1
|
Bayan MH, Smalls T, Boudreau A, Mirza AW, Pasco C, Demko ZO, Rothman RE, Hsieh YH, Eshleman SH, Mostafa HH, Gonzalez-Jimenez N, Chavez PR, Emerson B, Delaney KP, Daugherty D, MacGowan RJ, Manabe YC, Hamill MM. Evaluating the impact of point-of-care HIV viral load assessment on linkage to care in Baltimore, MD: a randomized controlled trial. BMC Infect Dis 2023; 23:570. [PMID: 37658305 PMCID: PMC10474693 DOI: 10.1186/s12879-023-08459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Integration of a sensitive point-of-care (POC) HIV viral load (VL) test into screening algorithms may help detect acute HIV infection earlier, identify people with HIV (PWH) who are not virally suppressed, and facilitate earlier referral to antiretroviral therapy (ART), or evaluation for pre-exposure prophylaxis (PrEP). This report describes a randomized clinical trial sponsored by the Centers for Disease Control and Prevention (CDC): "Ending the HIV Epidemic Through Point-of-Care Technologies" (EHPOC). The study's primary aim is to evaluate the use of a POC HIV VL test as part of a testing approach and assess the impact on time to linkage to ART or PrEP. The study will recruit people in Baltimore, Maryland, including patients attending a hospital emergency department, patients attending an infectious disease clinic, and people recruited via community outreach. The secondary aim is to evaluate the performance characteristics of two rapid HIV antibody tests approved by the United States Food and Drug Administration (FDA). METHODS The study will recruit people 18 years or older who have risk factors for HIV acquisition and are not on PrEP, or PWH who are not taking ART. Participants will be randomly assigned to either the control arm or the intervention arm. Participants randomized to the control arm will only receive the standard-of-care (SOC) HIV screening tests. Intervention arm participants will receive a POC HIV VL test in addition to the SOC HIV diagnostic screening tests. Follow up will consist of an interim phone survey conducted at week-4 and an in-person week-12 visit. Demographic and behavioral information, and oral fluid and blood specimens will be collected at enrollment and at week-12. Survey data will be captured in a Research Electronic Data Capture (REDCap) database. Participants in both arms will be referred for either ART or PrEP based on their HIV test results. DISCUSSION The EHPOC trial will explore a novel HIV diagnostic technology that can be performed at the POC and provide viral assessment. The study may help inform HIV testing algorithms and contribute to the evidence to support same day ART and PrEP recommendations. TRIAL REGISTRATION NIH ClinicalTrials.gov NCT04793750. Date: 11 March 2021.
Collapse
Affiliation(s)
| | - Travis Smalls
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Alec Boudreau
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Agha W Mirza
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Courtney Pasco
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Zoe O Demko
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Richard E Rothman
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yu-Hsiang Hsieh
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Susan H Eshleman
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Brian Emerson
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kevin P Delaney
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Yukari C Manabe
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew M Hamill
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Aslan Y, Atabay M, Chowdhury HK, Göktürk I, Saylan Y, Inci F. Aptamer-Based Point-of-Care Devices: Emerging Technologies and Integration of Computational Methods. BIOSENSORS 2023; 13:bios13050569. [PMID: 37232930 DOI: 10.3390/bios13050569] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Recent innovations in point-of-care (POC) diagnostic technologies have paved a critical road for the improved application of biomedicine through the deployment of accurate and affordable programs into resource-scarce settings. The utilization of antibodies as a bio-recognition element in POC devices is currently limited due to obstacles associated with cost and production, impeding its widespread adoption. One promising alternative, on the other hand, is aptamer integration, i.e., short sequences of single-stranded DNA and RNA structures. The advantageous properties of these molecules are as follows: small molecular size, amenability to chemical modification, low- or nonimmunogenic characteristics, and their reproducibility within a short generation time. The utilization of these aforementioned features is critical in developing sensitive and portable POC systems. Furthermore, the deficiencies related to past experimental efforts to improve biosensor schematics, including the design of biorecognition elements, can be tackled with the integration of computational tools. These complementary tools enable the prediction of the reliability and functionality of the molecular structure of aptamers. In this review, we have overviewed the usage of aptamers in the development of novel and portable POC devices, in addition to highlighting the insights that simulations and other computational methods can provide into the use of aptamer modeling for POC integration.
Collapse
Affiliation(s)
- Yusuf Aslan
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Hussain Kawsar Chowdhury
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ilgım Göktürk
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
3
|
Krause KD, Pérez-Figueroa RE, Halkitis PN. Barriers and facilitators related to COVID-19 vaccine acceptance and uptake among people living with HIV. Curr Opin HIV AIDS 2023; 18:142-147. [PMID: 36943471 DOI: 10.1097/coh.0000000000000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW This review reports on the myriad barriers and facilitators related to COVID-19 vaccine hesitancy and factors contribution to uptake among people living with HIV (PLWH) globally published over the past year (2021-2022). RECENT FINDINGS Across the literature, participants indicated concerns about the safety, efficacy and overall rapid development of the COVID-19 vaccine as a reason for delaying or not being vaccinated. Medical mistrust and perceptions about the risk of COVID-19 immune response and severity also played a role in COVID-19 vaccine hesitancy among PLWH. Almost every study examined different sociodemographic characteristics associated with COVID-19 vaccination acceptance and uptake, and although strong themes emerged around race/ethnicity, sex and educational attainment, the results were mixed across other characteristics, including age. Some studies also examined medical factors specifically related to PLWH including CD4 + cell count and adherence to antiretroviral therapy. SUMMARY The findings highlight individual, structural and social differences in COVID-19 vaccine acceptance and uptake among PLWH, which are varied throughout the world. We call on researchers and interventionists to not just consider the role of medical mistrust and disinformation, but also how emotional, financial and political vulnerability plays into making decisions around COVID-19 vaccine uptake and overall healthcare.
Collapse
Affiliation(s)
- Kristen D Krause
- Center for Health, Identity, Behavior, and Prevention Studies (CHIBPS)
- Department of Urban-Global Health
| | - Rafael E Pérez-Figueroa
- Center for Health, Identity, Behavior, and Prevention Studies (CHIBPS)
- Department of Urban-Global Health
| | - Perry N Halkitis
- Center for Health, Identity, Behavior, and Prevention Studies (CHIBPS)
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Zezza P, Lucío MI, Fernández E, Maquieira Á, Bañuls MJ. Surface Micro-Patterned Biofunctionalized Hydrogel for Direct Nucleic Acid Hybridization Detection. BIOSENSORS 2023; 13:312. [PMID: 36979524 PMCID: PMC10046352 DOI: 10.3390/bios13030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The present research is focused on the development of a biofunctionalized hydrogel with a surface diffractive micropattern as a label-free biosensing platform. The biosensors described in this paper were fabricated with a holographic recording of polyethylene terephthalate (PET) surface micro-structures, which were then transferred into a hydrogel material. Acrylamide-based hydrogels were obtained with free radical polymerization, and propargyl acrylate was added as a comonomer, which allowed for covalent immobilization of thiolated oligonucleotide probes into the hydrogel network, via thiol-yne photoclick chemistry. The comonomer was shown to significantly contribute to the immobilization of the probes based on fluorescence imaging. Two different immobilization approaches were demonstrated: during or after hydrogel synthesis. The second approach showed better loading capacity of the bioreceptor groups. Diffraction efficiency measurements of hydrogel gratings at 532 nm showed a selective response reaching a limit of detection in the complementary DNA strand of 2.47 µM. The label-free biosensor as designed could significantly contribute to direct and accurate analysis in medical diagnosis as it is cheap, easy to fabricate, and works without the need for further reagents.
Collapse
Affiliation(s)
- Paola Zezza
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Isabel Lucío
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Química, Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
| | - María-José Bañuls
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Química, Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
5
|
Eid J, Socol M, Naillon A, Feuillard J, Ciandrini L, Margeat E, Charlot B, Mougel M. Viro-fluidics: Real-time analysis of virus production kinetics at the single-cell level. BIOPHYSICAL REPORTS 2022; 2:100068. [PMID: 36425325 PMCID: PMC9680794 DOI: 10.1016/j.bpr.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Real-time visualization and quantification of viruses released by a cell are crucial to further decipher infection processes. Kinetics studies at the single-cell level will circumvent the limitations of bulk assays with asynchronous virus replication. We have implemented a "viro-fluidic" method, which combines microfluidics and virology at single-cell and single-virus resolutions. As an experimental model, we used standard cell lines producing fluorescent HIV-like particles (VLPs). First, to scale the strategy to the single-cell level, we validated a sensitive flow virometry system to detect VLPs in low concentration samples (≥104 VLPs/mL). Then, this system was coupled to a single-cell trapping device to monitor in real-time the VLPs released, one at a time, from single cells under cell culture conditions. Our results revealed an average production rate of 50 VLPs/h/cell similar to the rate estimated for the same cells grown in population. Thus, the virus-producing capacities of the trapped cells were preserved and its real-time monitoring was accurate. Moreover, single-cell analysis revealed a release of VLPs with stochastic bursts with typical time intervals of few minutes, revealing the existence of limiting step(s) in the virus biogenesis process. Our tools can be applied to other pathogens or to extracellular vesicles to elucidate the dissemination mechanisms of these biological nanoparticles.
