1
|
Braz M, Pereira C, Freire CSR, Almeida A. Potential of bacteriophage phT4A as a biocontrol agent against Escherichia coli in food matrices. Int J Food Microbiol 2024; 424:110847. [PMID: 39106593 DOI: 10.1016/j.ijfoodmicro.2024.110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Escherichia coli is one of the most prevalent foodborne pathogens, frequently found in meat and dairy products. Current decontamination methods are often associated with changes in organoleptic characteristics, nutrient loss, and potentially harmful side effects. Furthermore, despite the array of available methods, foodborne outbreaks still frequently occur. For this reason, bacteriophages (or simply phages) emerged as a natural alternative for the biocontrol of bacterial contamination in food without altering their organoleptic properties. In this study, the potential of phage phT4A was assessed in the biocontrol of E. coli in liquid (milk) and solid (ham) food matrices. Firstly, as foods have different pH and temperature values, the influence of these parameters on phage phT4A viability was also assessed to develop an effective protocol. Phage phT4A proved to be stable for long storage periods at pH 7-8 (56 days) and temperatures of 4-37 °C (21 days). Before application of phages to inactivate pathogenic bacteria in food, previous assays were carried out in Tryptic Soy Broth (TSB) to study the dynamics of phage-bacteria interaction. Then, the antibacterial potential of phage phT4A was evaluated in the two food matrices at different temperatures (4, 10 and 25 °C). This phage was more efficient at 25 °C in all tested matrices (maximum inactivation of 6.6, 3.9 and 1.8 log CFU/mL in TSB, milk and ham, respectively) than at 10 °C (maximum decrease of 4.7, 2.1 and 1.0 log CFU/mL in TSB, milk and ham, respectively) and 4 °C (maximum reduction of 2.6 and 0.7 log CFU/mL in TSB and milk, respectively). However, the decrease of temperature from 25 °C to 10 and 4 °C prevented bacterial regrowth. The results suggest that during phage treatment, a balance between an incubation temperature that provide effective results in terms of bacterial inactivation by the phages and at the same time prevents or delays bacterial regrowth, is needed. The application of phage phT4A at a temperature of 10 °C can be an effective strategy in terms of bacterial inactivation, delaying bacterial regrowth and also reducing energy costs.
Collapse
Affiliation(s)
- Márcia Braz
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carmen S R Freire
- Department of Chemistry and CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Guo X, Luo G, Hou F, Zhou C, Liu X, Lei Z, Niu D, Ran T, Tan Z. A review of bacteriophage and their application in domestic animals in a post-antibiotic era. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174931. [PMID: 39043300 DOI: 10.1016/j.scitotenv.2024.174931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Bacteriophages (phages for short) are the most abundant biological entities on Earth and are natural enemies of bacteria. Genomics and molecular biology have identified subtle and complex relationships among phages, bacteria and their animal hosts. This review covers composition, diversity and factors affecting gut phage, their lifecycle in the body, and interactions with bacteria and hosts. In addition, research regarding phage in poultry, aquaculture and livestock are summarized, and application of phages in antibiotic substitution, phage therapy and food safety are reviewed.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Guowang Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiu Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Dongyan Niu
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Tao Ran
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
3
|
Hendrix H, Itterbeek A, Longin H, Delanghe L, Vriens E, Vallino M, Lammens EM, Haque F, Yusuf A, Noben JP, Boon M, Koch MD, van Noort V, Lavigne R. PlzR regulates type IV pili assembly in Pseudomonas aeruginosa via PilZ binding. Nat Commun 2024; 15:8717. [PMID: 39379373 PMCID: PMC11461919 DOI: 10.1038/s41467-024-52732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Type IV pili (T4P) are thin, flexible filaments exposed on the cell surface of gram-negative bacteria and are involved in pathogenesis-related processes, including cell adsorption, biofilm formation, and twitching motility. Bacteriophages often use these filaments as receptors to infect host cells. Here, we describe the identification of a protein that inhibits T4P assembly in Pseudomonas aeruginosa, discovered during a screen for host factors influencing phage infection. We show that expression of PA2560 (renamed PlzR) in P. aeruginosa inhibits adsorption of T4P-dependent phages. PlzR does this by directly binding the T4P chaperone PilZ, which in turn regulates the ATPase PilB and results in disturbed T4P assembly. As the plzR promoter is induced by cyclic di-GMP, PlzR might play a role in coupling T4P function to levels of this second messenger.
Collapse
Affiliation(s)
- Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Annabel Itterbeek
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Laboratory for Host Pathogen Interactions in Livestock, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Hannelore Longin
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium
| | - Lize Delanghe
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Eveline Vriens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy, IPSP-CNR Headquarter, Turin, Italy
| | - Eveline-Marie Lammens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Farhana Haque
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ahmed Yusuf
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Maarten Boon
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Matthias D Koch
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Vera van Noort
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium.
| |
Collapse
|
4
|
Oliulla H, Mizan MFR, Kang I, Ha SD. On-going issues regarding biofilm formation in meat and meat products: challenges and future perspectives. Poult Sci 2024; 103:104373. [PMID: 39426218 PMCID: PMC11536009 DOI: 10.1016/j.psj.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
The meat industry has been significantly threatened by the risks of foodborne microorganisms and biofilm formation on fresh meat and processed products. A microbial biofilm is a sophisticated defensive mechanism that enables bacterial cells to survive in unfavorable environmental circumstances. Generally, foodborne pathogens form biofilms in various areas of meat-processing plants, and adequate sanitization of these areas is challenging owing to the high tolerance of biofilm cells to sanitization compared with their planktonic states. Consequently, preventing biofilm initiation and maturation using effective and powerful technologies is imperative. In this review, novel and advanced technologies that prevent bacterial and biofilm development via individual and combined intervention technologies, such as ultrasound, cold plasma, enzymes, bacteriocins, essential oils, and phages, were evaluated. The evidence regarding current technologies revealed in this paper is potentially beneficial to the meat industry in preventing bacterial contamination and biofilm formation in food products and processing equipment.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea.
| |
Collapse
|
5
|
Nuytten M, Leprince A, Goulet A, Mahillon J. Deciphering the adsorption machinery of Deep-Blue and Vp4, two myophages targeting members of the Bacillus cereus group. J Virol 2024; 98:e0074524. [PMID: 39177355 PMCID: PMC11406892 DOI: 10.1128/jvi.00745-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
In tailed phages, the baseplate is the macromolecular structure located at the tail distal part, which is directly implicated in host recognition and cell wall penetration. In myophages (i.e., with contractile tails), the baseplate is complex and comprises a central puncturing device and baseplate wedges connecting the hub to the receptor-binding proteins (RBPs). In this work, we investigated the structures and functions of adsorption-associated tail proteins of Deep-Blue and Vp4, two Herelleviridae phages infecting members of the Bacillus cereus group. Their interest resides in their different host spectrum despite a high degree of similarity. Analysis of their tail module revealed that the gene order is similar to that of the Listeria phage A511. Among their tail proteins, Gp185 (Deep-Blue) and Gp112 (Vp4) had no structural homolog, but the C-terminal variable parts of these proteins were able to bind B. cereus strains, confirming their implication in the phage adsorption. Interestingly, Vp4 and Deep-Blue adsorption to their hosts was also shown to require polysaccharides, which are likely to be bound by the arsenal of carbohydrate-binding modules (CBMs) of these phages' baseplates, suggesting that the adsorption does not rely solely on the RBPs. In particular, the BW Gp119 (Vp4), harboring a CBM fold, was shown to effectively bind to bacterial cells. Finally, we also showed that the putative baseplate hub proteins (i.e., Deep-Blue Gp189 and Vp4 Gp110) have a bacteriolytic activity against B. cereus strains, which supports their role as ectolysins locally degrading the peptidoglycan to facilitate genome injection. IMPORTANCE The Bacillus cereus group comprises closely related species, including some with pathogenic potential (e.g., Bacillus anthracis and Bacillus cytotoxicus). Their toxins represent the most frequently reported cause of food poisoning outbreaks at the European level. Bacteriophage research is undergoing a remarkable renaissance for its potential in the biocontrol and detection of such pathogens. As the primary site of phage-bacteria interactions and a prerequisite for successful phage infection, adsorption is a crucial process that needs further investigation. The current knowledge about B. cereus phage adsorption is currently limited to siphoviruses and tectiviruses. Here, we present the first insights into the adsorption process of Herelleviridae Vp4 and Deep-Blue myophages preying on B. cereus hosts, highlighting the importance of polysaccharide moieties in this process and confirming the binding to the host surface of Deep-Blue Gp185 and Vp4 Gp112 receptor-binding proteins and Gp119 baseplate wedge.
