, the results seem to indicate the favourable potential of bread melanoidins as new sustainable ingredients for bakery products.
Collapse
Affiliation(s)
- Noelia Díaz-Morales
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - Mónica Cavia-Saiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - Ma Dolores Rivero-Perez
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - Inmaculada Gómez
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - Gonzalo Salazar-Mardones
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - Isabel Jaime
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - María L González-SanJosé
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - Pilar Muñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| |
Collapse
|
33
|
Deng Y, Wang X, Zhang C, Xie P, Huang L. Inhibitory Effect of a Chinese Quince Seed Peptide on Protein Glycation: A Mechanism Study. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023] Open
|
34
|
Bioactive Properties of Instant Chicory Melanoidins and Their Relevance as Health Promoting Food Ingredients. Foods 2022; 12:foods12010134. [PMID: 36613350 PMCID: PMC9818759 DOI: 10.3390/foods12010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Instant chicory is a caffeine-free brew worldwide consumed as a coffee substitute. Like coffee grounds processing, chicory roots suffer a roasting process, which may lead to the formation of high-molecular weight nitrogen-brown compounds, the melanoidins. It is hypothesized that similarly to coffee, chicory melanoidins have health promoting potential. In this work, the chemical composition and biological activity of chicory high molecular weight material (HMWM) was evaluated. The chicory HMWM is composed by 28.9% (w/w) of carbohydrates, mainly fructose-rich polysaccharides (18.7% w/w) and 5.7% (w/w) of protein, distinct from coffee. The phenolic compounds constituent of the HMWM were mainly present in glycosidically linked and condensed structures (0.9 g/100 g and 5.8 g/100 g), showing in vitro ABTS•+ scavenging (IC50 = 0.28 mg/mL) and ferric ion reducing capacity (ca. 11 µg Fe2+ eq/mg). Chicory HMWM revealed to be effective against Gram-positive bacteria, mainly Staphylococcus aureus and Bacillus cereus, although not so efficient as coffee. It also showed potential to inhibit α-glucosidase activity (15% of inhibition), higher than coffee HMWM, approaching acarbose activity that is used in type 2 diabetes mellitus treatment. Thus, chicory melanoidins, when used as a food ingredient, may contribute to an antioxidant diet and to prevent diabetes, while increasing the protective effects against pathogenic bacteria.
Collapse
|
35
|
Han P, Zhang Q, Wang X, Zhou P, Dong S, Zha F, Zeng M. Formation of advanced glycation end products in sturgeon patties affected by pan-fried and deep-fried conditions. Food Res Int 2022; 162:112105. [PMID: 36461405 DOI: 10.1016/j.foodres.2022.112105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
Abstract
This study compared the effects of pan-fried with low (LPF), high (HPF) amounts of oil and deep-fried (DF) on the profiles of advanced glycation end products (AGEs) in sturgeon patties. The surface color of the pan-fried patties, regardless of the amounts of oil used, visually presented more brown than deep-fried ones with higher internal temperature at the frying course of 3-9 min. Compared to LPF and HPF, DF significantly accelerated the furosine development for 6-9 min of frying, dynamically increased the accumulation of CML (Nε-carboxymethyl-lysine) and CEL (Nε-carboxyethyl-lysine) for up to 9 min of frying, and the level of CML in DF than LPF, HPF for 9 min of frying were increased by 209.6 % and 149.9 %, respectively. The oil level employed for pan-fried insignificantly influenced the formation of furosine and CML in patties. The principal component analysis further confirmed that DF patties had a greater influence on the formation of AGEs. The AGEs formation was positively associated with the temperature and amino groups, while remarkably negative correlation with moisture content. Therefore, pan-fried within 6 min of frying was recommended for the domestic cooking of sturgeon patties based on the potential formation of AGEs.