Collapse
Affiliation(s)
- Joëlle Eid
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Marius Socol
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Antoine Naillon
- Université Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, France
| | - Jérôme Feuillard
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Luca Ciandrini
- CBS, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Margeat
- CBS, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Benoit Charlot
- IES, Université de Montpellier, CNRS, Montpellier, France
| | - Marylène Mougel
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Hwang SH, Yang JJ, Oh YH, Ko DH, Sung H, Cho YU, Jang S, Park CJ, Oh HB. Microparticle-tagged image-based cell counting (ImmunoSpin) for CD4 + T cells. Mikrochim Acta 2021; 188:431. [PMID: 34822013 PMCID: PMC8616869 DOI: 10.1007/s00604-021-05070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022]
Abstract
Affordable point-of-care (POC) CD4 + T lymphocyte counting techniques have been developed as alternatives to flow cytometry-based instruments caring for patients with human immunodeficiency virus (HIV)-1. However, POC CD4 enumeration technologies can be inaccurate. Here, we developed a microparticle-based visual detector of CD4 + T lymphocytes (ImmunoSpin) using microparticles conjugated with anti-CD4 antibodies, independent of microfluidic or fluorescence detection systems. Visual enumeration of CD4 + T cells under conventional light microscope was accurate compared to flow cytometry. Microparticle-tagged CD4 + T cells were well-recognized under a light microscope. ImmunoSpin showed very good precision (coefficients of variation of ImmunoSpin were ≤ 10%) and high correlation with clinical-grade flow cytometry for the enumeration of CD4 + T cells (y = 0.4232 + 0.9485 × for the %CD4 + T cell count, R2 = 0.99). At thresholds of 200 and 350 cells/µL, there was no misclassification of the ImmunoSpin system compared to the reference flow cytometry. ImmunoSpin showed clear differential classification of CD4 + T lymphocytes from granulocytes and monocytes. Because non-fluorescence microparticle-tags and cytospin slides are used in ImmunoSpin, they can be applied to an automatic digital image analyzer. Slide preparation allows long-term storage, no analysis time limitations, and image transfer in remote areas.
Collapse
Affiliation(s)
- Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - John Jeongseok Yang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yoon-Hee Oh
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Dae-Hyun Ko
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Young-Uk Cho
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Heung-Bum Oh
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
7
|
Zhang Y, Zhou N. Electrochemical Biosensors Based on Micro‐fabricated Devices for Point‐of‐Care Testing: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi 214122 China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi 214122 China
| |
Collapse
|
8
|
Immunovirological Assessment of HIV-Infected Patients and Phylogenetic Analysis of the Virus in Northeast of Iran. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: The reliable laboratory tests, co-infection with other tumor viruses, and determining the genetic types are very important for therapy and monitoring of the clinical status of human immunodeficiency virus (HIV)-infected subjects. Objectives: This study evaluated the co-infection of HIV with hepatitis B virus (HBV), hepatitis C virus (HCV), and human T-cell leukemia virus type 1 (HTLV-1), the viral load, the progression of infection, and its correlation with the clinical status. Methods: Twenty HIV-infected cases were assessed for T cell subpopulations, HBV, HCV, and HTLV-1 co-infection, as well as the viral load. For phylogenetic relationships analysis, the HIV-c2-v5 fragment and p17 of gag were amplified, sequenced, and then clustered using phylogenetic analysis by MEGA software with maximum-likelihood. Results: The quantity of HIV viral load by qRT-PCR (TaqMan) and Cobas-Amplicor monitor test had a very strong correlation (R = 0.881, P < 0.0001). A significant negative correlation was also found between CD4+ cell count and Cobas-Amplicor (R = -0.41, P = 0.06). A significant negative correlation was also found between CD4+ cell count and Cobas-Amplicor (R = -0.41, P = 0.06) with HIV monitor test results (R = -0.41, P = 0.06). The phylogenetic analysis for p17 regions in gag and c2-v5 in env genes showed that all subjects had AD genotype. The co-infection of the HIV subjects with HBV, HCV, and HTLV-1 was 75%, 75%, and 15%, respectively. A direct correlation was observed between CD8+ and HIV-HTLV-1 co-infection. Conclusions: The results showed that HIV CRF35-AD, (M group) is more frequent in the northeast of Iran, and both real-time quantification methods were reliable for monitoring the HIV-1 viral load. In addition, the transmission rate of HTLV-1 is lower than HBV and HCV among drug abusers.
Collapse
|
9
|
Yadav AK, Verma D, Kumar A, Kumar P, Solanki PR. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. MATERIALS TODAY. CHEMISTRY 2021; 20:100443. [PMID: 33615086 PMCID: PMC7877231 DOI: 10.1016/j.mtchem.2021.100443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
The World Health Organization (WHO) has declared the COVID-19 an international health emergency due to the severity of infection progression, which became more severe due to its continuous spread globally and the unavailability of appropriate therapy and diagnostics systems. Thus, there is a need for efficient devices to detect SARS-CoV-2 infection at an early stage. Nowadays, the reverse transcription polymerase chain reaction (RT-PCR) technique is being applied for detecting this virus around the globe; however, factors such as stringent expertise, long diagnostic times, invasive and painful screening, and high costs have restricted the use of RT-PCR methods for rapid diagnostics. Therefore, the development of cost-effective, portable, sensitive, prompt and selective sensing systems to detect SARS-CoV-2 in biofluids at fM/pM/nM concentrations would be a breakthrough in diagnostics. Immunosensors that show increased specificity and sensitivity are considerably fast and do not imply costly reagents or instruments, reducing the cost for COVID-19 detection. The current developments in immunosensors perhaps signify the most significant opportunity for a rapid assay to detect COVID-19, without the need of highly skilled professionals and specialized tools to interpret results. Artificial intelligence (AI) and the Internet of Medical Things (IoMT) can also be equipped with this immunosensing approach to investigate useful networking through database management, sharing, and analytics to prevent and manage COVID-19. Herein, we represent the collective concepts of biomarker-based immunosensors along with AI and IoMT as smart sensing strategies with bioinformatics approach to monitor non-invasive early stage SARS-CoV-2 development, with fast point-of-care (POC) diagnostics as the crucial goal. This approach should be implemented quickly and verified practicality for clinical samples before being set in the present times for mass-diagnostic research.
Collapse
Affiliation(s)
- A K Yadav
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - D Verma
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, 201301, India
| | - A Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - P Kumar
- Sri Aurobindo College, Delhi University, New Delhi, 110017, India
| | - P R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
10
|
Sher M, Coleman B, Caputi M, Asghar W. Development of a Point-of-Care Assay for HIV-1 Viral Load Using Higher Refractive Index Antibody-Coated Microbeads. SENSORS (BASEL, SWITZERLAND) 2021; 21:1819. [PMID: 33807789 PMCID: PMC7961362 DOI: 10.3390/s21051819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022]
Abstract
The detection of viruses using imaging techniques is challenging because of the weak scattering of light generated by the targets of sizes in the nanometer range. The system we have developed overcomes the light scattering problems by utilizing antibody-coated microbeads of higher index of refraction that can specifically bind with viruses and increase the acceptance angle. Using the new technology, we have developed a portable, cost-effective, and field-deployable platform for the rapid quantification of HIV-1 viral load for point-of-care (POC) settings. The system combines microfluidics with a wide field of view lensless imaging technology. Highly specific antibodies are functionalized to a glass slide inside a microchip to capture HIV-1 virions. The captured virions are then bound by antibody-conjugated microbeads, which have a higher refraction index. The microbeads-HIV-1 virions complexes generate diffraction patterns that are detected with a custom-built imaging setup and rapidly and accurately quantified by computational analysis. This platform technology enables fast nanoscale virus imaging and quantification from biological samples and thus can play a significant role in the detection and management of viral diseases.
Collapse
Affiliation(s)
- Mazhar Sher
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA;
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Benjamin Coleman
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA;
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
11
|
Kost GJ. Geospatial Spread of Antimicrobial Resistance, Bacterial and Fungal Threats to Coronavirus Infectious Disease 2019 (COVID-19) Survival, and Point-of-Care Solutions. Arch Pathol Lab Med 2021; 145:145-167. [PMID: 32886738 DOI: 10.5858/arpa.2020-0284-ra] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
CONTEXT.— Point-of-care testing (POCT) is inherently spatial, that is, performed where needed, and intrinsically temporal, because it accelerates decision-making. POCT efficiency and effectiveness have the potential to facilitate antimicrobial resistance (AMR) detection, decrease risks of coinfections for critically ill patients with coronavirus infectious disease 2019 (COVID-19), and improve the cost-effectiveness of health care. OBJECTIVES.— To assess AMR identification by using POCT, describe the United States AMR Diagnostic Challenge, and improve global standards of care for infectious diseases. DATA SOURCES.— PubMed, World Wide Web, and other sources were searched for papers focusing on AMR and POCT. EndNote X9.1 (Clarivate Analytics) consolidated abstracts, URLs, and PDFs representing approximately 500 articles were assessed for relevance. Panelist insights at Tri•Con 2020 in San Francisco and finalist POC technologies competing for a US $20,000,000 AMR prize are summarized. CONCLUSIONS.— Coinfections represent high risks for COVID-19 patients. POCT potentially will help target specific pathogens, refine choices for antimicrobial drugs, and prevent excess morbidity and mortality. POC assays that identify patterns of pathogen resistance can help tell us how infected individuals spread AMR, where geospatial hotspots are located, when delays cause death, and how to deploy preventative resources. Shared AMR data "clouds" could help reduce critical care burden during pandemics and optimize therapeutic options, similar to use of antibiograms in individual hospitals. Multidisciplinary health care personnel should learn the principles and practice of POCT, so they can meet needs with rapid diagnostic testing. The stakes are high. Antimicrobial resistance is projected to cause millions of deaths annually and cumulative financial loses in the trillions by 2050.