Collapse
Affiliation(s)
- Manon Nuytten
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Audrey Leprince
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Adeline Goulet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), CNRS and Aix-Marseille Université UMR7255, Marseille, France
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Liao YT, Ho KJ, Zhang Y, Salvador A, Wu VCH. A new Rogue-like Escherichia phage UDF157lw to control Escherichia coli O157:H7. Front Microbiol 2024; 14:1302032. [PMID: 38318127 PMCID: PMC10838988 DOI: 10.3389/fmicb.2023.1302032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Shiga toxin-producing Escherichia coli (STEC) O157:H7 is one of the notorious foodborne pathogens causing high mortality through the consumption of contaminated food items. The food safety risk from STEC pathogens could escalate when a group of bacterial cells aggregates to form a biofilm. Bacterial biofilm can diminish the effects of various antimicrobial interventions and enhance the pathogenicity of the pathogens. Therefore, there is an urgent need to have effective control measurements. Bacteriophages can kill the target bacterial cells through lytic infection, and some enzymes produced during the infection have the capability to penetrate the biofilm for mitigation compared to traditional interventions. This study aimed to characterize a new Escherichia phage vB_EcoS-UDF157lw (or UDF157lw) and determine its antimicrobial efficacy against E. coli O157:H7. Methods Phage characterization included biological approaches, including phage morphology, one-step growth curve, stability tests (pH and temperature), and genomic approaches (whole-genome sequencing). Later, antimicrobial activity tests, including productive infection against susceptible bacterial strains, in vitro antimicrobial activity, and anti-biofilm, were conducted. Results UDF157lw is a new member of the phages belonging to the Rogunavirus genus, comprising a long and non-contractile tail, isolated from bovine feces and shares close genomic evolutionary similarities with Escherichia phages vB_EcoS-BECP10 and bV_EcoS_AKS96. When used against E. coli O157:H7 (ATCC35150), phage UDF157lw exhibited a latent period of 14 min and a burst size of 110 PFU per infected cell. The phage remained viable in a wide range of pH values (pH 4-11) and temperatures (4-60°C). No virulence genes, such as stx, lysogenic genes, and antibiotic resistance genes, were found. Phage UDF157lw demonstrated high infection efficiencies against different E. coli O157:H7 and generic E. coli strains. In addition, UDF157lw encoded a unique major tail protein (ORF_26) with prominent depolymerase enzyme activity against various E. coli O157:H7 strains, causing large plaque sizes. In contrast to the phage without encoding depolymerase gene, UDF157lw was able to reduce the 24-h and 48-h E. coli O157:H7 biofilm after 1-h phage treatment. Discussion The findings of this study provide insights into a new member of the Rogunavirus phages and demonstrate its antimicrobial potential against E. coli O157:H7 in vitro.
Collapse
Affiliation(s)
| | | | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
7
|
Brenner T, Schultze DM, Mahoney D, Wang S. Reduction of Nontyphoidal Salmonella enterica in Broth and on Raw Chicken Breast by a Broad-spectrum Bacteriophage Cocktail. J Food Prot 2024; 87:100207. [PMID: 38142823 DOI: 10.1016/j.jfp.2023.100207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Globally, nontyphoidal Salmonella (NTS) causes approximately 150 million foodborne illnesses annually; many of which are linked to poultry products. Thus, improving food safety interventions in the poultry sector can reduce foodborne illness associated with prevalent NTS serotypes. Bacteriophages (phages) have shown promise as food-safe alternatives to current antimicrobial practices. However, challenges such as limited host range, bactericidal effectiveness in practical production settings, and the risk of developing host resistance remain as barriers for the widespread use of phages in commercial poultry operations. A broad-spectrum three-phage cocktail was evaluated against S. enterica subsp. enterica serotypes Enteritidis, Typhimurium, and Kentucky. The impact of multiplicity of infection (MOI) on NTS growth was assessed in broth at 22°C for 18 hours (h). Then, phage cocktail efficacy was evaluated on raw chicken breast samples inoculated with the NTS cocktail and stored at 10°C or 22°C for 0, 1, and 5 days or 0, 4, 8, and 16 h, respectively. Most probable number (MPN) calculations were performed for NTS counts on chicken after phage treatment and storage at 10°C to account for samples with NTS counts below the detection limit. In general, a higher MOI corresponded to reduced NTS growth; however, residual nutrition in growth media and initial NTS contamination level affected samples treated with the phage cocktail at identical MOIs. On chicken, phage cocktail treatment significantly reduced NTS counts at 10°C and 22°C. After storage at 10°C for 5 days, NTS counts were reduced by >3.2 log compared to the control. After storage at 22°C for 16 h, NTS counts were reduced by >1.7 log compared to the control. Overall, the phage cocktail was effective at reducing a diverse set of prominent NTS strains in broth and on raw chicken breast, highlighting its potential for commercialization and use alongside other hurdles in poultry production.
Collapse
Affiliation(s)
- Thomas Brenner
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Danielle Morgan Schultze
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - David Mahoney
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Oluwarinde BO, Ajose DJ, Abolarinwa TO, Montso PK, Du Preez I, Njom HA, Ateba CN. Safety Properties of Escherichia coli O157:H7 Specific Bacteriophages: Recent Advances for Food Safety. Foods 2023; 12:3989. [PMID: 37959107 PMCID: PMC10650914 DOI: 10.3390/foods12213989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is typically detected on food products mainly due to cross-contamination with faecal matter. The serotype O157:H7 has been of major public health concern due to the severity of illness caused, prevalence, and management. In the food chain, the main methods of controlling contamination by foodborne pathogens often involve the application of antimicrobial agents, which are now becoming less efficient. There is a growing need for the development of new approaches to combat these pathogens, especially those that harbour antimicrobial resistant and virulent determinants. Strategies to also limit their presence on food contact surfaces and food matrices are needed to prevent their transmission. Recent studies have revealed that bacteriophages are useful non-antibiotic options for biocontrol of E. coli O157:H7 in both animals and humans. Phage biocontrol can significantly reduce E. coli O157:H7, thereby improving food safety. However, before being certified as potential biocontrol agents, the safety of the phage candidates must be resolved to satisfy regulatory standards, particularly regarding phage resistance, antigenic properties, and toxigenic properties. In this review, we provide a general description of the main virulence elements of E. coli O157:H7 and present detailed reports that support the proposals that phages infecting E. coli O157:H7 are potential biocontrol agents. This paper also outlines the mechanism of E. coli O157:H7 resistance to phages and the safety concerns associated with the use of phages as a biocontrol.
Collapse
Affiliation(s)
- Bukola Opeyemi Oluwarinde
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Daniel Jesuwenu Ajose
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Ilse Du Preez
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
| | - Henry Akum Njom
- Agricultural Research Council, Private Bag X1251, Potchefstroom 2531, South Africa;
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| |
Collapse
|
9
|
Garvey M. Foodborne Clostridioides Species: Pathogenicity, Virulence and Biocontrol Options. Microorganisms 2023; 11:2483. [PMID: 37894141 PMCID: PMC10609181 DOI: 10.3390/microorganisms11102483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides species possess many virulence factors and alarming levels of muti-drug resistance which make them a significant risk to public health safety and a causative agent of livestock disease. Clostridioides result in serious systemic and gastrointestinal diseases such as myonecrosis, colitis, food poisoning and gastroenteritis. As foodborne pathogens, Clostridioides species are associated with significant incidences of morbidity and mortality where the application of broad-spectrum antibiotics predisposes patients to virulent Clostridioides colonisation. As part of the One Health approach, there is an urgent need to eliminate the use of antibiotics in food production to safeguard animals, humans and the environment. Alternative options are warranted to control foodborne pathogens at all stages of food production. Antimicrobial peptides and bacteriophages have demonstrated efficacy against Clostridioides species and may offer antimicrobial biocontrol options. The bacteriocin nisin, for example, has been implemented as a biopreservative for the control of Listeria, Staphylococcus and Clostridia species in food. Bacteriophage preparations have also gained recognition for the antibacterial action against highly virulent bacterial species including foodborne pathogens. Studies are warranted to mitigate the formulation and administration limitations associated with the application of such antimicrobials as biocontrol strategies. This review outlines foodborne Clostridioides species, their virulence factors, and potential biocontrol options for application in food production.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Ash Lane, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
10
|
Cevallos-Urena A, Kim JY, Kim BS. Vibrio-infecting bacteriophages and their potential to control biofilm. Food Sci Biotechnol 2023; 32:1719-1727. [PMID: 37780594 PMCID: PMC10533469 DOI: 10.1007/s10068-023-01361-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 10/03/2023] Open
Abstract
The emergence and spread of antibiotic-resistant pathogenic bacteria have necessitated finding new control alternatives. Under these circumstances, lytic bacteriophages offer a viable and promising option. This review focuses on Vibrio-infecting bacteriophages and the characteristics that make them suitable for application in the food and aquaculture industries. Bacteria, particularly Vibrio spp., can produce biofilms under stress conditions. Therefore, this review summarizes several anti-biofilm mechanisms that phages have, such as stimulating the host bacteria to produce biofilm-degrading enzymes, utilizing tail depolymerases, and penetrating matured biofilms through water channels. Additionally, the advantages of bacteriophages over antibiotics, such as a lower probability of developing resistance and the ability to infect dormant cells, are discussed. Finally, this review presents future research prospects related to further utilization of phages in diverse fields.
Collapse
Affiliation(s)
- Ana Cevallos-Urena
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jeong Yeon Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
11
|
Imran A, Shehzadi U, Islam F, Afzaal M, Ali R, Ali YA, Chauhan A, Biswas S, Khurshid S, Usman I, Hussain G, Zahra SM, Shah MA, Rasool A. Bacteriophages and food safety: An updated overview. Food Sci Nutr 2023; 11:3621-3630. [PMID: 37457180 PMCID: PMC10345663 DOI: 10.1002/fsn3.3360] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 07/18/2023] Open
Abstract
Despite significant advances in pathogen survival and food cleaning measures, foodborne diseases continue to be the main reason for hospitalization or other fatality globally. Conventional antibacterial techniques including pasteurization, pressurized preparation, radioactivity, as well as synthetic antiseptics could indeed decrease bacterial activity in nutrition to variable levels, despite their serious downsides like an elevated upfront outlay, the possibility of accessing malfunctions due to one corrosiveness, as well as an adverse effect upon those the foodstuffs' organoleptic properties and maybe their nutritional significance. Greatest significantly, these cleansing methods eliminate all contaminants, including numerous (often beneficial) bacteria found naturally in food. A huge amount of scientific publication that discussed the application of virus bioremediation to treat a multitude of pathogenic bacteria in meals spanning between prepared raw food to fresh fruit and vegetables although since initial idea through using retroviruses on meals. Furthermore, the quantity of widely viable bacteriophage-containing medicines licensed for use in health and safety purposes has continuously expanded. Bacteriophage bio-control, a leafy and ordinary technique that employs lytic bacteriophages extracted from the atmosphere to selectively target pathogenic bacteria and remove meaningfully decrease their stages meals, is one potential remedy that solves some of these difficulties. It has been suggested that applying bacteriophages to food is a unique method for avoiding bacterial development in vegetables. Because of their selectivity, security, stability, and use, bacteriophages are desirable. Phages have been utilized in post-harvest activities, either alone or in combination with antimicrobial drugs, since they are effective, strain-specific, informal to split and manipulate. In this review to ensure food safety, it may be viable to use retroviruses as a spontaneous treatment in the thread pollution of fresh picked fruits and vegetables, dairy, and convenience foods.