Collapse
Affiliation(s)
- Peng Han
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Qi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xueyang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Pengcheng Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shiyuan Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Fengchao Zha
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| |
Collapse
|
36
|
Wang ZQ, Sun Z. Dietary N ε-(carboxymethyl) lysine affects cardiac glucose metabolism and myocardial remodeling in mice. World J Diabetes 2022; 13:972-985. [PMID: 36437860 PMCID: PMC9693738 DOI: 10.4239/wjd.v13.i11.972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Myocardial remodeling is a key factor in the progression of cardiovascular disease to the end stage. In addition to myocardial infarction or stress overload, dietary factors have recently been considered associated with myocardial remodeling. Nε-(carboxymethyl)lysine (CML) is a representative foodborne toxic product, which can be ingested via daily diet. Therefore, there is a marked need to explore the effects of dietary CML on the myocardium.
AIM To explore the effects of dietary CML (dCML) on the heart.
METHODS C57 BL/6 mice were divided into a control group and a dCML group. The control group and the dCML group were respectively fed a normal diet or diet supplemented with CML for 20 wk. Body weight and blood glucose were recorded every 4 wk. 18F-fluorodeoxyglucose (FDG) was used to trace the glucose uptake in mouse myocardium, followed by visualizing with micro-positron emission tomography (PET). Myocardial remodeling and glucose metabolism were also detected. In vitro, H9C2 cardiomyocytes were added to exogenous CML and cultured for 24 h. The effects of exogenous CML on glucose metabolism, collagen I expression, hypertrophy, and apoptosis of cardiomyocytes were analyzed.
RESULTS Our results suggest that the levels of fasting blood glucose, fasting insulin, and serum CML were significantly increased after 20 wk of dCML. Micro-PET showed that 18F-FDG accumulated more in the myocardium of the dCML group than in the control group. Histological staining revealed that dCML could lead to myocardial fibrosis and hypertrophy. The indexes of myocardial fibrosis, apoptosis, and hypertrophy were also increased in the dCML group, whereas the activities of glucose metabolism-related pathways and citrate synthase (CS) were significantly inhibited. In cardiomyocytes, collagen I expression and cellular size were significantly increased after the addition of exogenous CML. CML significantly promoted cellular hypertrophy and apoptosis, while pathways involved in glucose metabolism and level of Cs mRNA were significantly inhibited.
CONCLUSION This study reveals that dCML alters myocardial glucose metabolism and promotes myocardial remodeling.
Collapse
Affiliation(s)
- Zhong-Qun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| |
Collapse
|
37
|
Oba PM, Hwisa N, Huang X, Cadwallader KR, Swanson KS. Nutrient and Maillard reaction product concentrations of commercially available pet foods and treats. J Anim Sci 2022; 100:skac305. [PMID: 36082767 PMCID: PMC9667973 DOI: 10.1093/jas/skac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Thermal processing is used to produce most commercial pet foods and treats to improve safety, shelf life, nutritional characteristics, texture, and nutrient digestibility. However, heat treatments can degrade protein quality by damaging essential amino acids, as well as contribute to the Maillard reaction. The Maillard reaction forms melanoidins that favorably improve food qualities (e.g., color, flavor, aroma), but also form Maillard reaction products (MRP) and advanced glycation end-products that may negatively affect health. Because commercial pet diets are frequently fed to domestic cats and dogs throughout their lifetimes, it is critical to quantify MRP concentrations and understand the variables that influence their formation so future diets may be formulated with that in mind. Because few research studies on MRP in pet diets have been conducted, the goals of this study were to measure the MRP in commercial pet foods and treats, estimate pet MRP intake, and correlate MRP with dietary macronutrient concentrations. Fifty-three dry and wet dog foods, dog treats, and cat foods were analyzed for dry matter, organic matter, crude protein, acid-hydrolyzed fat, total dietary fiber, and gross energy using standard techniques. MRP were analyzed using high-performance