1
|
Yang LK, Wang W, Guo DY, Dong B. Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments. Pharmacol Ther 2025; 266:108788. [PMID: 39722422 DOI: 10.1016/j.pharmthera.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance. Thus, this 'location bias' of GPCR signaling has become another layer of complexity of GPCR signal transduction. In this review, we generally introduce the development of the concept of compartmentalized GPCR signaling and comprehensively summarize the receptors reported to be localized on the membranes of different intracellular organelles. We review the physiological functions of these compartmentalized GPCRs with emphasis on some well-characterized prototypical hormone/neurotransmitter-binding receptors, including β2-adrenergic receptor, opioid receptors, parathyroid hormone type 1 receptor, thyroid-stimulating hormone receptor, cannabinoid receptor type 1, and metabotropic glutamate receptor 5, as examples. In addition, the therapeutic implications of compartmentalized GPCR signaling by introducing lipophilic or hydrophilic ligands for intracellular targeting, lipid conjugation anchor drugs, and strategy to modulate receptor internalization/resensitization, are highlighted and open new avenues in GPCR pharmacology and therapeutics.
Collapse
Affiliation(s)
- Li-Kun Yang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
2
|
Furdui A, da Silveira Scarpellini C, Montandon G. Mu-opioid receptors in tachykinin-1-positive cells mediate the respiratory and antinociceptive effects of the opioid fentanyl. Br J Pharmacol 2025; 182:1059-1074. [PMID: 39506356 DOI: 10.1111/bph.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Opioid drugs are potent analgesics that carry the risk of respiratory side effects due to actions on μ-opioid receptors (MORs) in brainstem regions that control respiration. Substance P is encoded by the Tac1 gene and is expressed in neurons regulating breathing, nociception, and locomotion. Tac1-positive cells also express MORs in brainstem regions mediating opioid-induced respiratory depression. We determined the role of Tac1-positive cells in mediating the respiratory effects of opioid drugs. EXPERIMENTAL APPROACH In situ hybridization was used to determine Oprm1 mRNA expression (gene encoding MORs) in Tac1-positive cells in regions regulating respiratory depression by opioid drugs. Conditional knockout mice lacking functional MORs in Tac1-positive cells were produced and the respiratory and locomotor responses to the opioid analgesic fentanyl were assessed using whole-body plethysmography. A tail immersion assay was used to assess the antinociceptive response to fentanyl. KEY RESULTS Oprm1 mRNA was highly expressed (>80%) in subpopulations of Tac1-positive cells in the preBötzinger Complex, nucleus tractus solitarius, and Kölliker-Fuse/lateral parabrachial region. Conditionally knocking out MORs in Tac1-positive cells abolished the effects of fentanyl on respiratory rate, relative tidal volume, and relative minute ventilation compared with control mice. Importantly, the antinociceptive response of fentanyl was eliminated in mice lacking functional MORs in Tac1-positive cells, whereas locomotor effects induced by fentanyl were preserved. CONCLUSIONS AND IMPLICATIONS Our findings suggest that Tac1-positive cells mediate the respiratory depressive and antinociceptive effects of the opioid fentanyl, providing important insights for the development of pain therapies with reduced risk of respiratory side effects.
Collapse
Affiliation(s)
- Andreea Furdui
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Gaspard Montandon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Zhang Z, Zhao Y, Gou D, Li P, Wang H, Li Y, Li C, Niu Z, Yang T, Zhou L, Dong S. Peripheral inflammation enhances opioid-induced gastrointestinal motility inhibition via up-regulating spinal mu opioid receptor. Toxicol Appl Pharmacol 2025; 495:117225. [PMID: 39761922 DOI: 10.1016/j.taap.2025.117225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Opioids are potent analgesics in clinical pain management but exert variable analgesia in different pain types. Opioid-induced constipation is a common side effect of opioid therapy, and whether opioids induce different gastrointestinal motility inhibitions in different pain types is unknown. In this study, we evaluated the antinociceptive effects and inhibition of upper gastrointestinal transit and colonic bead expulsion of morphine, DAMGO, and Deltorphin in mouse CFA chronic inflammatory pain, SNI chronic neuropathic pain, and carrageenan chronic inflammatory pain models. Furthermore, quantitative PCR and immunofluorescence were used to investigate the mechanisms underlying the altered inhibition. Results showed that intrathecal administration of morphine, DAMGO, and Deltorphin produced higher antinociceptive effects in the CFA and carrageenan groups than in the SNI group. Upper gastrointestinal transit inhibition was significantly enhanced in the carrageenan group by morphine and DAMGO; colonic bead expulsion inhibition was also enhanced in the CFA and carrageenan groups by morphine and DAMGO, but not in Deltorphin treatment. Additionally, mu (MOR) opioid receptor mRNA and MOR-expressing cell density in the lumbar spinal cord of CFA and carrageenan mice were increased, whereas delta opioid receptor expression remained unchanged in these groups. Finally, the pharmacological blockade of MOR completely prevented the enhanced upper gastrointestinal transit inhibition in the carrageenan group by morphine and DAMGO. Altogether, our results indicate that gastrointestinal motility inhibition induced by MOR agonists can be enhanced with upregulated spinal MOR expression in chronic inflammatory pain.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yaofeng Zhao
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Dingnian Gou
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Pengtao Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Hao Wang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yanfang Li
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chenxi Li
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhanyu Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tong Yang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Lanxia Zhou
- The Laboratory Center of The First Hospital, Lanzhou University, 1 Donggang West Road, Lanzhou 730000, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
4
|
Lambert DG, Mincer JS. TEMPORARY REMOVAL: Targeting the kappa opioid receptor for analgesia and antitumour effects. Br J Anaesth 2025:S0007-0912(24)00616-0. [PMID: 39779420 DOI: 10.1016/j.bja.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- David G Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Hodgkin Building, Leicester, UK
| | - Joshua S Mincer
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Stein C. Effects of pH on opioid receptor activation and implications for drug design. Biophys J 2024; 123:4158-4166. [PMID: 38970252 DOI: 10.1016/j.bpj.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
G-protein-coupled receptors are integral membrane proteins that transduce chemical signals from the extracellular matrix into the cell. Traditional drug design has considered ligand-receptor interactions only under normal conditions. However, studies on opioids indicate that such interactions are very different in diseased tissues. In such microenvironments, protons play an important role in structural and functional alterations of both ligands and receptors. The pertinent literature strongly suggests that future drug design should take these aspects into account in order to reduce adverse side effects while preserving desired effects of novel compounds.
Collapse
Affiliation(s)
- Christoph Stein
- Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Experimental Anaesthesiology, Berlin, Germany.
| |
Collapse
|
6
|
Qiao B, Yao J, Fan Y, Zhang N, Feng M, Zhao J, Song X, Luan Y, Zhuang B, Zhang N, Xie X, Xu M. Intrinsic anti-inflammatory nanomedicines for enhanced pain management. Front Bioeng Biotechnol 2024; 12:1514245. [PMID: 39737056 PMCID: PMC11683077 DOI: 10.3389/fbioe.2024.1514245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Effective postoperative pain management remains a significant challenge due to the severe side effects of opioids and the limitations of existing analgesic delivery systems. Inflammation plays a critical role in pain exacerbation, highlighting the need for therapies that combine analgesic effects with intrinsic anti-inflammatory properties. Methods Herein, we develop an intrinsic anti-inflammatory nanomedicine designed to enhance pain management by integrating controlled anesthetic release with inherent anti-inflammatory activity. Our nanoplatform utilizes dendritic mesoporous silica nanoparticles (MSNs) loaded with levobupivacaine and coated with Rg3-based liposomes derived from ginsenoside Rg3, termed LMSN-bupi. Results The MSNs enable sustained and controlled release of the local anesthetic, while the Rg3-liposome coating provides intrinsic anti-inflammatory effects by inhibiting macrophage activation. In animal models, LMSN-bupi demonstrates significantly prolonged analgesic effects and attenuated inflammatory responses compared to traditional liposome-decorated nanoparticles (TMSN-bupi) (n = 5). Discussion These findings underscore the potential of intrinsic anti-inflammatory nanomedicines in enhancing pain management, offering a promising strategy to overcome the limitations of current therapies and improve patient outcomes in postoperative care.
Collapse
Affiliation(s)
- Bin Qiao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaqian Yao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu’ang Fan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Na Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Miao Feng
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaju Zhao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinye Song
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Zhuang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Zhang L, Wang D, Shi S, Wu S, Li Z, Nan J, Lan Y. Mechanisms of delta opioid receptor inhibition of parallel fibers-purkinje cell synaptic transmission in the mouse cerebellar cortex. Brain Res 2024; 1849:149374. [PMID: 39638084 DOI: 10.1016/j.brainres.2024.149374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Delta opioid receptors (DORs) are widely expressed throughout the central nervous system, including the cerebellum, where they play a regulatory role in neurogenesis. In the cerebellar cortex, Purkinje cells (PCs), the sole output neurons, receive glutamatergic synaptic input from parallel fibers (PFs)-the axonal extensions of granule cells-forming PF-PC synapses. However, the precise distribution of DORs within these synapses and their impact on synaptic transmission remain unclear. In this study, we utilized whole-cell patch-clamp recordings and neuropharmacological approaches to explore the effects of DORs activation on PF-PC synaptic transmission in the mouse cerebellar cortex and to elucidate the underlying mechanisms. We found that the selective DORs agonist DPDPE significantly reduced the amplitude and area under the curve (AUC) of PF-PC evoked excitatory postsynaptic currents (eEPSCs), accompanied by an increase in the paired-pulse ratio (PPR). This inhibitory effect was blocked by the DORs antagonist Naltrindole. Additionally, DPDPE decreased the frequency of PF-PC miniature excitatory postsynaptic currents (mEPSCs) without affecting their amplitude, indicating a presynaptic site of action. When the protein kinase A (PKA) inhibitor PKI was added to the internal solution of the recording electrode, it did not alter the DPDPE-induced suppression of PF-PC mEPSC frequency. However, this suppression was reversed by KT5720, a cell-permeable PKA-specific inhibitor. These findings suggest that DPDPE inhibits PF-PC synaptic transmission through the preferential activation of presynaptic DORs, with this process being dependent on the cyclic adenosine monophosphate (cAMP)-PKA signaling pathway.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Dan Wang
- Department of Pharmacology, Medical College of Dalian University, Dalian City, Liaoning Province, 116000, China
| | - Shuang Shi
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Shuang Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Zhi Li
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, 133000, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China.