Collapse
Affiliation(s)
- Ali Imran
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Umber Shehzadi
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Fakhar Islam
- Department of Food Sciences Government College University Faisalabad Pakistan
- Department of Clinical Nutrition NUR International University Lahore Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Rehman Ali
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Yuosra Amer Ali
- Department of Food Sciences, College of Agriculture and Forestry University of Mosul Mosul Iraq
| | - Anamika Chauhan
- Department of Home Science Chaman Lal Mahavidyalaya Landhora Haridwar India
- Sri Dev Suman University Tehri India
| | - Sunanda Biswas
- Department of Food & Nutrition Acharya Prafulla Chandra College Kolkata India
| | - Sadaf Khurshid
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ifrah Usman
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Syeda Mahvish Zahra
- Department of Environmental Design, Health and Nutritional Sciences Allama Iqbal Open University Islamabad Pakistan
- Institute of Food Science and Nutrition University of Sargodha Sargodha Pakistan
| | - Mohd Asif Shah
- Adjunct Faculty University Center for Research & Development, Chandigarh University Mohali India
| | - Adil Rasool
- Department of Management Bakhtar University Kabul Afghanistan
| |
Collapse
|
12
|
Hou Y, Wu Z, Ren L, Chen Y, Zhang YA, Zhou Y. Characterization and application of a lytic jumbo phage ZPAH34 against multidrug-resistant Aeromonas hydrophila. Front Microbiol 2023; 14:1178876. [PMID: 37415809 PMCID: PMC10321303 DOI: 10.3389/fmicb.2023.1178876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023] Open
Abstract
Aeromonas hydrophila is an emerging foodborne pathogen causing human gastroenteritis. Aeromonas species isolated from food such as seafood presented multidrug-resistance (MDR), raising serious concerns regarding food safety and public health. The use of phages to infect bacteria is a defense against drug-resistant pathogens. In this study, phage ZPAH34 isolated from the lake sample exerted lytic activity against MDR A. hydrophila strain ZYAH75 and inhibited the biofilm on different food-contacting surfaces. ZPAH34 has a large dsDNA genome of 234 kb which belongs to a novel jumbo phage. However, its particle size is the smallest of known jumbo phages so far. Based on phylogenetic analysis, ZPAH34 was used to establish a new genus Chaoshanvirus. Biological characterization revealed that ZPAH34 exhibited wide environmental tolerance, and a high rapid adsorb and reproductive capacity. Food biocontrol experiments demonstrated that ZPAH34 reduces the viable count of A. hydrophila on fish fillets (2.31 log) and lettuce (3.28 log) with potential bactericidal effects. This study isolated and characterized jumbo phage ZPAH34 not only enriched the understanding of phage biological entity diversity and evolution because of its minimal virion size with large genome but also was the first usage of jumbo phage in food safety to eliminate A. hydrophila.
Collapse
Affiliation(s)
- Yuting Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li Ren
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuan Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
13
|
Gao Z, Feng Y. Bacteriophage strategies for overcoming host antiviral immunity. Front Microbiol 2023; 14:1211793. [PMID: 37362940 PMCID: PMC10286901 DOI: 10.3389/fmicb.2023.1211793] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Phages and their bacterial hosts together constitute a vast and diverse ecosystem. Facing the infection of phages, prokaryotes have evolved a wide range of antiviral mechanisms, and phages in turn have adopted multiple tactics to circumvent or subvert these mechanisms to survive. An in-depth investigation into the interaction between phages and bacteria not only provides new insight into the ancient coevolutionary conflict between them but also produces precision biotechnological tools based on anti-phage systems. Moreover, a more complete understanding of their interaction is also critical for the phage-based antibacterial measures. Compared to the bacterial antiviral mechanisms, studies into counter-defense strategies adopted by phages have been a little slow, but have also achieved important advances in recent years. In this review, we highlight the numerous intracellular immune systems of bacteria as well as the countermeasures employed by phages, with an emphasis on the bacteriophage strategies in response to host antiviral immunity.
Collapse
Affiliation(s)
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
14
|
Aman Mohammadi M, Maximiano MR, Hosseini SM, Franco OL. CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications. Bioprocess Biosyst Eng 2023; 46:483-497. [PMID: 36707422 DOI: 10.1007/s00449-022-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 01/29/2023]
Abstract
The developments in the food supply chain to support the growing population of the world is one of today's most pressing issues, and to achieve this goal improvements should be performed in both crops and microbes. For this purpose, novel approaches such as genome editing (GE) methods have upgraded the biological sciences for genome manipulation and, among such methods, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are the main exciting innovations since the Green Revolution. CRISPR/Cas systems can be a potent tool for the food industry, improvement of agricultural crops and even for protecting food-grade bacteria from foreign genetic invasive elements. This review introduces the history and mechanism of the CRISPR-Cas system as a genome editing tool and its applications in the vaccination of starter cultures, production of antimicrobials and bioactive compounds, and genome editing of microorganisms.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariana Rocha Maximiano
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Octavio Luiz Franco
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
15
|
D’Accolti M, Soffritti I, Bini F, Mazziga E, Arnoldo L, Volta A, Bisi M, Antonioli P, Laurenti P, Ricciardi W, Vincenti S, Mazzacane S, Caselli E. Potential Use of a Combined Bacteriophage–Probiotic Sanitation System to Control Microbial Contamination and AMR in Healthcare Settings: A Pre-Post Intervention Study. Int J Mol Sci 2023; 24:ijms24076535. [PMID: 37047510 PMCID: PMC10095405 DOI: 10.3390/ijms24076535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Microbial contamination in the hospital environment is a major concern for public health, since it significantly contributes to the onset of healthcare-associated infections (HAIs), which are further complicated by the alarming level of antimicrobial resistance (AMR) of HAI-associated pathogens. Chemical disinfection to control bioburden has a temporary effect and can favor the selection of resistant pathogens, as observed during the COVID-19 pandemic. Instead, probiotic-based sanitation (probiotic cleaning hygiene system, PCHS) was reported to stably abate pathogens, AMR, and HAIs. PCHS action is not rapid nor specific, being based on competitive exclusion, but the addition of lytic bacteriophages that quickly and specifically kill selected bacteria was shown to improve PCHS effectiveness. This study aimed to investigate the effect of such combined probiotic–phage sanitation (PCHSφ) in two Italian hospitals, targeting staphylococcal contamination. The results showed that PCHSφ could provide a significantly higher removal of staphylococci, including resistant strains, compared with disinfectants (−76%, p < 0.05) and PCHS alone (−50%, p < 0.05). Extraordinary sporadic chlorine disinfection appeared compatible with PCHSφ, while frequent routine chlorine usage inactivated the probiotic/phage components, preventing PCHSφ action. The collected data highlight the potential of a biological sanitation for better control of the infectious risk in healthcare facilities, without worsening pollution and AMR concerns.
Collapse
Affiliation(s)
- Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Luca Arnoldo
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Antonella Volta
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Matteo Bisi
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Paola Antonioli
- Department of Infection Prevention Control and Risk Management, S. Anna University Hospital, 44124 Ferrara, Italy
| | - Patrizia Laurenti
- Department of Health Sciences and Public Health, Section of Hygiene, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Walter Ricciardi
- Department of Health Sciences and Public Health, Section of Hygiene, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Vincenti
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sante Mazzacane
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
- Correspondence:
| |
Collapse
|
16
|
Vidigal PMP, Hungaro HM. Genome sequencing of Pseudomonas fluorescens phage UFJF_PfSW6: a novel lytic Pijolavirus specie with potential for biocontrol in the dairy industry. 3 Biotech 2023; 13:67. [PMID: 36726557 PMCID: PMC9884711 DOI: 10.1007/s13205-023-03485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The genomic characterization of phages with biocontrol potential against food-related bacteria is essential to future commercial applications. Here, we report the genome sequence of P. fluorescens phage UFJF_PfSW6 and a taxonomy proposal framing it as a novel phage species with great potential for biocontrol in the dairy industry. It showed a short linear double-stranded DNA genome (~ 39 kb) with a GC content of 21.2% and short DTR sequences of 215 bp. The genome of the UFJF_PfSW6 phage contains 48 genes with a unidirectional organization into three functional modules: DNA replication and metabolism, structural proteins, and DNA packing and host lysis. Thirteen promoters from phage and nine from host regulate these genes, and six Rho-independent terminators control their transcription. Twenty-seven genes of the UFJF_PfSW6 encode proteins with predicted functions. Comparative genome analysis revealed that the UFJF_PfSW6 genome shares 84% of genomic similarity with the genome sequence of the Pijolavirus PspYZU08, the only representative of the genus recognized so far. Therefore, our findings indicate that both phages are of the same genus, but UFJF_PfSW6 a is a novel Pijolavirus specie belonging to the Studiervirinae subfamily. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03485-3.
