1
|
Lloyd KCK. Commentary: The International Mouse Phenotyping Consortium: high-throughput in vivo functional annotation of the mammalian genome. Mamm Genome 2024; 35:537-543. [PMID: 39254744 PMCID: PMC11522054 DOI: 10.1007/s00335-024-10068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
The International Mouse Phenotyping Consortium (IMPC) is a worldwide effort producing and phenotyping knockout mouse lines to expose the pathophysiological roles of all genes in human diseases and make mice and data available and accessible to the global research community. It has created new knowledge on the function of thousands of genes for which little to anything was known. This new knowledge has informed the genetic basis of rare diseases, posited gene product influences on common diseases, influenced research on targeted therapies, revealed functional pleiotropy, essentiality, and sexual dimorphism, and many more insights into the role of genes in health and disease. Its scientific contributions have been many and widespread, however there remain thousands of "dark" genes yet to be illuminated. Nearing the end of its current funding cycle, IMPC is at a crossroads. The vision forward is clear, the path to proceed less so.
Collapse
Affiliation(s)
- K C Kent Lloyd
- Department of Surgery, School of Medicine, University of California, Davis, California, USA.
- Mouse Biology Program, University of California, Davis, California, USA.
| |
Collapse
|
2
|
Mieliauskaitė D, Kontenis V, Šiaurys A. Lessons from Animal Models in Sjögren's Syndrome. Int J Mol Sci 2023; 24:12995. [PMID: 37629175 PMCID: PMC10454747 DOI: 10.3390/ijms241612995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a connective tissue disease characterized by a wide spectrum of clinical features, extending from a benign glandular disease to an aggressive systemic disorder and/or lymphoma. The pathogenesis of Sjögren's syndrome (SS) is not completely understood, but it is assumed that pathogenesis of SS is multifactorial. The studies based on the animal models of SS provided significant insight in SS disease pathogenesis and management. The aim of this review is to summarize current studies on animal models with primary SS-like symptoms and discuss the impact of these studies on better understanding pathogenesis and management of Sjögren's syndrome. Databases PubMed, Web of Science, Scopus and Cochrane library were searched for summarizing studies on animal models in SS. Available data demonstrate that animal models are highly important for our understanding of SS disease.
Collapse
Affiliation(s)
- Diana Mieliauskaitė
- State Research Institute Center for Innovative Medicine, Department of Experimental, Preventive and Clinical Medicine, LT-08406 Vilnius, Lithuania;
| | - Vilius Kontenis
- State Research Institute Center for Innovative Medicine, Department of Experimental, Preventive and Clinical Medicine, LT-08406 Vilnius, Lithuania;
| | - Almantas Šiaurys
- State Research Institute Center for Innovative Medicine, Department of Immunology, LT-08406 Vilnius, Lithuania;
| |
Collapse
|
3
|
Cao Y, Wang X, Peng G. SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data. Front Genet 2020; 11:490. [PMID: 32477414 PMCID: PMC7235421 DOI: 10.3389/fgene.2020.00490] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Currently most methods take manual strategies to annotate cell types after clustering the single-cell RNA sequencing (scRNA-seq) data. Such methods are labor-intensive and heavily rely on user expertise, which may lead to inconsistent results. We present SCSA, an automatic tool to annotate cell types from scRNA-seq data, based on a score annotation model combining differentially expressed genes (DEGs) and confidence levels of cell markers from both known and user-defined information. Evaluation on real scRNA-seq datasets from different sources with other methods shows that SCSA is able to assign the cells into the correct types at a fully automated mode with a desirable precision.
Collapse
Affiliation(s)
| | - Xiaoyue Wang
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Gongxin Peng
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
An atlas of evidence-based phenotypic associations across the mouse phenome. Sci Rep 2020; 10:3957. [PMID: 32127602 PMCID: PMC7054260 DOI: 10.1038/s41598-020-60891-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/17/2020] [Indexed: 01/18/2023] Open
Abstract
To date, reliable relationships between mammalian phenotypes, based on diagnostic test measurements, have not been reported on a large scale. The purpose of this study was to present a large mouse phenotype-phenotype relationships dataset as a reference resource, alongside detailed evaluation of the resource. We used bias-minimized comprehensive mouse phenotype data and applied association rule mining to a dataset consisting of only binary (normal and abnormal phenotypes) data to determine relationships among phenotypes. We present 3,686 evidence-based significant associations, comprising 345 phenotypes covering 60 biological systems (functions), and evaluate their characteristics in detail. To evaluate the relationships, we defined a set of phenotype-phenotype association pairs (PPAPs) as a module of phenotypic expression for each of the 345 phenotypes. By analyzing each PPAP, we identified phenotype sub-networks consisting of the largest numbers of phenotypes and distinct biological systems. Furthermore, using hierarchical clustering based on phenotype similarities among the 345 PPAPs, we identified seven community types within a putative phenome-wide association network. Moreover, to promote leverage of these data, we developed and published web-application tools. These mouse phenome-wide phenotype-phenotype association data reveal general principles of relationships among mammalian phenotypes and provide a reference resource for biomedical analyses.
Collapse
|
5
|
Port F, Strein C, Stricker M, Rauscher B, Heigwer F, Zhou J, Beyersdörffer C, Frei J, Hess A, Kern K, Lange L, Langner N, Malamud R, Pavlović B, Rädecke K, Schmitt L, Voos L, Valentini E, Boutros M. A large-scale resource for tissue-specific CRISPR mutagenesis in Drosophila. eLife 2020; 9:e53865. [PMID: 32053108 PMCID: PMC7062466 DOI: 10.7554/elife.53865] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic screens are powerful tools for the functional annotation of genomes. In the context of multicellular organisms, interrogation of gene function is greatly facilitated by methods that allow spatial and temporal control of gene abrogation. Here, we describe a large-scale transgenic short guide (sg) RNA library for efficient CRISPR-based disruption of specific target genes in a constitutive or conditional manner. The library consists currently of more than 2600 plasmids and 1700 fly lines with a focus on targeting kinases, phosphatases and transcription factors, each expressing two sgRNAs under control of the Gal4/UAS system. We show that conditional CRISPR mutagenesis is robust across many target genes and can be efficiently employed in various somatic tissues, as well as the germline. In order to prevent artefacts commonly associated with excessive amounts of Cas9 protein, we have developed a series of novel UAS-Cas9 transgenes, which allow fine tuning of Cas9 expression to achieve high gene editing activity without detectable toxicity. Functional assays, as well as direct sequencing of genomic sgRNA target sites, indicates that the vast majority of transgenic sgRNA lines mediate efficient gene disruption. Furthermore, we conducted the so far largest fully transgenic CRISPR screen in any metazoan organism, which further supported the high efficiency and accuracy of our library and revealed many so far uncharacterized genes essential for development.