| |
Collapse
|
8
|
Kiyatkin EA. Hypoxic effects of heroin and fentanyl and their basic physiological mechanisms. Am J Physiol Lung Cell Mol Physiol 2024; 327:L930-L948. [PMID: 39404797 DOI: 10.1152/ajplung.00251.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024] Open
Abstract
Respiratory depression that diminishes oxygen delivery to the brain is the most dangerous effect of opioid drugs. Although plethysmography is a valuable tool to examine drug-induced changes in respiration, the primary cause of brain abnormalities induced by opioids is the global decrease in brain oxygen levels. The primary goal of this review is to provide an overview and discussion on fluctuations in brain oxygen levels induced by opioids, with a focus on heroin and fentanyl. To evaluate fluctuations in brain oxygen levels, we used oxygen sensors coupled with high-speed amperometry in awake, freely moving rats. First, we provide an overview of brain oxygen responses induced by natural physiological stimuli and discuss the mechanisms regulating oxygen entry into brain tissue. Then, we present data on brain oxygen responses induced by heroin and fentanyl and review their underlying mechanisms. These data allowed us to compare the effects of these drugs on brain oxygen regarding their latency, potency, time-dependency, and potential lethality at high doses as well as their relationships with peripheral oxygen responses. We also discuss data on the effects of naloxone on brain oxygen responses induced by heroin and fentanyl in the paradigms of both the pretreatment and treatment, when naloxone is administered at different times after the primary opioid drug. Although most data discussed were obtained in rats, they may have clinical relevance for understanding the mechanisms underlying the physiological effects of opioids and developing rational treatment strategies to decrease acute lethality and long-term health complications of opioid misuse.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS, Baltimore, Maryland, United States
| |
Collapse
|
9
|
Vera-López KJ, Davila-Del-Carpio G, Nieto-Montesinos R. Macamides as Potential Therapeutic Agents in Neurological Disorders. Neurol Int 2024; 16:1611-1625. [PMID: 39585076 PMCID: PMC11587492 DOI: 10.3390/neurolint16060117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Therapeutic treatment of nervous system disorders has represented one of the significant challenges in medicine for the past several decades. Technological and medical advances have made it possible to recognize different neurological disorders, which has led to more precise identification of potential therapeutic targets, in turn leading to research into developing drugs aimed at these disorders. In this sense, recent years have seen an increase in exploration of the therapeutic effects of various metabolites extracted from Maca (Lepidium meyenii), a plant native to the central alpine region of Peru. Among the most important secondary metabolites contained in this plant are macamides, molecules derived from N-benzylamides of long-chain fatty acids. Macamides have been proposed as active drugs to treat some neurological disorders. Their excellent human tolerance and low toxicity along with neuroprotective, immune-enhancing, and and antioxidant properties make them ideal for exploration as therapeutic agents. In this review, we have compiled information from various studies on macamides, along with theories about the metabolic pathways on which they act.
Collapse
Affiliation(s)
| | | | - Rita Nieto-Montesinos
- Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (K.J.V.-L.); (G.D.-D.-C.)
| |
Collapse
|
10
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Zhang X, Guan M, Yi W, Li X, Ding X, He Y, Han W, Wang Z, Tang Q, Liao B, Shen J, Han X, Bai D. Smart Response Biomaterials for Pain Management. Adv Healthc Mater 2024; 13:e2401555. [PMID: 39039990 DOI: 10.1002/adhm.202401555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Indexed: 07/24/2024]
Abstract
The intricate nature of pain classification and mechanism constantly affects the recovery of diseases and the well-being of patients. Key medical challenges persist in devising effective pain management strategies. Therefore, a comprehensive review of relevant methods and research advancements in pain management is conducted. This overview covers the main categorization of pain and its developmental mechanism, followed by a review of pertinent research and techniques for managing pain. These techniques include commonly prescribed medications, invasive procedures, and noninvasive physical therapy methods used in rehabilitation medicine. Additionally, for the first time, a systematic summary of the utilization of responsive biomaterials in pain management is provided, encompassing their response to physical stimuli such as ultrasound, magnetic fields, electric fields, light, and temperature, as well as changes in the physiological environment like reactive oxygen species (ROS) and pH. Even though the application of responsive biomaterials in pain management remains limited and at a fundamental level, recent years have seen the examination and debate of relevant research findings. These profound discussions aim to provide trends and directions for future research in pain management.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Mengtong Guan
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xinhe Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xiaoqian Ding
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yi He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Wang Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zijie Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qiuyu Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Liao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jieliang Shen
- Department of Rehabilitation Medicine, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, 402760, P. R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
12
|
Cole RH, Joffe ME. Mu and Delta Opioid Receptors Modulate Inhibition within the Prefrontal Cortex Through Dissociable Cellular and Molecular Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618870. [PMID: 39484533 PMCID: PMC11526863 DOI: 10.1101/2024.10.17.618870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aberrant signaling within cortical inhibitory microcircuits has been identified as a common signature of neuropsychiatric disorders. Interneuron (IN) activity is precisely regulated by neuromodulatory systems that evoke widespread changes in synaptic transmission and principal cell output. Cortical interneurons express high levels of Mu and Delta opioid receptors (MOR and DOR), positioning opioid signaling as a critical regulator of inhibitory transmission. However, we lack a complete understanding of how MOR and DOR regulate prefrontal cortex (PFC) microcircuitry. Here, we combine whole-cell patch-clamp electrophysiology, optogenetics, and viral tools to provide an extensive characterization MOR and DOR regulation of inhibitory transmission. We show that DOR activation is more effective at suppressing spontaneous inhibitory transmission in the prelimbic PFC, while MOR causes a greater acute suppression of electrically-evoked GABA release. Cell type-specific optogenetics revealed that MOR and DOR differentially regulate inhibitory transmission from parvalbumin, somatostatin, cholecystokinin, and vasoactive intestinal peptide-expressing INs. Finally, we demonstrate that DOR regulates inhibitory transmission through pre- and postsynaptic modifications to IN physiology, whereas MOR function is predominantly observed in somato-dendritic or presynaptic compartments depending on cell type.
Collapse
Affiliation(s)
- Rebecca H. Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
13
|
Brandt HB, Sinning S, Hasselstrøm JB, Andersen CU. A review of possible biomarkers for opioid tolerance. Forensic Sci Int 2024; 363:112187. [PMID: 39154523 DOI: 10.1016/j.forsciint.2024.112187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Knowledge of opioid tolerance in a deceased person is important for distinguishing between therapeutic and toxic opioid concentrations for that particular individual when interpreting postmortem toxicological results. However, no biomarkers for opioid tolerance are currently available. This review aimed to study the existing literature on mechanisms or changes in signaling pathways related to chronic opioid use, which could be relevant for further studies to identify biomarkers for opioid tolerance. We performed a systematic literature search using the PRISMA 2020 guidelines using the MeSH terms "opioid tolerance AND biomarkers" in PubMed, Embase, WebofScience, and the Cochrane library. A review of the search results yielded seven studies on animal models or humans, identifying and evaluating thirteen possible biomarkers in terms of specificity for changes induced by opioids and other aspects to be considered as potential biomarkers. We evaluated nine potential biomarkers as unlikely to be specific for opioid tolerance, and one had contradictory results in terms of upregulation or downregulation. However, methylation of the promoter region of the μ-opioid receptor gene, increased activity of soluble puromycin-sensitive aminopeptidase, altered miRNA profile, or other multiple component profiling may be interesting to study further as biomarkers for opioid tolerance in forensic postmortem cases.
Collapse
Affiliation(s)
| | | | | | - Charlotte Uggerhøj Andersen
- Department of Forensic Medicine, Aarhus University, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Denmark.
| |
Collapse
|
14
|
Zhang J, Cheng J. A promising alternative to opioids. eLife 2024; 13:e103003. [PMID: 39344495 PMCID: PMC11441975 DOI: 10.7554/elife.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
A complex extracted from the amniotic membrane in humans reduces post-surgical pain in mice by directly inhibiting pain-sensing neurons.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pain Management, Cleveland Clinic, Cleveland, United States
- Department of Neuroscience, Cleveland Clinic, Cleveland, United States
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, Cleveland, United States
- Department of Neuroscience, Cleveland Clinic, Cleveland, United States
| |
Collapse
|
15
|
Henriques ART, Silva JP, Carvalho F. The impact of opioids on the hallmarks of ageing. Mech Ageing Dev 2024; 222:111994. [PMID: 39326463 DOI: 10.1016/j.mad.2024.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Opioids rank among the most hazardous substances of abuse, leading to opioid use disorders (which greatly diminish life quality) and contributing to the highest drug-related mortality rates. Nonetheless, both the therapeutic and recreational use of opioids is escalating globally. Interestingly, chronic opioid users often exhibit signs consistent with accelerated ageing, suggesting that they likely interfere with well-characterized ageing mechanisms (e.g., telomere shortening, epigenetic changes, mitochondrial dysfunction, cellular senescence). Here, we review the most recent advances regarding the impact of opioids on well-characterized hallmarks of ageing, to ascertain a potential association between opioid use and accelerated ageing. Our findings indicate that there is accumulating evidence supporting a close association between the use of opioids and the early onset of some ageing hallmarks, namely mitochondrial dysfunction, genomic instability, or telomere shortening. However, there is still limited data available regarding how opioids specifically impact other ageing hallmarks, like nutrient sensing, cellular senescence, or loss of proteostasis. Taking into consideration the high prevalence of opioid use, strengthening the understanding of the mechanisms underlying opioids' impact on ageing assumes utmost relevance, both in terms of improving risk assessment, as well as to help researchers and clinicians prevent or mitigate these effects in clinical settings.
Collapse
Affiliation(s)
- Ana Rita Tavares Henriques
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - João Pedro Silva
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Félix Carvalho
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
16
|
Liu Y, Sun J, Wu C, Ren J, He Y, Sun N, Huang H, Chen Q, Liu D, Huang Y, Xu F, Yu L, Fitzgibbon BM, Cash RFH, Fitzgerald PB, Yan M, Che X. Characterizing the opioidergic mechanisms of repetitive transcranial magnetic stimulation-induced analgesia: a randomized controlled trial. Pain 2024; 165:2035-2043. [PMID: 38537053 PMCID: PMC11331833 DOI: 10.1097/j.pain.0000000000003220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 08/21/2024]
Abstract
ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) is a promising technology to reduce chronic pain. Investigating the mechanisms of rTMS analgesia holds the potential to improve treatment efficacy. Using a double-blind and placebo-controlled design at both stimulation and pharmacologic ends, this study investigated the opioidergic mechanisms of rTMS analgesia by abolishing and recovering analgesia in 2 separate stages across brain regions and TMS doses. A group of 45 healthy participants were equally randomized to the primary motor cortex (M1), the dorsolateral prefrontal cortex (DLPFC), and the Sham group. In each session, participants received an intravenous infusion of naloxone or saline before the first rTMS session. Participants then received a second dose of rTMS session after the drugs were metabolized at 90 minutes. M1-rTMS-induced analgesia was abolished by naloxone compared with saline and was recovered by the second rTMS run when naloxone was metabolized. In the DLPFC, double but not the first TMS session induced significant pain reduction in the saline condition, resulting in less pain compared with the naloxone condition. In addition, TMS over the M1 or DLPFC selectively increased plasma concentrations of β-endorphin or encephalin, respectively. Overall, we present causal evidence that opioidergic mechanisms are involved in both M1-induced and DLPFC-rTMS-induced analgesia; however, these are shaped by rTMS dosage and the release of different endogenous opioids.
