1
|
Tang F, Dong T, Zhou C, Deng L, Liu HB, Wang W, Liu G, Ying M, Li PP. Genetically engineered human induced pluripotent stem cells for the production of brain-targeting extracellular vesicles. Stem Cell Res Ther 2024; 15:345. [PMID: 39380039 PMCID: PMC11462716 DOI: 10.1186/s13287-024-03955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-secreted membrane vesicles that have become a promising, natural nanoparticle system for delivering either naturally carried or exogenously loaded therapeutic molecules. Among reported cell sources for EV manufacture, human induced pluripotent stem cells (hiPSCs) offer numerous advantages. However, hiPSC-EVs only have a moderate ability for brain delivery. Herein, we sought to develop a stable hiPSC line for producing EVs with substantially enhanced brain targeting by genetic engineering to overexpress rabies viral glycoprotein (RVG) peptide fused to the N terminus of lysosomal associated membrane protein 2B (RVG-Lamp2B) which has been shown capable of boosting the brain delivery of EVs via the nicotinic acetylcholine receptor. METHODS An RVG-Lamp2B-HA expression cassette was knocked into the AAVS1 safe harbor locus of a control hiPSC line using the CRISPR/Cas9-assisted homologous recombination. Western blot was used to detect the expression of RVG-Lamp2B-HA in RVG-edited hiPSCs as well as EVs derived from RVG-edited hiPSCs. Uptake of EVs by SH-SY5Y cells in the presence of various endocytic inhibitors was analyzed using flow cytometry. Biodistribution and brain delivery of intravenously injected control and RVG-modified EVs in wild-type mice were examined using ex vivo fluorescent imaging. RESULTS Here we report that an RVG-Lamp2B-HA expression cassette was knocked into the AAVS1 safe harbor locus of a control hiPSC line using the CRISPR/Cas9-assisted homologous recombination. The RVG-edited iPSCs have normal karyotype, express pluripotency markers, and have differentiation potential. Expression of RVG-Lamp2B-HA was detected in total cell extracts as well as EVs derived from RVG-edited (vs. control) hiPSCs. The RVG-modified EVs enter neuronal cells via distinct endocytic pathways, compared with control EVs. The biodistribution study confirmed that EVs derived from RVG-edited hiPSCs possess higher brain delivery efficiency. CONCLUSION Taken together, we have established stable, genetically engineered hiPSCs for producing EVs with RVG expression, offering the improved ability for brain-targeted drug delivery.
Collapse
Affiliation(s)
- Fan Tang
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Dong
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chengqian Zhou
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leon Deng
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans B Liu
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenshen Wang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Guanshu Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Mingyao Ying
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Pan P Li
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Merlin JPJ, Abrahamse H. Optimizing CRISPR/Cas9 precision: Mitigating off-target effects for safe integration with photodynamic and stem cell therapies in cancer treatment. Biomed Pharmacother 2024; 180:117516. [PMID: 39332185 DOI: 10.1016/j.biopha.2024.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024] Open
Abstract
CRISPR/Cas9 precision genome editing has revolutionized cancer treatment by introducing specific alterations to the cancer genome. But the therapeutic potential of CRISPR/Cas9 is limited by off-target effects, which can cause undesired changes to genomic regions and create major safety concerns. The primary emphasis lies in their implications within the realm of cancer photodynamic therapy (PDT), where precision is paramount. PDT is a promising cancer treatment method; nevertheless, its effectiveness is severely limited and readily leads to recurrence due to the therapeutic resistance of cancer stem cells (CSCs). With a focus on targeted genome editing into cancer cells during PDT and stem cell treatment (SCT), the review aims to further the ongoing search for safer and more accurate CRISPR/Cas9-mediated methods. At the core of this exploration are recent advancements and novel techniques that offer promise in mitigating the risks associated with off-target effects. With a focus on cancer PDT and SCT, this review critically assesses the landscape of off-target effects in CRISPR/Cas9 applications, offering a comprehensive knowledge of their nature and prevalence. A key component of the review is the assessment of cutting-edge delivery methods, such as technologies based on nanoparticles (NPs), to optimize the distribution of CRISPR components. Additionally, the study delves into the intricacies of guide RNA design, focusing on advancements that bolster specificity and minimize off-target effects, crucial elements in ensuring the precision required for effective cancer PDT and SCT. By synthesizing insights from various methodologies, including the exploration of innovative genome editing tools and leveraging robust validation methods and bioinformatics tools, the review aspires to chart a course towards more reliable and precise CRISPR-Cas9 applications in cancer PDT and SCT. For safe PDT and SCT integration in cancer therapy, CRISPR/Cas9 precision optimization is essential. Utilizing sophisticated molecular and computational techniques to address off-target effects is crucial to realizing the therapeutic promise of these technologies, which will ultimately lead to the development of individualized and successful cancer treatment strategies. Our long-term goals are to improve precision genome editing for more potent cancer therapy approaches by refining the way CRISPR/Cas9 is integrated with photodynamic and stem cell therapies.
Collapse
Affiliation(s)
- J P Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa
| |
Collapse
|
3
|
Mulay AR, Hwang J, Kim DH. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development. Adv Healthc Mater 2024; 13:e2303180. [PMID: 38430211 PMCID: PMC11338747 DOI: 10.1002/adhm.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The blood-brain barrier (BBB) is a highly controlled microenvironment that regulates the interactions between cerebral blood and brain tissue. Due to its selectivity, many therapeutics targeting various neurological disorders are not able to penetrate into brain tissue. Pre-clinical studies using animals and other in vitro platforms have not shown the ability to fully replicate the human BBB leading to the failure of a majority of therapeutics in clinical trials. However, recent innovations in vitro and ex vivo modeling called organs-on-chips have shown the potential to create more accurate disease models for improved drug development. These microfluidic platforms induce physiological stressors on cultured cells and are able to generate more physiologically accurate BBBs compared to previous in vitro models. In this review, different approaches to create BBBs-on-chips are explored alongside their application in modeling various neurological disorders and potential therapeutic efficacy. Additionally, organs-on-chips use in BBB drug delivery studies is discussed, and advances in linking brain organs-on-chips onto multiorgan platforms to mimic organ crosstalk are reviewed.
Collapse
Affiliation(s)
- Atharva R. Mulay
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Jihyun Hwang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Center for Microphysiological Systems, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218
| |
Collapse
|
4
|
Park JC, Kim YJ, Hwang GH, Kang CY, Bae S, Cha HJ. Enhancing genome editing in hPSCs through dual inhibition of DNA damage response and repair pathways. Nat Commun 2024; 15:4002. [PMID: 38734692 PMCID: PMC11088699 DOI: 10.1038/s41467-024-48111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Precise genome editing is crucial for establishing isogenic human disease models and ex vivo stem cell therapy from the patient-derived hPSCs. Unlike Cas9-mediated knock-in, cytosine base editor and prime editor achieve the desirable gene correction without inducing DNA double strand breaks. However, hPSCs possess highly active DNA repair pathways and are particularly susceptible to p53-dependent cell death. These unique characteristics impede the efficiency of gene editing in hPSCs. Here, we demonstrate that dual inhibition of p53-mediated cell death and distinct activation of the DNA damage repair system upon DNA damage by cytosine base editor or prime editor additively enhanced editing efficiency in hPSCs. The BE4stem system comprised of p53DD, a dominant negative p53, and three UNG inhibitor, engineered to specifically diminish base excision repair, improves cytosine base editor efficiency in hPSCs. Addition of dominant negative MLH1 to inhibit mismatch repair activity and p53DD in the conventional prime editor system also significantly enhances prime editor efficiency in hPSCs. Thus, combined inhibition of the distinct cellular cascades engaged in hPSCs upon gene editing could significantly enhance precise genome editing in these cells.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gue-Ho Hwang
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Young Kang
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangsu Bae
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Bonnycastle LL, Swift AJ, Mansell EC, Lee A, Winnicki E, Li ES, Robertson CC, Parsons VA, Huynh T, Krilow C, Mohlke KL, Erdos MR, Narisu N, Collins FS. Generation of Human Isogenic Induced Pluripotent Stem Cell Lines with CRISPR Prime Editing. CRISPR J 2024; 7:53-67. [PMID: 38353623 PMCID: PMC10880268 DOI: 10.1089/crispr.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
We developed an efficient CRISPR prime editing protocol and generated isogenic-induced pluripotent stem cell (iPSC) lines carrying heterozygous or homozygous alleles for putatively causal single nucleotide variants at six type 2 diabetes loci (ABCC8, MTNR1B, TCF7L2, HNF4A, CAMK1D, and GCK). Our two-step sequence-based approach to first identify transfected cell pools with the highest fraction of edited cells significantly reduced the downstream efforts to isolate single clones of edited cells. We found that prime editing can make targeted genetic changes in iPSC and optimization of system components and guide RNA designs that were critical to achieve acceptable efficiency. Systems utilizing PEmax, epegRNA modifications, and MLH1dn provided significant benefit, producing editing efficiencies of 36-73%. Editing success and pegRNA design optimization required for each variant differed depending on the sequence at the target site. With attention to design, prime editing is a promising approach to generate isogenic iPSC lines, enabling the study of specific genetic changes in a common genetic background.
