1
|
Deng Z, Yan H, Lambotte O, Moog C, Su B. HIV controllers: hope for a functional cure. Front Immunol 2025; 16:1540932. [PMID: 40070826 PMCID: PMC11893560 DOI: 10.3389/fimmu.2025.1540932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Elite controllers (ECs) and post-treatment controllers (PTCs) represent important models for achieving a functional cure for HIV. This review synthesizes findings from immunological, genetic, and virological studies to compare the mechanisms underlying HIV suppression in ECs and PTCs. Although ECs maintain viral control without antiretroviral therapy (ART), PTCs achieve suppression following ART discontinuation. Both groups rely on adaptive and innate immunity, host genetic factors, and characteristics of the HIV reservoir; however, they exhibit distinct immune responses and genetic profiles. These differences provide insights into strategies for sustained ART-free remission. Understanding the shared and unique mechanisms in ECs and PTCs can inform the development of novel therapeutic approaches, including immune-based therapies and genome editing, to achieve a functional cure for HIV-1.
Collapse
Affiliation(s)
- Zhuoya Deng
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Olivier Lambotte
- University Paris Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, France
| | - Christiane Moog
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Central Laboratory of Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Tarasova O, Poroikov V. Machine Learning in Discovery of New Antivirals and Optimization of Viral Infections Therapy. Curr Med Chem 2021; 28:7840-7861. [PMID: 33949929 DOI: 10.2174/0929867328666210504114351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Nowadays, computational approaches play an important role in the design of new drug-like compounds and optimization of pharmacotherapeutic treatment of diseases. The emerging growth of viral infections, including those caused by the Human Immunodeficiency Virus (HIV), Ebola virus, recently detected coronavirus, and some others, leads to many newly infected people with a high risk of death or severe complications. A huge amount of chemical, biological, clinical data is at the disposal of the researchers. Therefore, there are many opportunities to find the relationships between the particular features of chemical data and the antiviral activity of biologically active compounds based on machine learning approaches. Biological and clinical data can also be used for building models to predict relationships between viral genotype and drug resistance, which might help determine the clinical outcome of treatment. In the current study, we consider machine-learning approaches in the antiviral research carried out during the past decade. We overview in detail the application of machine-learning methods for the design of new potential antiviral agents and vaccines, drug resistance prediction, and analysis of virus-host interactions. Our review also covers the perspectives of using the machine-learning approaches for antiviral research, including Dengue, Ebola viruses, Influenza A, Human Immunodeficiency Virus, coronaviruses, and some others.
Collapse
Affiliation(s)
- Olga Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow. Russian Federation
| | - Vladimir Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow. Russian Federation
| |
Collapse
|
3
|
Powell TR, Duarte RRR, Hotopf M, Hatch SL, de Mulder Rougvie M, Breen GD, Lewis CM, Nixon DF. The behavioral, cellular and immune mediators of HIV-1 acquisition: New insights from population genetics. Sci Rep 2020; 10:3304. [PMID: 32094379 PMCID: PMC7039899 DOI: 10.1038/s41598-020-59256-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
Millions are exposed to the human immunodeficiency virus type 1 (HIV-1) every year, but not all acquire the virus, suggesting a potential role for host genetics in the moderation of HIV-1 acquisition. Here, we analyzed summary statistics from the largest genome-wide association study of HIV-1 acquisition to-date, consisting of 6,334 infected patients and 7,247 population controls, to advance our understanding of the genetic mechanisms implicated in this trait. We found that HIV-1 acquisition is polygenic and heritable, with SNP heritability estimates explaining 28-42% of the variance in this trait at a population level. Genetic correlations alongside UK Biobank data revealed associations with smoking, prospective memory and socioeconomic traits. Gene-level enrichment analysis identified EF-hand calcium binding domain 14 as a novel susceptibility gene for HIV-1 acquisition. We also observed that susceptibility variants for HIV-1 acquisition were significantly enriched for genes expressed in T-cells, but also in striatal and hippocampal neurons. Finally, we tested how polygenic risk scores for HIV-1 acquisition influence blood levels of 35 inflammatory markers in 406 HIV-1-negative individuals. We found that higher genetic risk for HIV-1 acquisition was associated with lower levels of C-C motif chemokine ligand 17. Our findings corroborate a complex model for HIV-1 acquisition, whereby susceptibility is partly heritable and moderated by specific behavioral, cellular and immunological parameters.