Collapse
Affiliation(s)
- Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Junfeng Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chaomin Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanni He
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - QunShan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyuxin Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Shenzhen Yingchi Technology Co, Ltd, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bernadette M. Fitzgibbon
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Melbourne, Australia
- Monarch Research Institute, Monarch Mental Health Group, Melbourne, Australia
| | - Robin F. H. Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Paul B. Fitzgerald
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Melbourne, Australia
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
Pinheiro AV, Petrucci GN, Dourado A, Silva F, Pires I. Pain Management in Animals with Oncological Disease: Opioids as Influencers of Immune and Tumor Cellular Balance. Cancers (Basel) 2024; 16:3015. [PMID: 39272873 PMCID: PMC11394036 DOI: 10.3390/cancers16173015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Advancements in understanding pain physiopathology have historically challenged animals' absence of pain senses. Studies have demonstrated that animals have comparable neural pain pathways, suggesting that cats and dogs likely experience pain similarly to humans. Understanding brain circuits for effective pain control has been crucial to adjusting pain management to the patient's individual responses and current condition. The refinement of analgesic strategies is necessary to better cater to the patient's demands. Cancer pain management searches to ascertain analgesic protocols that enhance patient well-being by minimizing or abolishing pain and reducing its impact on the immune system and cancer cells. Due to their ability to reduce nerve sensitivity, opioids are the mainstay for managing moderate and severe acute pain; however, despite their association with tumor progression, specific opioid agents have immune-protective properties and are considered safe alternatives to analgesia for cancer patients.
Collapse
Affiliation(s)
- Ana Vidal Pinheiro
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Animal and Veterinary Department, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative, CRL, 4585-116 Gandra, Portugal
- School of Agrarian Sciences, Polytechnic Institute of Viana do Castelo, Refoidos do Lima, 4990-706 Ponte de Lima, Portugal
| | - Gonçalo N Petrucci
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Animal and Veterinary Department, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative, CRL, 4585-116 Gandra, Portugal
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal
- Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School (EUVG), 3020-210 Coimbra, Portugal
| | - Amândio Dourado
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal
| | - Filipe Silva
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
18
|
Guitart-Vela J, Magrone Á, González G, Folch J. Effectiveness and Safety of Sublingual Fentanyl in the Treatment of Breakthrough Cancer Pain in Older Patients with Cancer: Results from a Retrospective Observational Study. J Pain Palliat Care Pharmacother 2024:1-12. [PMID: 39115710 DOI: 10.1080/15360288.2024.2385680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/03/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
The study assessed sublingual fentanyl citrate (SFC) effectiveness and safety for breakthrough cancer pain (BtCP) in older patients. A multicenter, retrospective, observational study was conducted in three subgroups of cancer patients aged over 65 years with BtCP. The reports were collected by 20 oncologists across 12 hospitals. The primary goal was to measure changes in BtCP intensity with SFC treatment over 30 days; secondary objectives included pain relief onset and adverse events. A total of 127 patients with long-term cancer (mean: 3.3 years) were recruited. All of them had BtCP, mostly of mixed origin (62.5%). A significantly lower dose was needed in the high-age group at the final visit compared to baseline (212.90 ± 200.45 mcg vs. 206 ± 167.08 mcg; p = 0.000). Pain intensities at the beginning of the flare and at 30 min after SFC administration were significantly lower when the last and first visits were compared (1.9 vs. 2.3, p = 0.000; and 6.2 vs. 6.8 p = 0.006, respectively). The onset of analgesia was significantly more rapid for half of the patients ≥75 years, compared with 65-69 and 70-74 age groups. SFC appears then to be effective, well-tolerated, and safe to treat BtCP in older cancer patients.
Collapse
Affiliation(s)
| | | | | | - Jordi Folch
- Servicio de Patología del Dolor, Hospital Plató, Barcelona, Spain
| |
Collapse
|
19
|
Gustafsson M, Silva V, Valeiro C, Joaquim J, van Hunsel F, Matos C. Misuse, Abuse and Medication Errors' Adverse Events Associated with Opioids-A Systematic Review. Pharmaceuticals (Basel) 2024; 17:1009. [PMID: 39204114 PMCID: PMC11357286 DOI: 10.3390/ph17081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Opioids are the strongest analgesics available and are crucial in the treatment of acute and chronic pain. The line between these critical medications and how they are used beyond standard therapeutics in cases such as abuse, misuse, and medication errors needs to be understood, as it affects their safety, efficacy, and manner of use. The aim of this systematic review was to identify what is known about the adverse events resulting from the abuse, misuse, and medication errors associated with opioid use. A systematic search was conducted in the PubMed®, Scopus® and, EBSCO® databases to retrieve studies from the inception to December 2023 reporting abuse, misuse, and medication errors associated with medicinal opioid use. Two authors independently screened titles and abstracts and full text according to eligibility using Covidence® software. Full articles were examined by two independent reviewers, and disagreements were resolved by a third reviewer. The risk of bias was assessed by the JBI's critical appraisal tools. A total of 934 articles were screened by their title and abstract. Then, 151 articles were selected for full text screening. Of these, 34 studies were eligible for inclusion in this review. The included studies varied significantly in their population sizes, ranging from 9 individuals to 298,433 patients, and encompassed a diverse demographic, including all ages and both sexes. The studies consistently reported a range of adverse events associated with opioid use. Fentanyl, morphine, oxycodone, tramadol, and hydrocodone were frequently implicated. The data heterogeneity in this field resulted in challenges in drawing conclusions. The review highlights that some opioids, particularly fentanyl, morphine, and oxycodone, are frequently associated with preventable adverse drug reactions, abuse, and medication errors, underscoring the need for robust preventative measures and ongoing research to mitigate opioid-related harm.
Collapse
Affiliation(s)
- Moa Gustafsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
| | - Vítor Silva
- Unidade Local de Saúde de Coimbra, EPE, 3004-561 Coimbra, Portugal;
| | - Carolina Valeiro
- Eu2P European Programme in Pharmacovigilance and Pharmacoepidemiology, University Autónoma de Barcelona, 08193 Barcelona, Spain;
| | - João Joaquim
- Instituto Politécnico De Coimbra, ESTESC-Coimbra Health School, Farmácia, 3046-854 Coimbra, Portugal;
| | - Florence van Hunsel
- Netherlands Pharmacovigilance Centre Lareb, 5237 MH ’s-Hertogenbosch, The Netherlands;
- Department of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Cristiano Matos
- Instituto Politécnico De Coimbra, ESTESC-Coimbra Health School, Farmácia, 3046-854 Coimbra, Portugal;
- QLV Research Consulting, 3030-193 Coimbra, Portugal
| |
Collapse
|
20
|
Constantin S, Sokanovic SJ, Mochimaru Y, Dams AL, Smiljanic K, Prévide RM, Nessa N, Carmona GN, Stojilkovic SS. Protein Tyrosine Phosphatase Receptors N and N2 Control Pituitary Melanotroph Development and POMC Expression. Endocrinology 2024; 165:bqae076. [PMID: 38923438 PMCID: PMC11242453 DOI: 10.1210/endocr/bqae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The neuroendocrine marker genes Ptprn and Ptprn2 encode protein tyrosine phosphatase receptors N and N2, 2 members of protein tyrosine phosphatase receptors void of enzymatic activity, and whose function and mechanism of action have not been elucidated. To explore the role(s) of Ptprn and Ptprn2 on the hypothalamic-pituitary-adrenal axis, we used mice in which both genes were knocked out (DKO). The focus in this study was on corticotrophs and melanotrophs from the anterior and intermediate lobes of the pituitary gland, respectively. In both sexes, DKO caused an increase in the expression of the corticotroph/melanotroph genes Pomc and Tbx19 and the melanotroph-specific gene Pax7. We also found in vivo and in vitro increased synthesis and release of beta-endorphin, alpha-melanocyte-stimulating hormone, and ACTH in DKO mice, which was associated with increased serum corticosterone levels and adrenal mass. DKO also increased the expression of other melanotroph-specific genes, but not corticotroph-specific genes. The dopaminergic pathway in the hypothalamus and dopaminergic receptors in melanotrophs were not affected in DKO mice. However, hyperplasia of the intermediate lobe was observed in DKO females and males, accompanied by increased proopiomelanocortin immunoreactivity per cell. These results indicate that protein tyrosine phosphatase receptor type N contributes to hypothalamic-pituitary-adrenal function by being involved in processes governing postnatal melanotroph development and Pomc expression.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Srdjan J Sokanovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yuta Mochimaru
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Aloa Lamarca Dams
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Rafael M Prévide
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Naseratun Nessa
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Gilberto N Carmona
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Furdui A, da Silveira Scarpellini C, Montandon G. Anatomical distribution of µ-opioid receptors, neurokinin-1 receptors, and vesicular glutamate transporter 2 in the mouse brainstem respiratory network. J Neurophysiol 2024; 132:108-129. [PMID: 38748514 DOI: 10.1152/jn.00478.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 07/03/2024] Open
Abstract
µ-Opioid receptors (MORs) are responsible for mediating both the analgesic and respiratory effects of opioid drugs. By binding to MORs in brainstem regions involved in controlling breathing, opioids produce respiratory depressive effects characterized by slow and shallow breathing, with potential cardiorespiratory arrest and death during overdose. To better understand the mechanisms underlying opioid-induced respiratory depression, thorough knowledge of the regions and cellular subpopulations that may be vulnerable to modulation by opioid drugs is needed. Using in situ hybridization, we determined the distribution and coexpression of Oprm1 (gene encoding MORs) mRNA with glutamatergic (Vglut2) and neurokinin-1 receptor (Tacr1) mRNA in medullary and pontine regions involved in breathing control and modulation. We found that >50% of cells expressed Oprm1 mRNA in the preBötzinger complex (preBötC), nucleus tractus solitarius (NTS), nucleus ambiguus (NA), postinspiratory complex (PiCo), locus coeruleus (LC), Kölliker-Fuse nucleus (KF), and the lateral and medial parabrachial nuclei (LBPN and MPBN, respectively). Among Tacr1 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, Bötzinger complex (BötC), PiCo, LC, raphe magnus nucleus, KF, LPBN, and MPBN, whereas among Vglut2 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, BötC, PiCo, LC, KF, LPBN, and MPBN. Taken together, our study provides a comprehensive map of the distribution and coexpression of Oprm1, Tacr1, and Vglut2 mRNA in brainstem regions that control and modulate breathing and identifies Tacr1 and Vglut2 mRNA-expressing cells as subpopulations with potential vulnerability to modulation by opioid drugs.NEW & NOTEWORTHY Opioid drugs can cause serious respiratory side-effects by binding to µ-opioid receptors (MORs) in brainstem regions that control breathing. To better understand the regions and their cellular subpopulations that may be vulnerable to modulation by opioids, we provide a comprehensive map of Oprm1 (gene encoding MORs) mRNA expression throughout brainstem regions that control and modulate breathing. Notably, we identify glutamatergic and neurokinin-1 receptor-expressing cells as potentially vulnerable to modulation by opioid drugs and worthy of further investigation using targeted approaches.