Collapse
Affiliation(s)
- Fillip Port
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Claudia Strein
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Mona Stricker
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Benedikt Rauscher
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Florian Heigwer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Jun Zhou
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Celine Beyersdörffer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Jana Frei
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Amy Hess
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Katharina Kern
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Laura Lange
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Nora Langner
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Roberta Malamud
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Bojana Pavlović
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Kristin Rädecke
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Lukas Schmitt
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Lukas Voos
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Erica Valentini
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
6
|
Boixel AL, Delestre G, Legeay J, Chelle M, Suffert F. Phenotyping Thermal Responses of Yeasts and Yeast-like Microorganisms at the Individual and Population Levels: Proof-of-Concept, Development and Application of an Experimental Framework to a Plant Pathogen. MICROBIAL ECOLOGY 2019; 78:42-56. [PMID: 30280234 DOI: 10.1007/s00248-018-1253-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Deciphering the responses of microbial populations to spatiotemporal changes in their thermal environment is instrumental in improving our understanding of their eco-evolutionary dynamics. Recent studies have shown that current phenotyping protocols do not adequately address all dimensions of phenotype expression. Therefore, these methods can give biased assessments of sensitivity to temperature, leading to misunderstandings concerning the ecological processes underlying thermal plasticity. We describe here a new robust and versatile experimental framework for the accurate investigation of thermal performance and phenotypic diversity in yeasts and yeast-like microorganisms, at the individual and population levels. In addition to proof-of-concept, the application of this framework to the fungal wheat pathogen Zymoseptoria tritici resulted in detailed characterisations for this yeast-like microorganism of (i) the patterns of temperature-dependent changes in performance for four fitness traits; (ii) the consistency in thermal sensitivity rankings of strains between in planta and in vitro growth assessments; (iii) significant interindividual variation in thermal responses, with four principal thermotypes detected in a sample of 66 strains; and (iv) the ecological consequences of this diversity for population-level processes through pairwise competition experiments highlighting temperature-dependent outcomes. These findings extend our knowledge and ability to quantify and categorise the phenotypic heterogeneity of thermal responses. As such, they lay the foundations for further studies elucidating local adaptation patterns and the effects of temperature variations on eco-evolutionary and epidemiological processes.
Collapse
Affiliation(s)
- Anne-Lise Boixel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
| | - Ghislain Delestre
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Jean Legeay
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Michaël Chelle
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Frédéric Suffert
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
| |
Collapse
|
7
|
Brown SDM, Holmes CC, Mallon AM, Meehan TF, Smedley D, Wells S. High-throughput mouse phenomics for characterizing mammalian gene function. Nat Rev Genet 2018; 19:357-370. [PMID: 29626206 PMCID: PMC6582361 DOI: 10.1038/s41576-018-0005-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We are entering a new era of mouse phenomics, driven by large-scale and economical generation of mouse mutants coupled with increasingly sophisticated and comprehensive phenotyping. These studies are generating large, multidimensional gene-phenotype data sets, which are shedding new light on the mammalian genome landscape and revealing many hitherto unknown features of mammalian gene function. Moreover, these phenome resources provide a wealth of disease models and can be integrated with human genomics data as a powerful approach for the interpretation of human genetic variation and its relationship to disease. In the future, the development of novel phenotyping platforms allied to improved computational approaches, including machine learning, for the analysis of phenotype data will continue to enhance our ability to develop a comprehensive and powerful model of mammalian gene-phenotype space.
Collapse
Affiliation(s)
| | - Chris C Holmes
- Nuffield Department of Medicine and Department of Statistics, University of Oxford, Oxford, UK.
| | | | - Terrence F Meehan
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | |
Collapse
|
8
|
Park YS, Gauna AE, Cha S. Mouse Models of Primary Sjogren's Syndrome. Curr Pharm Des 2016; 21:2350-64. [PMID: 25777752 DOI: 10.2174/1381612821666150316120024] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/13/2015] [Indexed: 01/03/2023]
Abstract
Sjogren's syndrome (SjS) is a chronic autoimmune disorder characterized by immune cell infiltration and progressive injury to the salivary and lacrimal glands. As a consequence, patients with SjS develop xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). SjS is the third most common rheumatic autoimmune disorder, affecting 4 million Americans with over 90% of patients being female. Current diagnostic criteria for SjS frequently utilize histological examinations of minor salivary glands for immune cell foci, serology for autoantibodies, and dry eye evaluation by corneal or conjunctival staining. SjS can be classified as primary or secondary SjS, depending on whether it occurs alone or in association with other systemic rheumatic conditions, respectively. Clinical manifestations typically become apparent when the disease is relatively advanced in SjS patients, which poses a challenge for early diagnosis and treatment of SjS. Therefore, SjS mouse models, because of their close resemblance to the human SjS, have been extremely valuable to identify early disease markers and to investigate underlying biological and immunological dysregulations. However, it is important to bear in mind that no single mouse model has duplicated all aspects of SjS pathogenesis and clinical features, mainly due to the multifactorial etiology of SjS that includes numerous susceptibility genes and environmental factors. As such, various mouse models have been developed in the field to try to recapitulate SjS. In this review, we focus on recent mouse models of primary SjS xerostomia and describe them under three categories of spontaneous, genetically engineered, and experimentally induced models. In addition, we discuss future perspectives highlighting pros and cons of utilizing mouse models and current demands for improved models.
Collapse
Affiliation(s)
| | | | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL32610, USA.
| |
Collapse
|
9
|
Wu C, Sudheendran N, Singh M, Larina IV, Dickinson ME, Larin KV. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:26002. [PMID: 26848543 PMCID: PMC4748608 DOI: 10.1117/1.jbo.21.2.026002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT.
Collapse
Affiliation(s)
- Chen Wu
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Narendran Sudheendran
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, 36 Lenin Avenue, Tomsk 634050, Russia
- Address all correspondence to: Kirill V. Larin, E-mail:
| |
Collapse
|
10
|
Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat Genet 2015. [PMID: 26214591 PMCID: PMC4564951 DOI: 10.1038/ng.3360] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.
Collapse
|
11
|
Norris FC, Siow BM, Cleary JO, Wells JA, De Castro SC, Ordidge RJ, Greene ND, Copp AJ, Scambler PJ, Alexander DC, Lythgoe MF. Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model. Magn Reson Med 2015; 73:731-9. [PMID: 24634098 PMCID: PMC4737188 DOI: 10.1002/mrm.25145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 01/01/2014] [Accepted: 01/03/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever-increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (μMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning times, and there is no established experimental procedure ensuring optimal data acquisition. METHODS We developed two protocols for designing experimental procedures for diffusion μMRI of mouse embryos, which take into account the effect of embryo preparation and pulse sequence parameters on resulting data. We applied our protocols to an investigation of the splotch mouse model as an example implementation. RESULTS The protocols provide DTI data in 24 min per direction at 75 μm isotropic using a three-dimensional fast spin-echo sequence, enabling preliminary imaging in 3 h (6 directions plus one unweighted measurement), or detailed imaging in 9 h (42 directions plus six unweighted measurements). Application to the splotch model enabled assessment of spinal cord pathology. CONCLUSION We present guidelines for designing diffusion μMRI experiments, which may be adapted for different studies and research facilities. As they are suitable for routine use and may be readily implemented, we hope they will be adopted by the phenotyping community.