Collapse
Affiliation(s)
- Gerald J Kost
- From Knowledge Optimization, Davis, California; and Point-of-Care Testing Center for Teaching and Research (POCT•CTR), University of California, Davis
| |
Collapse
|
12
|
Kumar S, Nehra M, Khurana S, Dilbaghi N, Kumar V, Kaushik A, Kim KH. Aspects of Point-of-Care Diagnostics for Personalized Health Wellness. Int J Nanomedicine 2021; 16:383-402. [PMID: 33488077 PMCID: PMC7814661 DOI: 10.2147/ijn.s267212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Advancements in analytical diagnostic systems for point-of-care (POC) application have gained considerable attention because of their rapid operation at the site required to manage severe diseases, even in a personalized manner. The POC diagnostic devices offer easy operation, fast analytical outcome, and affordable cost, which promote their advanced research and versatile adoptability. Keeping advantages in view, considerable efforts are being made to design and develop smart sensing components such as miniaturized transduction, interdigitated electrodes-based sensing chips, selective detection at low level, portable packaging, and sustainable durability to promote POC diagnostics according to the needs of patient care. Such effective diagnostics systems are in demand, which creates the challenge to make them more efficient in every aspect to generate a desired bio-informatic needed for better health access and management. Keeping advantages and scope in view, this mini review focuses on practical scenarios associated with miniaturized analytical diagnostic devices at POC application for targeted disease diagnostics smartly and efficiently. Moreover, advancements in technologies, such as smartphone-based operation, paper-based sensing assays, and lab-on-a-chip (LOC) which made POC more sensitive, informative, and suitable for major infectious disease diagnosis, are the main focus here. Besides, POC diagnostics based on automated patient sample integration with a sensing platform is continuously improving therapeutics interventions against specific infectious disease. This review also discussed challenges associated with state-of-the-art technology along with future research opportunities to design and develop next generation POC diagnostic systems needed to manage infectious diseases in a personalized manner.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Sakina Khurana
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, USA
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
13
|
Chen YT, Lee YC, Lai YH, Lim JC, Huang NT, Lin CT, Huang JJ. Review of Integrated Optical Biosensors for Point-Of-Care Applications. BIOSENSORS-BASEL 2020; 10:bios10120209. [PMID: 33353033 PMCID: PMC7766912 DOI: 10.3390/bios10120209] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
This article reviews optical biosensors and their integration with microfluidic channels. The integrated biosensors have the advantages of higher accuracy and sensitivity because they can simultaneously monitor two or more parameters. They can further incorporate many functionalities such as electrical control and signal readout monolithically in a single semiconductor chip, making them ideal candidates for point-of-care testing. In this article, we discuss the applications by specifically looking into point-of-care testing (POCT) using integrated optical sensors. The requirement and future perspective of integrated optical biosensors for POC is addressed.
Collapse
Affiliation(s)
- Yung-Tsan Chen
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Ya-Chu Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Yao-Hsuan Lai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Jin-Chun Lim
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Nien-Tsu Huang
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chih-Ting Lin
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Jian-Jang Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Correspondence:
| |
Collapse
|
14
|
Gulati S, Singh P, Diwan A, Mongia A, Kumar S. Functionalized gold nanoparticles: promising and efficient diagnostic and therapeutic tools for HIV/AIDS. RSC Med Chem 2020; 11:1252-1266. [PMID: 34095839 PMCID: PMC8126886 DOI: 10.1039/d0md00298d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Functionalized gold nanoparticles are recognized as promising vehicles in the diagnosis and treatment of human immunodeficiency virus (HIV) owing to their excellent biocompatibility with biomolecules (like DNA or RNA), their potential for multivalency and their unique optical and structural properties. In this context, this review article focuses on the diverse detection abilities and delivery and uptake methodologies of HIV by targeting genes and proteins using gold nanoparticles on the basis of different shapes and sizes in order to promote its effective expression. In addition, recent trends in gold nanoparticle mediated HIV detection, delivery and uptake and treatment are highlighted considering their cytotoxic effects on healthy human cells.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| |
Collapse
|
15
|
Zhuang J, Yin J, Lv S, Wang B, Mu Y. Advanced "lab-on-a-chip" to detect viruses - Current challenges and future perspectives. Biosens Bioelectron 2020; 163:112291. [PMID: 32421630 PMCID: PMC7215165 DOI: 10.1016/j.bios.2020.112291] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Massive viral outbreaks draw attention to viruses that have not been thoroughly studied or understood. In recent decades, microfluidic chips, known as "lab-on-a-chip", appears as a promising tool for the detection of viruses. Here, we review the development of microfluidic chips that could be used in response to viral detection, specifically for viruses involved in more recent outbreaks. The advantages as well as the disadvantages of microfluidic systems are discussed and analyzed. We also propose ideas for future development of these microfluidic chips and we expect this advanced technology to be used in the future for viral outbreaks.
Collapse
Affiliation(s)
- Jianjian Zhuang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130000, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
16
|
Comparison of Alere q whole blood viral load with DBS and plasma viral load in the classification of HIV virological failure. PLoS One 2020; 15:e0232345. [PMID: 32469947 PMCID: PMC7259604 DOI: 10.1371/journal.pone.0232345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/14/2020] [Indexed: 11/19/2022] Open
Abstract
Background In remote settings, timely plasma separation and transportation to testing laboratories is an impediment to the access of HIV viral load (VL) testing. Potential solutions are whole blood testing through point of care (POC) assays or dried blood spots (DBS). Methods We evaluated the performance of a prototype Alere q whole blood VL protocol and compared it against plasma (Abbott RealTime HIV-1) and DBS VL (Abbott RealTime HIV-1 DBS revised prototype protocol and Roche CAP/CTM HIV-1 v2.0 DBS free virus elution protocol). Virological failure (VF) was defined at >1000 copies/ml. Results Of 299 samples, Alere q correctly classified VF in 61% versus 87% by Abbott DBS and 76% by Roche FVE. Performance varied across plasma VL categories. Alere q showed 100% sensitivity. Below 1000 copies/ml of plasma, Alere q demonstrated over-quantification, with 19% specificity. Abbott DBS had 91% sensitivity and the best overall correlation with plasma (r2 = 0.72). Roche FVE had the best specificity of 99% but reduced sensitivity of 52%, especially between 1000–10,000 copies/ml of plasma. Correlation was best for all assays at >10,000 copies/ml. Conclusion Variability was prominent between the assays. Each method requires optimization to facilitate the implementation of a cut-off with optimal sensitivity and specificity for VF. Although Alere q whole blood assay exhibited excellent sensitivity, the poor specificity of only 19% would lead to unnecessary switching of regimens. Thus any VF detected would need to be confirmed by a more specific assay. Both the Abbott DBS and Roche FVE protocols showed good specificity, however sensitivity was reduced when the plasma VL was 1000–10,000 copies/ml. This could result in delays in detecting VF and accumulation of drug resistance. Field evaluation in settings that have adopted these DBS protocols are necessary.
Collapse
|
17
|
Abstract
Although highly active antiretroviral therapy (HAART) has been introduced over twenty years ago to treat Human Immunodeficiency Virus (HIV) positive patients, acquired immunodeficiency syndrome (AIDS) is still one of the deadliest diseases found worldwide. AIDS prevalence and mortality rates are usually more pronounced in resource-constrained countries than in the developed world. The lack of trained medical technicians, sophisticated diagnostic equipment, and the overall scarcity of medical infrastructures have severely impacted HIV/AIDS diagnostics, which hinders the initiation and periodic monitoring of antiretroviral therapy (ART). Currently, available HIV viral load assays are not well-suited for resource-limited settings due to their high cost and a requirement for medical/technical infrastructures. In this paper, we review current and emerging diagnostic assays for HIV detection, with a focus on point-of-care (POC) based immunoassays for viral load measurement, drug resistance, and HIV recurrence. We also discuss the limitations of the available HIV assays and highlight the technological advancements in cellphone, paper, and flexible material-based assays which have the potential to improve HIV diagnosis and monitoring, thus assisting with the management of the disease.