Collapse
Affiliation(s)
- Andreea Furdui
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Gaspard Montandon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Jones JD, Arout CA, Luba R, Murugesan D, Madera G, Gorsuch L, Schusterman R, Martinez S. The influence of drug class on reward in substance use disorders. Pharmacol Biochem Behav 2024; 240:173771. [PMID: 38670466 PMCID: PMC11162950 DOI: 10.1016/j.pbb.2024.173771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
In the United States, the societal costs associated with drug use surpass $500 billion annually. The rewarding and reinforcing properties that drive the use of these addictive substances are typically examined concerning the neurobiological effects responsible for their abuse potential. In this review, terms such as "abuse potential," "drug," and "addictive properties" are used due to their relevance to the methodological, theoretical, and conceptual framework for understanding the phenomenon of drug-taking behavior and the associated body of preclinical and clinical literature. The use of these terms is not intended to cast aspersions on individuals with substance use disorders (SUD). Understanding what motivates substance use has been a focus of SUD research for decades. Much of this corpus of work has focused on the shared effects of each drug class to increase dopaminergic transmission within the central reward pathways of the brain, or the "reward center." However, the precise influence of each drug class on dopamine signaling, and the extent thereof, differs considerably. Furthermore, the aforementioned substances have effects on several neurobiological targets that mediate and modulate their addictive properties. The current manuscript sought to review the influence of drug class on the rewarding effects of each of the major pharmacological classes of addictive drugs (i.e., psychostimulants, opioids, nicotine, alcohol, and cannabinoids). Our review suggests that even subtle differences in drug effects can result in significant variability in the subjective experience of the drug, altering rewarding and other reinforcing effects. Additionally, this review will argue that reward (i.e., the attractive and motivational property of a stimulus) alone is not sufficient to explain the abuse liability of these substances. Instead, abuse potential is best examined as a function of both positive and negative reinforcing drug effects (i.e., stimuli that the subject will work to attain and stimuli that the subject will work to end or avoid, respectively). Though reward is central to drug use, the factors that motivate and maintain drug taking are varied and complex, with much to be elucidated.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Caroline A Arout
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Rachel Luba
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Dillon Murugesan
- CUNY School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
| | - Gabriela Madera
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Liam Gorsuch
- Department of Psychiatry, The University of British Columbia, 430-5950 University Blvd., Vancouver V6T 1Z3, BC, Canada
| | - Rebecca Schusterman
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
23
|
Vu LY, Luo D, Johnson K, Denehy ED, Songrady JC, Martin J, Trivedi R, Alsum AR, Shaykin JD, Chaudhary CL, Woloshin EJ, Kornberger L, Bhuiyan N, Parkin S, Jiang Q, Che T, Alilain W, Turner JR, Bardo MT, Prisinzano TE. Searching for Synthetic Opioid Rescue Agents: Identification of a Potent Opioid Agonist with Reduced Respiratory Depression. J Med Chem 2024; 67:9173-9193. [PMID: 38810170 DOI: 10.1021/acs.jmedchem.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While in the process of designing more effective synthetic opioid rescue agents, we serendipitously identified a new chemotype of potent synthetic opioid. Here, we report that conformational constraint of a piperazine ring converts a mu opioid receptor (MOR) antagonist into a potent MOR agonist. The prototype of the series, which we have termed atoxifent (2), possesses potent in vitro agonist activity. In mice, atoxifent displayed long-lasting antinociception that was reversible with naltrexone. Repeated dosing of atoxifent produced antinociceptive tolerance and a level of withdrawal like that of fentanyl. In rats, while atoxifent produced complete loss of locomotor activity like fentanyl, it failed to produce deep respiratory depression associated with fentanyl-induced lethality. Assessment of brain biodistribution demonstrated ample distribution of atoxifent into the brain with a Tmax of approximately 0.25 h. These results indicate enhanced safety for atoxifent-like molecules compared to fentanyl.
Collapse
Affiliation(s)
- Loan Y Vu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Dan Luo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Kai Johnson
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Emily D Denehy
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Judy C Songrady
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jocelyn Martin
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Riya Trivedi
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Alexia R Alsum
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Chhabi Lal Chaudhary
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Eric J Woloshin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Lindsay Kornberger
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Nazmul Bhuiyan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Qianru Jiang
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Warren Alilain
- Spinal Cord and Brain Injury Research Center (SCoBIRC), College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
24
|
Wang L, Guo W, Guan H, Yan N, Cai X, Zhu L. Tramadol suppresses growth of orthotopic liver tumors via promoting M1 macrophage polarization in the tumor microenvironment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4205-4218. [PMID: 38041778 DOI: 10.1007/s00210-023-02871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Tumor-associated macrophages (TAMs) are major infiltrating immune cells in liver cancer. They are polarized to anti-tumor M1 type or tumor-supporting M2 type in a dynamic changing state. Tramadol, a synthetic opioid, exhibits tumor-suppressing effect in several cancers, but whether it plays a role in TAMs polarization is uncertain. In the present study, the potential influence of tramadol on TAMs polarization was explored in liver cancer. An orthotopic murine Hepa 1-6 liver cancer model was constructed. The potential function of tramadol was evaluated by cell viability assay, EdU incorporation assay, flow cytometry, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) assay, T cell proliferation and suppression assays and western blot. We found that tramadol suppressed proliferation and tumor formation of murine Hepa 1-6 cells in vitro and in vivo. Tramadol reprogramed the immune microenvironment to favor M1 macrophage polarization in orthotopic Hepa 1-6 tumors. Moreover, tramadol facilitated M1 macrophage polarization and inhibited M2 macrophage polarization of bone marrow-derived macrophages (BMDMs) and human THP-1 macrophages in vitro. Furthermore, tramadol-treated BMDMs promoted proliferation and activation of splenic CD4+ and CD8+ T cells. Tramadol induced cellular ROS production and mitochondrial dysfunction of BMDMs. Finally, tramadol activated NF-κB signaling in BMDMs and THP-1 macrophages, while inhibition of NF-κB signaling by JSH-23 attenuated the influence of tramadol on macrophage polarization. In conclusion, these data elucidated a novel anti-tumor mechanism of tramadol in liver cancer. Tramadol might be a promising treatment strategy for liver cancer patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University., No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China
| | - Weijia Guo
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University., No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China
| | - Hongman Guan
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University., No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China
| | - Ni Yan
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University., No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China
| | - Xiaolan Cai
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University., No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China
| | - Lili Zhu
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Dalian Medical University. , No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China.
| |
Collapse
|
25
|
Yamasaki T, Kiyokawa Y, Munetomo A, Takeuchi Y. Naloxone increases conditioned fear responses during social buffering in male rats. Eur J Neurosci 2024; 59:3256-3272. [PMID: 38644789 DOI: 10.1111/ejn.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Social buffering is the phenomenon in which the presence of an affiliative conspecific mitigates stress responses. We previously demonstrated that social buffering completely ameliorates conditioned fear responses in rats. However, the neuromodulators involved in social buffering are poorly understood. Given that opioids, dopamine, oxytocin and vasopressin play an important role in affiliative behaviour, here, we assessed the effects of the most well-known antagonists, naloxone (opioid receptor antagonist), haloperidol (dopamine D2 receptor antagonist), atosiban (oxytocin receptor antagonist) and SR49059 (vasopressin V1a receptor antagonist), on social buffering. In Experiment 1, fear-conditioned male subjects were intraperitoneally administered one of the four antagonists 25 min prior to exposure to a conditioned stimulus with an unfamiliar non-conditioned rat. Naloxone, but not the other three antagonists, increased freezing and decreased walking and investigation as compared with saline administration. In Experiment 2, identical naloxone administration did not affect locomotor activity, anxiety-like behaviour or freezing in an open-field test. In Experiment 3, after confirming that the same naloxone administration again increased conditioned fear responses, as done in Experiment 1, we measured Fos expression in 16 brain regions. Compared with saline, naloxone increased Fos expression in the paraventricular nucleus of the hypothalamus and decreased Fos expression in the nucleus accumbens shell, anterior cingulate cortex and insular cortex and tended to decrease Fos expression in the nucleus accumbens core. Based on these results, we suggest that naloxone blocks social buffering of conditioned fear responses in male rats.
Collapse
Affiliation(s)
- Takumi Yamasaki
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Kamiński P, Lorek M, Baszyński J, Tadrowski T, Gorzelańczyk EJ, Feit J, Tkaczenko H, Owoc J, Woźniak A, Kurhaluk N. Role of antioxidants in the neurobiology of drug addiction: An update. Biomed Pharmacother 2024; 175:116604. [PMID: 38692055 DOI: 10.1016/j.biopha.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Relationships between protective enzymatic and non-enzymatic pro-antioxidant mechanisms and addictive substances use disorders (SUDs) are analyzed here, based on the results of previous research, as well as on the basis of our current own studies. This review introduces new aspects of comparative analysis of associations of pro-antixidant and neurobiological effects in patients taking psychoactive substances and complements very limited knowledge about relationships with SUDs from different regions, mainly Europe. In view of the few studies on relations between antioxidants and neurobiological processes acting in patients taking psychoactive substances, this review is important from the point of view of showing the state of knowledge, directions of diagnosis and treatment, and further research needed explanation. We found significant correlations between chemical elements, pro-antioxidative mechanisms, and lipoperoxidation in the development of disorders associated with use of addictive substances, therefore elements that show most relations (Pr, Na, Mn, Y, Sc, La, Cr, Al, Ca, Sb, Cd, Pb, As, Hg, Ni) may be significant factors shaping SUDs. The action of pro-antioxidant defense and lipid peroxidation depends on the pro-antioxidative activity of ions. We explain the strongest correlations between Mg and Sb, and lipoperoxidation in addicts, which proves their stimulating effect on lipoperoxidation and on the induction of oxidative stress. We discussed which mechanisms and neurobiological processes change susceptibility to SUDs. The innovation of this review is to show that addicted people have lower activity of dismutases and peroxidases than healthy ones, which indicates disorders of antioxidant system and depletion of enzymes after long-term tolerance of stressors. We explain higher level of catalases, reductases, ceruloplasmin, bilirubin, retinol, α-tocopherol and uric acid of addicts. In view of poorly understood factors affecting addiction, analysis of interactions allows for more effective understanding of pathogenetic mechanisms leading to formation of addiction and development the initiation of directed, more effective treatment (pharmacological, hormonal) and may be helpful in the diagnosis of psychoactive changes.