Collapse
Affiliation(s)
- Francesca C. Norris
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonUnited Kingdom
- Centre for Mathematics and Physics in the Life Sciences and EXperimental Biology (CoMPLEX)University College LondonLondonUnited Kingdom
| | - Bernard M. Siow
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonUnited Kingdom
- Centre for Medical Image Computing, Departments of Medical Physics and Bioengineering and Computer ScienceUniversity College LondonUnited Kingdom
| | - Jon O. Cleary
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonUnited Kingdom
- Department of Anatomy and NeuroscienceUniversity of MelbourneAustralia
| | - Jack A. Wells
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonUnited Kingdom
| | - Sandra C.P. De Castro
- Neural Development Unit, UCL Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| | - Roger J. Ordidge
- Department of Anatomy and NeuroscienceUniversity of MelbourneAustralia
| | - Nicholas D.E. Greene
- Neural Development Unit, UCL Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| | - Andrew J. Copp
- Neural Development Unit, UCL Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| | - Peter J. Scambler
- Molecular Medicine Unit, UCL Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| | - Daniel. C. Alexander
- Centre for Medical Image Computing, Departments of Medical Physics and Bioengineering and Computer ScienceUniversity College LondonUnited Kingdom
| | - Mark F. Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
12
|
Karp NA, Speak AO, White JK, Adams DJ, Hrabé de Angelis M, Hérault Y, Mott RF. Impact of temporal variation on design and analysis of mouse knockout phenotyping studies. PLoS One 2014; 9:e111239. [PMID: 25343444 PMCID: PMC4208881 DOI: 10.1371/journal.pone.0111239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
A significant challenge facing high-throughput phenotyping of in-vivo knockout mice is ensuring phenotype calls are robust and reliable. Central to this problem is selecting an appropriate statistical analysis that models both the experimental design (the workflow and the way control mice are selected for comparison with knockout animals) and the sources of variation. Recently we proposed a mixed model suitable for small batch-oriented studies, where controls are not phenotyped concurrently with mutants. Here we evaluate this method both for its sensitivity to detect phenotypic effects and to control false positives, across a range of workflows used at mouse phenotyping centers. We found the sensitivity and control of false positives depend on the workflow. We show that the phenotypes in control mice fluctuate unexpectedly between batches and this can cause the false positive rate of phenotype calls to be inflated when only a small number of batches are tested, when the effect of knockout becomes confounded with temporal fluctuations in control mice. This effect was observed in both behavioural and physiological assays. Based on this analysis, we recommend two approaches (workflow and accompanying control strategy) and associated analyses, which would be robust, for use in high-throughput phenotyping pipelines. Our results show the importance in modelling all sources of variability in high-throughput phenotyping studies.
Collapse
Affiliation(s)
- Natasha A. Karp
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- * E-mail:
| | - Anneliese O. Speak
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Martin Hrabé de Angelis
- German Mouse Clinic - Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Yann Hérault
- Institut Clinique de la Souris, Université de Strasbourg, Illkirch, France
| | - Richard F. Mott
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
13
|
Systems biology and systems genetics - novel innovative approaches to study host-pathogen interactions during influenza infection. Curr Opin Virol 2014; 6:47-54. [PMID: 24769047 DOI: 10.1016/j.coviro.2014.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/04/2014] [Accepted: 03/14/2014] [Indexed: 11/19/2022]
Abstract
Influenza represents a serious threat to public health with thousands of deaths each year. A deeper understanding of the host-pathogen interactions is urgently needed to evaluate individual and population risks for severe influenza disease and to identify new therapeutic targets. Here, we review recent progress in large scale omics technologies, systems genetics as well as new mathematical and computational developments that are now in place to apply a systems biology approach for a comprehensive description of the multidimensional host response to influenza infection. In addition, we describe how results from experimental animal models can be translated to humans, and we discuss some of the future challenges ahead.
Collapse
|
14
|
Adissu HA, Estabel J, Sunter D, Tuck E, Hooks Y, Carragher DM, Clarke K, Karp NA, Newbigging S, Jones N, Morikawa L, White JK, McKerlie C. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen. Dis Model Mech 2014; 7:515-24. [PMID: 24652767 PMCID: PMC4007403 DOI: 10.1242/dmm.015263] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice.
Collapse
Affiliation(s)
- Hibret A Adissu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, 25 Orde Street, Toronto, ON M5T 3H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Otitis media (OM) is a common cause of childhood hearing loss. The large medical costs involved in treating this condition have meant that research to understand the pathology of this disease and identify new therapeutic interventions is important. There is evidence that susceptibility to OM has a significant genetic component, although little is known about the key genetic pathways involved. Mouse models for disease have become an important resource to understand a variety of human pathologies, including OM, due to the ability to easily manipulate their genetic components. This has enabled researchers to create models of acute OM, and has aided in the identification of a number of new genes associated with chronic disease, through the use of mutagenesis programs. The use of mouse models has identified a number of key molecular signalling pathways involved in the development of this condition, with genes identified from models shown to be associated with human OM.
Collapse
|
16
|
Norris FC, Wong MD, Greene NDE, Scambler PJ, Weaver T, Weninger WJ, Mohun TJ, Henkelman RM, Lythgoe MF. A coming of age: advanced imaging technologies for characterising the developing mouse. Trends Genet 2013; 29:700-11. [PMID: 24035368 DOI: 10.1016/j.tig.2013.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/17/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022]
Abstract
The immense challenge of annotating the entire mouse genome has stimulated the development of cutting-edge imaging technologies in a drive for novel information. These techniques promise to improve understanding of the genes involved in embryo development, at least one third of which have been shown to be essential. Aligning advanced imaging technologies with biological needs will be fundamental to maximising the number of phenotypes discovered in the coming years. International efforts are underway to meet this challenge through an integrated and sophisticated approach to embryo phenotyping. We review rapid advances made in the imaging field over the past decade and provide a comprehensive examination of the relative merits of current and emerging techniques. The aim of this review is to provide a guide to state-of-the-art embryo imaging that will enable informed decisions as to which technology to use and fuel conversations between expert imaging laboratories, researchers, and core mouse production facilities.
