1
|
Patra S, Kar S, Gopal Bag B. First Vesicular Self-Assembly of an Apocarotenoid Bixin in Aqueous Liquids and Its Antibacterial Activity. Chem Asian J 2024; 19:e202400361. [PMID: 39331573 DOI: 10.1002/asia.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Bixin 1 is the major constituent of the reddish carotenoids present in the seed-coat of Bixa orellana. The use of the extract of the seed-coat of Bixa orellana in food, cosmetics and garments is well known. The nano-sized long 24 C chain molecule has nine conjugated double bonds having extended conjugation with the '-COOH' and '-COOMe' groups present at the two ends of the molecule. Herein, we report the first self-assembly of bixin in several aqueous liquids. The molecule undergoes spontaneous self-assembly in several liquids yielding vesicular self-assembly. Characterizations of the self-assemblies of bixin were carried out by various microscopic techniques, X-ray diffraction and FTIR studies. The critical vesicular concentrations (CVCs) of the compound carried out in DMSO-water in three different solvent ratios as 2: 1 (v/v), 1: 1 (v/v) and 1: 4 (v/v) were determined to be 100 μM, 90 μM and 60 μM respectively indicating lower CVC values at higher proportion of water. Utilization of the vesicular self-assemblies of bixin have been demonstrated in the entrapment and release of fluorophores including the anticancer drugs doxorubicin and curcumin. Self-assembled bixin and curcumin loaded self-assembled bixin showed significant antibacterial activity with both Gram positive as well as Gram negative bacteria.
Collapse
Affiliation(s)
- Soumen Patra
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sukhendu Kar
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Braja Gopal Bag
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
2
|
Barroso C, Fonseca AJM, Cabrita ARJ. Vitamins, Minerals and Phytonutrients as Modulators of Canine Immune Function: A Literature Review. Vet Sci 2024; 11:655. [PMID: 39728995 DOI: 10.3390/vetsci11120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Trends in the pet food industry are driven by the humanization of pets, favoring the inclusion of functional ingredients or supplements that promote animal health. Several commercial diets claim to include supplements with benefits for dogs' immune function, but in vivo evidence that supports their efficacy remains limited. This literature review aimed to better understand the current knowledge on the effects of vitamins, minerals and phytonutrients on dogs' immune function. A total of 27 peer-reviewed articles were identified in PubMed and Web of Science databases. Although vitamin supplementation is often claimed to support immune function, only two studies promoting slight benefits of vitamins C and E were found. The limited research on minerals suggests that organic sources promote a better immune response. Studies evaluating the inclusion of different phytonutrients show that these compounds might exert immunomodulatory and anti-inflammatory effects. Despite the increased popularity of commercial diets claimed to support the immune response of dogs, further research is needed in order to substantiate their effects. This knowledge will contribute to the development of effective diets to enhance immune health in dogs.
Collapse
Affiliation(s)
- Carolina Barroso
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - António J M Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana R J Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Takatani N, Miyafusa H, Yamano Y, Beppu F, Hosokawa M. Apo-12'-capsorubinal exhibits anti-inflammatory effects and activates nuclear factor erythroid 2-related factor 2 in RAW264.7 macrophages. Arch Biochem Biophys 2024; 760:110125. [PMID: 39154816 DOI: 10.1016/j.abb.2024.110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Apocarotenoids have short carbon chain structures cleaved at a polyene-conjugated double bond. They can be biosynthesized in plants and microorganisms. Animals ingest carotenoids through food and then metabolize them into apocarotenoids. Although several apocarotenoids have been identified in the body, their precise health functions are still poorly understood. This study investigated the anti-inflammatory activities of apo-12'-capsorubinal in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. It was confirmed that apo-12'-capsorubinal was not cytotoxic to the macrophages at the concentrations tested. Apo-12'-capsorubinal treatment led to a marked downregulation of interleukin (IL)-6 protein and Il6 mRNA levels. This apocarotenoid exhibited more potent inhibitory effects than its parent carotenoids, capsanthin and capsorubin. Furthermore, apo-12'-capsorubinal, but not its parent carotenoids, promoted the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated the expression of Nrf2-target genes, such as heme oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO-1), in a dose-dependent manner. Furthermore, a comparison using apo-12'-zeaxanthinal and 7,8-dihydro-8-oxo-apo-12'-zeaxanthinal revealed that the α, β-unsaturated carbonyl group on the polyene linear chain mediated the enhanced nuclear Nrf2 translocation, HO-1 expression, and inhibition of IL-6 production. In contrast, apo-12'-mytiloxanthinal, which harbored a hydroxyl group at C-8 of apo-12'-capsorubinal, did not exhibit any of these activities. These results indicated that the β carbon of the α, β-unsaturated carbonyl group in the linear part of the polyene chain is crucial to the Nrf2-activating and anti-inflammatory effects of apo-12'-capsorubinal. This study will advance our knowledge of the physiological significance of xanthophyll-derived apocarotenoids and their potential use as nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Naoki Takatani