Collapse
Affiliation(s)
- Piotr Kamiński
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland; University of Zielona Góra, Faculty of Biological Sciences, Institute of Biological Sciences, Department of Biotechnology, Prof. Z. Szafran St. 1, Zielona Góra PL 65-516, Poland.
| | - Małgorzata Lorek
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Jędrzej Baszyński
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Tadeusz Tadrowski
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Department of Dermatology and Venereology, Faculty of Medicine M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Edward Jacek Gorzelańczyk
- Kazimierz Wielki University in Bydgoszcz, Institute of Philosophy, M.K. Ogińskiego St. 16, Bydgoszcz PL 85-092, Poland; Adam Mickiewicz University in Poznań, Faculty of Mathematics and Computer Science, Uniwersyt Poznański St, 4, Poznań PL 61-614, Poland; Primate Cardinal Stefan Wyszyński Provincial Hospital in Sieradz, Psychiatric Centre in Warta, Sieradzka St. 3, Warta PL 98-290, Poland; Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Faculty of Pharmacy, Jagiellońska St. 15, Bydgoszcz PL 85-067, Poland
| | - Julia Feit
- Pallmed sp. z o.o., W. Roentgen St. 3, Bydgoszcz PL 85-796, Poland
| | - Halina Tkaczenko
- Pomeranian University in Słupsk, Institute of Biology, Arciszewski St. 22 B, Słupsk PL 76-200, Poland
| | - Jakub Owoc
- National Institute of Geriatrics, Rheumatology and Rehabilitation named after prof. dr hab. Eleonora Reicher, MD, Spartańska St. 1, Warszawa PL 02-637, Poland
| | - Alina Woźniak
- Nicholaus Copernicus University, Collegium Medicum in Bydgoszcz, Department of Medical Biology and Biochemistry, M. Karłowicz St. 24, Bydgoszcz PL 85-092, Poland
| | - Natalia Kurhaluk
- Pomeranian University in Słupsk, Institute of Biology, Arciszewski St. 22 B, Słupsk PL 76-200, Poland
| |
Collapse
|
27
|
Conibear A, Bailey CP, Kelly E. Biased signalling in analgesic research and development. Curr Opin Pharmacol 2024; 76:102465. [PMID: 38830321 DOI: 10.1016/j.coph.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Ligand bias offers a novel means to improve the therapeutic profile of drugs. With regard to G protein-coupled receptors involved in analgesia, it could be advantageous to develop such drugs if the analgesic effect is mediated by a different cellular signalling pathway than the adverse effects associated with the drug. Whilst this has been explored over a number of years for the μ receptor, it remains unclear whether this approach offers significant benefit for the treatment of pain. Nevertheless, the development of biased ligands at other G protein-coupled receptors in the CNS does offer some promise for the development of novel analgesic drugs in the future. Here we summarise and discuss the recent evidence to support this.
Collapse
Affiliation(s)
- Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chris P Bailey
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
28
|
Sah D, Shoffel-Havakuk H, Tsur N, Uhelski ML, Gottumukkala V, Cata JP. Opioids and Cancer: Current Understanding and Clinical Considerations. Curr Oncol 2024; 31:3086-3098. [PMID: 38920719 PMCID: PMC11203256 DOI: 10.3390/curroncol31060235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Pain is one of the most common symptoms in patients with cancer. Pain not only negatively affects the quality of life of patients with cancer, but it has also been associated with reduced survival. Pain management is therefore a critical component of cancer care. Prescription opioids remain the first-line approach for the management of moderate-to-severe pain associated with cancer. However, there has been increasing interest in understanding whether these analgesics could impact cancer progression. Furthermore, epidemiological data link a possible association between prescription opioid usage and cancer development. Until more robust evidence is available, patients with cancer with moderate-to-severe pain may receive opioids to decrease suffering. However, future studies should be conducted to evaluate the role of opioids and opioid receptors in specific cancers.
Collapse
Affiliation(s)
- Dhananjay Sah
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (V.G.)
- Anesthesiology and Surgical Oncology Research Group (ASORG), Houston, TX 77030, USA
| | - Hagit Shoffel-Havakuk
- Department of Otolaryngology-Head and Neck Surgery, Rabin Medical Center, Petach Tiqva 4941492, Israel; (H.S.-H.); (N.T.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nir Tsur
- Department of Otolaryngology-Head and Neck Surgery, Rabin Medical Center, Petach Tiqva 4941492, Israel; (H.S.-H.); (N.T.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Megan L. Uhelski
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Vijaya Gottumukkala
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (V.G.)
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (V.G.)
- Anesthesiology and Surgical Oncology Research Group (ASORG), Houston, TX 77030, USA
| |
Collapse
|
29
|
Yang H, Liu Z, Liu F, Wu H, Huang X, Huang R, Saw PE, Cao M. TET1-Lipid Nanoparticle Encapsulating Morphine for Specific Targeting of Peripheral Nerve for Pain Alleviation. Int J Nanomedicine 2024; 19:4759-4777. [PMID: 38828199 PMCID: PMC11141738 DOI: 10.2147/ijn.s453608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Opioids are irreplaceable analgesics owing to the lack of alternative analgesics that offer opioid-like pain relief. However, opioids have many undesirable central side effects. Restricting opioids to peripheral opioid receptors could reduce those effects while maintaining analgesia. Methods To achieve this goal, we developed Tet1-LNP (morphine), a neural-targeting lipid nanoparticle encapsulating morphine that could specifically activate the peripheral opioid receptor in the dorsal root ganglion (DRG) and significantly reduce the side effects caused by the activation of opioid receptors in the brain. Tet1-LNP (morphine) were successfully prepared using the thin-film hydration method. In vitro, Tet1-LNP (morphine) uptake was assessed in differentiated neuron-like PC-12 cells and dorsal root ganglion (DRG) primary cells. The uptake of Tet1-LNP (morphine) in the DRGs and the brain was assessed in vivo. Von Frey filament and Hargreaves tests were used to assess the antinociception of Tet1-LNP (morphine) in the chronic constriction injury (CCI) neuropathic pain model. Morphine concentration in blood and brain were evaluated using ELISA. Results Tet1-LNP (morphine) had an average size of 131 nm. Tet1-LNP (morphine) showed high cellular uptake and targeted DRG in vitro. CCI mice treated with Tet1-LNP (morphine) experienced prolonged analgesia for nearly 32 h compared with 3 h with free morphine (p < 0.0001). Notably, the brain morphine concentration in the Tet1-LNP (morphine) group was eight-fold lower than that in the morphine group (p < 0.0001). Conclusion Our study presents a targeted lipid nanoparticle system for peripheral neural delivery of morphine. We anticipate Tet1-LNP (morphine) will offer a safe formulation for chronic neuropathic pain treatment, and promise further development for clinical applications.
Collapse
Affiliation(s)
- Hongmei Yang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Zhongqi Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Fan Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Anesthesiology, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, People’s Republic of China
| | - Haixuan Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Xiaoyan Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Rong Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Phei Er Saw
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Anesthesiology, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, People’s Republic of China
| |
Collapse
|
30
|
Zimmerman A, Laitman A. Safe Management of Adverse Effects Associated with Prescription Opioids in the Palliative Care Population: A Narrative Review. J Clin Med 2024; 13:2746. [PMID: 38792289 PMCID: PMC11121850 DOI: 10.3390/jcm13102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
In the palliative care population, prescription opioids are often considered viable pain relief options. However, in this complex patient population, the adverse effects of opioid medications should be identified and managed without delay. Common adverse effects can include constipation, nausea, somnolence, dizziness, vomiting, and pruritus. Less common adverse effects can include potentially lethal respiratory depression and cardiovascular effects. Critical aspects of safe opioid prescribing are recognition of side effects and knowledge of effective management strategies; prompt management is necessary for uninterrupted pain relief. Most complications are managed with general approaches such as dose reduction, opioid rotation, alternate routes of administration, and symptomatic management. The only opioid-induced complication for which US Food and Drug Administration-approved treatments currently exist is constipation. Treating laxative-refractory opioid-induced constipation (OIC) with peripherally acting mu-opioid receptor antagonists (PAMORAs), which block gastrointestinal opioid receptors, can restore gastrointestinal motility and fluid secretion. This narrative review discusses key complications of prescription opioid treatment and their management in the palliative care setting.
Collapse
Affiliation(s)
| | - Adam Laitman
- Salix Pharmaceuticals, Bridgewater, NJ 08807, USA;
| |
Collapse
|
31
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Hu J, Song Y, Huang X, Li C, Jin X, Cen L, Zhang C, Ding B, Lian J. Opioids-Induced Long QT Syndrome: A Challenge to Cardiac Health. Cardiovasc Toxicol 2024; 24:472-480. [PMID: 38630336 PMCID: PMC11076354 DOI: 10.1007/s12012-024-09853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
The challenge posed by opioid overdose has become a significant concern for health systems due to the complexities associated with drug prohibition, widespread clinical use, and potential abuse. In response, healthcare professionals have primarily concentrated on mitigating the hallucinogenic and respiratory depressant consequences of opioid overdose to minimize associated risks. However, it is crucial to acknowledge that most opioids possess the capacity to prolong the QT interval, particularly in cases of overdose, thereby potentially resulting in severe ventricular arrhythmias and even sudden death if timely intervention is not implemented. Consequently, alongside addressing the typical adverse effects of opioids, it is imperative to consider their cardiotoxicity. To enhance comprehension of the correlation between opioids and arrhythmias, identify potential targets for prompt intervention, and mitigate the hazards associated with clinical utilization, an exploration of the interaction between drugs and ion channels, as well as their underlying mechanisms, becomes indispensable. This review primarily concentrates on elucidating the impact of opioid drugs on diverse ion channels, investigating recent advancements in this domain, and attaining a deeper understanding of the mechanisms underlying the prolongation of the QT interval by opioid drugs, along with potential interventions.
Collapse
Affiliation(s)
- Jiale Hu
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Yongfei Song
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315000, Zhejiang, China
| | - Xiaoyan Huang
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315000, Zhejiang, China
| | - Chongrong Li
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Xiaojun Jin
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Lichao Cen
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Chuanjin Zhang
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Beilei Ding
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Jiangfang Lian
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China.