Collapse
Affiliation(s)
- Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Campus da UFV, Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-900 Brazil
| | - Humberto Moreira Hungaro
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG 36036-900 Brazil
| |
Collapse
|
17
|
Zhang HZ, Shu M, Yang WY, Pan H, Tang MX, Zhao YY, Zhong C, Wu GP. Isolation and characterization of a novel Salmonella bacteriophage JNwz02 capable of lysing Escherichia coli O157:H7 and its antibacterial application in foods. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
A New Kayfunavirus-like Escherichia Phage vB_EcoP-Ro45lw with Antimicrobial Potential of Shiga Toxin-Producing Escherichia coli O45 Strain. Microorganisms 2022; 11:microorganisms11010077. [PMID: 36677369 PMCID: PMC9866566 DOI: 10.3390/microorganisms11010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Lytic bacteriophages are re-considered as a solution to resolve antibiotic-resistant rampage. Despite frequent foodborne outbreaks caused by the top six non-O157 Shiga-toxin-producing Escherichia coli (STEC), the current interventions are not sufficiently effective against each serogroup, particularly O45. Therefore, this study aimed to characterize a new short-tailed phage, vB_EcoP-Ro45lw (or Ro45lw), as an alternative antimicrobial agent for STEC O45 strains. Phage Ro45lw belongs to the Kayfunavirus genus within the Autographiviridae family and shares no close evolutionary relationship with any reference phages. Ro45lw contains a tail structure composed of a unique tail fiber and tail tubular proteins A and B, likely to produce enzymatic activity against the target bacterial cells besides structural function. Additionally, the phage genome does not contain virulent, antibiotic-resistant, or lysogenic genes. The phage has a latent period of 15 min with an estimated burst size of 55 PFU/CFU and is stable at a wide range of pH (pH4 to pH11) and temperatures (30 °C to 60 °C). Regardless of the MOIs (MOI = 0.1, 1, and 10) used, Ro45lw has a strong antimicrobial activity against both environmental (E. coli O45:H-) and clinical (E. coli O45:H2) strains at 25 °C. These findings indicate that phage Ro45lw has antimicrobial potential in mitigating pathogenic STEC O45 strains.
Collapse
|
19
|
Liao YT, Zhang Y, Salvador A, Ho KJ, Cooley MB, Wu VCH. Characterization of polyvalent Escherichia phage Sa157lw for the biocontrol potential of Salmonella Typhimurium and Escherichia coli O157:H7 on contaminated mung bean seeds. Front Microbiol 2022; 13:1053583. [PMID: 36439834 PMCID: PMC9686305 DOI: 10.3389/fmicb.2022.1053583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Seeds are one of the primary sources of contamination with foodborne pathogens, such as pathogenic Escherichia coli, and various Salmonella serovars, for produce, particularly sprouts. Due to the susceptibility of sprout growth to chemical-based antimicrobials and the rising issue of antimicrobial resistance, developing innovative antimicrobial interventions is an urgent need. Therefore, the objective of this study was to characterize Escherichia phage Sa157lw (or Sa157lw) for the biocontrol potential of Salmonella Typhimurium and E. coli O157:H7 on contaminated mung bean seeds. Phage Sa157lw was subjected to whole-genome sequencing and biological characterization, including morphology, one-step growth curve, and stress stability tests. Later, antimicrobial activity was determined in vitro and upon application on the mung bean seeds artificially contaminated with E. coli O157:H7 or Salmonella Typhimurium. Sa157lw possessed a contractile tail and belonged to the Kuttervirus genus under the Ackermannviridae family, sharing a close evolutionary relationship with E. coli phage ECML-4 and Kuttervirus ViI; however, tail spike genes (ORF_102 and ORF_104) were the primary region of difference. Comparative genomics showed that Sa157lw encoded a cluster of tail spike genes—including ORF_101, ORF_102, and ORF_104—sharing high amino acid similarity with the counterfeits of various Salmonella phages. Additionally, Sa157lw harbored a unique tail fiber (ORF_103), possibly related to the receptors binding of O157 strains. The genomic evidence accounted for the polyvalent effects of Sa157lw against E. coli O157:H7 and various Salmonella serovars (Typhimurium, Enteritidis, Agona, Saintpaul, and Heidelberg). Furthermore, the phage did not contain any virulence, antibiotic-resistant, or lysogenic genes. Sa157lw had a 30-min latent period on both E. coli O157:H7 and Salmonella Typhimurium, with an estimated burst size of 130 and 220 PFU/CFU, respectively, and was stable at a wide range of temperatures (4–60°C) and pH (pH4 to pH10). The phage application demonstrated a strong anti-E. coli O157:H7 and anti-Salmonella Typhimurium effects in 1.1 and 1.8 log reduction on the contaminated mung bean seeds after overnight storage at 22°C. These findings provide valuable insights into the polyvalent Sa157lw as a potential biocontrol agent of Salmonella Typhimurium and E. coli O157:H7 on sprout seeds.
Collapse
|
20
|
Jagannathan BV, Dakoske M, Vijayakumar PP. Bacteriophage-mediated control of pre- and post-harvest produce quality and safety. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Al-Hindi RR, Teklemariam AD, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Harakeh S, Applegate BM, Bhunia AK. Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment. BIOSENSORS 2022; 12:bios12100905. [PMID: 36291042 PMCID: PMC9599427 DOI: 10.3390/bios12100905] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Foodborne microorganisms are an important cause of human illness worldwide. Two-thirds of human foodborne diseases are caused by bacterial pathogens throughout the globe, especially in developing nations. Despite enormous developments in conventional foodborne pathogen detection methods, progress is limited by the assay complexity and a prolonged time-to-result. The specificity and sensitivity of assays for live pathogen detection may also depend on the nature of the samples being analyzed and the immunological or molecular reagents used. Bacteriophage-based biosensors offer several benefits, including specificity to their host organism, the detection of only live pathogens, and resistance to extreme environmental factors such as organic solvents, high temperatures, and a wide pH range. Phage-based biosensors are receiving increasing attention owing to their high degree of accuracy, specificity, and reduced assay times. These characteristics, coupled with their abundant supply, make phages a novel bio-recognition molecule in assay development, including biosensors for the detection of foodborne bacterial pathogens to ensure food safety. This review provides comprehensive information about the different types of phage-based biosensor platforms, such as magnetoelastic sensors, quartz crystal microbalance, and electrochemical and surface plasmon resonance for the detection of several foodborne bacterial pathogens from various representative food matrices and environmental samples.
Collapse
Affiliation(s)
- Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bruce M. Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Application and challenge of bacteriophage in the food protection. Int J Food Microbiol 2022; 380:109872. [PMID: 35981493 DOI: 10.1016/j.ijfoodmicro.2022.109872] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
In recent years, foodborne diseases caused by pathogens have been increasing. Therefore, it is essential to control the growth and transmission of pathogens. Bacteriophages (phages) have the potential to play an important role in the biological prevention, control, and treatment of these foodborne diseases due to their favorable advantages. Phages not only effectively inhibit pathogenic bacteria and prolong the shelf life of food, but also possess the advantages of specificity and an absence of chemical residues. Currently, there are many cases of phage applications in agriculture, animal disease prevention and control, food safety, and the treatment of drug-resistant disease. In this review, we summarize the recent research progress on phages against foodborne pathogenic bacteria, including Escherichia coli, Salmonella, Campylobacter, Listeria monocytogenes, Shigella, Vibrio parahaemolyticus, and Staphylococcus aureus. We also discuss the main issues and their corresponding solutions in the application of phages in the food industry. In recent years, although researchers have discovered more phages with potential applications in the food industry, most researchers use these phages based on their host spectrum, and the application environment is mostly in the laboratory. Therefore, the practical application of these phages in different aspects of the food industry may be unsatisfactory and even have some negative effects. Thus, we suggest that before using these phages, it is necessary to identify their specific receptors. Using their specific receptors as the selection basis for their application and combining phages with other phages or phages with traditional antibacterial agents may further improve their safety and application efficiency. Collectively, this review provides a theoretical reference for the basic research and application of phages in the food industry.
Collapse
|
23
|
Microencapsulation of Bacteriophages for the Delivery to and Modulation of the Human Gut Microbiota through Milk and Cereal Products. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
There is a bidirectional interaction between the gut microbiota and human health status. Disturbance of the microbiota increases the risk of pathogen infections and other diseases. The use of bacteriophages as antibacterial therapy or prophylaxis is intended to counteract intestinal disorders. To deliver bacteriophages unharmed into the gut, they must be protected from acidic conditions in the stomach. Therefore, an encapsulation method based on in situ complexation of alginate (2%), calcium ions (0.5%), and milk proteins (1%) by spray drying was investigated. Powdered capsules with particle sizes of ~10 µm and bacteriophage K5 titers of ~108 plaque forming units (pfu) g−1 were obtained. They protected the bacteriophages from acid (pH 2.5) in the stomach for 2 h and released them within 30 min under intestinal conditions (in vitro). There was no loss of viability during storage over two months (4 °C). Instead of consuming bacteriophage capsules in pure form (i.e., as powder/tablets), they could be inserted into food matrices, as exemplary shown in this study using cereal cookies as a semi-solid food matrix. By consuming bacteriophages in combination with probiotic organisms (e.g., via yoghurt with cereal cookies), probiotics could directly repopulate the niches generated by bacteriophages and, thus, contribute to a healthier life.
Collapse
|
24
|
Ali A, Jørgensen JS, Lamont RF. The contribution of bacteriophages to the aetiology and treatment of the bacterial vaginosis syndrome. Fac Rev 2022; 11:8. [PMID: 35509673 PMCID: PMC9022730 DOI: 10.12703/r/11-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bacteriophages are obligate intracellular viruses that parasitize bacteria, making use of the host biosynthetic machinery. Bacterial vaginosis (BV) causes serious adverse sequelae, such as sexually transmitted infections, seroconversion to HIV positivity, and preterm birth. The aetiology of BV is multifactorial, and the vaginal microbiota, the response to antibiotics, and the phenotypic outcomes differ between cases. The choice of antibiotics to treat BV depends on the clinician’s personal experience, which contributes to the poor outcome of BV treatment and high recurrence rate. In this review, we classify BV into two subtypes based on whether or not the BV case is sexually associated (potentially phage-related). An appropriate antibiotic can be selected on the basis of this BV-typing to optimise the short- and long-term effects of treatment. Not all Lactobacillus spp. are helpful or protective and some may sequestrate metronidazole, which mitigates its therapeutic efficacy. Phages, used therapeutically, could contribute to eubiosis by sparing beneficial species of Lactobacilli. However, Lactobacilli have an important role in maintaining vaginal eubiosis, so conventional wisdom has been that treatment of BV may benefit from metronidazole that conserves lactobacilli rather than clindamycin, which destroys lactobacilli. Furthermore, if the quality and quantity of vaginal lactobacilli are compromised by phage colonisation, as in the sexually transmitted subtype, eradication of lactobacilli with clindamycin followed by replacement by probiotics may be better therapeutically than metronidazole and reduce recurrence rates. Accordingly, the subtype of BV may provide a more scientific approach to antibiotic selection, which is absent in current clinical guidelines. We provide support for the role of bacteriophages in the aetiology, recurrence or failure to cure BV following treatment, through parasitic colonisation of lactobacilli that may be sexually transmitted and may be enhanced by other risk factors like smoking, a factor associated with BV.