Collapse
Affiliation(s)
- Lori L. Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Amy J. Swift
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Erin C. Mansell
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Angela Lee
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Elizabeth Winnicki
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Elizabeth S. Li
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Catherine C. Robertson
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Victoria A. Parsons
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Trung Huynh
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Chad Krilow
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Michael R. Erdos
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Francis S. Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Molugu K, Khajanchi N, Lazzarotto CR, Tsai SQ, Saha K. Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells. CRISPR J 2023; 6:473-485. [PMID: 37676985 PMCID: PMC10611976 DOI: 10.1089/crispr.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Genome-edited human-induced pluripotent stem cells (iPSCs) have broad applications in disease modeling, drug discovery, and regenerative medicine. Despite the development of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, the gene editing process is inefficient and can take several weeks to months to generate edited iPSC clones. We developed a strategy to improve the efficiency of the iPSC gene editing process via application of a small-molecule, trichostatin A (TSA), a Class I and II histone deacetylase inhibitor. We observed that TSA decreased global chromatin condensation and further resulted in increased gene-editing efficiency of iPSCs by twofold to fourfold while concurrently ensuring no increased off-target effects. The edited iPSCs could be clonally expanded while maintaining genomic integrity and pluripotency. The rapid generation of therapeutically relevant gene-edited iPSCs could be enabled by these findings.
Collapse
Affiliation(s)
- Kaivalya Molugu
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Namita Khajanchi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Biomedical and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cicera R. Lazzarotto
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Biomedical and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Ebrahimi S, Khosravi MA, Raz A, Karimipoor M, Parvizi P. CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications. IRANIAN BIOMEDICAL JOURNAL 2023; 27:219-46. [PMID: 37873636 PMCID: PMC10707817 DOI: 10.61186/ibj.27.5.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 12/17/2023]
Abstract
Programmable nucleases are powerful genomic tools for precise genome editing. These tools precisely recognize, remove, or change DNA at a defined site, thereby, stimulating cellular DNA repair pathways that can cause mutations or accurate replacement or deletion/insertion of a sequence. CRISPR-Cas9 system is the most potent and useful genome editing technique adapted from the defense immune system of certain bacteria and archaea against viruses and phages. In the past decade, this technology made notable progress, and at present, it has largely been used in genome manipulation to make precise gene editing in plants, animals, and human cells. In this review, we aim to explain the basic principle, mechanisms of action, and applications of this system in different areas of medicine, with emphasizing on the detection and treatment of parasitic diseases.
Collapse
Affiliation(s)
- Sahar Ebrahimi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Khosravi
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Park JC, Park MJ, Lee SY, Kim D, Kim KT, Jang HK, Cha HJ. Gene editing with 'pencil' rather than 'scissors' in human pluripotent stem cells. Stem Cell Res Ther 2023; 14:164. [PMID: 37340491 PMCID: PMC10283231 DOI: 10.1186/s13287-023-03394-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Owing to the advances in genome editing technologies, research on human pluripotent stem cells (hPSCs) have recently undergone breakthroughs that enable precise alteration of desired nucleotide bases in hPSCs for the creation of isogenic disease models or for autologous ex vivo cell therapy. As pathogenic variants largely consist of point mutations, precise substitution of mutated bases in hPSCs allows researchers study disease mechanisms with "disease-in-a-dish" and provide functionally repaired cells to patients for cell therapy. To this end, in addition to utilizing the conventional homologous directed repair system in the knock-in strategy based on endonuclease activity of Cas9 (i.e., 'scissors' like gene editing), diverse toolkits for editing the desirable bases (i.e., 'pencils' like gene editing) that avoid the accidental insertion and deletion (indel) mutations as well as large harmful deletions have been developed. In this review, we summarize the recent progress in genome editing methodologies and employment of hPSCs for future translational applications.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Mihn Jeong Park
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Seung-Yeon Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Dayeon Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon, South Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Giallongo S, Lo Re O, Resnick I, Raffaele M, Vinciguerra M. Gene Editing and Human iPSCs in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:275-298. [DOI: 10.1007/978-981-19-5642-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Flosdorf N, Zenke M. Dendritic cells generated from induced pluripotent stem cells and by direct reprogramming of somatic cells. Eur J Immunol 2022; 52:1880-1888. [PMID: 36045608 DOI: 10.1002/eji.202149550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
Novel and exciting avenues allow generating dendritic cells (DC) by reprogramming of somatic cells. DC are obtained from induced pluripotent stem cells (iPS cells), referred to as ipDC, and by direct reprogramming of cells toward DC, referred to as induced DC (iDC). iPS cells represent pluripotent stem cells generated by reprogramming of somatic cells and can differentiate into all cell types of the body, including DC. This makes iPS cells and ipDC derived thereof useful for studying various DC subsets, acquiring high cell numbers for research and clinical use, or applying genome editing to generate DC with wanted properties. Thereby, ipDC overcome limitations in specific DC subsets, which are only found in low abundance in blood or lymphoid organs. iDC are generated by direct reprogramming of somatic cells with a specific set of transcription factors and offer an avenue to obtain DC without a pluripotent cell intermediate. ipDC and iDC retain patient and disease-specific mutations and this opens new perspectives for studying DC in disease. This review summarizes the current techniques used to generate ipDC and iDC, and the types and functionality of the DC generated.
Collapse
Affiliation(s)
- Niclas Flosdorf
- Department of Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Center, Aachen, Germany
| | - Martin Zenke
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Center, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.,Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Oh S, Gu EY, Han JS, Lee BS, Moon KS, Kim YB, Han KH. Tumorigenicity Assessment of Human Cancer Cell Lines Xenografted on Immunodeficient Mice as Positive Controls of Tumorigenicity Testing. Int J Toxicol 2022; 41:476-487. [PMID: 36069520 DOI: 10.1177/10915818221124573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent advances in human pluripotent stem cell (hPSC)-derived cell therapies and genome editing technologies such as CRISPR/Cas9 make regenerative medicines promising for curing diseases previously thought to be incurable. However, the possibility of off-target effects during genome editing and the nature of hPSCs, which can differentiate into any cell type and infinitely proliferate, inevitably raises concerns about tumorigenicity. Tumorigenicity acts as a major obstacle to the application of hPSC-derived and gene therapy products in clinical practice. Thus, regulatory authorities demand mandatory tumorigenicity testing as a key pre-clinical safety step for the products. In the tumorigenicity testing, regulatory guidelines request to include human cancer cell line injected positive control group (PC) animals, which must form tumors. As the validity of the whole test is determined by the tumor-forming rates (typically above 90%) of PC animals, establishing the stable tumorigenic condition of PC animals is critical for successful testing. We conducted several studies to establish the proper positive control conditions, including dose, administration routes, and the selection of cell lines, in compliance with Good Laboratory Practice (GLP) regulations and/or guidelines, which are essential for pre-clinical safety tests of therapeutic materials. We expect that our findings provide insights and practical information to create a successful tumorigenicity test and its guidelines.