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
33
|
Kakei Y, Ioroi T, Miyakoda K, Ito T, Kashin M, Shirai T, Hasegawa T, Sakane T, Yano I, Akashi M. Assessment of Patient Characteristics Influencing the Analgesic Effects of Ibuprofen Gargle After Mandibular Third Molar Extractions. Cureus 2024; 16:e57516. [PMID: 38572179 PMCID: PMC10989207 DOI: 10.7759/cureus.57516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction In our previous work, we investigated the analgesic effects of ibuprofen gargle after mandibular third molar extractions. However, a subsequent detailed review of individual patient data revealed variations in postoperative pain reduction among patients. Consequently, the present study was designed to conduct post-hoc subanalyses that identified factors contributing to variation in the analgesic response to ibuprofen gargle after third molar extractions. Materials and methods This study involved thirty-five Japanese patients from a prior randomized, double-blind, placebo-controlled, crossover study, which focused on the analgesic effects of ibuprofen gargle after mandibular third molar extractions. Participants were categorized as responders (n = 13) and non-responders (n = 22) based on the within-subject difference (ibuprofen-placebo, IP) of visual analog scale (VAS) changes. Baseline characteristics were compared, along with variables, such as age, sex, the reason for extraction, extraction site, Pell Gregory (space and depth) classification, Winter's classification, surgeon's experience, and surgery time. Baseline characteristics predicting responder status were examined using multivariate logistic regression. Results In the univariate analysis, variables such as age, sex, and baseline VAS scores with p-values <0.2 were evaluated using a stepwise approach. This analysis identified age (per -10 years) with an odds ratio of 4.163 (95% confidence interval (CI): 1.170-31.952, p = 0.0233) and sex (female) with an odds ratio of 9.977 (95% CI: 1.336-208.256, p = 0.0213) as significant predictors of responder status. Conclusions In young and female patients, ibuprofen gargle decreased postoperative pain after mandibular third molar extractions.
Collapse
Affiliation(s)
- Yasumasa Kakei
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | | | - Keiko Miyakoda
- Clinical and Translational Research Center, Kobe University Hospital, Kobe, JPN
| | | | - Masahiko Kashin
- Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Tatsuya Shirai
- Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Takumi Hasegawa
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Toshiyasu Sakane
- Pharmaceutical Technology, Kobe Pharmaceutical University, Kobe, JPN
| | - Ikuko Yano
- Pharmacy, Kobe University Hospital, Kobe, JPN
| | - Masaya Akashi
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| |
Collapse
|
34
|
Jia Z, Wei X, Chen N, Xu X, Zhao G, Fu X, Wang H, Goldring MB, Goldring SR, Wang D. Thermoresponsive Polymeric Hydromorphone Prodrug Provides Sustained Local Analgesia without Apparent Adverse Effects. Mol Pharm 2024; 21:1838-1847. [PMID: 38413029 PMCID: PMC11210938 DOI: 10.1021/acs.molpharmaceut.3c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The extensive use of opioids for chronic pain management has contributed significantly to the current opioid epidemic. While many alternative nonopioid analgesics are available, opioids remain the most potent analgesics for moderate to severe pain management. In addition to the implementation of multimodal analgesia, there is a pressing need for the development of more effective and safer opioids. In this study, we developed a thermoresponsive N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based hydromorphone (HMP) prodrug (ProGel-HMP, HMP content = 16.2 wt %, in base form). The aqueous solution of ProGel-HMP was free-flowing at 4 °C but became a hydrogel when the temperature was raised to ≥37 °C, allowing sustained local retention when administered in vivo. When tested in the destabilization of the medial meniscus (DMM) mouse model of osteoarthritis (OA), ProGel-HMP was retained after intra-articular injection in the OA knee joint for at least 2 weeks postinjection, with low extra-articular distribution. ProGel-HMP was not detected in the central nervous system (CNS). A single dose of ProGel-HMP produced rapid and sustained joint pain resolution for greater than 14 days when compared to saline and dose-equivalent HMP controls, likely mediated through peripheral μ-opioid receptors in the knee joint. Systemic analgesia effect was absent in the DMM mice treated with ProGel-HMP, as evident in the lack of difference in tail flick response between the ProGel-HMP-treated mice and the controls (i.e., Healthy, Saline, and Sham). Repeated dosing of ProGel-HMP did not induce tolerance. Collectively, these data support the further development of ProGel-HMP as a potent, safe, long-acting and nonaddictive analgesic for better clinical pain management.
Collapse
Affiliation(s)
- Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Xiaoke Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Gang Zhao
- Ensign Pharmaceutical, Omaha, NE 68106, USA
| | - Xin Fu
- Ensign Pharmaceutical, Omaha, NE 68106, USA
| | - Hanjun Wang
- Department of Anesthesiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-4455, USA
| | | | - Steven R. Goldring
- Ensign Pharmaceutical, Omaha, NE 68106, USA
- Hospital for Special Surgery, New York, NY, 10021, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
- Ensign Pharmaceutical, Omaha, NE 68106, USA
- Department of Orthopaedic and Rehabilitation, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5640, USA
| |
Collapse
|
35
|
Bi K, Lei Y, Kong D, Li Y, Fan X, Luo X, Yang J, Wang G, Li X, Xu Y, Luo H. Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon 2024; 10:e27187. [PMID: 38533077 PMCID: PMC10963202 DOI: 10.1016/j.heliyon.2024.e27187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Morphine is a widely used opioid for treatment of pain. The attendant problems including morphine tolerance and morphine dependence pose a major public health challenge. In recent years, there has been increasing interest in the gastrointestinal microbiota in many physiological and pathophysiological processes. The connectivity network between the gut microbiota and the brain is involved in multiple biological systems, and bidirectional communication between them is critical in gastrointestinal tract homeostasis, the central nervous system, and the microbial system. Many research have previously shown that morphine has a variety of effects on the gastrointestinal tract, but none have determined the function of intestinal microbiota in morphine tolerance. This study reviewed the mechanisms of morphine tolerance from the perspective of dysregulation of microbiota-gut-brain axis homeostasis, by summarizing the possible mechanisms originating from the gut that may affect morphine tolerance and the improvement of morphine tolerance through the gut microbiota.
Collapse
Affiliation(s)
- Ke Bi
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yi Lei
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Deshenyue Kong
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yuansen Li
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xuan Fan
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xiao Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Jiqun Yang
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, China
| | - Guangqing Wang
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Xuejun Li
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
36
|
Gach-Janczak K, Biernat M, Kuczer M, Adamska-Bartłomiejczyk A, Kluczyk A. Analgesic Peptides: From Natural Diversity to Rational Design. Molecules 2024; 29:1544. [PMID: 38611824 PMCID: PMC11013236 DOI: 10.3390/molecules29071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pain affects one-third of the global population and is a significant public health issue. The use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the discovery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The aim of this review is to present peptides of human and animal origin with antinociceptive potential and to show the possibilities of their modification, as well as the design of novel structures. The study presents the current knowledge on structure-activity relationship in the design of peptide-based biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity, and improvement of metabolic stability and pharmacodynamic profile. The procedures employed in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the conditions leading to the development of potential morphine replacements.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Monika Biernat
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| |
Collapse
|
37
|
Xia J, Li X, Zhu H, Zhou X, Chen J, Li Q, Li S, Chu H, Dong M. The μ-opioid receptor-mediated G i/o protein and β-arrestin2 signaling pathways both contribute to morphine-induced side effects. Eur J Pharmacol 2024; 966:176333. [PMID: 38278466 DOI: 10.1016/j.ejphar.2024.176333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The μ-opioid receptor-biased agonist theory holds that Gio protein signaling mediates the analgesic effect of opioids and the related side effects via the β-arrestin2 signaling pathway. A series of μ-opioid-biased agonists have been developed in accordance with this theory, and the FDA has approved TRV130 (as a representative of biased agonists) for marketing. However, several reports have raised the issue of opioid side effects associated with the use of agonists. In this study, five permeable peptides were designed to emulate 11 S/T phosphorylation sites at the μ-opioid receptor (MOR) carboxyl-terminal. In vitro experiments were performed to detect the activation level of G proteins from the cAMP inhibition assay and the β-arrestin2 recruitment by the BRET assay. Designed peptides might effectively interfere with the activation of the Gio and β-arrestin2 pathways when combined with morphine. The resulting morphine-induced tolerance, respiratory inhibition, and constipation in mice showed that the β-arrestin2 pathway was responsible for morphine tolerance while the Gio signaling pathway was involved with respiratory depression and constipation and that these side effects were significantly related to phosphorylation sites S363 and T370. This study may provide new directions for the development of safer and more effective opioid analgesics, and the designed peptides may be an effective tool for exploring the mechanism by which μ-opioid receptors function, with the potential of reducing the side effects that are associated with clinical opioid treatment.
Collapse
Affiliation(s)
- Jing Xia
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Xiaoyan Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Hongyu Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Xiaohui Zhou
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Ji Chen
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Qihong Li
- Department of Stomatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Haichen Chu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
38
|
Bahji A, Bastien G, Bach P, Choi J, Le Foll B, Lim R, Jutras-Aswad D, Socias ME. The Association Between Self-Reported Anxiety and Retention in Opioid Agonist Therapy: Findings From a Canadian Pragmatic Trial. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2024; 69:172-182. [PMID: 37697811 PMCID: PMC10874605 DOI: 10.1177/07067437231194385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
BACKGROUND Prescription-type opioid use disorder (POUD) is often accompanied by comorbid anxiety, yet the impact of anxiety on retention in opioid agonist therapy (OAT) is unclear. Therefore, this study investigated whether baseline anxiety severity affects retention in OAT and whether this effect differs by OAT type (methadone maintenance therapy (MMT) vs. buprenorphine/naloxone (BNX)). METHODS This secondary analysis used data from a pan-Canadian randomized trial comparing flexible take-home dosing BNX and standard supervised MMT for 24 weeks. The study included 268 adults with POUD. Baseline anxiety was assessed using the Beck Anxiety Inventory (BAI), with BAI ≥ 16 indicating moderate-to-severe anxiety. The primary outcomes were retention in assigned and any OAT at week 24. In addition, the impact of anxiety severity on retention was examined, and assigned OAT was considered an effect modifier. RESULTS Of the participants, 176 (65%) reported moderate-to-severe baseline anxiety. In adjusted analyses, there was no significant difference in retention between those with BAI ≥ 16 and those with BAI < 16 assigned (29% vs. 28%; odds ratio (OR) = 2.03, 95% confidence interval (CI) = 0.94-4.40; P = 0.07) or any OAT (35% vs. 34%; OR = 1.57, 95% CI = 0.77-3.21; P = 0.21). In addition, there was no significant effect modification by OAT type for retention in assigned (P = 0.41) or any OAT (P = 0.71). In adjusted analyses, greater retention in treatment was associated with BNX (vs. MMT), male gender identity (vs. female, transgender, or other), enrolment in the Quebec study site (vs. other sites), and absence of a positive urine drug screen for stimulants at baseline. CONCLUSIONS Baseline anxiety severity did not significantly impact retention in OAT for adults with POUD, and there was no significant effect modification by OAT type. However, the overall retention rates were low, highlighting the need to develop new strategies to minimize the risk of attrition from treatment. CLINICAL TRIAL REGISTRATION This study was registered in ClinicalTrials.gov (NCT03033732).