Collapse
Affiliation(s)
- Francesca C Norris
- University College London (UCL) Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), UCL, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ding Y, Liu W, Deng Y, Jomok B, Yang J, Huang W, Clark KJ, Zhong TP, Lin X, Ekker SC, Xu X. Trapping cardiac recessive mutants via expression-based insertional mutagenesis screening. Circ Res 2013; 112:606-17. [PMID: 23283723 PMCID: PMC3603352 DOI: 10.1161/circresaha.112.300603] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Mutagenesis screening is a powerful genetic tool for probing biological mechanisms underlying vertebrate development and human diseases. However, the increased colony management efforts in vertebrates impose a significant challenge for identifying genes affecting a particular organ, such as the heart, especially those exhibiting adult phenotypes on depletion. OBJECTIVE We aim to develop a facile approach that streamlines colony management efforts via enriching cardiac mutants, which enables us to screen for adult phenotypes. METHODS AND RESULTS The transparency of the zebrafish embryos enabled us to score 67 stable transgenic lines generated from an insertional mutagenesis screen using a transposon-based protein trapping vector. Fifteen lines with cardiac monomeric red fluorescent protein reporter expression were identified. We defined the molecular nature for 10 lines and bred them to homozygosity, which led to the identification of 1 embryonic lethal, 1 larval lethal, and 1 adult recessive mutant exhibiting cardiac hypertrophy at 1 year of age. Further characterization of these mutants uncovered an essential function of methionine adenosyltransferase II, α a (mat2aa) in cardiogenesis, an essential function of mitochondrial ribosomal protein S18B (mrps18b) in cardiac mitochondrial homeostasis, as well as a function of DnaJ (Hsp40) homolog, subfamily B, member 6b (dnajb6b) in adult cardiac hypertrophy. CONCLUSIONS We demonstrate that transposon-based gene trapping is an efficient approach for identifying both embryonic and adult recessive mutants with cardiac expression. The generation of a zebrafish insertional cardiac mutant collection shall facilitate the annotation of a vertebrate cardiac genome, as well as enable heart-based adult screens.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Genetics and Development Biology, College of Life Sciences, Hunan Normal University, P.R. China
| | - Weibin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Yun Deng
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Beninio Jomok
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Tao P. Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
18
|
Norris FC, Betts-Henderson J, Wells JA, Cleary JO, Siow BM, Walker-Samuel S, McCue K, Salomoni P, Scambler PJ, Lythgoe MF. Enhanced tissue differentiation in the developing mouse brain using magnetic resonance micro-histology. Magn Reson Med 2012; 70:1380-8. [DOI: 10.1002/mrm.24573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Francesca C. Norris
- Department of Medicine and UCL Institute of Child Health; Centre for Advanced Biomedical Imaging; University College London; UK
- Centre for Mathematics and Physics in the Life Sciences and EXperimental Biology (CoMPLEX); University College London; UK
| | | | - Jack A. Wells
- Department of Medicine and UCL Institute of Child Health; Centre for Advanced Biomedical Imaging; University College London; UK
| | - Jon O. Cleary
- Department of Medicine and UCL Institute of Child Health; Centre for Advanced Biomedical Imaging; University College London; UK
- Department of Medical Physics and Bioengineering; University College London; UK
| | - Bernard M. Siow
- Department of Medicine and UCL Institute of Child Health; Centre for Advanced Biomedical Imaging; University College London; UK
- Departments of Medical Physics and Bioengineering and Computer Science; Centre for Medical Image Computing; University College London; UK
| | - Simon Walker-Samuel
- Department of Medicine and UCL Institute of Child Health; Centre for Advanced Biomedical Imaging; University College London; UK
| | - Karen McCue
- Molecular Medicine Unit; UCL Institute of Child Health; University College London; UK
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit; UCL Cancer Institute; London UK
| | - Peter J. Scambler
- Molecular Medicine Unit; UCL Institute of Child Health; University College London; UK
| | - Mark F. Lythgoe
- Department of Medicine and UCL Institute of Child Health; Centre for Advanced Biomedical Imaging; University College London; UK
| |
Collapse
|
19
|
Gerdin AK, Igosheva N, Roberson LA, Ismail O, Karp N, Sanderson M, Cambridge E, Shannon C, Sunter D, Ramirez-Solis R, Bussell J, White JK. Experimental and husbandry procedures as potential modifiers of the results of phenotyping tests. Physiol Behav 2012; 106:602-11. [PMID: 22713295 PMCID: PMC3391687 DOI: 10.1016/j.physbeh.2012.03.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/05/2012] [Accepted: 03/22/2012] [Indexed: 11/30/2022]
Abstract
To maximize the sensitivity of detecting affects of genetic variants in mice, variables have been minimized through the use of inbred mouse lines, by eliminating infectious organisms and controlling environmental variables. However, the impact of standard animal husbandry and experimental procedures on the validity of experimental data is under appreciated. In this study we monitored the impact of these procedures by using parameters that reflect stress and physiological responses to it. Short-term measures included telemetered heart rate and systolic arterial pressure, core body temperature and blood glucose, while longer-term parameters were assessed such as body weight. Male and female C57BL6/NTac mice were subjected to a range of stressors with different perceived severities ranging from repeated blood glucose and core temperature measurement procedures, intra-peritoneal injection and overnight fasting to cage transport and cage changing. Our studies reveal that common husbandry and experimental procedures significantly influence mouse physiology and behaviour. Systolic arterial pressure, heart rate, locomotor activity, core temperature and blood glucose were elevated in response to a range of experimental procedures. Differences between sexes were evident, female mice displayed more sustained cardiovascular responses and locomotor activity than male mice. These results have important implications for the design and implementation of multiple component experiments where the lasting effects of stress from previous tests may modify the outcomes of subsequent ones.
Collapse
Affiliation(s)
- Anna-Karin Gerdin
- Mouse Genetics Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ayadi A, Birling MC, Bottomley J, Bussell J, Fuchs H, Fray M, Gailus-Durner V, Greenaway S, Houghton R, Karp N, Leblanc S, Lengger C, Maier H, Mallon AM, Marschall S, Melvin D, Morgan H, Pavlovic G, Ryder E, Skarnes WC, Selloum M, Ramirez-Solis R, Sorg T, Teboul L, Vasseur L, Walling A, Weaver T, Wells S, White JK, Bradley A, Adams DJ, Steel KP, Hrabě de Angelis M, Brown SD, Herault Y. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome 2012; 23:600-10. [PMID: 22961258 PMCID: PMC3463797 DOI: 10.1007/s00335-012-9418-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/23/2012] [Indexed: 12/17/2022]
Abstract
Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available mouse mutant lines but predominantly of the embryonic stem (ES) cells resources derived from the European Conditional Mouse Mutagenesis programme (EUCOMM) and the Knockout Mouse Project (KOMP) to produce and study 799 mouse models that were systematically analysed with a comprehensive set of physiological and behavioural paradigms. They captured more than 400 variables and an additional panel of metadata describing the conditions of the tests. All the data are now available through EuroPhenome database (www.europhenome.org) and the WTSI mouse portal (http://www.sanger.ac.uk/mouseportal/), and the corresponding mouse lines are available through the European Mouse Mutant Archive (EMMA), the International Knockout Mouse Consortium (IKMC), or the Knockout Mouse Project (KOMP) Repository. Overall conclusions from both studies converged, with at least one phenotype scored in at least 80% of the mutant lines. In addition, 57% of the lines were viable, 13% subviable, 30% embryonic lethal, and 7% displayed fertility impairments. These efforts provide an important underpinning for a future global programme that will undertake the complete functional annotation of the mammalian genome in the mouse model.