Collapse
Affiliation(s)
- Seunghee Oh
- Department of Advanced Toxicology Research, 443298Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Eun-Young Gu
- Department of Advanced Toxicology Research, 443298Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ji-Seok Han
- Department of Advanced Toxicology Research, 443298Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, 443298Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, 443298Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, 443298Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kang-Hyun Han
- Department of Advanced Toxicology Research, 443298Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Park G, Shin M, Lee W, Hotta A, Kobayashi T, Kosodo Y. Direct visualization of the transition status during neural differentiation by dual-fluorescent reporter human pluripotent stem cells. Stem Cell Reports 2022; 17:1903-1913. [PMID: 35931075 PMCID: PMC9481873 DOI: 10.1016/j.stemcr.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/05/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can differentiate into neurons and glia via neural progenitor cells and are widely used for neurogenic studies. However, directly visualizing the transition status during the neural differentiation of live cells is difficult. Here, targeting NEUROG2 (NGN2) and TUBB3 as markers of neurogenic cells and neurons, respectively, we established TUBB3EGFP/NGN2TagRFP dual-reporter hiPSCs using CRISPR-Cas9 technology. We induced the differentiation of cortical neurons from dual-reporter hiPSCs, successfully visualizing cell-fate conversion in two-dimensional (2D) culture and 3D organoids. The reporter cells were used to monitor drug effects to enhance neural induction, responses to gene knockdown, transplantation to the embryonic mouse brain, and live imaging at single-cell resolution. Notably, the earliest REELIN-positive neurons showed a distinctive migration pattern, and their production was accelerated by HES1-function loss. Together, these results demonstrate the potential for dual-reporter hiPSCs in therapeutic neural regeneration strategies and studies on human cortical development. Two-color fluorescent reporter hiPSC lines are established by genome editing Neural differentiation is characterized by 2D and 3D culture methods The dual-reporter line is applied to evaluate drug and gene functions HES1 knockdown accelerates the production of the earliest REELIN-positive neurons
Collapse
Affiliation(s)
- Gwanghyun Park
- Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Minkyung Shin
- Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Wonyoung Lee
- Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Taeko Kobayashi
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yoichi Kosodo
- Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea.
| |
Collapse
|
13
|
Feng Y, Li Y, Shen PP, Wang B. Gene-Modified Stem Cells for Spinal Cord Injury: a Promising Better Alternative Therapy. Stem Cell Rev Rep 2022; 18:2662-2682. [PMID: 35587330 DOI: 10.1007/s12015-022-10387-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 12/18/2022]
Abstract
Stem cell therapy holds great promise for the treatment of spinal cord injury (SCI), which can reverse neurodegeneration and promote tissue regeneration via its pluripotency and ability to secrete neurotrophic factors. Although various stem cell-based approaches have shown certain therapeutic effects when applied to the treatment of SCI, their clinical efficacies have been disappointing. Thus, it is an urgent need to further enhance the neurological benefits of stem cells through bioengineering strategies including genetic engineering. In this review, we summarize the progress of stem cell therapy for SCI and the prospect of genetically modified stem cells, focusing on the genome editing tools and functional molecules involved in SCI repair, trying to provide a deeper understanding of genetically modified stem cell therapy and more applicable clinical strategies for SCI repair.
Collapse
Affiliation(s)
- Yirui Feng
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yu Li
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ping-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
14
|
Song Y, Zheng Z, Lian J. Deciphering Common Long QT Syndrome Using CRISPR/Cas9 in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cardiovasc Med 2022; 9:889519. [PMID: 35647048 PMCID: PMC9136094 DOI: 10.3389/fcvm.2022.889519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
From carrying potentially pathogenic genes to severe clinical phenotypes, the basic research in the inherited cardiac ion channel disease such as long QT syndrome (LQTS) has been a significant challenge in explaining gene-phenotype heterogeneity. These have opened up new pathways following the parallel development and successful application of stem cell and genome editing technologies. Stem cell-derived cardiomyocytes and subsequent genome editing have allowed researchers to introduce desired genes into cells in a dish to replicate the disease features of LQTS or replace causative genes to normalize the cellular phenotype. Importantly, this has made it possible to elucidate potential genetic modifiers contributing to clinical heterogeneity and hierarchically manage newly identified variants of uncertain significance (VUS) and more therapeutic options to be tested in vitro. In this paper, we focus on and summarize the recent advanced application of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9) in the interpretation for the gene-phenotype relationship of the common LQTS and presence challenges, increasing our understanding of the effects of mutations and the physiopathological mechanisms in the field of cardiac arrhythmias.
Collapse
Affiliation(s)
- Yongfei Song
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- Yongfei Song
| | - Zequn Zheng
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- *Correspondence: Jiangfang Lian
| |
Collapse
|
15
|
Ma Z, Toledo MAS, Wanek P, Elsafi Mabrouk MH, Smet F, Pulak R, Pieske S, Piotrowski T, Herfs W, Brecher C, Schmitt RH, Wagner W, Zenke M. Cell Cluster Sorting in Automated Differentiation of Patient-specific Induced Pluripotent Stem Cells Towards Blood Cells. Front Bioeng Biotechnol 2022; 10:755983. [PMID: 35662848 PMCID: PMC9157239 DOI: 10.3389/fbioe.2022.755983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Induced pluripotent stem cells (iPS cells) represent a particularly versatile stem cell type for a large array of applications in biology and medicine. Taking full advantage of iPS cell technology requires high throughput and automated iPS cell culture and differentiation. We present an automated platform for efficient and robust iPS cell culture and differentiation into blood cells. We implemented cell cluster sorting for analysis and sorting of iPS cell clusters in order to establish clonal iPS cell lines with high reproducibility and efficacy. Patient-specific iPS cells were induced to differentiate towards hematopoietic cells via embryoid body (EB) formation. EB size impacts on iPS cell differentiation and we applied cell cluster sorting to obtain EB of defined size for efficient blood cell differentiation. In summary, implementing cell cluster sorting into the workflow of iPS cell cloning, growth and differentiation represent a valuable add-on for standard and automated iPS cell handling.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Marcelo Augusto Szymanskide Toledo
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Paul Wanek
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Mohamed H. Elsafi Mabrouk
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | | | - Rock Pulak
- Union Biometrica, Holliston, MA, United States
| | - Simon Pieske
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Werner Herfs
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
| | - Christian Brecher
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Robert H. Schmitt
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Wolfgang Wagner
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Physiological Electric Field: A Potential Construction Regulator of Human Brain Organoids. Int J Mol Sci 2022; 23:ijms23073877. [PMID: 35409232 PMCID: PMC8999182 DOI: 10.3390/ijms23073877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Brain organoids can reproduce the regional three-dimensional (3D) tissue structure of human brains, following the in vivo developmental trajectory at the cellular level; therefore, they are considered to present one of the best brain simulation model systems. By briefly summarizing the latest research concerning brain organoid construction methods, the basic principles, and challenges, this review intends to identify the potential role of the physiological electric field (EF) in the construction of brain organoids because of its important regulatory function in neurogenesis. EFs could initiate neural tissue formation, inducing the neuronal differentiation of NSCs, both of which capabilities make it an important element of the in vitro construction of brain organoids. More importantly, by adjusting the stimulation protocol and special/temporal distributions of EFs, neural organoids might be created following a predesigned 3D framework, particularly a specific neural network, because this promotes the orderly growth of neural processes, coordinate neuronal migration and maturation, and stimulate synapse and myelin sheath formation. Thus, the application of EF for constructing brain organoids in a3D matrix could be a promising future direction in neural tissue engineering.