Collapse
Affiliation(s)
- Anees Bahji
- British Columbia Centre on Substance Use, Vancouver, BC, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gabriel Bastien
- Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Research Centre, Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Paxton Bach
- British Columbia Centre on Substance Use, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - JinCheol Choi
- British Columbia Centre on Substance Use, Vancouver, BC, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical Sciences Building, University of Toronto, Toronto, ON, Canada
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Ron Lim
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Didier Jutras-Aswad
- Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Research Centre, Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - M. Eugenia Socias
- British Columbia Centre on Substance Use, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Chiang CC, Porreca F, Robertson CE, Dodick DW. Potential treatment targets for migraine: emerging options and future prospects. Lancet Neurol 2024; 23:313-324. [PMID: 38365382 DOI: 10.1016/s1474-4422(24)00003-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
Migraine is a leading cause of disability worldwide. Despite the recent approval of several calcitonin gene-related peptide-targeted therapies, many people with migraine do not achieve satisfactory headache improvement with currently available therapies and there continues to be an unmet need for effective and tolerable migraine-specific treatments. Exploring additional targets that have compelling evidence for their involvement in modulating migraine pathways is therefore imperative. Potential new therapies for migraine include pathways involved in nociception, regulation of homoeostasis, modulation of vasodilation, and reward circuits. Animal and human studies show that these targets are expressed in regions of the CNS and peripheral nervous system that are involved in pain processing, indicating that these targets might be regarded as promising for the discovery of new migraine therapies. Future studies will require assessment of whether targets are suitable for therapeutic modulation, including assessment of specificity, affinity, solubility, stability, efficacy, and safety.
Collapse
Affiliation(s)
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | | | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA; Atria Academy of Science and Medicine, New York, NY, USA
| |
Collapse
|
40
|
Nisbett KE, Vendruscolo LF, Koob GF. µ-Opioid receptor antagonism facilitates the anxiolytic-like effect of oxytocin in mice. Transl Psychiatry 2024; 14:125. [PMID: 38413576 PMCID: PMC10899625 DOI: 10.1038/s41398-024-02830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Mood and anxiety disorders are leading causes of disability worldwide and are major contributors to the global burden of diseases. Neuropeptides, such as oxytocin and opioid peptides, are important for emotion regulation. Previous studies have demonstrated that oxytocin reduced depression- and anxiety-like behavior in male and female mice, and opioid receptor activation reduced depression-like behavior. However, it remains unclear whether the endogenous opioid system interacts with the oxytocin system to facilitate emotion regulation in male and female mice. We hypothesized that opioid receptor blockade would inhibit the anxiolytic- and antidepressant-like effects of oxytocin. In this study, we systemically administered naloxone, a preferential μ-opioid receptor antagonist, and then intracerebroventricularly administered oxytocin. We then tested mice on the elevated zero maze and the tail suspension tests, respective tests of anxiety- and depression-like behavior. Contrary to our initial hypothesis, naloxone potentiated the anxiolytic-like, but not the antidepressant-like, effect of oxytocin. Using a selective μ-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2, and a selective κ-opioid receptor antagonist, norbinaltorphimine, we demonstrate that μ-opioid receptor blockade potentiated the anxiolytic-like effect of oxytocin, whereas κ-opioid receptor blockade inhibited the oxytocin-induced anxiolytic-like effects. The present results suggest that endogenous opioids can regulate the oxytocin system to modulate anxiety-like behavior. Potential clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Khalin E Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA.
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
41
|
Greenberg JM, Winters AD, Zagorac B, Kracht DJ, Francescutti DM, Cannella N, Ciccocioppo R, Woods LCS, Mackle J, Hardiman GT, Kuhn BN, Kalivas PW, Kuhn DM, Angoa-Perez M. Long access heroin self-administration significantly alters gut microbiome composition and structure. Front Psychiatry 2024; 15:1369783. [PMID: 38476614 PMCID: PMC10927763 DOI: 10.3389/fpsyt.2024.1369783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction It is well known that chronic opioid use disorder is associated with alterations in gastrointestinal (GI) function that include constipation, reduced motility, and increased bacterial translocation due to compromised gut barrier function. These signs of disrupted GI function can be associated with alterations in the gut microbiome. However, it is not known if long-access opioid self-administration has effects on the gut microbiome. Methods We used 16S rRNA gene sequencing to investigate the gut microbiome in three independent cohorts (N=40 for each) of NIH heterogeneous stock rats before onset of long-access heroin self-administration (i.e., naïve status), at the end of a 15-day period of self-administration, and after post-extinction reinstatement. Measures of microbial α- and β-diversity were evaluated for all phases. High-dimensional class comparisons were carried out with MaAsLin2. PICRUSt2 was used for predicting functional pathways impacted by heroin based on marker gene sequences. Results Community α-diversity was not altered by heroin at any of the three phases by comparison to saline-yoked controls. Analyses of β-diversity showed that the heroin and saline-yoked groups clustered significantly apart from each other using the Bray-Curtis (community structure) index. Heroin caused significant alterations at the ASV level at the self-administration and extinction phases. At the phylum level, the relative abundance of Firmicutes was increased at the self-administration phase. Deferribacteres was decreased in heroin whereas Patescibacteria was increased in heroin at the extinction phase. Potential biomarkers for heroin emerged from the MaAsLin2 analysis. Bacterial metabolomic pathways relating to degradation of carboxylic acids, nucleotides, nucleosides, carbohydrates, and glycogen were increased by heroin while pathways relating to biosynthesis of vitamins, propionic acid, fatty acids, and lipids were decreased. Discussion These findings support the view that long access heroin self-administration significantly alters the structure of the gut microbiome by comparison to saline-yoked controls. Inferred metabolic pathway alterations suggest the development of a microbial imbalance favoring gut inflammation and energy expenditure. Potential microbial biomarkers and related functional pathways likely invoked by heroin self-administration could be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan M. Greenberg
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Andrew D. Winters
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Branislava Zagorac
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - David J. Kracht
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Dina M. Francescutti
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Nazzareno Cannella
- Pharmacology Unit, School of Pharmacy, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Leah C. Solberg Woods
- Department of Molecular Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - James Mackle
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Gary T. Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Brittany N. Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Donald M. Kuhn
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Mariana Angoa-Perez
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
42
|
Gooding SW, Whistler JL. A Balancing Act: Learning from the Past to Build a Future-Focused Opioid Strategy. Annu Rev Physiol 2024; 86:1-25. [PMID: 38029388 PMCID: PMC10987332 DOI: 10.1146/annurev-physiol-042022-015914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The harmful side effects of opioid drugs such as respiratory depression, tolerance, dependence, and abuse potential have limited the therapeutic utility of opioids for their entire clinical history. However, no previous attempt to develop effective pain drugs that substantially ameliorate these effects has succeeded, and the current opioid epidemic affirms that they are a greater hindrance to the field of pain management than ever. Recent attempts at new opioid development have sought to reduce these side effects by minimizing engagement of the regulatory protein arrestin-3 at the mu-opioid receptor, but there is significant controversy around this approach. Here, we discuss the ongoing effort to develop safer opioids and its relevant historical context. We propose a new model that reconciles results previously assumed to be in direct conflict to explain how different signaling profiles at the mu-opioid receptor contribute to opioid tolerance and dependence. Our goal is for this framework to inform the search for a new generation of lower liability opioid analgesics.
Collapse
Affiliation(s)
| | - Jennifer L Whistler
- Center for Neuroscience, University of California, Davis, California, USA;
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, California, USA
| |
Collapse
|
43
|
Bettinger JJ, Friedman BC. Opioids and Immunosuppression: Clinical Evidence, Mechanisms of Action, and Potential Therapies. Palliat Med Rep 2024; 5:70-80. [PMID: 38435086 PMCID: PMC10908329 DOI: 10.1089/pmr.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 03/05/2024] Open
Abstract
Background In addition to the more well-known adverse effects of opioids, such as constipation, mounting evidence supports underlying immunosuppressive effects as well. Methods In this study, we provide a narrative review of preclinical and clinical evidence of opioid suppression of the immune system as well as possible considerations for therapies. Results In vitro and animal studies have shown clear effects of opioids on inflammatory cytokine expression, immune cell activity, and pathogen susceptibility. Observational data in humans have so far supported preclinical findings, with multiple reports of increased rates of infections in various settings of opioid use. However, the extent to which this risk is due to the impact of opioids on the immune system compared with other risk factors associated with opioid use remains uncertain. Considering the data showing immunosuppression and increased risk of infection with opioid use, measures are needed to mitigate this risk in patients who require ongoing treatment with opioids. In preclinical studies, administration of opioid receptor antagonists blocked the immunomodulatory effects of opioids. Conclusions As selective antagonists of peripheral opioid receptors, peripherally acting mu-opioid receptor (MOR) antagonists may be able to protect against immune impairment while still allowing for opioid analgesia. Future research is warranted to further investigate the relationship between opioids and infection risk as well as the potential application of peripherally acting MOR antagonists to counteract these risks.
Collapse
Affiliation(s)
- Jeffrey J. Bettinger
- Pain Management, Saratoga Hospital Medical Group, Saratoga Springs, New York, USA
| | - Bruce C. Friedman
- JM Still Burn Center, Doctors Hospital of Augusta, Augusta, Georgia, USA
| |
Collapse
|
44
|
Li X, Li X, Liao L. Mechanism of Action of Tibial Nerve Stimulation in the Treatment of Lower Urinary Tract Dysfunction. Neuromodulation 2024; 27:256-266. [PMID: 37178068 DOI: 10.1016/j.neurom.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Tibial nerve stimulation (TNS) has long been used to effectively treat lower urinary tract dysfunction (LUTD). Although numerous studies have concentrated on TNS, its mechanism of action remains elusive. This review aimed to concentrate on the mechanism of action of TNS against LUTD. MATERIALS AND METHODS A literature search was performed in PubMed on October 31, 2022. In this study, we introduced the application of TNS for LUTD, summarized different methods used in exploring the mechanism of TNS, and discussed the next direction to investigate the mechanism of TNS. RESULTS AND CONCLUSIONS In this review, 97 studies, including clinical studies, animal experiments, and reviews, were used. TNS is an effective treatment for LUTD. The study of its mechanisms primarily concentrated on the central nervous system, tibial nerve pathway, receptors, and TNS frequency. More advanced equipment will be used in human experiments to investigate the central mechanism, and diverse animal experiments will be performed to explore the peripheral mechanism and parameters of TNS in the future.