Collapse
Affiliation(s)
- Amaan Ali
- St Bartholomew’s and The London School of Medicine and Dentistry, London, UK
| | - Jan Stener Jørgensen
- Department of Gynecology and Obstetrics, University of Southern Denmark, Institute of Clinical Research, Research Unit of Gynaecology and Obstetrics, Odense, Denmark
| | - Ronald F Lamont
- Department of Gynecology and Obstetrics, University of Southern Denmark, Institute of Clinical Research, Research Unit of Gynaecology and Obstetrics, Odense, Denmark
- Division of Surgery, University College London, Northwick Park Institute for Medical Research Campus, London, UK
| |
Collapse
|
25
|
Bacteriophage therapy in aquaculture: current status and future challenges. Folia Microbiol (Praha) 2022; 67:573-590. [PMID: 35305247 DOI: 10.1007/s12223-022-00965-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
Abstract
The escalation of antibiotic resistance has revitalized bacteriophage (phage) therapy. Recently, phage therapy has been gradually applied in medicine, agriculture, food, and environmental fields due to its distinctive features of high efficiency, specificity, and environmental friendliness compared to antibiotics. Likewise, phage therapy also holds great promise in controlling pathogenic bacteria in aquaculture. The application of phage therapy instead of antibiotics to eliminate pathogenic bacteria such as Vibrio, Pseudomonas, Aeromonas, and Flavobacterium and to reduce fish mortality in aquaculture has been frequently reported. In this context, the present review summarizes and analyzes the current status of phage therapy in aquaculture, focusing on the key parameters of phage application, such as phage isolation, selection, dosage, and administration modes, and introducing the strategies and methods to boost efficacy and restrain the emergence of resistance. In addition, we discussed the human safety, environmental friendliness, and techno-economic practicability of phage therapy in aquaculture. Finally, this review outlines the current challenges of phage therapy application in aquaculture from the perspectives of phage resistance, phage-mediated resistance gene transfer, and effects on the host immune system.
Collapse
|
26
|
Hungaro HM, Vidigal PMP, do Nascimento EC, Gomes da Costa Oliveira F, Gontijo MTP, Lopez MES. Genomic Characterisation of UFJF_PfDIW6: A Novel Lytic Pseudomonas fluorescens-Phage with Potential for Biocontrol in the Dairy Industry. Viruses 2022; 14:v14030629. [PMID: 35337036 PMCID: PMC8951688 DOI: 10.3390/v14030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we have presented the genomic characterisation of UFJF_PfDIW6, a novel lytic Pseudomonas fluorescens-phage with potential for biocontrol in the dairy industry. This phage showed a short linear double-stranded DNA genome (~42 kb) with a GC content of 58.3% and more than 50% of the genes encoding proteins with unknown functions. Nevertheless, UFJF_PfDIW6’s genome was organised into five functional modules: DNA packaging, structural proteins, DNA metabolism, lysogenic, and host lysis. Comparative genome analysis revealed that the UFJF_PfDIW6’s genome is distinct from other viral genomes available at NCBI databases, displaying maximum coverages of 5% among all alignments. Curiously, this phage showed higher sequence coverages (38–49%) when aligned with uncharacterised prophages integrated into Pseudomonas genomes. Phages compared in this study share conserved locally collinear blocks comprising genes of the modules’ DNA packing and structural proteins but were primarily differentiated by the composition of the DNA metabolism and lysogeny modules. Strategies for taxonomy assignment showed that UFJF_PfDIW6 was clustered into an unclassified genus in the Podoviridae clade. Therefore, our findings indicate that this phage could represent a novel genus belonging to the Podoviridae family.
Collapse
Affiliation(s)
- Humberto Moreira Hungaro
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
- Correspondence: (H.M.H.); (M.E.S.L.); Tel.: +55-32-2102-3804 (H.M.H.); +57-310-469-02-04 (M.E.S.L.)
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Campus da UFV, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Edilane Cristina do Nascimento
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
| | - Felipe Gomes da Costa Oliveira
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
| | - Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil;
| | - Maryoris Elisa Soto Lopez
- Departamento de Engenharia de Alimentos, Universidade de Córdoba (UNICORDOBA), Córdoba 230002, Colombia
- Correspondence: (H.M.H.); (M.E.S.L.); Tel.: +55-32-2102-3804 (H.M.H.); +57-310-469-02-04 (M.E.S.L.)
| |
Collapse
|
27
|
Li Y, Zhong C, Zhang H, Zhao Y, Shu M, Wu G. Effectiveness of bacteriophage JN01 incorporated in gelatin film with protocatechuic acid on biocontrol of
Escherichia coli
O157:H7 in beef. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ya‐Xing Li
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 30045 China
| | - Chan Zhong
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 30045 China
| | - Hui‐Zhen Zhang
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 30045 China
| | - Yuan‐Yang Zhao
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 30045 China
| | - Mei Shu
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 30045 China
| | - Guo‐Ping Wu
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 30045 China
| |
Collapse
|
28
|
Combined use of bacteriocins and bacteriophages as food biopreservatives. A review. Int J Food Microbiol 2022; 368:109611. [DOI: 10.1016/j.ijfoodmicro.2022.109611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
|
29
|
Liao YT, Zhang Y, Salvador A, Harden LA, Wu VCH. Characterization of a T4-like Bacteriophage vB_EcoM-Sa45lw as a Potential Biocontrol Agent for Shiga Toxin-Producing Escherichia coli O45 Contaminated on Mung Bean Seeds. Microbiol Spectr 2022; 10:e0222021. [PMID: 35107386 PMCID: PMC8809338 DOI: 10.1128/spectrum.02220-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023] Open
Abstract
Application of lytic bacteriophages is a promising and alternative intervention technology to relieve antibiotic resistance pressure and control bacterial pathogens in the food industry. Despite the increase of produce-associated outbreaks caused by non-O157 Shiga toxin-producing E. coli (STEC) serogroups, the information of phage application on sprouts to mitigate these pathogens is lacking. Therefore, the objective of this study was to characterize a T4-like Escherichia phage vB_EcoM-Sa45lw (or Sa45lw) for the biocontrol potential of STEC O45 on mung bean seeds. Phage Sa45lw belongs to the Tequatrovirus genus under the Myoviridae family and displays a close evolutionary relationship with a STEC O157-infecting phage AR1. Sa45lw contains a long-tail fiber gene (gp37), sharing high genetic similarity with the counterpart of Escherichia phage KIT03, and a unique tail lysozyme (gp5) to distinguish its host range (STEC O157, O45, ATCC 13706, and Salmonella Montevideo and Thompson) from phage KIT03 (O157 and Salmonella enterica). No stx, antibiotic resistance, and lysogenic genes were found in the Sa45lw genome. The phage has a latent period of 27 min with an estimated burst size of 80 PFU/CFU and is stable at a wide range of pH (pH 3 to pH 10.5) and temperatures (-80°C to 50°C). Phage Sa45lw is particularly effective in reducing E. coli O45:H16 both in vitro (MOI = 10) by 5 log and upon application (MOI = 1,000) on the contaminated mung bean seeds for 15 min by 2 log at 25°C. These findings highlight the potential of phage application against non-O157 STEC on sprout seeds. IMPORTANCE Seeds contaminated with foodborne pathogens, such as Shiga toxin-producing E. coli, are the primary sources of contamination in produce and have contributed to numerous foodborne outbreaks. Antibiotic resistance has been a long-lasting issue that poses a threat to human health and the food industry. Therefore, developing novel antimicrobial interventions, such as bacteriophage application, is pivotal to combat these pathogens. This study characterized a lytic bacteriophage Sa45lw as an alternative antimicrobial agent to control pathogenic E. coli on the contaminated mung bean seeds. The phage exhibited antimicrobial effects against both pathogenic E. coli and Salmonella without containing virulent or lysogenic genes that could compromise the safety of phage application. In addition, after 15 min of phage treatment, Sa45lw mitigated E. coli O45:H16 on the contaminated mung bean seeds by a 2-log reduction at room temperature, demonstrating the biocontrol potential of non-O157 Shiga toxin-producing E. coli on sprout seeds.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Yujie Zhang
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Leslie A. Harden
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| |
Collapse
|
30
|
Fu B, Zhai Y, Gleason M, Beattie GA. Characterization of Erwinia tracheiphila Bacteriophage FBB1 Isolated from Spotted Cucumber Beetles that Vector E. tracheiphila. PHYTOPATHOLOGY 2021; 111:2185-2194. [PMID: 34033507 DOI: 10.1094/phyto-03-21-0093-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Erwinia tracheiphila, the causal pathogen of bacterial wilt of cucurbit crops, is disseminated by cucumber beetles. A bacteriophage, designated FBB1 (Fu-Beattie-Beetle-1), was isolated from spotted cucumber beetles (Diabrotica undecimpunctata) that were collected from a field in which E. tracheiphila is endemic. FBB1 was classified into the Myoviridae family based on its morphology, which includes an elongated icosahedral head (106 × 82 nm) and a putatively contractile tail (120 nm). FBB1 infected all 62 E. tracheiphila strains examined and three Pantoea spp. strains. FBB1 virions were stable at 55°C for 1 h and tolerated a pH range from 3 to 12. FBB1 has a genome of 175,994 bp with 316 predicted coding sequences and a GC content of 36.5%. The genome contains genes for a major bacterial outer-membrane protein, a putative exopolysaccharide depolymerase, and 22 predicted transfer RNAs. The morphology and genome indicate that FBB1 is a T4-like virus and thus in the Tevenvirinae subfamily. FBB1 is the first virulent phage of E. tracheiphila to be reported and, to date, is one of only two bacteriophages to be isolated from insect vectors of phytopathogens. Collectively, the results support FBB1 as a promising candidate for biocontrol of E. tracheiphila based on its virulent (lytic) rather than lysogenic lifestyle, its infection of all E. tracheiphila strains examined to date, and its infection of a few nonpathogenic bacteria that could be used to support phage populations when pathogen numbers are low.