Collapse
|
17
|
Park JC, Jang HK, Kim J, Han JH, Jung Y, Kim K, Bae S, Cha HJ. High expression of uracil DNA glycosylase determines C to T substitution in human pluripotent stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:175-183. [PMID: 34976436 PMCID: PMC8688811 DOI: 10.1016/j.omtn.2021.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/28/2021] [Indexed: 10/29/2022]
Abstract
Precise genome editing of human pluripotent stem cells (hPSCs) is crucial not only for basic science but also for biomedical applications such as ex vivo stem cell therapy and genetic disease modeling. However, hPSCs have unique cellular properties compared to somatic cells. For instance, hPSCs are extremely susceptible to DNA damage, and therefore Cas9-mediated DNA double-strand breaks (DSB) induce p53-dependent cell death, resulting in low Cas9 editing efficiency. Unlike Cas9 nucleases, base editors including cytosine base editor (CBE) and adenine base editor (ABE) can efficiently substitute single nucleotides without generating DSBs at target sites. Here, we found that the editing efficiency of CBE was significantly lower than that of ABE in human embryonic stem cells (hESCs), which are associated with high expression of DNA glycosylases, the key component of the base excision repair pathway. Sequential depletion of DNA glycosylases revealed that high expression of uracil DNA glycosylase (UNG) not only resulted in low editing efficiency but also affected CBE product purity (i.e., C to T) in hESCs. Therefore, additional suppression of UNG via transient knockdown would also improve C to T base substitutions in hESCs. These data suggest that the unique cellular characteristics of hPSCs could determine the efficiency of precise genome editing.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyeon-Ki Jang
- Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jumee Kim
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jun Hee Han
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Youngri Jung
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Keuntae Kim
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangsu Bae
- Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Takahashi K, Okubo C, Nakamura M, Iwasaki M, Kawahara Y, Tabata T, Miyamoto Y, Woltjen K, Yamanaka S. A stress-reduced passaging technique improves the viability of human pluripotent cells. CELL REPORTS METHODS 2022; 2:100155. [PMID: 35474962 PMCID: PMC9017214 DOI: 10.1016/j.crmeth.2021.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Xeno-free culture systems have expanded the clinical and industrial application of human pluripotent stem cells (PSCs). However, reproducibility issues, often arising from variability during passaging steps, remain. Here, we describe an improved method for the subculture of human PSCs. The revised method significantly enhances the viability of human PSCs by lowering DNA damage and apoptosis, resulting in more efficient and reproducible downstream applications such as gene editing and directed differentiation. Furthermore, the method does not alter PSC characteristics after long-term culture and attenuates the growth advantage of abnormal subpopulations. This robust passaging method minimizes experimental error and reduces the rate of PSCs failing quality control of human PSC research and application.
Collapse
Affiliation(s)
- Kazutoshi Takahashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Chikako Okubo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Mio Iwasaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yuka Kawahara
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tsuyoshi Tabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yousuke Miyamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Shinya Yamanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Habib O, Habib G, Hwang GH, Bae S. Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res 2022; 50:1187-1197. [PMID: 35018468 PMCID: PMC8789035 DOI: 10.1093/nar/gkab1295] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Prime editing is a versatile and precise genome editing technique that can directly copy desired genetic modifications into target DNA sites without the need for donor DNA. This technique holds great promise for the analysis of gene function, disease modeling, and the correction of pathogenic mutations in clinically relevant cells such as human pluripotent stem cells (hPSCs). Here, we comprehensively tested prime editing in hPSCs by generating a doxycycline-inducible prime editing platform. Prime editing successfully induced all types of nucleotide substitutions and small insertions and deletions, similar to observations in other human cell types. Moreover, we compared prime editing and base editing for correcting a disease-related mutation in induced pluripotent stem cells derived form a patient with α 1-antitrypsin (A1AT) deficiency. Finally, whole-genome sequencing showed that, unlike the cytidine deaminase domain of cytosine base editors, the reverse transcriptase domain of a prime editor does not lead to guide RNA-independent off-target mutations in the genome. Our results demonstrate that prime editing in hPSCs has great potential for complementing previously developed CRISPR genome editing tools.
Collapse
Affiliation(s)
- Omer Habib
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Gizem Habib
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Gue-Ho Hwang
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| |
Collapse
|
20
|
Morsy A, Carmona AV, Trippier PC. Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses. Molecules 2021; 26:molecules26206235. [PMID: 34684815 PMCID: PMC8538546 DOI: 10.3390/molecules26206235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Batten disease or neuronal ceroid lipofuscinosis (NCL) is a group of rare, fatal, inherited neurodegenerative lysosomal storage disorders. Numerous genes (CLN1–CLN8, CLN10–CLN14) were identified in which mutations can lead to NCL; however, the underlying pathophysiology remains elusive. Despite this, the NCLs share some of the same features and symptoms but vary in respect to severity and onset of symptoms by age. Some common symptoms include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and in the rare adult-onset, dementia. Currently, all forms of NCL are fatal, and no curative treatments are available. Induced pluripotent stem cells (iPSCs) can differentiate into any cell type of the human body. Cells reprogrammed from a patient have the advantage of acquiring disease pathogenesis along with recapitulation of disease-associated phenotypes. They serve as practical model systems to shed new light on disease mechanisms and provide a phenotypic screening platform to enable drug discovery. Herein, we provide an overview of available iPSC models for a number of different NCLs. More specifically, we highlight findings in these models that may spur target identification and drug development.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.M.); (A.V.C.)
| | - Angelica V. Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.M.); (A.V.C.)
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.M.); (A.V.C.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Correspondence:
| |
Collapse
|
21
|
Sone N, Konishi S, Igura K, Tamai K, Ikeo S, Korogi Y, Kanagaki S, Namba T, Yamamoto Y, Xu Y, Takeuchi K, Adachi Y, Chen-Yoshikawa TF, Date H, Hagiwara M, Tsukita S, Hirai T, Torisawa YS, Gotoh S. Multicellular modeling of ciliopathy by combining iPS cells and microfluidic airway-on-a-chip technology. Sci Transl Med 2021; 13:13/601/eabb1298. [PMID: 34233948 DOI: 10.1126/scitranslmed.abb1298] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 12/07/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Mucociliary clearance is an essential lung function that facilitates the removal of inhaled pathogens and foreign matter unidirectionally from the airway tract and is innately achieved by coordinated ciliary beating of multiciliated cells. Should ciliary function become disturbed, mucus can accumulate in the airway causing subsequent obstruction and potentially recurrent pneumonia. However, it has been difficult to recapitulate unidirectional mucociliary flow using human-derived induced pluripotent stem cells (iPSCs) in vitro and the mechanism governing the flow has not yet been elucidated, hampering the proper humanized airway disease modeling. Here, we combine human iPSCs and airway-on-a-chip technology, to demonstrate the effectiveness of fluid shear stress (FSS) for regulating the global axis of multicellular planar cell polarity (PCP), as well as inducing ciliogenesis, thereby contributing to quantifiable unidirectional mucociliary flow. Furthermore, we applied the findings to disease modeling of primary ciliary dyskinesia (PCD), a genetic disease characterized by impaired mucociliary clearance. The application of an airway cell sheet derived from patient-derived iPSCs and their gene-edited counterparts, as well as genetic knockout iPSCs of PCD causative genes, made it possible to recapitulate the abnormal ciliary functions in organized PCP using the airway-on-a-chip. These findings suggest that the disease model of PCD developed here is a potential platform for making diagnoses and identifying therapeutic targets and that airway reconstruction therapy using mechanical stress to regulate PCP might have therapeutic value.
Collapse
Affiliation(s)
- Naoyuki Sone
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Konishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.,Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koichi Igura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Tamai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Ikeo
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yohei Korogi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shuhei Kanagaki
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Toshinori Namba
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Yuki Yamamoto
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yifei Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology, Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yuichi Adachi
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Toyofumi F Chen-Yoshikawa
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.,Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Strategic Innovation and Research Center, Teikyo University, Tokyo 173-8605, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yu-Suke Torisawa
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 615-8540, Japan.,Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. .,Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
23
|
Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021; 9:639699. [PMID: 34262897 PMCID: PMC8273765 DOI: 10.3389/fcell.2021.639699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.