Collapse
Affiliation(s)
- Xunhua Li
- School of Rehabilitation, Capital Medical University, Department of Urology, China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xing Li
- School of Rehabilitation, Capital Medical University, Department of Urology, China Rehabilitation Research Center, Beijing, China
| | - Limin Liao
- School of Rehabilitation, Capital Medical University, Department of Urology, China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Qingdao, China; China Rehabilitation Science Institute, Beijing, China.
| |
Collapse
|
45
|
Zare N, Sharafeddin F, Montazerolghaem A, Moradiannezhad N, Araghizadeh M. NLRs and inflammasome signaling in opioid-induced hyperalgesia and tolerance. Inflammopharmacology 2024; 32:127-148. [PMID: 38153538 DOI: 10.1007/s10787-023-01402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/18/2023] [Indexed: 12/29/2023]
Abstract
We investigated the role that innate immunological signaling pathways, principally nod-like receptors (NLRs) and inflammasomes, in the manifestation of the contradictory outcomes associated with opioids, namely hyperalgesia, and tolerance. The utilization of opioids for pain management is prevalent; nonetheless, it frequently leads to an increased sensitivity to pain (hyperalgesia) and reduced efficacy of the medication (tolerance) over an extended period. This, therefore, represents a major challenge in the area of chronic pain treatment. Recent studies indicate that the aforementioned negative consequences are partially influenced by the stimulation of NLRs, specifically the NLRP3 inflammasome, and the subsequent assembly of the inflammasome. This process ultimately results in the generation of inflammatory cytokines and the occurrence of neuroinflammation and the pathogenesis of hyperalgesia. We also explored the putative downstream signaling cascades activated by NOD-like receptors (NLRs) and inflammasomes in response to opioid stimuli. Furthermore, we probed potential therapeutic targets for modifying opioid-induced hyperalgesia, with explicit emphasis on the activation of the NLRP3 inflammasome. Ultimately, our findings underscore the significance of conducting additional research in this area that includes an examination of the involvement of various NLRs, immune cells, and genetic variables in the development of opioid-induced hyperalgesia and tolerance. The present review provides substantial insight into the possible pathways contributing to the occurrence of hyperalgesia and tolerance in individuals taking opioids.
Collapse
Affiliation(s)
- Nasrin Zare
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Fateme Sharafeddin
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - AmirMahdi Montazerolghaem
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Nastaran Moradiannezhad
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohammaderfan Araghizadeh
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
46
|
Guo J, Zhao F, Bian J, Hu Y, Tan J. Low-dose ketamine versus morphine in the treatment of acute pain in the emergency department: A meta-analysis of 15 randomized controlled trials. Am J Emerg Med 2024; 76:140-149. [PMID: 38071883 DOI: 10.1016/j.ajem.2023.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVE To compare the effectiveness and safety of ketamine and morphine in adult patients with acute pain in emergency department (ED) by using a meta-analysis method. METHODS This study was based on the Cochrane methodology for conducting a meta-analysis. Only randomized controlled trials (RCTs) were eligible for this study, with an experimental group that received low-dose ketamine and a control group that received morphine. The participants were adults who had acute pain in the ED. The primary outcome measures were the numeric rating scale (NRS) and visual analog scale (VAS). The secondary outcome measures were the complete resolution of pain, NRS reduction ≥3 points, NRS reduction ≥50% or 60%, change of NRS score, change of VAS score, rescue analgesia, satisfaction and adverse events. Subgroup analysis was performed for studies with intravenous and intranasal administration of ketamine. The Review Manager Database was used to analyze the included studies. RESULTS 15 RCTs involving 1768 patients were included. The ketamine group had lower NRS scores than morphine group at 30 min (MD, -0.77 [95% CI, -0.93 to -0.61]; p < 0.00001), while the morphine had better analgesic effects at 120 min after treatment (MD, 0.33 [95% CI, 0.15 to 051]; p = 0.0003). The subjects of complete resolution of pain in the ketamine group performed better than those in the morphine group at 15 min (RR 3.18, 95% CI 1.75 to 5.78; p = 0.0001). Compared with the morphine group, the ketamine group had a lower incidence of adverse events requiring intervention (RR, 0.34 [95% CI, 0.18 to 0.66]; p = 0.001). Subgroup analysis of intravenous ketamine showed that ketamine had lower VAS score than the morphine group at 30 min. However, also on the 30-min VAS score, intranasal ketamine analgesia was less effective than morphine. CONCLUSIONS Ketamine had better analgesic effects in the early stages after treatment, while morphine maintained more durable effects. Compared with morphine, ketamine had a lower incidence of adverse events requiring intervention. The results of subgroup analysis showed that intravenous administration of ketamine was more effective than intranasal administration.
Collapse
Affiliation(s)
- Juan Guo
- Department of Critical Care Medicine, Changdu People's Hospital of Xizang, 854000 Changdu, Xizang, China
| | - Fei Zhao
- Department of Critical Care Medicine, Changdu People's Hospital of Xizang, 854000 Changdu, Xizang, China
| | - Jinglan Bian
- Department of Critical Care Medicine, Changdu People's Hospital of Xizang, 854000 Changdu, Xizang, China
| | - Yunlong Hu
- Department of Critical Care Medicine, Changdu People's Hospital of Xizang, 854000 Changdu, Xizang, China
| | - Jixiang Tan
- Department of Critical Care Medicine, Changdu People's Hospital of Xizang, 854000 Changdu, Xizang, China; Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
47
|
Murray BP, Kiernan EA. Physiologic Effects of Substance Use. Emerg Med Clin North Am 2024; 42:69-91. [PMID: 37977754 DOI: 10.1016/j.emc.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Physiologic and psychological effects of substance use are common occurrences. They may be the proximate purpose of the exposure or related to an unintended complication. Acute short-term exposure effects may not be the same as long-term effects. These effects are mediated by different receptors they act on and the homeostatic changes that occur due to repeat exposure. We review in this article the physiologic and psychological effects from exposure to commonly encountered drugs, ethanol, sedative hypnotics, cocaine, amphetamines, marijuana, opioids, nicotine, hydrocarbons (halogenated and non-halogenated), and nitrous oxide.
Collapse
Affiliation(s)
- Brian Patrick Murray
- Department of Emergency Medicine, Wright State Boonshoft School of Medicine, 2555 University Boulevard, Suite 110, Dayton, OH 45324, USA.
| | - Emily Anne Kiernan
- Department of Emergency Medicine, Emory University School of Medicine, 50 Hurtz Plaza Southeast, Suite 600, Atlanta, GA, USA; Georgia Poison Center, 50 Hurtz Plaza Southeast, Suite 600, Atlanta, GA, USA
| |
Collapse
|
48
|
Wong CK, McLean BA, Baggio LL, Koehler JA, Hammoud R, Rittig N, Yabut JM, Seeley RJ, Brown TJ, Drucker DJ. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab 2024; 36:130-143.e5. [PMID: 38113888 DOI: 10.1016/j.cmet.2023.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert anti-inflammatory effects relevant to the chronic complications of type 2 diabetes. Although GLP-1RAs attenuate T cell-mediated gut and systemic inflammation directly through the gut intraepithelial lymphocyte GLP-1R, how GLP-1RAs inhibit systemic inflammation in the absence of widespread immune expression of the GLP-1R remains uncertain. Here, we show that GLP-1R activation attenuates the induction of plasma tumor necrosis factor alpha (TNF-α) by multiple Toll-like receptor agonists. These actions are not mediated by hematopoietic or endothelial GLP-1Rs but require central neuronal GLP-1Rs. In a cecal slurry model of polymicrobial sepsis, GLP-1RAs similarly require neuronal GLP-1Rs to attenuate detrimental responses associated with sepsis, including sickness, hypothermia, systemic inflammation, and lung injury. Mechanistically, GLP-1R activation leads to reduced TNF-α via α1-adrenergic, δ-opioid, and κ-opioid receptor signaling. These data extend emerging concepts of brain-immune networks and posit a new gut-brain GLP-1R axis for suppression of peripheral inflammation.
Collapse
Affiliation(s)
- Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Brent A McLean
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jacqueline A Koehler
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Rola Hammoud
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Nikolaj Rittig
- Medical/Steno Aarhus Research Laboratory, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Julian M Yabut
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
49
|
Duffy EP, Bachtell RK, Ehringer MA. Opioid trail: Tracking contributions to opioid use disorder from host genetics to the gut microbiome. Neurosci Biobehav Rev 2024; 156:105487. [PMID: 38040073 PMCID: PMC10836641 DOI: 10.1016/j.neubiorev.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments. In this review, we describe evidence that interactions between host genetics, the gut microbiome, and immune signaling likely play a key role in mediating opioid-related phenotypes. Studies in humans and model organisms consistently demonstrated that genetic background is a major determinant of gut microbiome composition. Furthermore, the gut microbiome is susceptible to environmental influences such as opioid exposure. Additional work focused on gene by microbiome interactions will be necessary to gain improved understanding of their effects on OUD-related behaviors.
Collapse
Affiliation(s)
- Eamonn P Duffy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan K Bachtell
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
50
|
da Silva PR, Nunes Pazos ND, de Andrade JC, de Sousa NF, Oliveira Pires HF, de Figueiredo Lima JL, Dias AL, da Silva Stiebbe Salvadori MG, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Patil VM, Bezerra Felipe CF, de Almeida RN, Scotti L. An In Silico Approach to Exploring the Antinociceptive Biological Activities of Linalool and its Metabolites. Mini Rev Med Chem 2024; 24:1556-1574. [PMID: 38243945 DOI: 10.2174/0113895575261945231122062659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 01/22/2024]
Abstract
Pain is characterized by the unpleasant sensory and emotional sensation associated with actual or potential tissue damage, whereas nociception refers to the mechanism by which noxious stimuli are transmitted from the periphery to the CNS. The main drugs used to treat pain are nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics, which have side effects that limit their use. Therefore, in the search for new drugs with potential antinociceptive effects, essential oils have been studied, whose constituents (monoterpenes) are emerging as a new therapeutic possibility. Among them, linalool and its metabolites stand out. The present study aims to investigate the antinociceptive potential of linalool and its metabolites through a screening using an in silico approach. Molecular docking was used to evaluate possible interactions with important targets involved in antinociceptive activity, such as α2-adrenergic, GABAergic, muscarinic, opioid, adenosinergic, transient potential, and glutamatergic receptors. The compounds in the investigated series obtained negative energies for all enzymes, representing satisfactory interactions with the targets and highlighting the multi-target potential of the L4 metabolite. Linalool and its metabolites have a high likelihood of modulatory activity against the targets involved in nociception and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natalia Diniz Nunes Pazos
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jaislânia Lucena de Figueiredo Lima
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Vaishali M Patil
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad 201206, Uttar Pradesh, India
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|