Collapse
Affiliation(s)
- Benzhong Fu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Yingyan Zhai
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Mark Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| |
Collapse
|
31
|
Deka D, Annapure US, Shirkole SS, Thorat BN. Bacteriophages: An organic approach to food decontamination. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Darshana Deka
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai, ICT – IOC Campus Bhubaneswar India
| | - U. S. Annapure
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
| | - S. S. Shirkole
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai, ICT – IOC Campus Bhubaneswar India
| | - B. N. Thorat
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai, ICT – IOC Campus Bhubaneswar India
| |
Collapse
|
32
|
Yap M, Ercolini D, Álvarez-Ordóñez A, O'Toole PW, O'Sullivan O, Cotter PD. Next-Generation Food Research: Use of Meta-Omic Approaches for Characterizing Microbial Communities Along the Food Chain. Annu Rev Food Sci Technol 2021; 13:361-384. [PMID: 34678075 DOI: 10.1146/annurev-food-052720-010751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms exist along the food chain and impact the quality and safety of foods in both positive and negative ways. Identifying and understanding the behavior of these microbial communities enable the implementation of preventative or corrective measures in public health and food industry settings. Current culture-dependent microbial analyses are time-consuming and target only specific subsets of microbes. However, the greater use of culture-independent meta-omic approaches has the potential to facilitate a thorough characterization of the microbial communities along the food chain. Indeed, these methods have shown potential in contributing to outbreak investigation, ensuring food authenticity, assessing the spread of antimicrobial resistance, tracking microbial dynamics during fermentation and processing, and uncovering the factors along the food chain that impact food quality and safety. This review examines the community-based approaches, and particularly the application of sequencing-based meta-omics strategies, for characterizing microbial communities along the food chain. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Min Yap
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,School of Microbiology, University College Cork, County Cork, Ireland
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain.,Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul W O'Toole
- School of Microbiology, University College Cork, County Cork, Ireland.,APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,APC Microbiome Ireland, University College Cork, County Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,APC Microbiome Ireland, University College Cork, County Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
33
|
Nascimento ECD, Sabino MC, Corguinha LDR, Targino BN, Lange CC, Pinto CLDO, Pinto PDF, Vidigal PMP, Sant'Ana AS, Hungaro HM. Lytic bacteriophages UFJF_PfDIW6 and UFJF_PfSW6 prevent Pseudomonas fluorescens growth in vitro and the proteolytic-caused spoilage of raw milk during chilled storage. Food Microbiol 2021; 101:103892. [PMID: 34579852 DOI: 10.1016/j.fm.2021.103892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/04/2022]
Abstract
In this study, P. fluorescens-infecting phages were isolated, characterized, and evaluated to their potential to control the bacterial counts and, consequently, the proteolytic spoilage of raw milk during cold storage. The UFJF_PfDIW6 and UFJF_PfSW6 phages showed titers of 9.7 and 7.6 log PFU/ml; latent period of 115 and 25 min, and burst size of 145 and 25 PFU/infected cell, respectively. They also were highly specific to the host bacterium, morphologically classified as the Podoviridae family, stable at pH 5 to 11 and were not inactivated at 63 °C or 72 °C for 30 min. These phages found to be effective against P. fluorescens, reducing bacterial count throughout the entire exponential growth phase in broth formulated with milk at both 4 °C and 10 °C. This effect on bacteria growth led to inhibition by at least 2 days in proteases production, delaying the degradation of milk proteins. When applied together in raw milk stored at 4 °C, they reduced the total bacteria, psychrotrophic, and Pseudomonas by 3 log CFU/ml. This study's findings indicate that these phages have a great potential to prevent the growth of Pseudomonas and, consequently, to retard proteolytic spoilage of raw milk during chilled storage.
Collapse
Affiliation(s)
- Edilane Cristina do Nascimento
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, M.G, Brazil
| | - Melissa Correa Sabino
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, M.G, Brazil
| | - Lucas da Roza Corguinha
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, M.G, Brazil
| | - Brenda Neres Targino
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, M.G, Brazil
| | - Carla Cristine Lange
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Dairy Cattle, Juiz de Fora, M.G, Brazil
| | | | - Priscila de Faria Pinto
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, M.G, Brazil
| | | | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, S.P, Brazil
| | - Humberto Moreira Hungaro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, M.G, Brazil.
| |
Collapse
|
34
|
de Aquino NSM, Elias SDO, Tondo EC. Evaluation of PhageDX Salmonella Assay for Salmonella Detection in Hydroponic Curly Lettuce. Foods 2021; 10:1795. [PMID: 34441572 PMCID: PMC8394719 DOI: 10.3390/foods10081795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
Lettuce is one of the most consumed leafy vegetables worldwide and has been involved in multiple foodborne outbreaks. Salmonella is one of the most prevalent etiological agents of foodborne disease (FBD) in lettuces, and its detection may take several days depending on the chosen method. This study evaluates a new rapid method that uses recombinant bacteriophages to detect Salmonella in hydroponic curly lettuce. First, the ability of the assay to detect six Salmonella serovars at three different concentrations (1, 10, and 100 CFU/well) was tested. Second, the detection of Salmonella was tested in lettuces using a cocktail of the same Salmonella serovars and concentrations after a 7 h enrichment. The results of these experiments showed that the detection limit was dependent on the serovar tested. Most serovars were detected in only 2 h when the concentration was 100 CFU/well. Salmonella was detected in 9 h (7 h enrichment + 2 h bioluminescence assay) in all lettuce samples with 10 CFU/25 g or more. Salmonella detection was not influenced by natural microbiota of lettuces. This study demonstrated that the phage assay was sensitive and faster than other detection methods, indicating that it is a better alternative for Salmonella detection on lettuces.
Collapse
Affiliation(s)
- Nathanyelle Soraya Martins de Aquino
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Campus do Vale-Agronomia (ICTA/UFRGS), Av. Bento Gonçalves 9500, Porto Alegre 91501-970, RS CEP, Brazil; (S.d.O.E.); (E.C.T.)
| | | | | |
Collapse
|
35
|
Affiliation(s)
- Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| |
Collapse
|
36
|
Witte S, Zinsli LV, Gonzalez-Serrano R, Matter CI, Loessner MJ, van Mierlo JT, Dunne M. Structural and functional characterization of the receptor binding proteins of Escherichia coli O157 phages EP75 and EP335. Comput Struct Biotechnol J 2021; 19:3416-3426. [PMID: 34194667 PMCID: PMC8217332 DOI: 10.1016/j.csbj.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteriophages (phages) are widely used as biocontrol agents in food and as antibacterial agents for treatment of food production plant surfaces. An important feature of such phages is broad infectivity towards a given pathogenic species. Phages attach to the surfaces of bacterial cells using receptor binding proteins (RBPs), namely tail fibers or tailspikes (TSPs). The binding range of RBPs is the primary determinant of phage host range and infectivity, and therefore dictates a phage's suitability as an antibacterial agent. Phages EP75 and EP335 broadly infect strains of E. coli serotype O157. To better understand host recognition by both phages, here we focused on characterizing the structures and functions of their RBPs. We identified two distinct tail fibers in the genome of the podovirus EP335: gp12 and gp13. Using fluorescence microscopy, we reveal how gp13 recognizes strains of E. coli serotypes O157 and O26. Phage EP75 belongs to the Kuttervirus genus within the Ackermannviridae family and features a four TSP complex (TSPs 1-4) that is universal among such phages. We demonstrate enzymatic activity of TSP1 (gp167) and TSP2 (gp168) toward the O18A and O157 O-antigens of E. coli, respectively, as well as TSP3 activity (gp169.1) against O4, O7, and O9 Salmonella O-antigens. TSPs of EP75 present high similarity to TSPs from E. coli phages CBA120 (TSP2) and HK620 (TSP1) and Salmonella myovirus Det7 (TSP3), which helps explain the cross-genus infectivity observed for EP75.