Collapse
Affiliation(s)
- Timothy R Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Rodrigo R R Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stephani L Hatch
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Gerome D Breen
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cathryn M Lewis
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Douglas F Nixon
- Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
4
|
Skundric DS, Tse HY, Montgomery PC. Functional phenotypes of CCR5 on CD4+ T cells of relevance to its genetic and epigenetic associations with HIV infection. Cell Mol Immunol 2020; 17:680-681. [PMID: 31900454 DOI: 10.1038/s41423-019-0342-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Dusanka S Skundric
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, School of Medicine, Detroit, MI, USA.
| | - Harley Y Tse
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Paul C Montgomery
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Human leukocyte antigen (HLA)-C and its association with HIV-1 transmission in discordant couple and mother-to-child cohorts. Immunogenetics 2018; 70:633-638. [PMID: 30128812 DOI: 10.1007/s00251-018-1075-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
Human leukocyte antigen (HLA) molecules play a key role in regulating the immune response towards infectious agents like human immunodeficiency virus type-1 (HIV-1). They have been shown to influence transmission as well as the progression of HIV-1 towards acquired immune deficiency syndrome (AIDS). Roles of HLA-A and HLA-B have been documented extensively; however, HLA-C has been poorly studied. In the present study, we have evaluated the role of HLA-C in discordant couple and mother-to-child cohorts. HLA-C*07 was higher both in HIV-1-infected spouses and infants as compared to exposed uninfected spouses and infants. However, this was not significant. HLA-C*15 was significantly higher in HIV-1-exposed uninfected babies as compared to infected babies. Lack of treatment in mothers and breastfeeding were significantly associated with HIV-1 transmission. HLA-C*07 may be a susceptible allele in HIV-1 transmission, whereas HLA-C*15 may be a protective allele in mother-to-child cohorts, independent of feeding options and treatment. These findings could be important in targeting immune responses via population-specific vaccine strategies against HIV-1.
Collapse
|
6
|
Human Genomic Loci Important in Common Infectious Diseases: Role of High-Throughput Sequencing and Genome-Wide Association Studies. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:1875217. [PMID: 29755620 PMCID: PMC5884297 DOI: 10.1155/2018/1875217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers.
Collapse
|
7
|
Sampathkumar R, Scott-Herridge J, Liang B, Kimani J, Plummer FA, Luo M. HIV-1 Subtypes and 5'LTR-Leader Sequence Variants Correlate with Seroconversion Status in Pumwani Sex Worker Cohort. Viruses 2017; 10:v10010004. [PMID: 29295533 PMCID: PMC5795417 DOI: 10.3390/v10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/04/2023] Open
Abstract
Within the Pumwani sex worker cohort, a subgroup remains seronegative, despite frequent exposure to HIV-1; some of them seroconverted several years later. This study attempts to identify viral variations in 5′LTR-leader sequences (5′LTR-LS) that might contribute to the late seroconversion. The 5′LTR-LS contains sites essential for replication and genome packaging, viz, primer binding site (PBS), major splice donor (SD), and major packaging signal (PS). The 5′LTR-LS of 20 late seroconverters (LSC) and 122 early seroconverters (EC) were amplified, cloned, and sequenced. HelixTree 6.4.3 was employed to classify HIV subtypes and sequence variants based on seroconversion status. We find that HIV-1 subtypes A1.UG and D.UG were overrepresented in the viruses infecting the LSC (P < 0.0001). Specific variants of PBS (Pc < 0.0001), SD1 (Pc < 0.0001), and PS (Pc < 0.0001) were present only in the viral population from EC or LSC. Combinations of PBS [PBS-2 (Pc < 0.0001) and PBS-3 (Pc < 0.0001)] variants with specific SD sequences were only seen in LSC or EC. Combinations of A1.KE or D with specific PBS and SD variants were only present in LSC or EC (Pc < 0.0001). Furthermore, PBS variants only present in LSC co-clustered with PBS references utilizing tRNAArg; whereas, the PBS variants identified only in EC co-clustered with PBS references using tRNALys,3 and its variants. This is the first report that specific PBS, SD1, and PS sequence variants within 5′LTR-LS are associated with HIV-1 seroconversion, and it could aid designing effective anti-HIV strategies.
Collapse
Affiliation(s)
- Raghavan Sampathkumar
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
| | - Joel Scott-Herridge
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| | - Joshua Kimani
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya.
| | - Francis A Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
| |
Collapse
|
8
|
Kenney AD, Dowdle JA, Bozzacco L, McMichael TM, St Gelais C, Panfil AR, Sun Y, Schlesinger LS, Anderson MZ, Green PL, López CB, Rosenberg BR, Wu L, Yount JS. Human Genetic Determinants of Viral Diseases. Annu Rev Genet 2017; 51:241-263. [PMID: 28853921 DOI: 10.1146/annurev-genet-120116-023425] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Much progress has been made in the identification of specific human gene variants that contribute to enhanced susceptibility or resistance to viral diseases. Herein we review multiple discoveries made with genome-wide or candidate gene approaches that have revealed significant insights into virus-host interactions. Genetic factors that have been identified include genes encoding virus receptors, receptor-modifying enzymes, and a wide variety of innate and adaptive immunity-related proteins. We discuss a range of pathogenic viruses, including influenza virus, respiratory syncytial virus, human immunodeficiency virus, human T cell leukemia virus, human papilloma virus, hepatitis B and C viruses, herpes simplex virus, norovirus, rotavirus, parvovirus, and Epstein-Barr virus. Understanding the genetic underpinnings that affect infectious disease outcomes should allow tailored treatment and prevention approaches in the future.