Collapse
Affiliation(s)
- Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Marcy Martin
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Bramasta Nugraha
- Molecular Parasitology Lab, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
24
|
Nintedanib targets KIT D816V neoplastic cells derived from induced pluripotent stem cells of systemic mastocytosis. Blood 2021; 137:2070-2084. [PMID: 33512435 DOI: 10.1182/blood.2019004509] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration-approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V-targeted therapy of advanced SM.
Collapse
|
25
|
Kagita A, Lung MSY, Xu H, Kita Y, Sasakawa N, Iguchi T, Ono M, Wang XH, Gee P, Hotta A. Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein. Stem Cell Reports 2021; 16:985-996. [PMID: 33711268 PMCID: PMC8072016 DOI: 10.1016/j.stemcr.2021.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 10/25/2022] Open
Abstract
Combined with CRISPR-Cas9 technology and single-stranded oligodeoxynucleotides (ssODNs), specific single-nucleotide alterations can be introduced into a targeted genomic locus in induced pluripotent stem cells (iPSCs); however, ssODN knockin frequency is low compared with deletion induction. Although several Cas9 transduction methods have been reported, the biochemical behavior of CRISPR-Cas9 nuclease in mammalian cells is yet to be explored. Here, we investigated intrinsic cellular factors that affect Cas9 cleavage activity in vitro. We found that intracellular RNA, but not DNA or protein fractions, inhibits Cas9 from binding to single guide RNA (sgRNA) and reduces the enzymatic activity. To prevent this, precomplexing Cas9 and sgRNA before delivery into cells can lead to higher genome editing activity compared with Cas9 overexpression approaches. By optimizing electroporation parameters of precomplexed ribonucleoprotein and ssODN, we achieved efficiencies of single-nucleotide correction as high as 70% and loxP insertion up to 40%. Finally, we could replace the HLA-C1 allele with the C2 allele to generate histocompatibility leukocyte antigen custom-edited iPSCs.
Collapse
Affiliation(s)
- Akihiro Kagita
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mandy S Y Lung
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Huaigeng Xu
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuto Kita
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Noriko Sasakawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahiro Iguchi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Miyuki Ono
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Xiou H Wang
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Peter Gee
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
26
|
Singh M, Singh SP, Yadav D, Agarwal M, Agarwal S, Agarwal V, Swargiary G, Srivastava S, Tyagi S, Kaur R, Mani S. Targeted Delivery for Neurodegenerative Disorders Using Gene Therapy Vectors: Gene Next Therapeutic Goals. Curr Gene Ther 2021; 21:23-42. [PMID: 32811395 DOI: 10.2174/1566523220999200817164907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
The technique of gene therapy, ever since its advent nearly fifty years ago, has been utilized by scientists as a potential treatment option for various disorders. This review discusses some of the major neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's Disease (PD), Motor neuron diseases (MND), Spinal Muscular Atrophy (SMA), Huntington's Disease (HD), Multiple Sclerosis (MS), etc. and their underlying genetic mechanisms along with the role that gene therapy can play in combating them. The pathogenesis and the molecular mechanisms specifying the altered gene expression of each of these NDDs have also been discussed in elaboration. The use of gene therapy vectors can prove to be an effective tool in the field of curative modern medicine for the generations to come. Therefore, consistent efforts and progressive research towards its implementation can provide us with powerful treatment options for disease conditions that have so far been considered as incurable.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P, India
| | - Surinder P Singh
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Shriya Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Geeta Swargiary
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Sahil Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Sakshi Tyagi
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Ramneek Kaur
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| |
Collapse
|
27
|
Sinenko SA, Ponomartsev SV, Tomilin AN. Pluripotent stem cell-based gene therapy approach: human de novo synthesized chromosomes. Cell Mol Life Sci 2021; 78:1207-1220. [PMID: 33011821 PMCID: PMC11072874 DOI: 10.1007/s00018-020-03653-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
A novel approach in gene therapy was introduced 20 years ago since artificial non-integrative chromosome-based vectors containing gene loci size inserts were engineered. To date, different human artificial chromosomes (HAC) were generated with the use of de novo construction or "top-down" engineering approaches. The HAC-based therapeutic approach includes ex vivo gene transferring and correction of pluripotent stem cells (PSCs) or highly proliferative modified stem cells. The current progress in the technology of induced PSCs, integrating with the HAC technology, resulted in a novel platform of stem cell-based tissue replacement therapy for the treatment of genetic disease. Nowadays, the sophisticated and laborious HAC technology has significantly improved and is now closer to clinical studies. In here, we reviewed the achievements in the technology of de novo synthesized HACs for a chromosome transfer for developing gene therapy tissue replacement models of monogenic human diseases.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia.
| | - Sergey V Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia.
- Institute of Translational Biomedicine, St-Petersburg State University, 7-9, Universitetskaya Emb, St-Petersburg, 199034, Russia.
| |
Collapse
|
28
|
Valadez-Barba V, Cota-Coronado A, Hernández-Pérez O, Lugo-Fabres PH, Padilla-Camberos E, Díaz NF, Díaz-Martínez NE. iPSC for modeling neurodegenerative disorders. Regen Ther 2021; 15:332-339. [PMID: 33426236 PMCID: PMC7770414 DOI: 10.1016/j.reth.2020.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders such as Parkinson's and Alzheimer's disease, are fundamental health concerns all around the world. The development of novel treatments and new techniques to address these disorders, are being actively studied by researchers and medical personnel. In the present review we will discuss the application of induced Pluripotent Stem Cells (iPSCs) for cell-therapy replacement and disease modelling. The aim of iPSCs is to restore the functionality of the damaged tissue by replacing the impaired cells with competitive ones. To achieve this objective, iPSCs can be properly differentiated into virtually any cell fate and can be strongly translated into human health via in vitro and in vivo disease modeling for the development of new therapies, the discovery of biomarkers for several disorders, the elaboration and testing of new drugs as novel treatments, and as a tool for personalized medicine. Novel treatments to address neurodegenerative disorders. Induced pluripotent stem cell therapy and disease modelling. Parkinson's & Alzheimer's disease research.
Collapse
Key Words
- AD, Alzheimer's disease
- AFP, Alpha-Fetoprotein
- Alzheimer
- Aβ, β-Amyloid
- B-III-TUB, β–III–Tubulin
- BBB, Blood Brain Barrier
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
- DOPAL, 3,4-Dihydroxyphenylacetaldehyde
- EBs, Embryoid Bodies
- FLASH, Fast Length Adjustment of Short Reads
- LUHMES, Lund Human Mesencephalic Cell Line
- MHC, Mayor Histocompatibility Complex
- Neurodegenerative diseasaes
- PCR, Polymerase Chain Reaction
- PD, Parkinson's Disease
- Parkinson
- ROS, Reactive Oxygen Species
- SCs, Stem Cells
- SMA, Smooth-Muscle Antibody
- SNPc, Substantia Nigra Pars Compacta
- TH, Tyrosine Hydroxylase
- WGS, Whole Genome Sequencing
- gRNA, guide RNA
- hESC, Human Embryonic Stem Cells
- iPSCs
- iPSCs, Induced Pluripotent Stem Cells
- nsSNVs, nonsynonymous single nucleotide variants
- pTau, Phosphorylated Tau
Collapse
Affiliation(s)
- Valeria Valadez-Barba
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - A. Cota-Coronado
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - O.R. Hernández-Pérez
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - Pavel H. Lugo-Fabres
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - Eduardo Padilla-Camberos
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - N. Emmanuel Díaz-Martínez
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
- Corresponding author. Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Jalisco, Mexico.