Collapse
Affiliation(s)
- Md Alamgir Kabir
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.,Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Hussein Zilouchian
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Massimo Caputi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.,Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA.,Department of Biological Sciences (courtesy appointment), Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
18
|
Zhong R, Hou L, Zhao Y, Wang T, Wang S, Wang M, Xu D, Sun Y. A 3D mixing-based portable magnetic device for fully automatic immunofluorescence staining of γ-H2AX in UVC-irradiated CD4 + cells. RSC Adv 2020; 10:29311-29319. [PMID: 35521108 PMCID: PMC9055984 DOI: 10.1039/d0ra03925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022] Open
Abstract
Immunofluorescence (IF) is a common method used in cell biology. The conventional protocol for IF staining is time and labor-intensive, operator dependent and reagent-consuming. Magnetic Bead (MB)-based microdevices are frequently utilized in cellular assays, but integration of simple and efficient mixing with downstream multi-step manipulation of MBs for automatic IF staining is still challenging. We herein present a portable, inexpensive and integratable device for MB-based automatic IF staining. First, a front-end cell capture step is performed using a 3D-mixing module, which is built upon a novel mechanism named ec-2MagRotors and generates periodically changing 3D magnetic fields. A 5-fold enhancement of cell capture efficiency was attained even with a low bead-to-cell concentration ratio (5 : 1), when conducting magnetic 3D mixing. Second, a 1D-moving module is employed downstream to automatically manipulate MB–cell complexes for IF staining. Further, a simplified protocol for staining of γ-H2AX, a biomarker widely used in evaluation of cell radiation damage, is presented for proof-of-principle study of the magnetic device. Using UVC-irradiated CD4+ cells as samples, our device achieved fully automatic γ-H2AX staining within 40 minutes at room temperature and showed a linear dose–response relationship. The developed portable magnetic device is automatic, efficient, cost-effective and simple-to-use, holding great potential for applications in different IF assays. A 3D mixing-based portable magnetic device to perform on-chip efficient cell capture and automatic intracellular immunofluorescence (IF) staining is presented.![]()
Collapse
Affiliation(s)
- Runtao Zhong
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Liangsheng Hou
- College of Marine Engineering
- Dalian Maritime University, Dalian
- Dalian 116026
- China
| | - Yingbo Zhao
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Tianle Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Shaohua Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Mengyu Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Dan Xu
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Yeqing Sun
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| |
Collapse
|
19
|
Huang X, Zhou Y, Ding L, Yu G, Leng Y, Lai W, Xiong Y, Chen X. Supramolecular Recognition-Mediated Layer-by-Layer Self-Assembled Gold Nanoparticles for Customized Sensitivity in Paper-Based Strip Nanobiosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903861. [PMID: 31736250 DOI: 10.1002/smll.201903861] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/25/2019] [Indexed: 05/24/2023]
Abstract
Herein, a smart supramolecular self-assembly-mediated signal amplification strategy is developed on a paper-based nanobiosensor to achieve the sensitive and customized detection of biomarkers. The host-guest recognition between β-cyclodextrin-coated gold nanoparticles (AuNPs) and 1-adamantane acetic acid or tetrakis(4-carboxyphenyl)porphyrin is designed and applied to the layer-by-layer self-assembly of AuNPs at the test area of the strip. Thus, the amplified platform exhibits a high sensitivity with a detection limit at subattogram levels (approximately dozens of molecules per strip) and a wide dynamic range of concentration over seven orders of magnitude. The applicability and universality of this sensitive platform are demonstrated in clinically significant ranges to measure carcinoembryonic antigen and HIV-1 capsid p24 antigen in spiked serum and clinical samples. The customized biomarker detection ability for the on-demand needs of clinicians is further verified through cycle incubation-mediated controllable self-assembly. Collectively, the supramolecular self-assembly amplification method is suitable as a universal point-of-care diagnostic tool and can be readily adapted as a platform technology for the sensitive assay of many different target analytes.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Lu Ding
- Hypertension Research Institute of Jiangxi Province, Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
20
|
Abstract
Microfluidics is an emerging field in diagnostics that allows for extremely precise fluid control and manipulation, enabling rapid and high-throughput sample processing in integrated micro-scale medical systems. These platforms are well-suited for both standard clinical settings and point-of-care applications. The unique features of microfluidics-based platforms make them attractive for early disease diagnosis and real-time monitoring of the disease and therapeutic efficacy. In this chapter, we will first provide a background on microfluidic fundamentals, microfluidic fabrication technologies, microfluidic reactors, and microfluidic total-analysis-systems. Next, we will move into a discussion on the clinical applications of existing and emerging microfluidic platforms for blood analysis, and for diagnosis and monitoring of cancer and infectious disease. Together, this chapter should elucidate the potential that microfluidic systems have in the development of effective diagnostic technologies through a review of existing technologies and promising directions.
Collapse
Affiliation(s)
- Alison Burklund
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Amogha Tadimety
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Nanjing Hao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States; Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.
| |
Collapse
|
21
|
Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnol Adv 2019; 37:107440. [PMID: 31476421 DOI: 10.1016/j.biotechadv.2019.107440] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
Infectious diseases such as HIV-1/AIDS, tuberculosis (TB), hepatitis B (HBV), and malaria still exert a tremendous health burden on the developing world, requiring rapid, simple and inexpensive diagnostics for on-site diagnosis and treatment monitoring. However, traditional diagnostic methods such as nucleic acid tests (NATs) and enzyme linked immunosorbent assays (ELISA) cannot be readily implemented in point-of-care (POC) settings. Recently, plasmonic-based biosensors have emerged, offering an attractive solution to manage infectious diseases in the developing world since they can achieve rapid, real-time and label-free detection of various pathogenic biomarkers. Via the principle of plasmonic-based optical detection, a variety of biosensing technologies such as surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR), colorimetric plasmonic assays, and surface enhanced Raman spectroscopy (SERS) have emerged for early diagnosis of HIV-1, TB, HBV and malaria. Similarly, plasmonic-based colorimetric assays have also been developed with the capability of multiplexing and cellphone integration, which is well suited for POC testing in the developing world. Herein, we present a comprehensive review on recent advances in surface chemistry, substrate fabrication, and microfluidic integration for the development of plasmonic-based biosensors, aiming at rapid management of infectious diseases at the POC, and thus improving global health.
Collapse
|
22
|
Zhu Y, Li F, Huang Y, Lin F, Chen X. Wavelength-Shift-Based Colorimetric Sensing for Peroxide Number of Edible Oil Using CsPbBr 3 Perovskite Nanocrystals. Anal Chem 2019; 91:14183-14187. [PMID: 31441299 DOI: 10.1021/acs.analchem.9b03267] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The peroxide number of edible oil relates to its quality. The classical determination methods for the peroxide number are still unsatisfactory due to their complexity and poor reproducibility in the analytical process and their incapability of field rapid detection. In this study, a novel wavelength-shift-based visual method has been developed for the peroxide number determination of edible oil using halide perovskite nanocrystals (CsPbBr3 NCs). In the analysis, the edible oil sample underwent redox reactions with a part of oleylammonium iodide (OLAM-I) in advance. Then, the halogen exchange occurred between the added CsPbBr3 NCs and the iodide ions from the residual OLAM-I. The resulting wavelength shift of the fluorescence emission reflects the peroxide number in the edible oil sample. Under the ultraviolet light excitation at 365 nm, the apparent color of the photoluminescence could directly be compared with a color chart to determine and qualify the peroxide number. Using the approach, the visual detection of the peroxide number of edible oil samples on site could be realized. The detection process takes only ∼15 min and is convenient and accurate.
Collapse
Affiliation(s)
- Yimeng Zhu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Feiming Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yipeng Huang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Fangyuan Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.,State Key Laboratory of Marine Environmental Science , Xiamen University , Xiamen 361005 , China.,Shenzhen Research Institute of Xiamen University , Shenzhen 518000 , China
| |
Collapse
|
23
|
Kong M, Li Z, Wu J, Hu J, Sheng Y, Wu D, Lin Y, Li M, Wang X, Wang S. A wearable microfluidic device for rapid detection of HIV-1 DNA using recombinase polymerase amplification. Talanta 2019; 205:120155. [PMID: 31450450 DOI: 10.1016/j.talanta.2019.120155] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 12/26/2022]
Abstract
Although isothermal nucleic acid amplification is advantageous in pathogen detection in resource-limited settings, an electricity-dependent heating module is often required. Here, we developed a wearable microfluidic device combined with recombinase polymerase amplification (RPA) for simple and rapid amplification of HIV-1 DNA using human body heat. The human body temperature at the human wrist varied from 33 to 34 °C in the ambient environment, which is sufficient to perform RPA reactions. With the aid of a cellphone-based fluorescence detection system, this device detected HIV-1 DNA quantitatively ranging from 102 to 105 copies/mL with a log linearity of 0.98 in 24 min. These results demonstrate that this wearable point-of-care (POC) nucleic acid testing method is advantageous over traditional PCR and other isothermal nucleic acid amplification methods in terms of time, portability and independence on electricity. This wearable microfluidic device in conjunction with a cellphone-based fluorescence detection system can be potentially used for the detection of HIV-1 and adapted for POC detection of a broad range of infectious pathogens in resource-limited settings.
Collapse
Affiliation(s)
- Mengqi Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Zihan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Jianguo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Jie Hu
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore (NUS), 117599, Singapore
| | - Yefeng Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Di Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Yong Lin
- College of Science, Ningbo University of Technology, Ningbo, China
| | - Ming Li
- State Key Laboratory of CAD &CG, Zhejiang University, Hangzhou, China
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - ShuQi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China.