Collapse
Affiliation(s)
- Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - James A Dowdle
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.,Current affiliation: Target Information Group, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, USA;
| | - Temet M McMichael
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Corine St Gelais
- Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Amanda R Panfil
- Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Yan Sun
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , , .,Texas Biomedical Research Institute, San Antonio, Texas 78227, USA;
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Patrick L Green
- Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Brad R Rosenberg
- Program in Immunogenomics, John C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY 10065, USA.,Current affiliation: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Li Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , , .,Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| |
Collapse
|
9
|
Abujaber R, Shea PR, McLaren PJ, Lakhi S, Gilmour J, Allen S, Fellay J, Hollox EJ. No Evidence for Association of β-Defensin Genomic Copy Number with HIV Susceptibility, HIV Load during Clinical Latency, or Progression to AIDS. Ann Hum Genet 2017; 81:27-34. [PMID: 28084001 DOI: 10.1111/ahg.12182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/30/2016] [Indexed: 11/28/2022]
Abstract
Common single-nucleotide variation in the host accounts for 25% of the variability in the plasma levels of HIV during the clinical latency stage (viral load set point). However, the role of rare variants and copy number variants remains relatively unexplored. Previous work has suggested copy number variation of a cluster of β-defensin genes affects HIV load in treatment-naïve sub-Saharan Africans and rate of response to antiretroviral treatment. Here we analyse a total of 1827 individuals from two cohorts of HIV-infected individuals from Europe and sub-Saharan Africa to investigate the role of β-defensin copy number variation on HIV load at set point. We find no evidence for association of copy number with viral load. We also compare distribution of β-defensin copy number between European cases and controls and find no differences, arguing against a role of β-defensin copy number in HIV acquisition. Taken together, our data argue against an effect of copy number variation of the β-defensin region in the spontaneous control of HIV infection.
Collapse
Affiliation(s)
- Razan Abujaber
- Department of Genetics, University of Leicester, Leicester, UK
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Paul J McLaren
- National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Shabir Lakhi
- International AIDS Vaccine Initiative (IAVI), New York, New York, USA.,Zambia-Emory HIV Research Project, Lusaka and Copperbelt, Zambia
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), New York, New York, USA.,IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Susan Allen
- International AIDS Vaccine Initiative (IAVI), New York, New York, USA.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Edward J Hollox
- Department of Genetics, University of Leicester, Leicester, UK
| | -
- Department of Genetics, University of Leicester, Leicester, UK
| |
Collapse
|
10
|
HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity. PLoS One 2016; 11:e0150835. [PMID: 27100290 PMCID: PMC4839606 DOI: 10.1371/journal.pone.0150835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/20/2016] [Indexed: 12/13/2022] Open
Abstract
The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter)/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count).
Collapse
|
11
|
Fiore-Gartland A, Manso BA, Friedrich DP, Gabriel EE, Finak G, Moodie Z, Hertz T, De Rosa SC, Frahm N, Gilbert PB, McElrath MJ. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials. PLoS One 2016; 11:e0147812. [PMID: 26863315 PMCID: PMC4749288 DOI: 10.1371/journal.pone.0147812] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/22/2015] [Indexed: 11/19/2022] Open
Abstract
The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7–30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides.
Collapse
Affiliation(s)
- Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
- * E-mail:
| | - Bryce A. Manso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - David P. Friedrich
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Erin E. Gabriel
- Biostatistics Research Branch, National Institute of Allergy and Infectious Disease, Rockville, Maryland, 20852, United States of America
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Tomer Hertz
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion Institute of the Negev, Beer-Sheva, 84105, Israel
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| |
Collapse
|
12
|
Naranbhai V, de Assis Rosa D, Werner L, Moodley R, Hong H, Kharsany A, Mlisana K, Sibeko S, Garrett N, Chopera D, Carr WH, Abdool Karim Q, Hill AVS, Abdool Karim SS, Altfeld M, Gray CM, Ndung'u T. Killer-cell Immunoglobulin-like Receptor (KIR) gene profiles modify HIV disease course, not HIV acquisition in South African women. BMC Infect Dis 2016; 16:27. [PMID: 26809736 PMCID: PMC4727384 DOI: 10.1186/s12879-016-1361-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Killer-cell Immunoglobulin-like Receptors (KIR) interact with Human Leukocyte Antigen (HLA) to modify natural killer- and T-cell function. KIR are implicated in HIV acquisition by small studies that have not been widely replicated. A role for KIR in HIV disease progression is more widely replicated and supported by functional studies. METHODS To assess the role of KIR and KIR ligands in HIV acquisition and disease course, we studied at-risk women in South Africa between 2004-2010. Logistic regression was used for nested case-control analysis of 154 women who acquired vs. 155 who did not acquire HIV, despite high exposure. Linear mixed-effects models were used for cohort analysis of 139 women followed prospectively for a median of 54 months (IQR 31-69) until 2014. RESULTS Neither KIR repertoires nor HLA alleles were associated with HIV acquisition. However, KIR haplotype BB was associated with lower viral loads (-0.44 log10 copies/ml; SE = 0.18; p = 0.03) and higher CD4+ T-cell counts (+80 cells/μl; SE = 42; p = 0.04). This was largely explained by the protective effect of KIR2DL2/KIR2DS2 on the B haplotype and reciprocal detrimental effect of KIR2DL3 on the A haplotype. CONCLUSIONS Although neither KIR nor HLA appear to have a role in HIV acquisition, our data are consistent with involvement of KIR2DL2 in HIV control. Additional studies to replicate these findings are indicated.