liquid chromatography and gas chromatography-mass spectrometry. Data were analyzed using the Mixed Models procedure of SAS 9.4. Dry foods had lower reactive lysine concentrations and reactive lysine: total lysine ratios (indicator of damage) than wet foods. Wet foods had more fructoselysine (FRUC) than dry foods; however, dry dog treats contained more FRUC than wet dog treats. The greatest 5-hydroxymethyl-2-furfural (HMF) concentrations were measured in dry and wet dog foods, whereas the lowest HMF concentrations were measured in dry and wet cat foods. Based on dietary concentrations and estimated food intakes, dogs and cats fed wet foods are more likely to consume higher carboxymethyllysine and FRUC concentrations than those fed dry foods. However, dogs fed wet foods are more likely to consume higher HMF concentrations than those fed dry foods. In cats, those fed dry foods would consume higher HMF concentrations than those fed wet foods. We demonstrated that pet foods and treats contain highly variable MRP concentrations and depend on diet/treat type. In general, higher MRP concentrations were measured in wet pet foods and dry treats. While these findings are valuable, in vivo testing is needed to determine if and how MRP consumption affect pet health.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Nagiat Hwisa
- Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Xinhe Huang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Keith R Cadwallader
- Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Rabbani N, Thornalley PJ. An Introduction to the Special Issue "Protein Glycation in Food, Nutrition, Health and Disease". Int J Mol Sci 2022; 23:13053. [PMID: 36361833 PMCID: PMC9656604 DOI: 10.3390/ijms232113053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/25/2022] [Indexed: 10/18/2023] Open
Abstract
On 20-24 September 2021, leading researchers in the field of glycation met online at the 14th International Symposium on the Maillard Reaction (IMARS-14), hosted by the authors of this introductory editorial, who are from Doha, Qatar [...].
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
39
|
van Dongen KCW, Belzer C, Bakker W, Rietjens IMCM, Beekmann K. Inter- and Intraindividual Differences in the Capacity of the Human Intestinal Microbiome in Fecal Slurries to Metabolize Fructoselysine and Carboxymethyllysine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11759-11768. [PMID: 36069406 PMCID: PMC9501902 DOI: 10.1021/acs.jafc.2c05756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/17/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The advanced glycation endproduct carboxymethyllysine and its precursor fructoselysine are present in heated, processed food products and are considered potentially hazardous for human health. Upon dietary exposure, they can be degraded by human colonic gut microbiota, reducing internal exposure. Pronounced interindividual and intraindividual differences in these metabolic degradations were found in anaerobic incubations with human fecal slurries in vitro. The average capacity to degrade fructoselysine was 27.7-fold higher than that for carboxymethyllysine, and degradation capacities for these two compounds were not correlated (R2 = 0.08). Analysis of the bacterial composition revealed that interindividual differences outweighed intraindividual differences, and multiple genera were correlated with the individuals' carboxymethyllysine and fructoselysine degradation capacities (e.g., Akkermansia, Alistipes).
Collapse
Affiliation(s)
- Katja C. W. van Dongen
- Division
of Toxicology, Wageningen University and
Research, P.O. Box 8000, Wageningen 6700 EA, The
Netherlands
| | - Clara Belzer
- Laboratory
of Microbiology, Wageningen University and
Research, P.O. Box 8033, Wageningen 6700 EH, The
Netherlands
| | - Wouter Bakker
- Division
of Toxicology, Wageningen University and
Research, P.O. Box 8000, Wageningen 6700 EA, The
Netherlands
| | - Ivonne M. C. M. Rietjens
- Division
of Toxicology, Wageningen University and
Research, P.O. Box 8000, Wageningen 6700 EA, The
Netherlands
| | - Karsten Beekmann
- Wageningen
Food Safety Research (WFSR), Part of Wageningen University and Research, P.O. Box 230, Wageningen 700 AE, The Netherlands
| |
Collapse
|
40
|
Li Q, Li L, Zhu H, Yang F, Xiao K, Zhang L, Zhang M, Peng Y, Wang C, Li D, Wu Q, Zhou M. Lactobacillus fermentum as a new inhibitor to control advanced glycation end-product formation during vinegar fermentation. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|