| |
Collapse
|
29
|
Sidhaye J, Knoblich JA. Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death Differ 2021; 28:52-67. [PMID: 32483384 PMCID: PMC7853143 DOI: 10.1038/s41418-020-0566-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding etiology of human neurological and psychiatric diseases is challenging. Genomic changes, protracted development, and histological features unique to human brain development limit the disease aspects that can be investigated using model organisms. Hence, in order to study phenotypes associated with human brain development, function, and disease, it is necessary to use alternative experimental systems that are accessible, ethically justified, and replicate human context. Human pluripotent stem cell (hPSC)-derived brain organoids offer such a system, which recapitulates features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation of neural progenitors into neurons and glial cells and the complex interactions among the diverse, emergent cell types of the developing brain in three-dimensions (3-D). In recent years, numerous brain organoid protocols and related techniques have been developed to recapitulate aspects of embryonic and fetal brain development in a reproducible and predictable manner. Altogether, these different organoid technologies provide distinct bioassays to unravel novel, disease-associated phenotypes and mechanisms. In this review, we summarize how the diverse brain organoid methods can be utilized to enhance our understanding of brain disorders. FACTS: Brain organoids offer an in vitro approach to study aspects of human brain development and disease. Diverse brain organoid techniques offer bioassays to investigate new phenotypes associated with human brain disorders that are difficult to study in monolayer cultures. Brain organoids have been particularly useful to study phenomena and diseases associated with neural progenitor morphology, survival, proliferation, and differentiation. OPEN QUESTION: Future brain organoid research needs to aim at later stages of neurodevelopment, linked with neuronal activity and connections, to unravel further disease-associated phenotypes. Continued improvement of existing organoid protocols is required to generate standardized methods that recapitulate in vivo-like spatial diversity and complexity.
Collapse
Affiliation(s)
- Jaydeep Sidhaye
- Institute of Molecular Biotechnology of Austrian academy of sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of Austrian academy of sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
30
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
32
|
Lampert A, Bennett DL, McDermott LA, Neureiter A, Eberhardt E, Winner B, Zenke M. Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine. NEUROBIOLOGY OF PAIN 2020; 8:100055. [PMID: 33364527 PMCID: PMC7750732 DOI: 10.1016/j.ynpai.2020.100055] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022]
Abstract
New techniques emerge to study peripheral sensory neurons in iPS-cell derived models. Genetic pain syndromes, e.g. gain- and loss-of-function mutations in Nav-channels are helpful. Individualized treatment for neuropathic pain can be identified with iPS-cell derived nociceptors.
In this concise Mini-Review we will summarize ongoing developments of new techniques to study physiology and pathophysiology of the peripheral sensory nervous system in human stem cell derived models. We will focus on recent developments of reprogramming somatic cells into induced pluripotent stem cells, neural differentiation towards neuronal progenitors and human sensory neurons. We will sum up the high potential of this new technique for disease modelling of human neuropathies with a focus on genetic pain syndromes, such as gain- and loss-of-function mutations in voltage-gated sodium channels. The stem cell derived human sensory neurons are used for drug testing and we will summarize their usefulness for individualized treatment identification in patients with neuropathic pain. The review will give an outlook on potential application of this technique as companion diagnostics and for personalized medicine.
Collapse
Affiliation(s)
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Lucy A McDermott
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Wadham College, University of Oxford, UK
| | | | - Esther Eberhardt
- Department of Anesthesiology, FAU Erlangen-Nürnberg, Germany.,Department of Stem Cell Biology, FAU Erlangen-Nürnberg, Germany.,Department of Anesthesiology, RWTH Aachen University, Germany
| | - Beate Winner
- Department of Stem Cell Biology, FAU Erlangen-Nürnberg, Germany
| | | |
Collapse
|
33
|
Martínez-Larrosa J, Matute-Blanch C, Montalban X, Comabella M. Modelling multiple sclerosis using induced pluripotent stem cells. J Neuroimmunol 2020; 349:577425. [PMID: 33130461 DOI: 10.1016/j.jneuroim.2020.577425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023]
Abstract
Multiple Sclerosis (MS) is one of the leading causes of non-traumatic neurological disability among young adults. Due to its complex pathology and the lack of reliable disease models, there are no effective therapies for MS to prevent neurodegeneration or promote neuroprotection, and hence stop disease progression. The emergence of induced pluripotent stem cells (iPSC) has allowed the generation of patient-specific neural cell types for disease modelling, drug screening, and cell therapy. In this review, the challenges related with the use of iPSC-derived cells in MS are discussed, with a special focus on the functional studies performed, limitations and future perspectives.
Collapse
Affiliation(s)
- Júlia Martínez-Larrosa
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Matute-Blanch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
34
|
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18:2401-2415. [PMID: 33005303 PMCID: PMC7508700 DOI: 10.1016/j.csbj.2020.08.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Genome editing is the modification of genomic DNA at a specific target site in a wide variety of cell types and organisms, including insertion, deletion and replacement of DNA, resulting in inactivation of target genes, acquisition of novel genetic traits and correction of pathogenic gene mutations. Due to the advantages of simple design, low cost, high efficiency, good repeatability and short-cycle, CRISPR-Cas systems have become the most widely used genome editing technology in molecular biology laboratories all around the world. In this review, an overview of the CRISPR-Cas systems will be introduced, including the innovations, the applications in human disease research and gene therapy, as well as the challenges and opportunities that will be faced in the practical application of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
35
|
Kouchaki R, Abd-Nikfarjam B, Maali AH, Abroun S, Foroughi F, Ghaffari S, Azad M. Induced Pluripotent Stem Cell Meets Severe Combined Immunodeficiency. CELL JOURNAL 2020; 22:1-10. [PMID: 32779449 PMCID: PMC7481889 DOI: 10.22074/cellj.2020.6849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
Severe combined immunodeficiency (SCID) is classified as a primary immunodeficiency, which is characterized by impaired
T-lymphocytes differentiation. IL2RG, IL7Ralpha, JAK3, ADA, RAG1/RAG2, and DCLE1C (Artemis) are the most defective
genes in SCID. The most recent SCID therapies are based on gene therapy (GT) of hematopoietic stem cells (HSC), which
are faced with many challenges. The new studies in the field of stem cells have made great progress in overcoming the
challenges ahead. In 2006, Yamanaka et al. achieved "reprogramming" technology by introducing four transcription factors
known as Yamanaka factors, which generate induced pluripotent stem cells (iPSC) from somatic cells. It is possible to apply
iPSC-derived HSC for transplantation in patients with abnormality or loss of function in specific cells or damaged tissue, such
as T-cells and NK-cells in the context of SCID. The iPSC-based HSC transplantation in SCID and other hereditary disorders
needs gene correction before transplantation. Furthermore, iPSC technology has been introduced as a promising tool in
cellular-molecular disease modeling and drug discovery. In this article, we review iPSC-based GT and modeling for SCID
disease and novel approaches of iPSC application in SCID.
Collapse
Affiliation(s)
- Reza Kouchaki
- Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bahareh Abd-Nikfarjam
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Saeid Abroun
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farshad Foroughi
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sasan Ghaffari
- Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Azad
- Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran. Electronic Address:
| |
Collapse
|
36
|
Tozzo P, Zullo S, Caenazzo L. Science Runs and the Debate Brakes: Somatic Gene-Editing as a New Tool for Gender-Specific Medicine in Alzheimer's Disease. Brain Sci 2020; 10:brainsci10070421. [PMID: 32630809 PMCID: PMC7408320 DOI: 10.3390/brainsci10070421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Gender-specific medicine is a discipline that studies the influence of sex and gender on physiology, pathophysiology, and diseases. One example in light of how a genetic-based disease among other diseases, that impact on sex, can be represented by the risk of developing dementia or Alzheimer's disease. The question that comes into focus is whether gene-editing can represent a new line of investigation to be explored in the development of personalized, gender-specific medicine that guarantees gender equity in health policies. This article aims to discuss the relevance of adopting a gender-specific focus on gene-editing research, considered as a way of contributing to the advance of medicine's understanding, treatment, and prevention of dementia, particularly Alzheimer's disease. The development or improvement of cures could take advantage of the knowledge of the gender diversity in order to ascertain and develop differential interventions also at the genetic level between women and men, and this deserves special attention and deep ethical reflection.