Collapse
Affiliation(s)
- V Naranbhai
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa.
| | - D de Assis Rosa
- National Institute of Communicable Diseases, Sandringham, South Africa. .,University of the Witwatersrand, Johannesburg, South Africa.
| | - L Werner
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - R Moodley
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa.
| | - H Hong
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - A Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - K Mlisana
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - S Sibeko
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - N Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - D Chopera
- University of Cape Town, Cape Town, South Africa.
| | - W H Carr
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa. .,City University of New York - Medgar Evers College, New York, USA. .,Ragon Institute of MGH, MIT and Harvard University, Boston, USA.
| | - Q Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Mailman School of Public Health, Columbia University, New York, USA.
| | - A V S Hill
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - S S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Mailman School of Public Health, Columbia University, New York, USA.
| | - M Altfeld
- Ragon Institute of MGH, MIT and Harvard University, Boston, USA. .,Leibniz Institute for Experimental Virology, Heinrich Pette Institute, Hamburg, Germany.
| | - C M Gray
- National Institute of Communicable Diseases, Sandringham, South Africa. .,University of Cape Town, Cape Town, South Africa.
| | - T Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa. .,Ragon Institute of MGH, MIT and Harvard University, Boston, USA. .,KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, South Africa. .,Max Planck Institute for Infection Biology, Chariteplatz, D-10117, Berlin, Germany.
| |
Collapse
|
13
|
Tomaras GD, Haynes BF. Advancing Toward HIV-1 Vaccine Efficacy through the Intersections of Immune Correlates. Vaccines (Basel) 2015; 2:15-35. [PMID: 24932411 PMCID: PMC4053939 DOI: 10.3390/vaccines2010015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interrogating immune correlates of infection risk for efficacious and non-efficacious HIV-1 vaccine clinical trials have provided hypotheses regarding the mechanisms of induction of protective immunity to HIV-1. To date, there have been six HIV-1 vaccine efficacy trials (VAX003, Vaxgen, Inc., San Francisco, CA, USA), VAX004 (Vaxgen, Inc.), HIV-1 Vaccine Trials Network (HVTN) 502 (Step), HVTN 503 (Phambili), RV144 (sponsored by the U.S. Military HIV Research Program, MHRP) and HVTN 505). Cellular, humoral, host genetic and virus sieve analyses of these human clinical trials each can provide information that may point to potentially protective mechanisms for vaccine-induced immunity. Critical to staying on the path toward development of an efficacious vaccine is utilizing information from previous human and non-human primate studies in concert with new discoveries of basic HIV-1 host-virus interactions. One way that past discoveries from correlate analyses can lead to novel inventions or new pathways toward vaccine efficacy is to examine the intersections where different components of the correlate analyses overlap (e.g., virus sieve analysis combined with humoral correlates) that can point to mechanistic hypotheses. Additionally, differences in durability among vaccine-induced T- and B-cell responses indicate that time post-vaccination is an important variable. Thus, understanding the nature of protective responses, the degree to which such responses have, or have not, as yet, been induced by previous vaccine trials and the design of strategies to induce durable T- and B-cell responses are critical to the development of a protective HIV-1 vaccine.
Collapse
Affiliation(s)
- Georgia D. Tomaras
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-681-5598; Fax: +1-919-684-5230
| | - Barton F. Haynes
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-681-5598; Fax: +1-919-684-5230
| |
Collapse
|
14
|
Genome-Wide Association Studies of HIV-1 Host Control in Ethnically Diverse Chinese Populations. Sci Rep 2015; 5:10879. [PMID: 26039976 PMCID: PMC4454153 DOI: 10.1038/srep10879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/07/2015] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWASs) have revealed several genetic loci associated with HIV-1 outcome following infection (e.g., HLA-C at 6p21.33) in multi-ethnic populations with genetic heterogeneity and racial/ethnic differences among Caucasians, African-Americans, and Hispanics. To systematically investigate the inherited predisposition to modulate HIV-1 infection in Chinese populations, we performed GWASs in three ethnically diverse HIV-infected patients groups (i.e., HAN, YUN, and XIN, N = 538). The reported loci at 6p21.33 was validated in HAN (e.g., rs9264942, P = 0.0018). An independent association signal (rs2442719, P = 7.85 × 10−7, HAN group) in the same region was observed. Imputation results suggest that haplotype HLA-B*13:02/C*06:02, which can partially account for the GWAS signal, is associated with lower viral load in Han Chinese. Moreover, several novel loci were identified using GWAS approach including the top association signals at 6q13 (KCNQ5, rs947612, P = 2.15 × 10−6), 6p24.1 (PHACTR1, rs202072, P = 3.8 × 10−6), and 11q12.3 (SCGB1D4, rs11231017, P = 7.39 × 10−7) in HAN, YUN, and XIN groups, respectively. Our findings imply shared or specific mechanisms for host control of HIV-1 in ethnically diverse Chinese populations, which may shed new light on individualized HIV/AIDS therapy in China.