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Hiroki Miyafusa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yumiko Yamano
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
5
|
Yu J, Guo P. Association between dietary intake of carotenoids and metabolic dysfunction-associated fatty liver disease in US adults: National Health and Nutrition Examination Survey 2017-March 2020. Public Health Nutr 2024; 27:e168. [PMID: 39313756 PMCID: PMC11504986 DOI: 10.1017/s1368980024001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/14/2024] [Accepted: 07/15/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE To assess the relationship between dietary intake of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein+zeaxanthin (LZ) and occurrence of metabolic dysfunction-associated fatty liver disease (MAFLD). DESIGN Cross-sectional study design. The MAFLD diagnosis was based on hepatic steatosis and metabolic dysregulation. Carotenoid intake was adjusted for using an energy-adjusted model. Logistic regression and restricted cubic spline (RCS) analyses were used to assess the relationships, with sensitivity analysis to validate the findings. Weighted quantile sum regression (WQS) was used to explore the combined effect of these carotenoids on MAFLD. Subgroup analyses were conducted to identify population-specific associations. SETTING National Health and Nutrition Examination Survey (NHANES) 2017-March 2020. PARTICIPANTS This study included 5098 individuals aged 18 years and older. RESULTS After adjusting for potential confounders, a weak inverse association was observed between α-carotene and β-carotene intakes and MAFLD occurrence (all P value <0·05). The highest quartile of β-carotene intake showed a significantly lower occurrence of MAFLD compared with the lowest quartile (OR = 0·65; 95 % CI: 0·44, 0·97). RCS analysis showed that a significantly lower occurrence of MAFLD was associated with a higher intake of the four carotenoids, excluding lycopene. Furthermore, the WQS analysis revealed a negative relationship between combined carotenoid intake and MAFLD occurrence (OR = 0·95, 95 % CI: 0·90, 1·00, P = 0·037). Subgroup analyses showed dietary carotenoid intake was associated with reduced MAFLD occurrence in populations aged 50-69 years, females, physically active individuals and non-drinkers. CONCLUSION Higher dietary intake of carotenoids is associated with lower MAFLD occurrence. However, this relationship varies among individuals of different ages, sexes and lifestyles.
Collapse
Affiliation(s)
- Jiahui Yu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu/The Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Peisen Guo
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu/The Affiliated Hospital of Southwest Jiaotong University, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Wang G, Deng H, Wang T, Zheng X. Nutritional supplementation of breeding hens may promote embryonic development through the growth hormone-insulin like growth factor axis. Poult Sci 2024; 103:103945. [PMID: 38905758 PMCID: PMC11246051 DOI: 10.1016/j.psj.2024.103945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/23/2024] Open
Abstract
The late stage of embryo development is a crucial period of metabolic changes, with rapid organ development requiring a substantial supply of nutrients. During this phase, maternal nutritional levels play a vital role in the growth, development, and metabolism of the offspring. In this study, we added 2 doses of β-carotene (βc) (120 mg/kg and 240 mg/kg) to the daily diet of Hailan Brown laying hens to investigate the impact of maternal nutritional enrichment on embryo development. Maternal nutrition supplementation significantly increased the expression of chicken embryo liver index, growth hormone (GH), insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor (HGF) in serum. At the same time, the expression of GH/growth hormone receptor (GHR), IGF-1 mRNA, and Proliferating Cell Nuclear Antigen (PCNA) protein in the liver was upregulated, indicating that maternal nutrition intervention may promote chicken embryo liver development through the GH-IGF-1 axis. Transcriptome sequencing results showed that differential genes in liver after maternal nutritional supplementation with β-carotene were enriched in pathways related to cell proliferation and metabolism. Consequently, we postulated that maternal β-carotene supplementation might operate via the GH-IGF-1 axis to regulate the expression of genes involved in growth and development, thereby promoting liver development. These results contribute to formulating more effective poultry feeding strategies to promote offspring growth and development.