41
|
Nawaz A, Irshad S, Ali Khan I, Khalifa I, Walayat N, Muhammad Aadil R, Kumar M, Wang M, Chen F, Cheng KW, Lorenzo JM. Protein oxidation in muscle-based products: Effects on physicochemical properties, quality concerns, and challenges to food industry. Food Res Int 2022; 157:111322. [DOI: 10.1016/j.foodres.2022.111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022]
|
42
|
Fang R, Zhu Z, Bassey AP, Khan IA, Huang M. Glyoxal induced advanced glycation end products formation in chicken meat emulsion instead of oxidation. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|
43
|
Li Y, Peng Y, Shen Y, Zhang Y, Liu L, Yang X. Dietary polyphenols: regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 63:9816-9842. [PMID: 35587161 DOI: 10.1080/10408398.2022.2076064] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
Advanced glycation end products (AGEs) are formed in non-enzymatic reaction, oxidation, rearrangement and cross-linking between the active carbonyl groups of reducing sugars and the free amines of amino acids. The Maillard reaction is related to sensory characteristics in thermal processed food, while AGEs are formed in food matrix in this process. AGEs are a key link between carbonyl stress and neurodegenerative disease. AGEs can interact with receptors for AGEs (RAGE), causing oxidative stress, inflammation response and signal pathways activation related to neurodegenerative diseases. Neurodegenerative diseases are closely related to gut microbiota imbalance and intestinal inflammation. Polyphenols with multiple hydroxyl groups showed a powerful ability to scavenge ROS and capture α-dicarbonyl species, which led to the formation of mono- and di- adducts, thereby inhibiting AGEs formation. Neurodegenerative diseases can be effectively prevented by inhibiting AGEs production, and interaction with RAGEs, or regulating the microbiota-gut-brain axis. These strategies include polyphenols multifunctional effects on AGEs inhibition, RAGE-ligand interactions blocking, and regulating the abundance and diversity of gut microbiota, and intestinal inflammation alleviation to delay or prevent neurodegenerative diseases progress. It is a wise and promising strategy to supplement dietary polyphenols for preventing neurodegenerative diseases via AGEs-RAGE axis and microbiota-gut-brain axis regulation.
Collapse
Affiliation(s)
- Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yao Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, PR China
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, PR China
| | - Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang, PR China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, PR China
| |
Collapse
|
44
|
Helou C, Nogueira Silva Lima MT, Niquet-Leridon C, Jacolot P, Boulanger E, Delguste F, Guilbaud A, Genin M, Anton PM, Delayre-Orthez C, Papazian T, Howsam M, Tessier FJ. Plasma Levels of Free NƐ-Carboxymethyllysine (CML) after Different Oral Doses of CML in Rats and after the Intake of Different Breakfasts in Humans: Postprandial Plasma Level of sRAGE in Humans. Nutrients 2022; 14:nu14091890. [PMID: 35565855 PMCID: PMC9101122 DOI: 10.3390/nu14091890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
N-carboxymethyl-lysine (CML) and other dietary advanced glycation end-products (AGEs) are chemically modified amino acids with potential toxicological effects putatively related to their affinity with the receptor for AGEs (RAGE). The goal of this study was to determine the postprandial kinetics of CML in both rodents and humans and, in the latter, to evaluate their relationship with the soluble RAGE isoforms (sRAGE). Four gavage solutions containing different forms of CML were given to rats, and blood was collected over 8 h. Three different breakfasts containing dietary CML (dCML) were administered to 20 healthy volunteers, and blood was collected over 2 h. Concentrations of CML, CEL, and lysine were quantified in plasma and human meals by LC-MS/MS, and sRAGE was determined in human plasma by ELISA. The results showed that dCML did not affect the concentrations of circulating protein-bound CML and that only free CML increased in plasma, with a postprandial peak at 90 to 120 min. In humans, the postprandial plasmatic sRAGE concentration decreased independently of the dAGE content of the breakfasts. This study confirms reports of the inverse postprandial relationship between plasmatic free CML and sRAGE, though this requires further investigation for causality to be established.