Collapse
Affiliation(s)
- Abdel Ayadi
- Institut Clinique de la Souris, PHENOMIN, IGBMC/ICS-MCI, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Brown SDM, Moore MW. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome 2012; 23:632-40. [PMID: 22940749 DOI: 10.1007/s00335-012-9427-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/05/2012] [Indexed: 11/24/2022]
Abstract
Determining the function of all mammalian genes remains a major challenge for the biomedical science community in the 21st century. The goal of the International Mouse Phenotyping Consortium (IMPC) over the next 10 years is to undertake broad-based phenotyping of 20,000 mouse genes, providing an unprecedented insight into mammalian gene function. This short article explores the drivers for large-scale mouse phenotyping and provides an overview of the aims and processes involved in IMPC mouse production and phenotyping.
Collapse
Affiliation(s)
- Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell, Oxfordshire OX11 0RD, UK.
| | | |
Collapse
|
22
|
Larina IV, Syed SH, Sudheendran N, Overbeek PA, Dickinson ME, Larin KV. Optical coherence tomography for live phenotypic analysis of embryonic ocular structures in mouse models. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:081410-1. [PMID: 23224171 PMCID: PMC3397804 DOI: 10.1117/1.jbo.17.8.081410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 05/18/2023]
Abstract
Mouse models of ocular diseases provide a powerful resource for exploration of molecular regulation of eye development and pre-clinical studies. Availability of a live high-resolution imaging method for mouse embryonic eyes would significantly enhance longitudinal analyses and high-throughput morphological screening. We demonstrate that optical coherence tomography (OCT) can be used for live embryonic ocular imaging throughout gestation. At all studied stages, the whole eye is within the imaging distance of the system and there is a good optical contrast between the structures. We also performed OCT eye imaging in the embryonic retinoblastoma mouse model Pax6-SV40 T-antigen, which spontaneously forms lens and retinal lesions, and demonstrate that OCT allows us to clearly differentiate between the mutant and wild type phenotypes. These results demonstrate that OCTin utero imaging is a potentially useful tool to study embryonic ocular diseases in mouse models.
Collapse
Affiliation(s)
- Irina V Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Schofield PN, Hoehndorf R, Gkoutos GV. Mouse genetic and phenotypic resources for human genetics. Hum Mutat 2012; 33:826-36. [PMID: 22422677 DOI: 10.1002/humu.22077] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of model organisms to provide information on gene function has proved to be a powerful approach to our understanding of both human disease and fundamental mammalian biology. Large-scale community projects using mice, based on forward and reverse genetics, and now the pan-genomic phenotyping efforts of the International Mouse Phenotyping Consortium, are generating resources on an unprecedented scale, which will be extremely valuable to human genetics and medicine. We discuss the nature and availability of data, mice and embryonic stem cells from these large-scale programmes, the use of these resources to help prioritize and validate candidate genes in human genetic association studies, and how they can improve our understanding of the underlying pathobiology of human disease.
Collapse
Affiliation(s)
- Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
24
|
Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet 2012; 28:323-32. [PMID: 22480918 DOI: 10.1016/j.tig.2012.03.004] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/02/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
Genome-wide data sets are increasingly being used to identify biological pathways and networks underlying complex diseases. In particular, analyzing genomic data through sets defined by functional pathways offers the potential of greater power for discovery and natural connections to biological mechanisms. With the burgeoning availability of next-generation sequencing, this is an opportune moment to revisit strategies for pathway-based analysis of genomic data. Here, we synthesize relevant concepts and extant methodologies to guide investigators in study design and execution. We also highlight ongoing challenges and proposed solutions. As relevant analytical strategies mature, pathways and networks will be ideally placed to integrate data from diverse -omics sources to harness the extensive, rich information related to disease and treatment mechanisms.
Collapse
|
25
|
Abstract
ENU mutagenesis is a forward genetics strategy in which random mutagenesis and phenotypic screening is used to identify genes based on the phenotype induced when they are mutated. A modifier screen is a type of screen in which mice with a pre-existing phenotype are utilized to identify mutations that can enhance or suppress this phenotype. This approach has the potential to uncover missing pathway members, reveal novel genetic interactions, and pinpoint new drug targets. Considerations when planning a suppressor screen include current knowledge, genomic footprint, penetrance, variance, robustness, latency of the starting phenotype, viability, fertility, genetic background and ENU tolerance of starting strain, screening assay, mouse numbers required, and mutation identification strategy. Practical advice on each of these is provided in this review. Curr. Protoc. Mouse Biol. 2:75-87 © 2012 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marina R Carpinelli
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia.,Hearing Co-Operative Research Centre, Melbourne, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Rachel A Burt
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia.,Hearing Co-Operative Research Centre, Melbourne, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
26
|
Schofield PN, Vogel P, Gkoutos GV, Sundberg JP. Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice. Dis Model Mech 2012; 5:19-25. [PMID: 22028326 PMCID: PMC3255539 DOI: 10.1242/dmm.008334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recent advances in gene knockout techniques and the in vivo analysis of mutant mice, together with the advent of large-scale projects for systematic mouse mutagenesis and genome-wide phenotyping, have allowed the creation of platforms for the most complete and systematic analysis of gene function ever undertaken in a vertebrate. The development of high-throughput phenotyping pipelines for these and other large-scale projects allows investigators to search and integrate large amounts of directly comparable phenotype data from many mutants, on a genomic scale, to help develop and test new hypotheses about the origins of disease and the normal functions of genes in the organism. Histopathology has a venerable history in the understanding of the pathobiology of human and animal disease, and presents complementary advantages and challenges to in vivo phenotyping. In this review, we present evidence for the unique contribution that histopathology can make to a large-scale phenotyping effort, using examples from past and current programmes at Lexicon Pharmaceuticals and The Jackson Laboratory, and critically assess the role of histopathology analysis in high-throughput phenotyping pipelines.
Collapse
Affiliation(s)
- Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| | | | | | | |
Collapse
|
27
|
Effects of spatial and cognitive enrichment on activity pattern and learning performance in three strains of mice in the IntelliMaze. Behav Genet 2011; 42:449-60. [PMID: 22187051 DOI: 10.1007/s10519-011-9512-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 10/13/2011] [Indexed: 01/27/2023]
Abstract
The IntelliMaze allows automated behavioral analysis of group housed laboratory mice while individually assigned protocols can be applied concomitantly for different operant conditioning components. Here we evaluate the effect of additional component availability (enrichment) on behavioral and cognitive performance of mice in the IntelliCage, by focusing on aspects that had previously been found to consistently differ between three strains, in four European laboratories. Enrichment decreased the activity level in the IntelliCages and enhanced spatial learning performance. However, it did not alter strain differences, except for activity during the initial experimental phase. Our results from non-enriched IntelliCages proved consistent between laboratories, but overall laboratory-consistency for data collected using different IntelliCage set-ups, did not hold for activity levels during the initial adaptation phase. Our results suggest that the multiple conditioning in spatially and cognitively enriched environments are feasible without affecting external validity for a specific task, provided animals have adapted to such an IntelliMaze.