Collapse
|
15
|
Wang M, Li JS, Ping Y, Li ZQ, Wang LP, Guo Q, Zhang Z, Yue DL, Wang F, Zhang TF, Islam MS, Zhang Y. The host HLA-A*02 allele is associated with the response to pegylated interferon and ribavirin in patients with chronic hepatitis C virus infection. Arch Virol 2015; 160:1043-54. [PMID: 25666200 DOI: 10.1007/s00705-015-2361-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/31/2015] [Indexed: 12/16/2022]
Abstract
Human leukocyte antigen (HLA) alleles are associated with both the progression of chronic hepatitis C (CHC) and the sustained virological response (SVR) to antiviral therapy. HLA-A*02 is the most common HLA allele in people of European/Caucasian descent and the Chinese and Japanese population. Therefore, we investigated whether HLA-A*02 expression is associated with disease outcome in Chinese CHC patients. Three hundred thirty-one treatment-naïve CHC patients were recruited in this study. The expression of HLA-A*02 was tested by FACS and LABType SSO assays. All patients were treated weekly with pegylated interferon plus ribavirin (PEG-IFN/RBV) according to a standard protocol. Virological response was assessed by TaqMan assay at the 4th, 12th, 24th, and 48th week of therapy, and again at the 24th week post-therapy. By the end of the study, 293 CHC patients, including 144 HLA-A*02-positive patients and 149 HLA-A*02-negative patients, were evaluable for analysis. There were no statistical differences in clinicopathological parameters between HLA-A*02-positive and negative patients before antiviral therapy (P > 0.05). The HLA-A*02-positive patients had a higher rapid virological response (RVR, 74.3 % versus 62.4 %, P = 0.03) and SVR (78.5 % versus 64.4 %, P = 0.01) and a lower relapse rate (4.2 % versus 11.9 %, P = 0.03) than HLA-A*02-negative patients. Multivariable logistic regression analysis showed that HLA-A*02 expression, liver fibrosis stages <S3, HCV genotype 2a, IL-28B rs8099917 TT, and RVR were independent predictive factors of SVR (P < 0.05). Host HLA-A*02 allele expression is associated with SVR, highlighting the importance of considering HLA-A*02 as a predictor of the response to PEG-IFN/RBV treatment in the Chinese population with CHC.
Collapse
Affiliation(s)
- Meng Wang
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li SS, Gilbert PB, Tomaras GD, Kijak G, Ferrari G, Thomas R, Pyo CW, Zolla-Pazner S, Montefiori D, Liao HX, Nabel G, Pinter A, Evans DT, Gottardo R, Dai JY, Janes H, Morris D, Fong Y, Edlefsen PT, Li F, Frahm N, Alpert MD, Prentice H, Rerks-Ngarm S, Pitisuttithum P, Kaewkungwal J, Nitayaphan S, Robb ML, O'Connell RJ, Haynes BF, Michael NL, Kim JH, McElrath MJ, Geraghty DE. FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial. J Clin Invest 2014; 124:3879-90. [PMID: 25105367 DOI: 10.1172/jci75539] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/19/2014] [Indexed: 02/02/2023] Open
Abstract
The phase III RV144 HIV-1 vaccine trial estimated vaccine efficacy (VE) to be 31.2%. This trial demonstrated that the presence of HIV-1-specific IgG-binding Abs to envelope (Env) V1V2 inversely correlated with infection risk, while the presence of Env-specific plasma IgA Abs directly correlated with risk of HIV-1 infection. Moreover, Ab-dependent cellular cytotoxicity responses inversely correlated with risk of infection in vaccine recipients with low IgA; therefore, we hypothesized that vaccine-induced Fc receptor-mediated (FcR-mediated) Ab function is indicative of vaccine protection. We sequenced exons and surrounding areas of FcR-encoding genes and found one FCGR2C tag SNP (rs114945036) that associated with VE against HIV-1 subtype CRF01_AE, with lysine at position 169 (169K) in the V2 loop (CRF01_AE 169K). Individuals carrying CC in this SNP had an estimated VE of 15%, while individuals carrying CT or TT exhibited a VE of 91%. Furthermore, the rs114945036 SNP was highly associated with 3 other FCGR2C SNPs (rs138747765, rs78603008, and rs373013207). Env-specific IgG and IgG3 Abs, IgG avidity, and neutralizing Abs inversely correlated with CRF01_AE 169K HIV-1 infection risk in the CT- or TT-carrying vaccine recipients only. These data suggest a potent role of Fc-γ receptors and Fc-mediated Ab function in conferring protection from transmission risk in the RV144 VE trial.