Collapse
Affiliation(s)
- Pamela Tozzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy;
- Correspondence: ; Tel.: +39-04-9827-2234
| | - Silvia Zullo
- Department of Legal Studies, University of Bologna, 40121 Bologna, Italy;
| | - Luciana Caenazzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy;
| |
Collapse
|
37
|
Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S. Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. Biores Open Access 2020; 9:121-136. [PMID: 32368414 PMCID: PMC7194323 DOI: 10.1089/biores.2019.0046] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated mature cells is one of the most promising technologies in the field of regenerative medicine. The ability to generate patient-specific iPSCs offers an invaluable reservoir of pluripotent cells, which could be genetically engineered and differentiated into target cells to treat various genetic and degenerative diseases once transplanted, hence counteracting the risk of graft versus host disease. In this context, we review the scientific research streams that lead to the emergence of iPSCs, the roles of reprogramming factors in reprogramming to pluripotency, and the reprogramming strategies. As iPSCs serve tremendous correction potentials for various diseases, we highlight the successes and challenges of iPSCs in cell replacement therapy and the synergy of iPSCs and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing tools in therapeutics research.
Collapse
Affiliation(s)
- Akram Al Abbar
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Nadine Nograles
- Newcastle University Medicine Malaysia, Educity, Iskandar Puteri, Johor, Malaysia
| | - Suleiman Yusuf Alhaji
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
38
|
Itoh M, Kawagoe S, Tamai K, Nakagawa H, Asahina A, Okano HJ. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system. J Dermatol Sci 2020; 98:163-172. [PMID: 32376152 DOI: 10.1016/j.jdermsci.2020.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a monogenic skin blistering disorder caused by mutations in the type VII collagen gene. A combination of biological technologies, including induced pluripotent stem cells (iPSCs) and several gene-editing tools, allows us to develop gene and cell therapies for such inherited diseases. However, the methodologies for gene and cell therapies must be continuously innovated for safe clinical use. OBJECTIVE In this study, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology to correct the pathogenic mutation in RDEB-specific iPSCs, and the piggyBac transposon system so that no residual gene fragments remained in the genome of iPSCs after correcting the mutation. METHODS For homologous recombination (HR)-based gene editing using CRISPR/Cas9, we designed guide RNA and template DNA including homologous sequences with drug-mediated selection cassette flanked by inverted repeat sequences of the transposon. HR reaction using CRISPR/Cas9 was induced in RDEB-specific iPSCs, and mutation-corrected iPSCs (MC-iPSCs) was obtained. Consequently, the selection cassette in the genome of MC-iPSCs was removed by transposase expression. RESULTS After CRISPR/Cas9-induced gene editing, we confirmed that the pathogenic mutation in RDEB-specific iPSCs was properly corrected. In addition, MC-iPSCs had no genetic footprint after removing the selection cassette by transposon system, and maintained their "stemness". When differentiating MC-iPSCs into keratinocytes, the expression of type VII collagen was restored. CONCLUSIONS Our study demonstrated one of the safer approaches to establish gene and cell therapies for skin hereditary disorders for future clinical use.
Collapse
Affiliation(s)
- Munenari Itoh
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shiho Kawagoe
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidemi Nakagawa
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihiko Asahina
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Sinenko SA, Ponomartsev SV, Tomilin AN. Human artificial chromosomes for pluripotent stem cell-based tissue replacement therapy. Exp Cell Res 2020; 389:111882. [DOI: 10.1016/j.yexcr.2020.111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
40
|
Wu YY, Chiu FL, Yeh CS, Kuo HC. Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biol 2020; 9:180177. [PMID: 30958120 PMCID: PMC6367134 DOI: 10.1098/rsob.180177] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adult-onset neurodegenerative diseases are among the most difficult human health conditions to model for drug development. Most genetic or toxin-induced cell and animal models cannot faithfully recapitulate pathology in disease-relevant cells, making it excessively challenging to explore the potential mechanisms underlying sporadic disease. Patient-derived induced pluripotent stem cells (iPSCs) can be differentiated into disease-relevant neurons, providing an unparalleled platform for in vitro modelling and development of therapeutic strategies. Here, we review recent progress in generating Alzheimer's, Parkinson's and Huntington's disease models from patient-derived iPSCs. We also describe novel discoveries of pathological mechanisms and drug evaluations that have used these patient iPSC-derived neuronal models. Additionally, current human iPSC technology allows researchers to model diseases with 3D brain organoids, which are more representative of tissue architecture than traditional neuronal cultures. We discuss remaining challenges and emerging opportunities for the use of three-dimensional brain organoids in modelling brain development and neurodegeneration.
Collapse
Affiliation(s)
- Yi-Ying Wu
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China
| | - Feng-Lan Chiu
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China
| | - Chan-Shien Yeh
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China
| | - Hung-Chih Kuo
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China.,2 Genomics Research Center, Academia Sinica , Taipei 11529 , Taiwan, Republic of China.,3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University , Taipei , Taiwan, Republic of China
| |
Collapse
|
41
|
Silva-Almeida C, Ewart MA, Wilde C. 3D gastrointestinal models and organoids to study metabolism in human colon cancer. Semin Cell Dev Biol 2020; 98:98-104. [DOI: 10.1016/j.semcdb.2019.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022]
|
42
|
Kowalski K, Brzoska E, Ciemerych MA. The role of CXC receptors signaling in early stages of mouse embryonic stem cell differentiation. Stem Cell Res 2019; 41:101636. [PMID: 31722287 DOI: 10.1016/j.scr.2019.101636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/27/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
Interplay between CXCR7 and other CXC receptors, namely CXCR4 or CXCR3, binding such ligands as SDF-1 or ITAC, was shown to regulate multiple cellular processes. The developmental role of signaling pathways mediated by these receptors was proven by the phenotypes of mice lacking either functional CXCR4, or CXCR7, or SDF-1, showing that formation of certain lineages relies on these factors. In this study, using in vitro differentiating mouse embryonic stem cells that lacked the function of CXCR7, we asked the question about the role of CXCR mediated signaling during early steps of differentiation. Our analysis showed that interaction of SDF-1 or ITAC with CXC receptors is necessary for the regulation of crucial developmental regulators expression and that CXCR7 is involved in the control of ESC pluripotency and differentiation into mesodermal lineages.
Collapse
Affiliation(s)
- Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland.
| |
Collapse
|
43
|
Galli F, Bragg L, Meggiolaro L, Rossi M, Caffarini M, Naz N, Santoleri S, Cossu G. Gene and Cell Therapy for Muscular Dystrophies: Are We Getting There? Hum Gene Ther 2019; 29:1098-1105. [PMID: 30132372 PMCID: PMC6211823 DOI: 10.1089/hum.2018.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the last few years, significant advances have occurred in the preclinical and clinical work toward gene and cell therapy for muscular dystrophy. At the time of this writing, several trials are ongoing and more are expected to start. It is thus a time of expectation, even though many hurdles remain and it is unclear whether they will be overcome with current strategies or if further improvements will be necessary.
Collapse
Affiliation(s)
- Francesco Galli
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Laricia Bragg
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Linda Meggiolaro
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Maira Rossi
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Miriam Caffarini
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Naila Naz
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Sabrina Santoleri
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| |
Collapse
|
44
|
Shcheglovitov A, Rao M, Yoo A. Special issue on stem cell and tissue engineering in development, disease, and repair. Dev Dyn 2019; 248:7-9. [PMID: 30444282 DOI: 10.1002/dvdy.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | | | - Andrew Yoo
- Department of Developmental Biology, Washington University, St. Louis, Missouri
| |
Collapse
|
45
|
Abstract
Abstract
The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotechnology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstration of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.