Collapse
|
28
|
Powell KA, Wilson D. 3-dimensional imaging modalities for phenotyping genetically engineered mice. Vet Pathol 2011; 49:106-15. [PMID: 22146851 DOI: 10.1177/0300985811429814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A variety of 3-dimensional (3D) digital imaging modalities are available for whole-body assessment of genetically engineered mice: magnetic resonance microscopy (MRM), X-ray microcomputed tomography (microCT), optical projection tomography (OPT), episcopic and cryoimaging, and ultrasound biomicroscopy (UBM). Embryo and adult mouse phenotyping can be accomplished at microscopy or near microscopy spatial resolutions using these modalities. MRM and microCT are particularly well-suited for evaluating structural information at the organ level, whereas episcopic and OPT imaging provide structural and functional information from molecular fluorescence imaging at the cellular level. UBM can be used to monitor embryonic development longitudinally in utero. Specimens are not significantly altered during preparation, and structures can be viewed in their native orientations. Technologies for rapid automated data acquisition and high-throughput phenotyping have been developed and continually improve as this exciting field evolves.
Collapse
Affiliation(s)
- K A Powell
- Small Animal Imaging Shared Resource, The James Comprehensive Cancer Center Department of Biomedical Informatics, Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
29
|
Muralla R, Lloyd J, Meinke D. Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS One 2011; 6:e28398. [PMID: 22164284 PMCID: PMC3229588 DOI: 10.1371/journal.pone.0028398] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022] Open
Abstract
The SeedGenes database (www.seedgenes.org) contains information on more than 400 genes required for embryo development in Arabidopsis. Many of these EMBRYO-DEFECTIVE (EMB) genes encode proteins with an essential function required throughout the life cycle. This raises a fundamental question. Why does elimination of an essential gene in Arabidopsis often result in embryo lethality rather than gametophyte lethality? In other words, how do mutant (emb) gametophytes survive and participate in fertilization when an essential cellular function is disrupted? Furthermore, why do some mutant embryos proceed further in development than others? To address these questions, we first established a curated dataset of genes required for gametophyte development in Arabidopsis based on information extracted from the literature. This provided a basis for comparison with EMB genes obtained from the SeedGenes dataset. We also identified genes that exhibited both embryo and gametophyte defects when disrupted by a loss-of-function mutation. We then evaluated the relationship between mutant phenotype, gene redundancy, mutant allele strength, gene expression pattern, protein function, and intracellular protein localization to determine what factors influence the phenotypes of lethal mutants in Arabidopsis. After removing cases where continued development potentially resulted from gene redundancy or residual function of a weak mutant allele, we identified numerous examples of viable mutant (emb) gametophytes that required further explanation. We propose that the presence of gene products derived from transcription in diploid (heterozygous) sporocytes often enables mutant gametophytes to survive the loss of an essential gene in Arabidopsis. Whether gene disruption results in embryo or gametophyte lethality therefore depends in part on the ability of residual, parental gene products to support gametophyte development. We also highlight here 70 preglobular embryo mutants with a zygotic pattern of inheritance, which provide valuable insights into the maternal-to-zygotic transition in Arabidopsis and the timing of paternal gene activation during embryo development.
Collapse
Affiliation(s)
- Rosanna Muralla
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Johnny Lloyd
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - David Meinke
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
30
|
Larina IV, Larin KV, Justice MJ, Dickinson ME. Optical Coherence Tomography for live imaging of mammalian development. Curr Opin Genet Dev 2011; 21:579-84. [PMID: 21962442 DOI: 10.1016/j.gde.2011.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/24/2011] [Accepted: 09/06/2011] [Indexed: 02/08/2023]
Abstract
Understanding the nature and mechanism of congenital defects of the different organ systems in humans has heavily relied on the analysis of the corresponding mutant phenotypes in rodent models. Optical Coherence Tomography (OCT) has recently emerged as a powerful tool to study early embryonic development. This non-invasive optical methodology does not require labeling and allows visualization of embryonic tissues with single cell resolution. Here, we will discuss how OCT can be applied for structural imaging of early mouse and rat embryos in static culture, cardiodynamic and blood flow analysis, and in utero embryonic imaging at later stages of gestation, demonstrating how OCT can be used to assess structural and functional birth defects in mammalian models.
Collapse
Affiliation(s)
- Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| | | | | | | |
Collapse
|
31
|
Bolon B, Couto S, Fiette L, Perle KL. Internet and Print Resources to Facilitate Pathology Analysis When Phenotyping Genetically Engineered Rodents. Vet Pathol 2011; 49:224-35. [DOI: 10.1177/0300985811415709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetically engineered mice and rats are increasingly used as models for exploring disease progression and mechanisms. The full spectrum of anatomic, biochemical, and functional changes that develop in novel, genetically engineered mouse and rat lines must be cataloged before predictions regarding the significance of the mutation may be extrapolated to diseases in other vertebrate species, including humans. A growing list of reference materials, including books, journal articles, and websites, has been produced in the last 2 decades to assist researchers in phenotyping newly engineered rodent lines. This compilation provides an extensive register of materials related to the pathology component of rodent phenotypic analysis. In this article, the authors annotate the resources they use most often, to allow for quick determination of their relevance to research projects.
Collapse
Affiliation(s)
- B. Bolon
- The Ohio State University, Columbus, Ohio
| | - S. Couto
- Genentech, Inc., South San Francisco, California
| | | | | |
Collapse
|
32
|
Delaleu N, Nguyen CQ, Peck AB, Jonsson R. Sjögren's syndrome: studying the disease in mice. Arthritis Res Ther 2011; 13:217. [PMID: 21672284 PMCID: PMC3218871 DOI: 10.1186/ar3313] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sjögren's syndrome (SS), a systemic autoimmune disease, is characterized by inflammation of exocrine tissues accompanied by a significant loss of their secretory function. Clinical symptoms develop late and there are no diagnostic tests enabling early diagnosis of SS. Thus, particularly to study these covert stages, researchers turn to studying animal models where mice provide great freedom for genetic manipulation and testing the effect of experimental intervention. The present review summarizes current literature pertaining to both spontaneous and extrinsic-factor induced SS-like diseases in mouse models, discussing advantages and disadvantages related to the use of murine models in SS research.