Collapse
Affiliation(s)
- Sander Witte
- Micreos Food Safety B.V., Wageningen, Nieuwe Kanaal 7P, 6709PA, The Netherlands
| | - Léa V. Zinsli
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | | | - Cassandra I. Matter
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Martin J. Loessner
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Joël T. van Mierlo
- Micreos Food Safety B.V., Wageningen, Nieuwe Kanaal 7P, 6709PA, The Netherlands
| | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| |
Collapse
|
37
|
Falardeau J, Trmčić A, Wang S. The occurrence, growth, and biocontrol of Listeria monocytogenes in fresh and surface-ripened soft and semisoft cheeses. Compr Rev Food Sci Food Saf 2021; 20:4019-4048. [PMID: 34057273 DOI: 10.1111/1541-4337.12768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/05/2023]
Abstract
Listeria monocytogenes continues to pose a food safety risk in ready-to-eat foods, including fresh and soft/semisoft cheeses. Despite L. monocytogenes being detected regularly along the cheese production continuum, variations in cheese style and intrinsic/extrinsic factors throughout the production process (e.g., pH, water activity, and temperature) affect the potential for L. monocytogenes survival and growth. As novel preservation strategies against the growth of L. monocytogenes in susceptible cheeses, researchers have investigated the use of various biocontrol strategies, including bacteriocins and bacteriocin-producing cultures, bacteriophages, and competition with native microbiota. Bacteriocins produced by lactic acid bacteria (LAB) are of particular interest to the dairy industry since they are often effective against Gram-positive organisms such as L. monocytogenes, and because many LAB are granted Generally Regarded as Safe (GRAS) status by global food safety authorities. Similarly, bacteriophages are also considered a safe form of biocontrol since they have high specificity for their target bacterium. Both bacteriocins and bacteriophages have shown success in reducing L. monocytogenes populations in cheeses in the short term, but regrowth of surviving cells can commonly occur in the finished cheeses. Competition with native microbiota, not mediated by bacteriocin production, has also shown potential to inhibit the growth of L. monocytogenes in cheeses, but the mechanisms are still unclear. Here, we have reviewed the current knowledge on the growth of L. monocytogenes in fresh and surface-ripened soft and semisoft cheeses, as well as the various methods used for biocontrol of this common foodborne pathogen.
Collapse
Affiliation(s)
- Justin Falardeau
- Department of Food, Nutrition, and Health, University of British Columbia, British Columbia, Vancouver, Canada
| | - Aljoša Trmčić
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Siyun Wang
- Department of Food, Nutrition, and Health, University of British Columbia, British Columbia, Vancouver, Canada
| |
Collapse
|
38
|
Huang Z, Zhang Z, Tong J, Malakar PK, Chen L, Liu H, Pan Y, Zhao Y. Phages and their lysins: Toolkits in the battle against foodborne pathogens in the postantibiotic era. Compr Rev Food Sci Food Saf 2021; 20:3319-3343. [PMID: 33938116 DOI: 10.1111/1541-4337.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Worldwide, foods waste caused by putrefactive organisms and diseases caused by foodborne pathogens persist as public health problems even with a plethora of modern antimicrobials. Our over reliance on antimicrobials use in agriculture, medicine, and other fields will lead to a postantibiotic era where bacterial genotypic resistance, phenotypic adaptation, and other bacterial evolutionary strategies cause antimicrobial resistance (AMR). This AMR is evidenced by the emergence of multiple drug-resistant (MDR) bacteria and pan-resistant (PDR) bacteria, which produces cross-contamination in multiple fields and poses a more serious threat to food safety. A "red queen premise" surmises that the coevolution of phages and bacteria results in an evolutionary arms race that compels phages to adapt and survive bacterial antiphage strategies. Phages and their lysins are therefore useful toolkits in the design of novel antimicrobials in food protection and foodborne pathogens control, and the modality of using phages as a targeted vector against foodborne pathogens is gaining momentum based on many encouraging research outcomes. In this review, we discuss the rationale of using phages and their lysins as weapons against spoilage organisms and foodborne pathogens, and outline the targeted conquest or dodge mechanism of phages and the development of novel phage prospects. We also highlight the implementation of phages and their lysins to control foodborne pathogens in a farm-table-hospital domain in the postantibiotic era.
Collapse
Affiliation(s)
- Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinrong Tong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
39
|
Mitchell SJ, Verma D, Griswold KE, Bailey-Kellogg C. Building blocks and blueprints for bacterial autolysins. PLoS Comput Biol 2021; 17:e1008889. [PMID: 33793553 PMCID: PMC8051824 DOI: 10.1371/journal.pcbi.1008889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/16/2021] [Accepted: 03/17/2021] [Indexed: 01/31/2023] Open
Abstract
Bacteria utilize a wide variety of endogenous cell wall hydrolases, or autolysins, to remodel their cell walls during processes including cell division, biofilm formation, and programmed death. We here systematically investigate the composition of these enzymes in order to gain insights into their associated biological processes, potential ways to disrupt them via chemotherapeutics, and strategies by which they might be leveraged as recombinant antibacterial biotherapies. To do so, we developed LEDGOs (lytic enzyme domains grouped by organism), a pipeline to create and analyze databases of autolytic enzyme sequences, constituent domain annotations, and architectural patterns of multi-domain enzymes that integrate peptidoglycan binding and degrading functions. We applied LEDGOs to eight pathogenic bacteria, gram negatives Acinetobacter baumannii, Klebsiella pneumoniae, Neisseria gonorrhoeae, and Pseudomonas aeruginosa; and gram positives Clostridioides difficile, Enterococcus faecium, Staphylococcus aureus, and Streptococcus pneumoniae. Our analysis of the autolytic enzyme repertoires of these pathogens reveals commonalities and differences in their key domain building blocks and architectures, including correlations and preferred orders among domains in multi-domain enzymes, repetitions of homologous binding domains with potentially complementarity recognition modalities, and sequence similarity patterns indicative of potential divergence of functional specificity among related domains. We have further identified a variety of unannotated sequence regions within the lytic enzymes that may themselves contain new domains with important functions.
Collapse
Affiliation(s)
- Spencer J. Mitchell
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
| | - Deeptak Verma
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Karl E. Griswold
- Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
40
|
Xu MM, Kaur M, Pillidge CJ, Torley PJ. Microbial biopreservatives for controlling the spoilage of beef and lamb meat: their application and effects on meat quality. Crit Rev Food Sci Nutr 2021; 62:4571-4592. [PMID: 33533634 DOI: 10.1080/10408398.2021.1877108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Biopreservation is a recognized natural method for controlling the growth of undesirable bacteria on fresh meat. It offers the potential to inhibit spoilage bacteria and extend meat shelf-life, but this aspect has been much less studied compared to using the approach to target pathogenic bacteria. This review provides comprehensive information on the application of biopreservatives of microbial origin, mainly bacteriocins and protective cultures, in relation to bacterial spoilage of beef and lamb meat. The sensory effect of these biopreservatives, an aspect that often receives less attention in microbiological studies, is also reviewed. Microbial biopreservatives were found to be able to retard the growth of the major meat spoilage bacteria, Brochothrix thermosphacta, Pseudomonas spp., and Enterobacteriaceae. Their addition did not have any discernible negative impact on the sensory properties of meat, whether assessed by human sensory panels or instrumental and chemical analyses. Although results are promising, the concept of biopreservation for controlling spoilage bacteria on fresh meat is still in its infancy. Studies in this area are still lacking, especially for lamb. Biopreservatives need more testing under conditions representative of commercial meat production, along with studies of any possible sensory effects, in order to validate their potential for large-scale industrial applications.
Collapse
Affiliation(s)
- Michelle M Xu
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - Mandeep Kaur
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - Christopher J Pillidge
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - Peter J Torley
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|
41
|
Lenzi A, Marvasi M, Baldi A. Agronomic practices to limit pre- and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
|
43
|
Guerin E, Hill C. Shining Light on Human Gut Bacteriophages. Front Cell Infect Microbiol 2020; 10:481. [PMID: 33014897 PMCID: PMC7511551 DOI: 10.3389/fcimb.2020.00481] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The human gut is a complex environment that contains a multitude of microorganisms that are collectively termed the microbiome. Multiple factors have a role to play in driving the composition of human gut bacterial communities either toward homeostasis or the instability that is associated with many disease states. One of the most important forces are likely to be bacteriophages, bacteria-infecting viruses that constitute by far the largest portion of the human gut virome. Despite this, bacteriophages (phages) are the one of the least studied residents of the gut. This is largely due to the challenges associated with studying these difficult to culture entities. Modern high throughput sequencing technologies have played an important role in improving our understanding of the human gut phageome but much of the generated sequencing data remains uncharacterised. Overcoming this requires database-independent bioinformatic pipelines and even those phages that are successfully characterized only provide limited insight into their associated biological properties, and thus most viral sequences have been characterized as “viral dark matter.” Fundamental to understanding the role of phages in shaping the human gut microbiome, and in turn perhaps influencing human health, is how they interact with their bacterial hosts. An essential aspect is the isolation of novel phage-bacteria host pairs by direct isolation through various screening methods, which can transform in silico phages into a biological reality. However, this is also beset with multiple challenges including culturing difficulties and the use of traditional methods, such as plaquing, which may bias which phage-host pairs that can be successfully isolated. Phage-bacteria interactions may be influenced by many aspects of complex human gut biology which can be difficult to reproduce under laboratory conditions. Here we discuss some of the main findings associated with the human gut phageome to date including composition, our understanding of phage-host interactions, particularly the observed persistence of virulent phages and their hosts, as well as factors that may influence these highly intricate relationships. We also discuss current methodologies and bottlenecks hindering progression in this field and identify potential steps that may be useful in overcoming these hurdles.
Collapse
Affiliation(s)
- Emma Guerin
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Pinto G, Almeida C, Azeredo J. Bacteriophages to control Shiga toxin-producing E. coli - safety and regulatory challenges. Crit Rev Biotechnol 2020; 40:1081-1097. [PMID: 32811194 DOI: 10.1080/07388551.2020.1805719] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are usually found on food products due to contamination from the fecal origin, as their main environmental reservoir is considered to be the gut of ruminants. While this pathogen is far from the incidence of other well-known foodborne bacteria, the severity of STEC infections in humans has triggered global concerns as far as its incidence and control are concerned. Major control strategies for foodborne pathogens in food-related settings usually involve traditional sterilization/disinfection techniques. However, there is an increasing need for the development of further strategies to enhance the antimicrobial outcome, either on food-contact surfaces or directly in food matrices. Phages are considered to be a good alternative to control foodborne pathogens, with some phage-based products already cleared by the Food and Drug Administration (FDA) to be used in the food industry. In European countries, phage-based food decontaminants have already been used. Nevertheless, its broad use in the European Union is not yet possible due to the lack of specific guidelines for the approval of these products. Furthermore, some safety concerns remain to be addressed so that the regulatory requirements can be met. In this review, we present an overview of the main virulence factors of STEC and introduce phages as promising biocontrol agents for STEC control. We further present the regulatory constraints on the approval of phages for food applications and discuss safety concerns that are still impairing their use.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
45
|
Bacteriophage biocontrol to fight Listeria outbreaks in seafood. Food Chem Toxicol 2020; 145:111682. [PMID: 32805341 DOI: 10.1016/j.fct.2020.111682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a well-known pathogen responsible for the severe foodborne disease listeriosis. The control of L. monocytogenes occurrence in seafood products and seafood processing environments is an important challenge for the seafood industry and the public health sector. However, bacteriophage biocontrol shows great potential to be used as safety control measure in seafood. This review provides an update on Listeria-specific bacteriophages, focusing on their application as a safe and natural strategy to prevent L. monocytogenes contamination and growth in seafood products and seafood processing environments. Furthermore, the main properties required from bacteriophages intended to be used as biocontrol tools are summarized and emerging strategies to overcome the current limitations are considered. Also, major aspects relevant for bacteriophage production at industrial scale, their access to the market, as well as the current regulatory status of bacteriophage-based solutions for Listeria biocontrol are discussed.