Collapse
Affiliation(s)
- Cynthia Helou
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Beirut 1004 2020, Lebanon; (C.H.); (T.P.)
| | - Matheus Thomaz Nogueira Silva Lima
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
| | - Céline Niquet-Leridon
- ULR 7519, Equipe PETALES, Institut Polytechnique UniLaSalle, Université d’Artois, F-60026 Beauvais, France; (C.N.-L.); (P.J.); (P.M.A.); (C.D.-O.)
| | - Philippe Jacolot
- ULR 7519, Equipe PETALES, Institut Polytechnique UniLaSalle, Université d’Artois, F-60026 Beauvais, France; (C.N.-L.); (P.J.); (P.M.A.); (C.D.-O.)
| | - Eric Boulanger
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
| | - Florian Delguste
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
| | - Axel Guilbaud
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
| | - Michael Genin
- ULR 2694-METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, University Lille, Inserm, CHU Lille, F-59000 Lille, France;
| | - Pauline M. Anton
- ULR 7519, Equipe PETALES, Institut Polytechnique UniLaSalle, Université d’Artois, F-60026 Beauvais, France; (C.N.-L.); (P.J.); (P.M.A.); (C.D.-O.)
| | - Carine Delayre-Orthez
- ULR 7519, Equipe PETALES, Institut Polytechnique UniLaSalle, Université d’Artois, F-60026 Beauvais, France; (C.N.-L.); (P.J.); (P.M.A.); (C.D.-O.)
| | - Tatiana Papazian
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Beirut 1004 2020, Lebanon; (C.H.); (T.P.)
| | - Michael Howsam
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
| | - Frédéric J. Tessier
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
- Correspondence: ; Tel.: +33-(0)3-2062-3561
| |
Collapse
|
45
|
Wei J, Wu Z, Chai T, He F, Chen Y, Dong X, Shi Y. Effect of the combination of low temperature vacuum heating with tea polyphenol on AGEs in sturgeon fillets. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jianling Wei
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Zhengyang Wu
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Tingting Chai
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Fanyu He
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Yuewen Chen
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Xiuping Dong
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
- National Engineering Research Center of Seafood Dalian 116034 China
| | - Yugang Shi
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| |
Collapse
|
46
|
Feng J, Berton-Carabin CC, Fogliano V, Schroën K. Maillard reaction products as functional components in oil-in-water emulsions: A review highlighting interfacial and antioxidant properties. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
|
47
|
Li Y, Jia X, Wang Z, He Z, Zeng M, Chen J. Changes in harmful Maillard reaction products in low-temperature long-time pasteurization-treated milks reconstituted from whole-milk powders after different storage times. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
|
48
|
Huang S, Dong X, Zhang Y, Chen Y, Yu Y, Huang M, Zheng Y. Formation of advanced glycation end products in raw and subsequently boiled broiler muscle: biological variation and effects of postmortem ageing and storage. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
|
49
|
Simvastatin Improves Microcirculatory Function in Nonalcoholic Fatty Liver Disease and Downregulates Oxidative and ALE-RAGE Stress. Nutrients 2022; 14:nu14030716. [PMID: 35277075 PMCID: PMC8838100 DOI: 10.3390/nu14030716] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Increased reactive oxidative stress, lipid peroxidation, inflammation, and fibrosis, which contribute to tissue damage and development and progression of nonalcoholic liver disease (NAFLD), play important roles in microcirculatory disorders. We investigated the effect of the modulatory properties of simvastatin (SV) on the liver and adipose tissue microcirculation as well as metabolic and oxidative stress parameters, including the advanced lipoxidation end product–receptors of advanced glycation end products (ALE-RAGE) pathway. SV was administered to an NAFLD model constructed using a high-fat–high-carbohydrate diet (HFHC). HFHC caused metabolic changes indicative of nonalcoholic steatohepatitis; treatment with SV protected the mice from developing NAFLD. SV prevented microcirculatory dysfunction in HFHC-fed mice, as evidenced by decreased leukocyte recruitment to hepatic and fat microcirculation, decreased hepatic stellate cell activation, and improved hepatic capillary network architecture and density. SV restored basal microvascular blood flow in the liver and adipose tissue and restored the endothelium-dependent vasodilatory response of adipose tissue to acetylcholine. SV treatment restored antioxidant enzyme activity and decreased lipid peroxidation, ALE-RAGE pathway activation, steatosis, fibrosis, and inflammatory parameters. Thus, SV may improve microcirculatory function in NAFLD by downregulating oxidative and ALE-RAGE stress and improving steatosis, fibrosis, and inflammatory parameters.
Collapse
|
50
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|