Collapse
|
46
|
Nakano C, Kitabatake Y, Takeyari S, Ohata Y, Kubota T, Taketani K, Kogo M, Ozono K. Genetic correction of induced pluripotent stem cells mediated by transcription activator-like effector nucleases targeting ALPL recovers enzyme activity and calcification in vitro. Mol Genet Metab 2019; 127:158-165. [PMID: 31178256 DOI: 10.1016/j.ymgme.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 01/22/2023]
Abstract
Hypophosphatasia (HPP) is an inheritable disease affecting both skeletal systems and extra-skeletal organs due to mutations of the gene ALPL, which encodes tissue-nonspecific alkaline phosphatase. Recently, an enzyme replacement therapy using asfotase alfa was developed to ameliorate the complications of HPP. However, it requires frequent injections and is expensive to maintain. As an alternative, cell and gene therapy using human induced pluripotent stem cells (iPSCs) after precise correction of the mutation is feasible due to advances in genome-editing technology. In the study, we examined the alkaline phosphatase (ALP) activity and calcification in vitro of two childhood HPP patient-derived iPSCs after the correction of the c.1559delT mutation, which is the most frequent mutation in Japanese patients with HPP, using transcription activator-like effector nucleases (TALENs). The gene correction targeting vector was designed for site-directed mutagenesis using TALEN. After selection with antibiotics, some clones with the selection cassette were obtained. Gene correction was confirmed by Sanger sequencing. The mutation was corrected in one allele of ALPL in homozygous patients and compound heterozygous patients. The correction of ALPL did not result in an increase in ALP when the selection cassette remained. Conversely, iPSCs exhibited ALP activity after the elimination of the cassette using Cre/LoxP. The quantitative analysis showed the half ALP activity in corrected iPSCs of that of control iPSCs, corresponding to heterozygous correction of the mutation. In addition, osteoblasts differentiated from the corrected iPSCs exhibited high ALP activity and some calcification in vitro. Moreover, the osteoblast-like phenotype was confirmed by increased expression of osteoblast-specific genes such as COL1A1 and osteocalcin. These results suggest that gene correction in iPSCs may be a candidate treatment for HPP patients.
Collapse
Affiliation(s)
- Chiho Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan; Unit of Dentistry, Osaka University Hospital, Osaka, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ken Taketani
- Department of Pediatrics, Shimane University, Osaka, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
47
|
Qian T, Zhu S, Hoshida Y. Use of big data in drug development for precision medicine: an update. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019; 4:189-200. [PMID: 31286058 PMCID: PMC6613936 DOI: 10.1080/23808993.2019.1617632] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Big-data-driven drug development resources and methodologies have been evolving with ever-expanding data from large-scale biological experiments, clinical trials, and medical records from participants in data collection initiatives. The enrichment of biological- and clinical-context-specific large-scale data has enabled computational inference more relevant to real-world biomedical research, particularly identification of therapeutic targets and drugs for specific diseases and clinical scenarios. AREAS COVERED Here we overview recent progresses made in the fields: new big-data-driven approach to therapeutic target discovery, candidate drug prioritization, inference of clinical toxicity, and machine-learning methods in drug discovery. EXPERT OPINION In the near future, much larger volumes and complex datasets for precision medicine will be generated, e.g., individual and longitudinal multi-omic, and direct-to-consumer datasets. Closer collaborations between experts with different backgrounds would also be required to better translate analytic results into prognosis and treatment in the clinical practice. Meanwhile, cloud computing with protected patient privacy would become more routine analytic practice to fill the gaps within data integration along with the advent of big-data. To conclude, integration of multitudes of data generated for each individual along with techniques tailored for big-data analytics may eventually enable us to achieve precision medicine.
Collapse
Affiliation(s)
- Tongqi Qian
- Department of Genetics and Genomic Sciences and Icahn
Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Shijia Zhu
- Liver Tumor Translational Research Program, Simmons
Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of
Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
75390, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons
Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of
Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
75390, USA
| |
Collapse
|
48
|
Saha SK, Saikot FK, Rahman MS, Jamal MAHM, Rahman SMK, Islam SMR, Kim KH. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:212-238. [PMID: 30641475 PMCID: PMC6330515 DOI: 10.1016/j.omtn.2018.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023]
Abstract
Targeted genome editing is an advanced technique that enables precise modification of the nucleic acid sequences in a genome. Genome editing is typically performed using tools, such as molecular scissors, to cut a defined location in a specific gene. Genome editing has impacted various fields of biotechnology, such as agriculture; biopharmaceutical production; studies on the structure, regulation, and function of the genome; and the creation of transgenic organisms and cell lines. Although genome editing is used frequently, it has several limitations. Here, we provide an overview of well-studied genome-editing nucleases, including single-stranded oligodeoxynucleotides (ssODNs), transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and CRISPR-Cas9 RNA-guided nucleases (CRISPR-Cas9). To this end, we describe the progress toward editable nuclease-based therapies and discuss the minimization of off-target mutagenesis. Future prospects of this challenging scientific field are also discussed.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-Ro, Seoul 05029, Republic of Korea.
| | - Forhad Karim Saikot
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - S M Khaledur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
49
|
Şişli HB, Hayal TB, Seçkin S, Şenkal S, Kıratlı B, Şahin F, Doğan A. Gene Editing in Human Pluripotent Stem Cells: Recent Advances for Clinical Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1237:17-28. [PMID: 31728915 DOI: 10.1007/5584_2019_439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The identification of human embryonic stem cells and reprogramming technology to obtain induced pluripotent stem cells from adult somatic cells have provided unique opportunity to create human disease models, gene editing strategies and cell therapy options.Development of pluripotent stem cells from somatic cells and genomic manipulation tools enabled to use site specific nucleases in the cell therapy research. Identification of efficient gene manipulation, safe differentiation and use will provide a novel strategy to treat many diseases in the near future. Current available registered clinical trials clearly indicate the need for pluripotent stem cell and gene therapy treatment options. Although gene editing based pluripotent stem cell research is a popular field for research worldwide, improvement of clinical approaches for treatment still remains to be investigated. In this review, we summarized the current situation of gene editing based pluripotent cell therapy developments and applications in clinics.
Collapse
Affiliation(s)
- Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selin Seçkin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Binnur Kıratlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
50
|
Sinenko SA, Skvortsova EV, Liskovykh MA, Ponomartsev SV, Kuzmin AA, Khudiakov AA, Malashicheva AB, Alenina N, Larionov V, Kouprina N, Tomilin AN. Transfer of Synthetic Human Chromosome into Human Induced Pluripotent Stem Cells for Biomedical Applications. Cells 2018; 7:cells7120261. [PMID: 30544831 PMCID: PMC6316689 DOI: 10.3390/cells7120261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/27/2022] Open
Abstract
AlphoidtetO-type human artificial chromosome (HAC) has been recently synthetized as a novel class of gene delivery vectors for induced pluripotent stem cell (iPSC)-based tissue replacement therapeutic approach. This HAC vector was designed to deliver copies of genes into patients with genetic diseases caused by the loss of a particular gene function. The alphoidtetO-HAC vector has been successfully transferred into murine embryonic stem cells (ESCs) and maintained stably as an independent chromosome during the proliferation and differentiation of these cells. Human ESCs and iPSCs have significant differences in culturing conditions and pluripotency state in comparison with the murine naïve-type ESCs and iPSCs. To date, transferring alphoidtetO-HAC vector into human iPSCs (hiPSCs) remains a challenging task. In this study, we performed the microcell-mediated chromosome transfer (MMCT) of alphoidtetO-HAC expressing the green fluorescent protein into newly generated hiPSCs. We used a recently modified MMCT method that employs an envelope protein of amphotropic murine leukemia virus as a targeting cell fusion agent. Our data provide evidence that a totally artificial vector, alphoidtetO-HAC, can be transferred and maintained in human iPSCs as an independent autonomous chromosome without affecting pluripotent properties of the cells. These data also open new perspectives for implementing alphoidtetO-HAC as a gene therapy tool in future biomedical applications.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, Gatchina 188300, Russia.
| | - Elena V Skvortsova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
| | - Mikhail A Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Sergey V Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
| | - Andrey A Kuzmin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
| | - Aleksandr A Khudiakov
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
| | - Anna B Malashicheva
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
| | - Natalia Alenina
- Max-Delbruck Center for Molecular Medicine, 10 Robert-Rössle-Straße, 13125 Berlin, Germany.
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
- Institute of Translational Biomedicine, St-Petersburg State University, 7-9, Universitetskaya nab., St-Petersburg 199034, Russia.
| |
Collapse
|