| |
Collapse
|
24
|
Márquez A, Aymerich J, Dei M, Rodríguez-Rodríguez R, Vázquez-Carrera M, Pizarro-Delgado J, Giménez-Gómez P, Merlos Á, Terés L, Serra-Graells F, Jiménez-Jorquera C, Domínguez C, Muñoz-Berbel X. Reconfigurable multiplexed point of Care System for monitoring type 1 diabetes patients. Biosens Bioelectron 2019; 136:38-46. [DOI: 10.1016/j.bios.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 01/15/2023]
|
25
|
Agutu CA, Ngetsa CJ, Price MA, Rinke de Wit TF, Omosa-Manyonyi G, Sanders EJ, Graham SM. Systematic review of the performance and clinical utility of point of care HIV-1 RNA testing for diagnosis and care. PLoS One 2019; 14:e0218369. [PMID: 31246963 PMCID: PMC6597060 DOI: 10.1371/journal.pone.0218369] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/31/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Point of-care (POC) HIV-1 RNA tests which are accurate and easy to use with limited infrastructure are needed in resource-limited settings (RLS). We systematically reviewed evidence of POC test performance compared to laboratory-based HIV-1 RNA assays and the potential utility of these tests for diagnosis and care in RLS. METHODS Studies published up to July 2018 were identified by a search of PUBMED, EMBASE, Web of Science, CINAHL and Cochrane Central Register of Controlled Trials. Studies evaluating the use of POC HIV-1 RNA testing for early infant diagnosis (EID), acute HIV infection (AHI) diagnosis, or viral load monitoring (VL), compared to centralized testing, were included. Separate search strategies were used for each testing objective. RESULTS 197 abstracts were screened and 34 full-text articles were assessed, of which 32 met inclusion criteria. Thirty studies evaluated performance and diagnostic accuracy of POC tests compared to standard reference tests. Two of the thirty and two additional studies with no comparative testing reported on clinical utility of POC results. Five different POC tests (Cepheid GeneXpert HIV-1 Quantitative and Qualitative assays, Alere q HIV-1/2 Detect, SAMBA, Liat HIV Quant and Aptima HIV-1 Quant) were used in 21 studies of VL, 11 of EID and 2 of AHI. POC tests were easy to use, had rapid turnaround times, and comparable accuracy and precision to reference technologies. Sensitivity and specificity were high for EID and AHI but lower for VL. For VL, lower sensitivity was reported for whole blood and dried blood spots compared to plasma samples. Reported error rates for Cepheid GeneXpert Qual (2.0%-5.0%), GeneXpert Quant (2.5%-17.0%) and Alere q HIV-1/2 Detect (3.1%-11.0%) were higher than in WHO prequalification reports. Most errors resolved with retesting; however, inadequate sample volumes often precluded repeat testing. Only two studies used POC results for clinical management, one for EID and another for VL. POC EID resulted in shorter time-to-result, rapid ART initiation, and better retention in care compared to centralised testing. CONCLUSIONS Performance of POC HIV-1 RNA tests is comparable to reference assays, and have potential to improve patient outcomes. Additional studies on implementation in limited-resources settings are needed.
Collapse
Affiliation(s)
- Clara A. Agutu
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Caroline J. Ngetsa
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matt A. Price
- International AIDS Vaccine Initiative (IAVI), Department of Medical Affairs, New York, New York, United States of America
| | - Tobias F. Rinke de Wit
- Department of Global Health, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Gloria Omosa-Manyonyi
- School of Medicine, College of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Eduard J. Sanders
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Global Health, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Susan M. Graham
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Departments of Global Health, Medicine, and Epidemiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Garg N, Boyle D, Randall A, Teng A, Pablo J, Liang X, Camerini D, Lee AP. Rapid immunodiagnostics of multiple viral infections in an acoustic microstreaming device with serum and saliva samples. LAB ON A CHIP 2019; 19:1524-1533. [PMID: 30806409 PMCID: PMC6478527 DOI: 10.1039/c8lc01303a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is a growing need to screen multiple infections simultaneously rather than diagnosis of one pathogen at a time in order to improve the quality of healthcare while saving initial screening time and reduce costs. This is the first demonstration of a five-step protein array assay for the multiplexed detection of HIV, HPV and HSV antibodies on an integrated microfluidic system. HIV, HPV and HSV reactive antibodies from both serum and saliva were rapidly detected by acoustic streaming-based mixing and pumping to enable an integrated, rapid and simple-to-use multiplexed assay device. We validated this device with 37 serum and saliva samples to verify reactivity of patient antibodies with HIV, HPV and HSV antigens. Our technology can be adapted with different protein microarrays to detect a variety of other infections, thus demonstrating a powerful platform to detect multiple putative protein biomarkers for rapid detection of infectious diseases. This integrated microfluidic protein array platform is the basis of a potent strategy to delay progression of primary infection, reduce the risk of co-infections and prevent onward transmission of infections by point-of-care detection of multiple pathogens in both serum and oral fluids.
Collapse
Affiliation(s)
- Neha Garg
- Henry Samueli School of Engineering, Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Advanced Design and Manufacturing of Integrated Microfluidics (CADMIM), University of California, Irvine, CA, USA
| | - Dylan Boyle
- Henry Samueli School of Engineering, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
- Center for Advanced Design and Manufacturing of Integrated Microfluidics (CADMIM), University of California, Irvine, CA, USA
| | | | - Andy Teng
- Antigen Discovery Incorporated, Irvine, CA, USA
| | | | | | - David Camerini
- Antigen Discovery Incorporated, Irvine, CA, USA
- School of Biological Sciences, Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Abraham P. Lee
- Henry Samueli School of Engineering, Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Henry Samueli School of Engineering, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
- Center for Advanced Design and Manufacturing of Integrated Microfluidics (CADMIM), University of California, Irvine, CA, USA
| |
Collapse
|
27
|
Haleyur Giri Setty MK, Kurdekar A, Mahtani P, Liu J, Hewlett IK. Cross-Subtype Detection of HIV-1 Capsid p24 Antigen Using a Sensitive Europium Nanoparticle Assay. AIDS Res Hum Retroviruses 2019; 35:396-401. [PMID: 30411969 DOI: 10.1089/aid.2018.0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Accurate and early detection of diverse HIV-1 subtypes using currently available p24 antigen assays have been a major challenge. We report the development of a sensitive time resolved fluorescence (TRF) europium nanoparticle immuno assay for cross subtype detection of p24 antigen using broadly cross-reactive antibodies. Several antibodies were tested for optimal reactivity with antigens of diverse HIV-1 subtypes and circulating recombinant forms. We tested HIV strains using this assay for sensitivity and quantification ability at the pico-gram per millilter level. We identified two broadly cross-reactive HIV-1 p24 antibodies C65690M and ANT-152, which detected all strains of HIV tested. These two antibodies also yielded a better signal to cutoff ratio for the same amount of antigen tested in comparison to a commercial assay. Using an appropriate combination of C65690M and ANT-152 p24 antibodies capable of detecting all HIV types and highly sensitive TRF-based europium nano particle assay platform, we developed a sensitive p24 antigen assay that can detect HIV infection of all HIV subtypes and may be useful in early detection.
Collapse
Affiliation(s)
| | - Aditya Kurdekar
- Laboratory of Molecular Virology, CBER, FDA, Silver Spring, Maryland
| | - Prerna Mahtani
- Laboratory of Molecular Virology, CBER, FDA, Silver Spring, Maryland
| | - Jikun Liu
- Laboratory of Molecular Virology, CBER, FDA, Silver Spring, Maryland
| | - Indira K. Hewlett
- Laboratory of Molecular Virology, CBER, FDA, Silver Spring, Maryland
| |
Collapse
|
28
|
Coleman B, Coarsey C, Kabir MA, Asghar W. Point-of-care Colorimetric Analysis through Smartphone Video. SENSORS AND ACTUATORS. B, CHEMICAL 2019; 282:225-231. [PMID: 30828133 PMCID: PMC6391882 DOI: 10.1016/j.snb.2018.11.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Point-of-care (POC) tests often rely on smartphone image methods for colorimetric analysis, but the results of such methods are frequently difficult to reproduce or standardize. The problem is aggravated by unpredictable image capture conditions, which pose a significant challenge when low limits of detection (LOD) are needed. Application-specific smartphone attachments are often used to standardize imaging conditions, but there has recently been an interest in equipment-free POC colorimetric analysis. Improved output metrics and preprocessing methods have been developed, but equipment-free imaging often has a high LOD and is inappropriate for quantitative tasks. Additional work is necessary to replace external smartphone attachments with algorithms. Towards this end, we have developed a video processing method that synthesizes many images into a single output metric. We use image features to select the best inputs from a large set of video frames and demonstrate that the resulting output values have a stronger correlation with laboratory methods and a lower standard error. The developed algorithm only requires 20 seconds of video and can easily be integrated with existing processing methods. We apply our algorithm to the NS1-based sandwich ELISA for Zika detection and show that the LOD is two times lower when our video-based method is used.
Collapse
Affiliation(s)
- Benjamin Coleman
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Chad Coarsey
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Md Alamgir Kabir
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|
29
|
Kazemzadeh A, Eriksson A, Madou M, Russom A. A micro-dispenser for long-term storage and controlled release of liquids. Nat Commun 2019; 10:189. [PMID: 30643146 PMCID: PMC6331589 DOI: 10.1038/s41467-018-08091-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/13/2018] [Indexed: 01/08/2023] Open
Abstract
The success of lab-on-a-chip systems may depend on a low-cost device that incorporates on-chip storage and fluidic operations. To date many different methods have been developed that cope separately with on-chip storage and fluidic operations e.g., hydrophobic and capillary valves pneumatic pumping and blister storage packages. The blister packages seem difficult to miniaturize and none of the existing liquid handling techniques despite their variety are capable of proportional repeatable dispensing. We report here on an inexpensive robust and scalable micro-dispenser that incorporates long-term storage and aliquoting of reagents on different microfluidics platforms. It provides long-term shelf-life for different liquids enables precise dispensing on lab-on-a-disc platforms and less accurate but proportional dispensing when operated by finger pressure. Based on this technology we introduce a method for automation of blood plasma separation and multi-step bioassay procedures. This micro-dispenser intends to facilitate affordable portable diagnostic devices and accelerate the commercialization of lab-on-a-chip devices.