Collapse
Affiliation(s)
- Nicolas Delaleu
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, New Laboratory Building, 5th floor, #5305, 5021 Bergen, Norway.
| | | | | | | |
Collapse
|
33
|
A gene-phenotype network for the laboratory mouse and its implications for systematic phenotyping. PLoS One 2011; 6:e19693. [PMID: 21625554 PMCID: PMC3098258 DOI: 10.1371/journal.pone.0019693] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/11/2011] [Indexed: 01/22/2023] Open
Abstract
The laboratory mouse is the pre-eminent model organism for the dissection of human disease pathways. With the advent of a comprehensive panel of gene knockouts, projects to characterise the phenotypes of all knockout lines are being initiated. The range of genotype-phenotype associations can be represented using the Mammalian Phenotype ontology. Using publicly available data annotated with this ontology we have constructed gene and phenotype networks representing these associations. These networks show a scale-free, hierarchical and modular character and community structure. They also exhibit enrichment for gene coexpression, protein-protein interactions and Gene Ontology annotation similarity. Close association between gene communities and some high-level ontology terms suggests that systematic phenotyping can provide a direct insight into underlying pathways. However some phenotypes are distributed more diffusely across gene networks, likely reflecting the pleiotropic roles of many genes. Phenotype communities show a many-to-many relationship to human disease communities, but stronger overlap at more granular levels of description. This may suggest that systematic phenotyping projects should aim for high granularity annotations to maximise their relevance to human disease.
Collapse
|
34
|
Syed SH, Larin KV, Dickinson ME, Larina IV. Optical coherence tomography for high-resolution imaging of mouse development in utero. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:046004. [PMID: 21529073 PMCID: PMC3081861 DOI: 10.1117/1.3560300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/01/2011] [Accepted: 02/09/2011] [Indexed: 05/19/2023]
Abstract
Although the mouse is a superior model to study mammalian embryonic development, high-resolution live dynamic visualization of mouse embryos remain a technical challenge. We present optical coherence tomography as a novel methodology for live imaging of mouse embryos through the uterine wall thereby allowing for time lapse analysis of developmental processes and direct phenotypic analysis of developing embryos. We assessed the capability of the proposed methodology to visualize structures of the living embryo from embryonic stages 12.5 to 18.5 days postcoitus. Repetitive in utero embryonic imaging is demonstrated. Our work opens the door for a wide range of live, in utero embryonic studies to screen for mutations and understand the effects of pharmacological and toxicological agents leading to birth defects.
Collapse
Affiliation(s)
- Saba H Syed
- Department of Biomedical Engineering, University of Houston, 4800 Calhoun Road, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | | | | | | |
Collapse
|
35
|
Murray SA. Mouse resources for craniofacial research. Genesis 2011; 49:190-9. [PMID: 21309071 DOI: 10.1002/dvg.20722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/06/2011] [Accepted: 01/16/2011] [Indexed: 01/22/2023]
Abstract
The mouse, as a genetically defined and easily manipulated model organism, has played a critical role in unraveling the mechanisms of craniofacial development and dysmorphology. While numerous gene knockout strains that display craniofacial abnormalities and essential recombinase tool strains with craniofacial-specific expression have been generated, many are absent from public repositories. Large-scale, international resource-generating initiatives promise to address this concern, providing a comprehensive set of targeted mutations and a suite of new Cre driver strains. In addition, panels of genetically defined strains provide tools to dissect the multigenic, complex nature of craniofacial development, adding to the foundation of information gained from single gene studies. Continued progress will require awareness and access to these essential mouse resources. In this review, current mouse resources, large-scale efforts, and potential future directions will be outlined and discussed.
Collapse
|
36
|
Bhutta MF, Hedge EA, Parker A, Cheeseman MT, Brown SD. Oto-endoscopy: A reliable and validated technique for phenotyping otitis media in the mouse. Hear Res 2011; 272:5-12. [DOI: 10.1016/j.heares.2010.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/03/2010] [Indexed: 12/01/2022]
|
37
|
Gates H, Mallon AM, Brown SDM. High-throughput mouse phenotyping. Methods 2010; 53:394-404. [PMID: 21185382 DOI: 10.1016/j.ymeth.2010.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/30/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022] Open
Abstract
Comprehensive phenotyping will be required to reveal the pleiotropic functions of a gene and to uncover the wider role of genetic loci within diverse biological systems. The challenge will be to devise phenotyping approaches to characterise the thousands of mutants that are being generated as part of international efforts to acquire a mutant for every gene in the mouse genome. In order to acquire robust datasets of broad based phenotypes from mouse mutants it is necessary to design and implement pipelines that incorporate standardised phenotyping platforms that are validated across diverse mouse genetics centres or mouse clinics. We describe here the rationale and methodology behind one phenotyping pipeline, EMPReSSslim, that was designed as part of the work of the EUMORPHIA and EUMODIC consortia, and which exemplifies some of the challenges facing large-scale phenotyping. EMPReSSslim captures a broad range of data on diverse biological systems, from biochemical to physiological amongst others. Data capture and dissemination is pivotal to the operation of large-scale phenotyping pipelines, including the definition of parameters integral to each phenotyping test and the associated ontological descriptions. EMPReSSslim data is displayed within the EuroPhenome database, where a variety of tools are available to allow the user to search for interesting biological or clinical phenotypes.
Collapse
Affiliation(s)
- Hilary Gates
- MRC Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Harwell OX11 0RD, UK
| | | | | | | |
Collapse
|
38
|
Unraveling the genetics of otitis media: from mouse to human and back again. Mamm Genome 2010; 22:66-82. [PMID: 21107580 DOI: 10.1007/s00335-010-9295-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 09/27/2010] [Indexed: 01/12/2023]
Abstract
Otitis media (OM) is among the most common illnesses of early childhood, characterised by the presence of inflammation in the middle ear cavity. Acute OM and chronic OM with effusion (COME) affect the majority of children by school age and have heritability estimates of 40-70%. However, the majority of genes underlying this susceptibility are, as yet, unidentified. One method of identifying genes and pathways that may contribute to OM susceptibility is to look at mouse mutants displaying a comparable phenotype. Single-gene mouse mutants with OM have identified a number of genes, namely, Eya4, Tlr4, p73, MyD88, Fas, E2f4, Plg, Fbxo11, and Evi1, as potential and biologically relevant candidates for human disease. Recent studies suggest that this "mouse-to-human" approach is likely to yield relevant data, with significant associations reported between polymorphisms at the FBXO11, TLR4, and PAI1 genes and disease in humans. An association between TP73 and chronic rhinosinusitis has also been reported. In addition, the biobanks of available mouse mutants provide a powerful resource for functional studies of loci identified by future genome-wide association studies of OM in humans. Mouse models of OM therefore are an important component of current approaches attempting to understand the complex genetic susceptibility to OM in humans, and which aim to facilitate the development of preventative and therapeutic interventions for this important and common disease.