Collapse
|
17
|
Gartland AJ, Li S, McNevin J, Tomaras GD, Gottardo R, Janes H, Fong Y, Morris D, Geraghty DE, Kijak GH, Edlefsen PT, Frahm N, Larsen BB, Tovanabutra S, Sanders-Buell E, deCamp AC, Magaret CA, Ahmed H, Goodridge JP, Chen L, Konopa P, Nariya S, Stoddard JN, Wong K, Zhao H, Deng W, Maust BS, Bose M, Howell S, Bates A, Lazzaro M, O'Sullivan A, Lei E, Bradfield A, Ibitamuno G, Assawadarachai V, O'Connell RJ, deSouza MS, Nitayaphan S, Rerks-Ngarm S, Robb ML, Sidney J, Sette A, Zolla-Pazner S, Montefiori D, McElrath MJ, Mullins JI, Kim JH, Gilbert PB, Hertz T. Analysis of HLA A*02 association with vaccine efficacy in the RV144 HIV-1 vaccine trial. J Virol 2014; 88:8242-55. [PMID: 24829343 PMCID: PMC4135964 DOI: 10.1128/jvi.01164-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The RV144 HIV-1 vaccine trial demonstrated partial efficacy of 31% against HIV-1 infection. Studies into possible correlates of protection found that antibodies specific to the V1 and V2 (V1/V2) region of envelope correlated inversely with infection risk and that viruses isolated from trial participants contained genetic signatures of vaccine-induced pressure in the V1/V2 region. We explored the hypothesis that the genetic signatures in V1 and V2 could be partly attributed to selection by vaccine-primed T cells. We performed a T-cell-based sieve analysis of breakthrough viruses in the RV144 trial and found evidence of predicted HLA binding escape that was greater in vaccine versus placebo recipients. The predicted escape depended on class I HLA A*02- and A*11-restricted epitopes in the MN strain rgp120 vaccine immunogen. Though we hypothesized that this was indicative of postacquisition selection pressure, we also found that vaccine efficacy (VE) was greater in A*02-positive (A*02(+)) participants than in A*02(-) participants (VE = 54% versus 3%, P = 0.05). Vaccine efficacy against viruses with a lysine residue at site 169, important to antibody binding and implicated in vaccine-induced immune pressure, was also greater in A*02(+) participants (VE = 74% versus 15%, P = 0.02). Additionally, a reanalysis of vaccine-induced immune responses that focused on those that were shown to correlate with infection risk suggested that the humoral responses may have differed in A*02(+) participants. These exploratory and hypothesis-generating analyses indicate there may be an association between a class I HLA allele and vaccine efficacy, highlighting the importance of considering HLA alleles and host immune genetics in HIV vaccine trials. IMPORTANCE The RV144 trial was the first to show efficacy against HIV-1 infection. Subsequently, much effort has been directed toward understanding the mechanisms of protection. Here, we conducted a T-cell-based sieve analysis, which compared the genetic sequences of viruses isolated from infected vaccine and placebo recipients. Though we hypothesized that the observed sieve effect indicated postacquisition T-cell selection, we also found that vaccine efficacy was greater for participants who expressed HLA A*02, an allele implicated in the sieve analysis. Though HLA alleles have been associated with disease progression and viral load in HIV-1 infection, these data are the first to suggest the association of a class I HLA allele and vaccine efficacy. While these statistical analyses do not provide mechanistic evidence of protection in RV144, they generate testable hypotheses for the HIV vaccine community and they highlight the importance of assessing the impact of host immune genetics in vaccine-induced immunity and protection. (This study has been registered at ClinicalTrials.gov under registration no. NCT00223080.).