Collapse
|
46
|
Garvey M. Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way? Antibiotics (Basel) 2020; 9:antibiotics9070414. [PMID: 32708627 PMCID: PMC7400126 DOI: 10.3390/antibiotics9070414] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance necessitates action to reduce and eliminate infectious disease, ensure animal and human health, and combat emerging diseases. Species such as Acinetobacter baumanniii, vancomycin resistant Enterococcus, methicillin resistance Staphylococcus aureus, and Pseudomonas aeruginosa, as well as other WHO priority pathogens, are becoming extremely difficult to treat. In 2017, the EU adopted the “One Health” approach to combat antibiotic resistance in animal and human medicine and to prevent the transmission of zoonotic disease. As the current therapeutic agents become increasingly inadequate, there is a dire need to establish novel methods of treatment under this One Health Framework. Bacteriophages (phages), viruses infecting bacterial species, demonstrate clear antimicrobial activity against an array of resistant species, with high levels of specificity and potency. Bacteriophages play key roles in bacterial evolution and are essential components of all ecosystems, including the human microbiome. Factors such are their specificity, potency, biocompatibility, and bactericidal activity make them desirable options as therapeutics. Issues remain, however, relating to their large-scale production, formulation, stability, and bacterial resistance, limiting their implementation globally. Phages used in therapy must be virulent, purified, and well characterized before administration. Clinical studies are warranted to assess the in vivo pharmacokinetics and pharmacodynamic characteristics of phages to fully establish their therapeutic potential.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Sligo Institute of Technology, Sligo, Ireland
| |
Collapse
|
47
|
Phothaworn P, Supokaivanich R, Lim J, Klumpp J, Imam M, Kutter E, Galyov EE, Dunne M, Korbsrisate S. Development of a broad-spectrum Salmonella phage cocktail containing Viunalike and Jerseylike viruses isolated from Thailand. Food Microbiol 2020; 92:103586. [PMID: 32950171 DOI: 10.1016/j.fm.2020.103586] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Salmonella is one of the most common agents of foodborne disease worldwide. As natural alternatives to traditional antimicrobial agents, bacteriophages (phages) are emerging as highly effective biocontrol agents against Salmonella and other foodborne bacteria. Due to the high diversity within the Salmonella genus and emergence of drug resistant strains, improved efforts are necessary to find broad range and strictly lytic Salmonella phages for use in food biocontrol. Here, we describe the isolation and characterization of two Salmonella phages: ST-W77 isolated on S. Typhimurium and SE-W109 isolated on S. Enteritidis with extraordinary Salmonella specificity. Whole genome sequencing identified ST-W77 as a Myovirus within the Viunalikevirus genus and SE-W109 as a Siphovirus within the Jerseylikevirus genus. Infectivity studies using a panel of S. Typhimurium cell wall mutants revealed both phages require the lipopolysaccharide O-antigen, with SE-W109 also recognizing the flagella, during infection of Salmonella. A combination of both phages was capable of prolonged (one-week) antibacterial activity when added to milk or chicken meat contaminated with Salmonella. Due to their broad host ranges, strictly lytic lifestyles and lack of lysogeny-related genes or virulence genes in their genomes, ST-W77 and SE-W109 are ideal phages for further development as Salmonella biocontrol agents for food production.
Collapse
Affiliation(s)
- Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Rattaya Supokaivanich
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jiali Lim
- DSO National Laboratories, Singapore, 117510, Singapore
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, 8092, Switzerland
| | - Mohammed Imam
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, LE1 7HN, United Kingdom
| | - Elizabeth Kutter
- Bacteriophage Lab, the Evergreen State College, Olympia, WA, USA
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, LE1 7HN, United Kingdom
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, 8092, Switzerland.
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
48
|
Derome N, Filteau M. A continuously changing selective context on microbial communities associated with fish, from egg to fork. Evol Appl 2020; 13:1298-1319. [PMID: 32684960 PMCID: PMC7359827 DOI: 10.1111/eva.13027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Fast increase of fish aquaculture production to meet consumer demands is accompanied by important ecological concerns such as disease outbreaks. Meanwhile, food waste is an important concern with fish products since they are highly perishable. Recent aquaculture and fish product microbiology, and more recently, microbiota research, paved the way to a highly integrated approach to understand complex relationships between host fish, product and their associated microbial communities at health/disease and preservation/spoilage frontiers. Microbial manipulation strategies are increasingly validated as promising tools either to replace or to complement traditional veterinary and preservation methods. In this review, we consider evolutionary forces driving fish microbiota assembly, in particular the changes in the selective context along the production chain. We summarize the current knowledge concerning factors governing assembly and dynamics of fish hosts and food microbial communities. Then, we discuss the current microbial community manipulation strategies from an evolutionary standpoint to provide a perspective on the potential for risks, conflict and opportunities. Finally, we conclude that to harness evolutionary forces in the development of sustainable microbiota manipulation applications in the fish industry, an integrated knowledge of the controlling abiotic and especially biotic factors is required.
Collapse
Affiliation(s)
- Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de BiologieUniversité LavalQuébecQCCanada
| | - Marie Filteau
- Département de BiologieUniversité LavalQuébecQCCanada
- Département des Sciences des alimentsInstitut sur la nutrition et les aliments fonctionnels (INAF)Université LavalQuébecQCCanada
| |
Collapse
|
49
|
Vikram A, Tokman JI, Woolston J, Sulakvelidze A. Phage Biocontrol Improves Food Safety by Significantly Reducing the Level and Prevalence of Escherichia coli O157:H7 in Various Foods. J Food Prot 2020; 83:668-676. [PMID: 32221572 DOI: 10.4315/0362-028x.jfp-19-433] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/09/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Management of Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, in food products is a major challenge for the food industry. Several interventions, such as irradiation, chemical disinfection, and pasteurization, have had variable success controlling STEC contamination. However, these interventions also indiscriminately kill beneficial bacteria in foods, may impact organoleptic properties of foods, and are not always environmentally friendly. Biocontrol using bacteriophage-based products to reduce or eliminate specific foodborne pathogens in food products has been gaining attention due to the specificity, safety, and environmentally friendly properties of lytic bacteriophages. We developed EcoShield PX, a cocktail of lytic bacteriophages, that specifically targets STEC. This study was conducted to examine the efficacy of this bacteriophage cocktail for reducing the levels of E. coli O157:H7 in eight food products: beef chuck roast, ground beef, chicken breast, cooked chicken, salmon, cheese, cantaloupe, and romaine lettuce. The food products were challenged with E. coli O157:H7 at ca. 3.0 log CFU/g and treated with the bacteriophage preparation at ca. 1 × 106, 5 × 106, or 1 × 107 PFU/g. Application of 5 × 106 and 1 × 107 PFU/g resulted in significant reductions (P < 0.05) in E. coli O157:H7 levels of up to 97% in all foods. When bacteriophages (ca. 1 × 106 PFU/g) were used to treat lower levels of E. coli O157:H7 (ca. 1 to 10 CFU/10 g) on beef chuck roast samples, mimicking the levels of STEC found under real-life conditions in food processing plants, the prevalence of STEC in the samples was significantly reduced (P < 0.05) by ≥80%. Our results suggest that this STEC-targeting bacteriophage preparation can result in significant reduction of both the levels and prevalence of STEC in various foods and, therefore, may help improve the safety and reduce the risk of recalls of foods at high risk for STEC contamination. HIGHLIGHTS
Collapse
Affiliation(s)
- Amit Vikram
- Intralytix, Inc., 8681 Robert Fulton Drive, Columbia, Maryland 21046, USA
| | - Jeffrey I Tokman
- Intralytix, Inc., 8681 Robert Fulton Drive, Columbia, Maryland 21046, USA
| | - Joelle Woolston
- Intralytix, Inc., 8681 Robert Fulton Drive, Columbia, Maryland 21046, USA
| | | |
Collapse
|
50
|
The arms race between bacteria and their phage foes. Nature 2020; 577:327-336. [PMID: 31942051 DOI: 10.1038/s41586-019-1894-8] [Citation(s) in RCA: 453] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022]
Abstract
Bacteria are under immense evolutionary pressure from their viral invaders-bacteriophages. Bacteria have evolved numerous immune mechanisms, both innate and adaptive, to cope with this pressure. The discovery and exploitation of CRISPR-Cas systems have stimulated a resurgence in the identification and characterization of anti-phage mechanisms. Bacteriophages use an extensive battery of counter-defence strategies to co-exist in the presence of these diverse phage defence mechanisms. Understanding the dynamics of the interactions between these microorganisms has implications for phage-based therapies, microbial ecology and evolution, and the development of new biotechnological tools. Here we review the spectrum of anti-phage systems and highlight their evasion by bacteriophages.
Collapse
|