Collapse
Affiliation(s)
- Amin Kazemzadeh
- Division of Nanobiotechnology, Department of Protein Sciences, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, 17165, Sweden.
| | - Anders Eriksson
- School of Engineering Sciences, Mechanics, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| | - Marc Madou
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, 92697, USA
| | - Aman Russom
- Division of Nanobiotechnology, Department of Protein Sciences, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, 17165, Sweden.
| |
Collapse
|
30
|
Yang K, Wu J, Santos S, Liu Y, Zhu L, Lin F. Recent development of portable imaging platforms for cell-based assays. Biosens Bioelectron 2019; 124-125:150-160. [DOI: 10.1016/j.bios.2018.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/06/2018] [Accepted: 10/13/2018] [Indexed: 12/22/2022]
|
31
|
Lu S, Yu T, Wang Y, Liang L, Chen Y, Xu F, Wang S. Nanomaterial-based biosensors for measurement of lipids and lipoproteins towards point-of-care of cardiovascular disease. Analyst 2018; 142:3309-3321. [PMID: 28828428 DOI: 10.1039/c7an00847c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) has become the primary cause of global deaths and inflicts an enormous healthcare burden on both developed and developing countries. Frequent monitoring of CVD-associated risk factors such as the level of lipids (e.g., triglyceride (TG) and total cholesterol (TC)) and lipoproteins (e.g., low-density lipoprotein (LDL) and high-density lipoprotein (HDL)) can effectively help prevent disease progression and improve clinical outcomes. However, measurement of these risk factors is generally integrated into an automated analyzer, which is prohibitively expensive and highly instrument-dependent for routine testing in primary care settings. As such, a variety of rapid, simple and portable nanomaterial-based biosensors have been developed for measuring the level of lipids (TG and TC) and lipoproteins (LDL and HDL) towards the management of CVD at the point-of-care (POC). In this review, we first summarize traditional methods for measurement of lipids and lipoproteins, and then present the latest advances in developing nanomaterial-based biosensors that can potentially monitor the risk factors of CVD at the POC.
Collapse
Affiliation(s)
- Siming Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
33
|
Gray ER, Bain R, Varsaneux O, Peeling RW, Stevens MM, McKendry RA. p24 revisited: a landscape review of antigen detection for early HIV diagnosis. AIDS 2018; 32:2089-2102. [PMID: 30102659 PMCID: PMC6139023 DOI: 10.1097/qad.0000000000001982] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
: Despite major advances in HIV testing, early detection of infection at the point of care (PoC) remains a key challenge. Although rapid antibody PoC and laboratory-based nucleic acid amplification tests dominate the diagnostics market, the viral capsid protein p24 is recognized as an alternative early virological biomarker of infection. However, the detection of ultra-low levels of p24 at the PoC has proven challenging. Here we review the landscape of p24 diagnostics to identify knowledge gaps and barriers and help shape future research agendas. Five hundred and seventy-four research articles to May 2018 that propose or evaluate diagnostic assays for p24 were identified and reviewed. We give a brief history of diagnostic development, and the utility of p24 as a biomarker in different populations such as infants, the newly infected, those on preexposure prophylaxis and self-testers. We review the performance of commercial p24 assays and consider elements such as immune complex disruption, resource-poor settings, prevalence, and assay antibodies. Emerging and ultrasensitive assays are reviewed and show a number of promising approaches but further translation has been limited. We summarize studies on the health economic benefits of using antigen testing. Finally, we speculate on the future uses of high-performance p24 assays, particularly, if available in self-test format.
Collapse
Affiliation(s)
- Eleanor R Gray
- London Centre for Nanotechnology, Faculty of Maths and Physical Sciences, University College London
| | - Robert Bain
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London
| | | | | | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London
| | - Rachel A McKendry
- London Centre for Nanotechnology, Faculty of Maths and Physical Sciences, University College London
- Division of Medicine, University College London, London, UK
| |
Collapse
|
34
|
Channon RB, Nguyen MP, Scorzelli AG, Henry EM, Volckens J, Dandy DS, Henry CS. Rapid flow in multilayer microfluidic paper-based analytical devices. LAB ON A CHIP 2018; 18:793-802. [PMID: 29431751 PMCID: PMC7071557 DOI: 10.1039/c7lc01300k] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) are a versatile and inexpensive point-of-care (POC) technology, but their widespread adoption has been limited by slow flow rates and the inability to carry out complex in field analytical measurements. In the present work, we investigate multilayer μPADs as a means to generate enhanced flow rates within self-pumping paper devices. Through optical and electrochemical measurements, the fluid dynamics are investigated and compared to established flow theories within μPADs. We demonstrate a ∼145-fold increase in flow rate (velocity = 1.56 cm s-1, volumetric flow rate = 1.65 mL min-1, over 5.5 cm) through precise control of the channel height in a 2 layer paper device, as compared to archetypical 1 layer μPAD designs. These design considerations are then applied to a self-pumping sequential injection device format, known as a three-dimensional paper network (3DPN). These 3DPN devices are characterized through flow injection analysis of a ferrocene complex and anodic stripping detection of cadmium, exhibiting a 5× enhancement in signal compared to stationary measurements.
Collapse
Affiliation(s)
- Robert B Channon
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Majors CE, Smith CA, Natoli ME, Kundrod KA, Richards-Kortum R. Point-of-care diagnostics to improve maternal and neonatal health in low-resource settings. LAB ON A CHIP 2017; 17:3351-3387. [PMID: 28832061 PMCID: PMC5636680 DOI: 10.1039/c7lc00374a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Each day, approximately 830 women and 7400 newborns die from complications during pregnancy and childbirth. Improving maternal and neonatal health will require bringing rapid diagnosis and treatment to the point of care in low-resource settings. However, to date there are few diagnostic tools available that can be used at the point of care to detect the leading causes of maternal and neonatal mortality in low-resource settings. Here we review both commercially available diagnostics and technologies that are currently in development to detect the leading causes of maternal and neonatal mortality, highlighting key gaps in development where innovative design could increase access to technology and enable rapid diagnosis at the bedside.
Collapse
Affiliation(s)
- Catherine E Majors
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA.
| | | | | | | | | |
Collapse
|
36
|
Dorward J, Garrett N, Quame-Amaglo J, Samsunder N, Ngobese H, Ngomane N, Moodley P, Mlisana K, Schaafsma T, Donnell D, Barnabas R, Naidoo K, Abdool Karim S, Celum C, Drain PK. Protocol for a randomised controlled implementation trial of point-of-care viral load testing and task shifting: the Simplifying HIV TREAtment and Monitoring (STREAM) study. BMJ Open 2017; 7:e017507. [PMID: 28963304 PMCID: PMC5623564 DOI: 10.1136/bmjopen-2017-017507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Achieving the Joint United Nations Programme on HIV and AIDS 90-90-90 targets requires models of HIV care that expand antiretroviral therapy (ART) coverage without overburdening health systems. Point-of-care (POC) viral load (VL) testing has the potential to efficiently monitor ART treatment, while enrolled nurses may be able to provide safe and cost-effective chronic care for stable patients with HIV. This study aims to demonstrate whether POC VL testing combined with task shifting to enrolled nurses is non-inferior and cost-effective compared with laboratory-based VL monitoring and standard HIV care. METHODS AND ANALYSIS The STREAM (Simplifying HIV TREAtment and Monitoring) study is an open-label, non-inferiority, randomised controlled implementation trial. HIV-positive adults, clinically stable at 6 months after ART initiation, will be recruited in a large urban clinic in South Africa. Approximately 396 participants will be randomised 1:1 to receive POC HIV VL monitoring and potential task shifting to enrolled nurses, versus laboratory VL monitoring and standard South African HIV care. Initial clinic follow-up will be 2-monthly in both arms, with VL testing at enrolment, 6 months and 12 months. At 6 months (1 year after ART initiation), stable participants in both arms will qualify for a differentiated care model involving decentralised ART pickup at community-based pharmacies. The primary outcome is retention in care and virological suppression at 12 months from enrolment. Secondary outcomes include time to appropriate entry into the decentralised ART delivery programme, costs per virologically suppressed patient and cost-effectiveness of the intervention compared with standard care. Findings will inform the scale up of VL testing and differentiated care in HIV-endemic resource-limited settings. ETHICS AND DISSEMINATION Ethical approval has been granted by the University of KwaZulu-Natal Biomedical Research Ethics Committee (BFC296/16) and University of Washington Institutional Review Board (STUDY00001466). Results will be presented at international conferences and published in academic peer-reviewed journals. TRIAL REGISTRATION NCT03066128; Pre-results.
Collapse
Affiliation(s)
- Jienchi Dorward
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Justice Quame-Amaglo
- Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
| | - Natasha Samsunder
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Hope Ngobese
- Prince Cyril Zulu Communicable Disease Clinic, Durban Municipality, Durban, KwaZulu-Natal, South Africa
| | - Noluthando Ngomane
- Prince Cyril Zulu Communicable Disease Clinic, Durban Municipality, Durban, KwaZulu-Natal, South Africa
| | - Pravikrishnen Moodley
- Department of Virology, Inkosi Albert Luthuli Central Hospital, Durban, KwaZulu-Natal, South Africa
| | - Koleka Mlisana
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- National Health Laboratory Service, Durban, KwaZulu-Natal, South Africa
| | - Torin Schaafsma
- Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
| | - Deborah Donnell
- Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
| | - Ruanne Barnabas
- Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, USA
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- Department of Epidemiology, Columbia University, New York City, USA
| | - Connie Celum
- Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Paul K Drain
- Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, USA
| |
Collapse
|
37
|
Kanakasabapathy MK, Pandya HJ, Draz MS, Chug MK, Sadasivam M, Kumar S, Etemad B, Yogesh V, Safavieh M, Asghar W, Li JZ, Tsibris AM, Kuritzkes DR, Shafiee H. Rapid, label-free CD4 testing using a smartphone compatible device. LAB ON A CHIP 2017; 17:2910-2919. [PMID: 28702612 PMCID: PMC5576172 DOI: 10.1039/c7lc00273d] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The most recent guidelines have called for a significant shift towards viral load testing for HIV/AIDS management in developing countries; however point-of-care (POC) CD4 testing still remains an important component of disease staging in multiple developing countries. Advancements in micro/nanotechnologies and consumer electronics have paved the way for mobile healthcare technologies and the development of POC smartphone-based diagnostic assays for disease detection and treatment monitoring. Here, we report a simple, rapid (30 minutes) smartphone-based microfluidic chip for automated CD4 testing using a small volume (30 μL) of whole blood. The smartphone-based device includes an inexpensive (<$5) cell phone accessory and a functionalized disposable microfluidic device. We evaluated the performance of the device using spiked PBS samples and HIV-infected and uninfected whole blood, and compared the microfluidic chip results with the manual analysis and flow cytometry results. Through t-tests, Bland-Altman analyses, and regression tests, we have shown a good agreement between the smartphone-based test and the manual and FACS analysis for CD4 count. The presented technology could have a significant impact on HIV management in developing countries through providing a reliable and inexpensive POC CD4 testing.