Collapse
Affiliation(s)
- Andrew J Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sue Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John McNevin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daryl Morris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Gustavo H Kijak
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brendan B Larsen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | | | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hasan Ahmed
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Philip Konopa
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Snehal Nariya
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Julia N Stoddard
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kim Wong
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hong Zhao
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Brandon S Maust
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Shana Howell
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Adam Bates
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Michelle Lazzaro
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | | | - Esther Lei
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Andrea Bradfield
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Grace Ibitamuno
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | | | | | | | | | | | - Merlin L Robb
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tomer Hertz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
18
|
Association of single nucleotide polymorphisms in the lens epithelium-derived growth factor (LEDGF/p75) with HIV-1 infection outcomes in Brazilian HIV-1+ individuals. PLoS One 2014; 9:e101780. [PMID: 25047784 PMCID: PMC4105638 DOI: 10.1371/journal.pone.0101780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/11/2014] [Indexed: 12/12/2022] Open
Abstract
The lens epithelium-derived growth factor p75 (LEDGF/p75), coded by the PSIP1 gene, is an important host co-factor that interacts with HIV-1 integrase to target integration of viral cDNA into active genes. The aim of this study was to investigate the association of SNPs in the PSIP1 gene with disease outcome in HIV-1 infected patients. We performed a genetic association study in a cohort of 171 HIV-1 seropositive Brazilian individuals classified as rapid progressors (RP, n = 69), typical progressors (TP, n = 79) and long-term nonprogressors (LTNP, n = 23). The exonic SNP rs61744944 and 9 tag SNPs were genotyped. A group of 192 healthy subjects was analyzed to determine the frequency of SNPs and haplotypes in the general population. Linkage disequilibrium (LD) analyses indicated that the SNPs analyzed were not in high LD (r2<0.8). Logistic regression models suggested that patients carrying the T allele rs61744944 (472L) were more likely to develop a LTNP phenotype (OR = 4.98; p = 0.05) as compared to TP group. The same trend was observed when LTNPs were compared to the RP group (OR = 3.26). Results of haplotype analyses reinforced this association, since the OR values obtained for the haplotype carrying allele T at rs61744944 also reflected an association with LTNP status (OR = 6.05; p = 0.08 and OR = 3.44; p = 0.12 for comparisons to TP and RP, respectively). The rare missense variations Ile436Ser and Thr473Ile were not identified in the patients enrolled in this study. Gene expression analyses showed lower LEDGF/p75 mRNA levels in peripheral blood mononuclear cells obtained from HIV-1 infected individuals. However, these levels were not influenced by any of the SNPs investigated. In spite of the limited number of LTNPs, these data suggest that the PSIP1 gene could be associated with the outcome of HIV-1 infection. Further analyses of this gene may guide the identification of causative variants to help predict disease course.
Collapse
|
19
|
Human gene copy number variation and infectious disease. Hum Genet 2014; 133:1217-33. [PMID: 25110110 DOI: 10.1007/s00439-014-1457-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/20/2014] [Indexed: 01/05/2023]
Abstract
Variability in the susceptibility to infectious disease and its clinical manifestation can be determined by variation in the environment and by genetic variation in the pathogen and the host. Despite several successes based on candidate gene studies, defining the host variation affecting infectious disease has not been as successful as for other multifactorial diseases. Both single nucleotide variation and copy number variation (CNV) of the host contribute to the host's susceptibility to infectious disease. In this review we focus on CNV, particularly on complex multiallelic CNV that is often not well characterised either directly by hybridisation methods or indirectly by analysis of genotypes and flanking single nucleotide variants. We summarise the well-known examples, such as α-globin deletion and susceptibility to severe malaria, as well as more recent controversies, such as the extensive CNV of the chemokine gene CCL3L1 and HIV infection. We discuss the potential biological mechanisms that could underly any genetic association and reflect on the extensive complexity and functional variation generated by a combination of CNV and sequence variation, as illustrated by the Fc gamma receptor genes FCGR3A, FCGR3B and FCGR2C. We also highlight some understudied areas that might prove fruitful areas for further research.
Collapse
|
20
|
Biasin M, De Luca M, Gnudi F, Clerici M. The genetic basis of resistance to HIV infection and disease progression. Expert Rev Clin Immunol 2013; 9:319-34. [PMID: 23557268 DOI: 10.1586/eci.13.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Susceptibility to HIV infection and the modulation of disease progression are strictly dependent on inter-individual variability, much of which is secondary to host genetic heterogeneity. The study of host factors that control these phenomena relies not only on candidate gene approaches but also on unbiased genome-wide genetic and functional analyses. Additional new insights stem from the study of mechanisms that control the expression of host and viral genes, such as miRNA. The genetic host factors that have been suggested to be associated either with resistance to HIV-1 infection or with absent/delayed progression to AIDS are nevertheless unable to fully justify the phenomenon of differential susceptibility to HIV. Multidisciplinary approaches are needed to further analyze individuals who deviate from the expected response to HIV exposure/infection. Results of these analyses will facilitate the identification of novel targets that could be exploited in the setting up of innovative therapeutic or vaccine approaches.
Collapse
Affiliation(s)
- Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via GB Grassi 74, 20157 Milan, Italy.