Collapse
|
39
|
Beier DR. New genetic resources for mammalian developmental biologists. F1000 BIOLOGY REPORTS 2010; 2:72. [PMID: 21173845 PMCID: PMC2989628 DOI: 10.3410/b2-72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The utilization of homologous recombination in embryonic stem cells as a means to generate mice carrying pre-determined modifications of genomic sequences has revolutionized the study of developmental biology. Recognizing the potential efficiencies that can be obtained by high-throughput production at centralized technology centers, a number of large-scale efforts for generating mice with targeted mutations have been funded. These programs are reaching fruition, and a variety of libraries of embryonic stem cells with defined mutations are now available.
Collapse
Affiliation(s)
- David R Beier
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School New Research Building 77 Avenue Louis Pasteur, Boston, MA 02115 USA
| |
Collapse
|
40
|
Dror AA, Avraham KB. Hearing Impairment: A Panoply of Genes and Functions. Neuron 2010; 68:293-308. [DOI: 10.1016/j.neuron.2010.10.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2010] [Indexed: 12/13/2022]
|
41
|
Schofield PN, Gkoutos GV, Gruenberger M, Sundberg JP, Hancock JM. Phenotype ontologies for mouse and man: bridging the semantic gap. Dis Model Mech 2010; 3:281-9. [PMID: 20427557 DOI: 10.1242/dmm.002790] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A major challenge of the post-genomic era is coding phenotype data from humans and model organisms such as the mouse, to permit the meaningful translation of phenotype descriptions between species. This ability is essential if we are to facilitate phenotype-driven gene function discovery and empower comparative pathobiology. Here, we review the current state of the art for phenotype and disease description in mice and humans, and discuss ways in which the semantic gap between coding systems might be bridged to facilitate the discovery and exploitation of new mouse models of human diseases.
Collapse
Affiliation(s)
- Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
42
|
Stechman MJ, Ahmad BN, Loh NY, Reed AAC, Stewart M, Wells S, Hough T, Bentley L, Cox RD, Brown SDM, Thakker RV. Establishing normal plasma and 24-hour urinary biochemistry ranges in C3H, BALB/c and C57BL/6J mice following acclimatization in metabolic cages. Lab Anim 2010; 44:218-25. [DOI: 10.1258/la.2010.009128] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Physiological studies of mice are facilitated by normal plasma and 24-hour urinary reference ranges, but variability of these parameters may increase due to stress that is induced by housing in metabolic cages. We assessed daily weight, food and water intake, urine volume and final day measurements of the following: plasma sodium, potassium, chloride, urea, creatinine, calcium, phosphate, alkaline phosphatase, albumin, cholesterol and glucose; and urinary sodium, potassium, calcium, phosphate, glucose and protein in 24- to 30-week-old C3H/HeH, BALB/cAnNCrl and C57BL/6J mice. Between 15 and 20 mice of each sex from all three strains were individually housed in metabolic cages with ad libitum feeding for up to seven days. Acclimatization was evaluated using general linear modelling for repeated measures and comparison of biochemical data was by unpaired t-test and analysis of variance (SPSS version 12.0.1). Following an initial 5–10% fall in body weight, daily dietary intake, urinary output and weight in all three strains reached stable values after 3–4 days of confinement. Significant differences in plasma glucose, cholesterol, urea, chloride, calcium and albumin, and urinary glucose, sodium, phosphate, calcium and protein were observed between strains and genders. Thus, these results provide normal reference values for plasma and urinary biochemistry in three strains housed in metabolic cages and demonstrate that 3–4 days are required to reach equilibrium in metabolic cage studies. These variations due to strain and gender have significant implications for selecting the appropriate strain upon which to breed genetically-altered models of metabolic and renal disease.
Collapse
Affiliation(s)
- Michael J Stechman
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford OX3 7LJ
| | - Bushra N Ahmad
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford OX3 7LJ
| | - Nellie Y Loh
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford OX3 7LJ
| | - Anita A C Reed
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford OX3 7LJ
| | | | | | | | - Liz Bentley
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire, UK
| | - Roger D Cox
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford OX3 7LJ
| |
Collapse
|
43
|
Abstract
The generation and analysis of germline mutations in the mouse is one of the cornerstones of modern biological research. The chemical supermutagen N-ethyl-N-nitrosourea (ENU) is the most potent known mouse mutagen and can be used to generate point mutations throughout the mouse genome. The progeny of ENU-mutagenized males can be screened for autosomal dominant phenotypes, or they can be used to generate multigeneration pedigrees to screen for autosomal recessive traits. The introduction of balancer chromosomes into the breeding scheme can allow for the selective capture of mutations in a specific chromosomal region. More recent work has demonstrated that the use of animals that already have a mutation of interest can lead to the successful isolation of additional mutations that modify the original mutant phenotype. Further, modern molecular techniques ensure that mutations can be readily identified. We describe here the procedures for mutagenizing male mice with ENU and explain the various types of screens that can be performed for different kinds of induced mutations. The currently published research on ENU mutagenesis in the mouse has only scratched the surface of what is possible with this powerful technique, and further work is certain to deepen our knowledge of the role of the individual components of the mouse genome and the myriad relationships between them.
Collapse
Affiliation(s)
- Frank J Probst
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
44
|
Abstract
Hearing loss (HL), or deafness in its most severe form, affects an estimated 28 and 22.5 million Americans and Europeans, respectively. The numbers are higher in regions such as India and the Middle East, where consanguinity contributes to larger numbers of recessively inherited hearing impairment (HI). As a result of work-related difficulties, educational and developmental delays, and social stigmas and exclusion, the economic impact of HL is very high. At the other end of the spectrum, a rich deaf culture, particularly for individuals whose parents and even grandparents were deaf, is a social movement that believes that deafness is a difference in human experience rather than a disability. This review attempts to cover the remarkable progress made in the field of the genetics of HL over the past 20 years. Mutations in a significant number of genes have been discovered over the years that contribute to clinically heterogeneous forms of HL, enabling genetic counseling and prediction of progression of HL. Cell biological assays, protein localization in the inner ear, and detailed analysis of spontaneous and transgenic mouse models have provided an incredibly rich resource for elucidating mechanisms of hereditary hearing loss (HHL). This knowledge is providing answers for the families with HL, who contribute a great deal to the research being performed worldwide.
Collapse
Affiliation(s)
- Amiel A Dror
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
45
|
Morgan H, Beck T, Blake A, Gates H, Adams N, Debouzy G, Leblanc S, Lengger C, Maier H, Melvin D, Meziane H, Richardson D, Wells S, White J, Wood J, de Angelis MH, Brown SDM, Hancock JM, Mallon AM. EuroPhenome: a repository for high-throughput mouse phenotyping data. Nucleic Acids Res 2009; 38:D577-85. [PMID: 19933761 PMCID: PMC2808931 DOI: 10.1093/nar/gkp1007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project (http://www.EuroPhenome.org) is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline (http://www.empress.har.mrc.ac.uk/) which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies.
Collapse
Affiliation(s)
- Hugh Morgan
- MRC Harwell, Mammalian Genetics Unit, MRC Harwell, Mary Lyon Centre, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|