Collapse
Affiliation(s)
- Manoj Kumar Kanakasabapathy
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kaushik A, Tiwari S, Jayant RD, Vashist A, Nikkhah-Moshaie R, El-Hage N, Nair M. Electrochemical Biosensors for Early Stage Zika Diagnostics. Trends Biotechnol 2017; 35:308-317. [PMID: 28277248 PMCID: PMC5366270 DOI: 10.1016/j.tibtech.2016.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023]
Abstract
Health agencies have declared the recent Zika virus (ZIKV) infection an epidemic and a public health emergency of global concern due to its association with microcephaly and serious neurological disorders. The unavailability of effective drugs, vaccines, and diagnostic tools increases the demand for efficient analytical devices to detect ZIKV infection. However, high costs, longer diagnostic times, and stringent expertise requirements limit the utility of reverse transcriptase-PCR methods for rapid diagnostics. Therefore, developing portable, sensitive, selective, and cost-effective sensing systems to detect ZIKV at picomolar concentrations in biofluids would be a breakthrough in diagnostics and therapeutics. This paper highlights the advancements in developing smart sensing strategies to monitor ZIKV progression, with rapid point-of-care diagnostics as the ultimate aim.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Sneham Tiwari
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rahul D Jayant
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Roozbeh Nikkhah-Moshaie
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Nazira El-Hage
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
39
|
Otange BO, Birech Z, Okonda J, Rop R. Conductive silver paste smeared glass substrates for label-free Raman spectroscopic detection of HIV-1 and HIV-1 p24 antigen in blood plasma. Anal Bioanal Chem 2017; 409:3253-3259. [PMID: 28255920 DOI: 10.1007/s00216-017-0267-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022]
Abstract
We report on application of conductive silver paste smeared glass slides as Raman spectroscopy sample substrates for label-free detection of HIV-1 p24 antigen in blood plasma. We also show that the same substrates can be applied in Raman spectroscopic screening of blood plasma for presence of HIV. The characteristic Raman spectrum of HIV-1 p24 antigen displayed prominent bands that were assigned to ribonucleic acids (RNA) and proteins that constitute the antigen. This spectrum can be used as reference during Raman spectroscopic screening for HIV in plasma within the first few days after exposure (<7 days). The Raman spectra obtained from HIV+ plasma displayed unique peaks centered at wavenumbers 928, 990, 1270, 1397, and 1446 cm-1 attributed to the Raman active vibrations in the virion carbohydrates, lipids, and proteins. Other bands similar to those reported in literature were also seen and assignments made. The attachment of the HIV virions to silver nanoparticles via gp120 glycoprotein knobs was thought to be responsible for the enhanced Raman signals of proteins associated with the virus. The principal component analysis (PCA) applied on the combined spectral data showed that HIV- and HIV+ spectra had differing spectral patterns. This indicated the great power of Raman spectroscopy in HIV detection when plasma samples are deposited onto silver paste smeared glass substrates. The Raman peaks responsible for the segregation of the spectral data in PCA were mainly those assigned to the viral proteins (645, 725, 813, 1270, and 1658 cm-1). Excellent results were obtained from Artificial Neural Network (ANN) applied on the HIV+ Raman spectral data around the prominent peak centered at 1270 cm-1 with R (coefficient of correlation) and R 2 (coefficient of determination) values of 0.9958 and 0.9895, respectively. The method has the potential of being used as quick blood screening for HIV before blood transfusion with the Raman peaks assigned to the virion proteins acting as reference. Graphical Abstract The HIV type 1 virus particle gets attached to the silver nanoparticle contained in the conductive silver paste smear onto a glass slide. This results in strong Raman signals associated with the components of the virion. The signals are collected, dispersed in a spectrometer and displayed on a computer screen. Method can be used as a label-free and rapid HIV screening in blood plasma.
Collapse
Affiliation(s)
- Ben O Otange
- Department of Physics, Egerton University, P.O Box 536-20115, Egerton, 20115, Kenya
| | - Zephania Birech
- Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, 00100, Kenya.
| | - Justus Okonda
- Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, 00100, Kenya
| | - Ronald Rop
- Department of Physics, Egerton University, P.O Box 536-20115, Egerton, 20115, Kenya
| |
Collapse
|
40
|
Brown MI, Grossenbacher MA. Can you test me now? Equivalence of GMA tests on mobile and non-mobile devices. INTERNATIONAL JOURNAL OF SELECTION AND ASSESSMENT 2017. [DOI: 10.1111/ijsa.12160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Safavieh M, Kaul V, Khetani S, Singh A, Dhingra K, Kanakasabapathy MK, Draz MS, Memic A, Kuritzkes DR, Shafiee H. Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens. NANOSCALE 2017; 9:1852-1861. [PMID: 27845796 PMCID: PMC5695240 DOI: 10.1039/c6nr06417e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Rapid and sensitive point-of-care diagnostics are of paramount importance for early detection of infectious diseases and timely initiation of treatment. Here, we present cellulose paper and flexible plastic chips with printed graphene-modified silver electrodes as universal point-of-care diagnostic tools for the rapid and sensitive detection of microbial pathogens or nucleic acids through utilizing electrical sensing modality and loop-mediated isothermal amplification (LAMP). We evaluated the ability of the developed paper-based assay to detect (i) viruses on cellulose-based paper microchips without implementing amplification in samples with viral loads between 106 and 108 copies per ml, and (ii) amplified HIV-1 nucleic acids in samples with viral loads between 10 fg μl-1 and 108 fg μl-1. The target HIV-1 nucleic acid was amplified using the RT-LAMP technique and detected through the electrical sensing of LAMP amplicons for a broad range of RNA concentrations between 10 fg μl-1 and 108 fg μl-1 after 40 min of amplification time. Our assay may be used for antiretroviral therapy monitoring where it meets the sensitivity requirement of the World Health Organization guidelines. Such a paper microchip assay without the amplification step may also be considered as a simple and inexpensive approach for acute HIV detection where maximum viral replication occurs.
Collapse
Affiliation(s)
- Mohammadali Safavieh
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Vivasvat Kaul
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sultan Khetani
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Anupriya Singh
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Karan Dhingra
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Manoj Kumar Kanakasabapathy
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mohamed Shehata Draz
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Adnan Memic
- Center for Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA and Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Hadi Shafiee
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
42
|
Inan H, Poyraz M, Inci F, Lifson MA, Baday M, Cunningham BT, Demirci U. Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev 2017; 46:366-388. [PMID: 27841420 PMCID: PMC5529146 DOI: 10.1039/c6cs00206d] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.
Collapse
Affiliation(s)
- Hakan Inan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Muhammet Poyraz
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Mark A Lifson
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Murat Baday
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering (by courtesy), Stanford University, Stanford, CA, USA
| |
Collapse
|
43
|
Kaushik A, Vabbina PK, Atluri V, Shah P, Vashist A, Jayant RD, Yandart A, Nair M. Electrochemical monitoring-on-chip (E-MoC) of HIV-infection in presence of cocaine and therapeutics. Biosens Bioelectron 2016; 86:426-431. [PMID: 27419908 PMCID: PMC5028277 DOI: 10.1016/j.bios.2016.06.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Electrochemical monitoring-on-chip (E-MoC)-based approach for rapid assessment of human immunodeficiency virus (HIV)-infection in the presence of cocaine (Coc) and specific drugs namely i.e., tenofovir (Tef), rimcazole (RA) is demonstrated here, for the first time, using electrochemical impedance spectroscopy (EIS). An in-vitro primary human astrocytes (HA) model was developed using a cultureware chip (CC, used for E-MoC) for HIV-infection, Coc exposure and treatment with anti-HIV drug i.e., Tef, and Coc antagonist i.e., RA. The charge transfer resistance (Rct) value of each CC well varies with respect to infection and treatment demonstrated highly responsive sensitivity of developed chip. The results of E-MoC, a proof-of-the concept, suggested that HIV-infection progression due to Coc ingestion and therapeutic effects of highly specific drugs are measurable on the basis of cell electrophysiology. Though, this work needs various molecular biology-based optimizations to promote this technology as an analytical tool for the rapid assessment of HIV-infection in a patient to manage HIV diseases for timely diagnosis. The presented study is based on using CNS cells and efforts are being made to perform this method using peripheral cells such as monocytes derived dendritic cells.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Phani Kiran Vabbina
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Venkata Atluri
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Pratikkumar Shah
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Adriana Yandart
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
44
|
Pandya HJ, Kanakasabapathy MK, Verma S, Chug MK, Memic A, Gadjeva M, Shafiee H. Label-free electrical sensing of bacteria in eye wash samples: A step towards point-of-care detection of pathogens in patients with infectious keratitis. Biosens Bioelectron 2016; 91:32-39. [PMID: 27987408 DOI: 10.1016/j.bios.2016.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
The diagnosis of keratitis is based on visual exam, tissue cytology, and standard microbial culturing to determine the type of the infectious pathogen. To prescribe appropriate therapy, it is important to distinguish between bacterial, fungal, and viral keratitis, as the treatments are quite different. Diagnosis of the causative organism has a substantial prognostic importance. Further, timely knowledge of the nature of the pathogen is also critical to adapt therapy in patients unresponsive to empiric treatment options, which occurs in 10% of all cases. Currently, the identification of the nature of the pathogen that causes keratitis is achieved via microbial culture screening, which is laboratory-based, expensive, and time-consuming. The most frequent pathogens that cause the corneal ulcers are P. aeruginosa and S. aureus. Here, we report a microchip for rapid (<1h) detection of P. aeruginosa (6294), S. aureus(LAC), through on-chip electrical sensing of bacterial lysate. We evaluated the microchip with spiked samples of PBS with bacteria concentration between 101 to 108 CFU/mL. The least diluted bacteria concentration in bacteria-spiked samples with statistically significant impedance change was 10 CFU/mL. We further validated our assay by comparing our microchip results with the standard culture-based methods using eye washes obtained from 13 infected mice.