| | | | | | | |
Collapse
|
21
|
Abstract
Host genetic factors are a major contributing factor to the inter-individual variation observed in response to human immunodeficiency virus (HIV) infection and are linked to resistance to HIV infection among exposed individuals, as well as rate of disease progression and the likelihood of viral transmission. Of the genetic variants that have been shown to affect the natural history of HIV infection, the human leukocyte antigen (HLA) class I genes exhibit the strongest and most consistent association, underscoring a central role for CD8(+) T cells in resistance to the virus. HLA proteins play important roles in T-cell-mediated adaptive immunity by presenting immunodominant HIV epitopes to cytotoxic T lymphocytes (CTLs) and CD4(+) T cells. Genetic and functional data also indicate a function for HLA in natural killer cell-mediated innate immunity against HIV by interacting with killer cell immunoglobulin-like receptors (KIR). We review the HLA and KIR associations with HIV disease and discuss the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Prentice HA, Porter TR, Price MA, Cormier E, He D, Farmer PK, Kamali A, Karita E, Lakhi S, Sanders EJ, Anzala O, Amornkul PN, Allen S, Hunter E, Kaslow RA, Gilmour J, Tang J. HLA-B*57 versus HLA-B*81 in HIV-1 infection: slow and steady wins the race? J Virol 2013; 87:4043-51. [PMID: 23365442 PMCID: PMC3624227 DOI: 10.1128/jvi.03302-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/23/2013] [Indexed: 11/20/2022] Open
Abstract
Two human leukocyte antigen (HLA) variants, HLA-B*57 and -B*81, are consistently known as favorable host factors in human immunodeficiency virus type 1 (HIV-1)-infected Africans and African-Americans. In our analyses of prospective data from 538 recent HIV-1 seroconverters and cross-sectional data from 292 subjects with unknown duration of infection, HLA-B*57 (mostly B*57:03) and -B*81 (exclusively B*81:01) had mostly discordant associations with virologic and immunologic manifestations before antiretroviral therapy. Specifically, relatively low viral load (VL) in HLA-B*57-positive subjects (P ≤ 0.03 in various models) did not translate to early advantage in CD4(+) T-cell (CD4) counts (P ≥ 0.37). In contrast, individuals with HLA-B*81 showed little deviation from the normal set point VL (P > 0.18) while maintaining high CD4 count during early and chronic infection (P = 0.01). These observations suggest that discordance between VL and CD4 count can occur in the presence of certain HLA alleles and that effective control of HIV-1 viremia is not always a prerequisite for favorable prognosis (delayed immunodeficiency). Of note, steady CD4 count associated with HLA-B*81 in HIV-1-infected Africans may depend on the country of origin, as observations differed slightly between subgroups enrolled in southern Africa (Zambia) and eastern Africa (Kenya, Rwanda, and Uganda).
Collapse
Affiliation(s)
| | | | - Matthew A. Price
- International AIDS Vaccine Initiative (IAVI), New York City, New York, USA
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, USA
| | - Emmanuel Cormier
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Chelsea and Westminster Hospital, London, United Kingdom
| | | | | | - Anatoli Kamali
- MRC/UVRI Uganda Virus Research Unit on AIDS, Masaka Site, Masaka, Uganda
| | | | - Shabir Lakhi
- Zambia-Emory HIV Research Project, Lusaka, Zambia
| | - Eduard J. Sanders
- Centre for Geographic Medicine Research, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, United Kingdom
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Pauli N. Amornkul
- International AIDS Vaccine Initiative (IAVI), New York City, New York, USA
| | - Susan Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Project San Francisco, Kigali, Rwanda
- Zambia-Emory HIV Research Project, Lusaka, Zambia
| | | | - Richard A. Kaslow
- Department of Epidemiology
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Chelsea and Westminster Hospital, London, United Kingdom
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| |
Collapse
|
23
|
Haaland RE, Johnson JA, Tang J. Recent advances in research of HIV infection: implications of viral and host genetics on treatment and prevention. Public Health Genomics 2013; 16:31-6. [PMID: 23548715 DOI: 10.1159/000345935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The genetic diversity among human immunodeficiency virus (HIV) subtypes as well as the variability of viral sequences found in HIV-infected individuals presents a number of difficult obstacles for the development of universally effective HIV treatment and prevention methods. Here, we present a brief summary of recent developments in the analysis of viral genetics and human genomics to provide insight into future methods for HIV treatment and prevention. Recent studies have mined viral sequences found in newly infected individuals to identify common features of all transmitted viruses that could provide potential targets for HIV vaccine development. Analysis of human immunogenetics has identified specific alleles associated with reduced virus loads in HIV-infected individuals providing valuable information that may influence individual responses to treatment and prevention methods. Increased sensitivity of antiretroviral drug resistance testing has improved the detection of hidden drug resistant virus but also highlighted the potential for drug resistant viruses to reduce the effectiveness of clinical treatment regimens. The rapidly expanding amount of data generated by studies of viral genetics and human immunogenetics will provide valuable information to guide the design of new strategies to improve clinical treatment and enhance HIV vaccine development.
Collapse
Affiliation(s)
- R E Haaland
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | |
Collapse
|
24
|
Abstract
In the 1990 s, the variability of responses to human immunodeficiency virus (HIV) could only be tracked by phenotypic criteria such as the number of CD4T lymphocytes, the occurrence of opportunistic infection, the disease free survival without treatment. In 1996, the viral load is the leading phenotype for genetic studies. Ever since, thanks to a better understanding of the HIV infection pathophysiology, numerous studies helped to highlight the influence of genetic variability on inter-individual response to this virus. Among the genes having an impact, we can quote the following examples: CCR5, HLA-B and HLA-C genes. Practical applications of genetics in clinical medicine include search for HLA-B*57:01 before abacavir introduction. Recently, an eradicating treatment for HIV disease after bone marrow transplantation with a donor homozygote for a CCR5 gene non-functional variant (CCR5Δ32) has been reported. Interest in genetics of chronic viral infection is not specific to HIV. It has also been used on other viral diseases and it has gained a major place on the management of diseases.
Collapse
|