Collapse
Affiliation(s)
- Hardik J Pandya
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Manoj Kumar Kanakasabapathy
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Saloni Verma
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Manjyot Kaur Chug
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Adnan Memic
- Center for Nanotechnology, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Mihaela Gadjeva
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
45
|
What’s New in Point-of-Care Testing? POINT OF CARE 2016. [DOI: 10.1097/poc.0000000000000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Kehrer JP, James DE. The Role of Pharmacists and Pharmacy Education in Point-of-Care Testing. AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION 2016; 80:129. [PMID: 27899825 PMCID: PMC5116781 DOI: 10.5688/ajpe808129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/03/2016] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) is defined as laboratory testing conducted close to the site of patient care. Although performed originally primarily by clinical staff for acute conditions, recent advances in technology have made such testing possible for disease screening and prevention across a wide range of conditions in virtually any setting, and often by individuals with little or no training. With the ongoing evolution in POCT, numerous concerns have arisen about the quality and accuracy of the tests, comparability between multiple tests for the same endpoint, interpretation of test results, and whether and how results should be used for therapeutic decisions and included in a patient's medical record. The pharmacist is well-positioned to manage and interpret POCT performed outside of the usual clinical settings. However, educational and regulatory changes are needed to enable pharmacists to take on this emerging activity effectively.
Collapse
Affiliation(s)
- James P. Kehrer
- University of Alberta Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, Alberta, Canada
| | - Deborah E. James
- University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Lei KM, Mak PI, Law MK, Martins RP. CMOS biosensors for in vitro diagnosis - transducing mechanisms and applications. LAB ON A CHIP 2016; 16:3664-3681. [PMID: 27713991 DOI: 10.1039/c6lc01002d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Complementary metal oxide semiconductor (CMOS) technology enables low-cost and large-scale integration of transistors and physical sensing materials on tiny chips (e.g., <1 cm2), seamlessly combining the two key functions of biosensors: transducing and signal processing. Recent CMOS biosensors unified different transducing mechanisms (impedance, fluorescence, and nuclear spin) and readout electronics have demonstrated competitive sensitivity for in vitro diagnosis, such as detection of DNA (down to 10 aM), protein (down to 10 fM), or bacteria/cells (single cell). Herein, we detail the recent advances in CMOS biosensors, centering on their key principles, requisites, and applications. Together, these may contribute to the advancement of our healthcare system, which should be decentralized by broadly utilizing point-of-care diagnostic tools.
Collapse
Affiliation(s)
- Ka-Meng Lei
- State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, China. and Faculty of Science and Technology, Dept. of ECE, University of Macau, China
| | - Pui-In Mak
- State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, China. and Faculty of Science and Technology, Dept. of ECE, University of Macau, China
| | - Man-Kay Law
- State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, China.
| | - Rui P Martins
- State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, China. and Faculty of Science and Technology, Dept. of ECE, University of Macau, China and On leave from Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
48
|
Kaushik A, Jayant RD, Nair M. Advancements in nano-enabled therapeutics for neuroHIV management. Int J Nanomedicine 2016; 11:4317-25. [PMID: 27621624 PMCID: PMC5012604 DOI: 10.2147/ijn.s109943] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This viewpoint is a global call to promote fundamental and applied research aiming toward designing smart nanocarriers of desired properties, novel noninvasive strategies to open the blood–brain barrier (BBB), delivery/release of single/multiple therapeutic agents across the BBB to eradicate neurohuman immunodeficiency virus (HIV), strategies for on-demand site-specific release of antiretroviral therapy, developing novel nanoformulations capable to recognize and eradicate latently infected HIV reservoirs, and developing novel smart analytical diagnostic tools to detect and monitor HIV infection. Thus, investigation of novel nanoformulations, methodologies for site-specific delivery/release, analytical methods, and diagnostic tools would be of high significance to eradicate and monitor neuroacquired immunodeficiency syndrome. Overall, these developments will certainly help to develop personalized nanomedicines to cure HIV and to develop smart HIV-monitoring analytical systems for disease management.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized NanoMedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rahul Dev Jayant
- Center for Personalized NanoMedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Madhavan Nair
- Center for Personalized NanoMedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
49
|
Kestens L, Mandy F. Thirty-five years of CD4 T-cell counting in HIV infection: From flow cytometry in the lab to point-of-care testing in the field. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:437-444. [PMID: 27406947 DOI: 10.1002/cyto.b.21400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 11/10/2022]
Abstract
CD4 T-cell counting was introduced in clinical laboratories shortly after the discovery of the human immune deficiency virus (HIV) in the early eighties. In western clinical laboratories, improvements in the CD4 T-cell counting methods were mainly driven by progress in the field of flow cytometry and immunology. In contrast, the development of dedicated CD4 T-cell counting technologies were needs driven. When antiretroviral treatment (ART) was made available on a large scale by international Acquired Immune Deficiency Syndrome (AIDS) relief programs to HIV+ patients living in low income countries in 2003, there was a distinct need for simplified and affordable CD4 T-cell counting technologies. The first decade of 2000, several compact flow cytometers appeared on the market, mainly to the benefit of low income countries with limited resources. More recently, however, portable point-of-care (POC) CD4 T-cell counting devices have been developed especially to improve access to affordable monitoring of HIV+ patients in low income countries. The accuracy of these POC instruments is not yet very well documented as many are still under development and clinical validation but preliminary evidence is encouraging. The new HIV treatment guidelines released by the World Health Organization in 2016 give CD4 T-cell counting a less central role in the management of HIV infection. It is, therefore, to be expected that CD4 T-cell counting will be phased out as a tool to assess eligibility of HIV+ patients for ART in the future. However, CD4 T-cell counting will remain a valuable tool for directing treatment against opportunistic infections. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- L Kestens
- Immunology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences University of Antwerp, Belgium
| | - F Mandy
- African Institute of Mathematical Sciences, Mbour, Senegal
| |
Collapse
|
50
|
Nair M, Jayant RD, Kaushik A, Sagar V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 2016; 103:202-217. [PMID: 26944096 PMCID: PMC4935582 DOI: 10.1016/j.addr.2016.02.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/18/2022]
Abstract
In spite of significant advances in antiretroviral (ARV) therapy, the elimination of human immunodeficiency virus (HIV) reservoirs from the periphery and the central nervous system (CNS) remains a formidable task. The incapability of ARV to go across the blood-brain barrier (BBB) after systemic administration makes the brain one of the dominant HIV reservoirs. Thus, screening, monitoring, and elimination of HIV reservoirs from the brain remain a clinically daunting and key task. The practice and investigation of nanomedicine possesses potentials for therapeutics against neuroAIDS. This review highlights the advancements in nanoscience and nanotechnology to design and develop specific size therapeutic cargo for efficient navigation across BBB so as to recognize and eradicate HIV brain reservoirs. Different navigation and drug release strategies, their biocompatibility and efficacy with related challenges and future prospects are also discussed. This review would be an excellent platform to understand nano-enable multidisciplinary research to formulate efficient nanomedicine for the management of neuroAIDS.
Collapse
Key Words
- Anti-retroviral (ARV) therapy
- Blood–brain barrier (BBB)
- Bradykinin (PubChem CID: 439,201)
- CNS drug delivery
- Enfuvirtide (PubChem CID: 16,130,199), Lamivudine & Zidovudine (PubChem CID: 160,352)
- Ferrous oxide or iron (II) oxide (PubChem CID: 14,945)
- Foscarnet sodium (PubChem CID: 44,561)
- HIV monitoring
- HIV-1
- Magnetic nanoparticle
- Mannitol (PubChem CID: 6251)
- Nanotechnology
- Neopterin (PubChem CID: 4455)
- NeuroAIDS
- Pluronic-P85 (PubChem CID: 24,751)
- Saquinavir mesylate (PubChem CID: 60,934)
- Tenofovir disoproxil fumarate (PubChem CID: 6,398,764)
Collapse
Affiliation(s)
- Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Vidya Sagar
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|