Collapse
Affiliation(s)
- Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Haochu Deng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Taiping Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
7
|
Miao Q, Si X, Zhao Q, Zhang H, Qin Y, Tang C, Zhang J. Deposition and enrichment of carotenoids in livestock products: An overview. Food Chem X 2024; 21:101245. [PMID: 38426078 PMCID: PMC10901861 DOI: 10.1016/j.fochx.2024.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
A wide range of research has illustrated that carotenoids play a key role in human health through their versatile beneficial biological functions. Traditionally, the majority dietary sources of carotenoids for humans are obtained from vegetables and fruits, however, the contribution of animal-derived foods has attracted more interest in recent years. Livestock products such as eggs, meat, and milk have been considered as the appropriate and unique carriers for the deposition of carotenoids. In addition, with the enrichment of carotenoids, the nutritional quality of these animal-origin foods would be improved as well as the economic value. Here, we offer an overview covering aspects including the physicochemical properties of carotenoids, the situation of carotenoids fortified in livestock products, and the pathways that lead to the deposition of carotenoids in livestock products. The summary of these important nutrients in livestock products will provide references for animal husbandry and human health.
Collapse
Affiliation(s)
- Qixiang Miao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xueyang Si
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Benmeddour T, Messaoudi K, Flamini G. First investigation of the chemical composition, antioxidant, antimicrobial and larvicidal activities of the essential oil of the subspecies Ononis angustissima Lam. subsp. filifolia Murb. Nat Prod Res 2024:1-16. [PMID: 38247329 DOI: 10.1080/14786419.2024.2305211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
This study is the first to explore the essential oil of Ononis angustissima Lam. subsp. filifolia Murb., a subspecies growing in the Algerian northeastern Sahara. The chemical composition was evaluated by GC/GC-EIMS. Antioxidant activity was evaluated using two methods. Thirty-four (91.6%) individual components were identified. The main constituents were linalool (12.6%), hexahydrofarnesylacetone (8.4%), β-eudesmol (6.6%), α-cadinol (6.4%) and T-cadinol (6.1%). The findings provide a chemical basis for understanding relationships between North African subspecies, supporting botanical and genetic classification. The oil exhibited moderate scavenging activity against DPPH radicals (IC50 = 102.30 µg/ml) and high activity in the β-carotene bleaching assay (91.346%). Antimicrobial tests revealed effectiveness against Gram-positive bacteria (Staphylococcus aureus ATCC 25923 and ATCC 43300), limited impact on Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922), and good inhibition against Aspergillus niger and Scedosporium apiospermum. A notable larvicidal activity was observed against Date Moth, particularly on L2 larvae.
Collapse
Affiliation(s)
- Tarek Benmeddour
- Department of Nature and Life Sciences, University of Biskra, Biskra, Algeria
- Laboratory of Genetics, Biotechnology and Valorization of Bioresources, University of Biskra, Algeria
| | - Khadidja Messaoudi
- Department of Nature and Life Sciences, University of Biskra, Biskra, Algeria
- Laboratory of Genetics, Biotechnology and Valorization of Bioresources, University of Biskra, Algeria
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
| |
Collapse
|
9
|
Schulz M, Hübner F, Humpf HU. Evaluation of Food Intake Biomarkers for Red Bell Peppers in Human Urine Based on HPLC-MS/MS Analysis. Mol Nutr Food Res 2024; 68:e2300464. [PMID: 38015099 DOI: 10.1002/mnfr.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2023] [Indexed: 11/29/2023]
Abstract
SCOPE The validation of dietary biomarkers is essential for the use in objective and quantitative assessment of the human dietary intake. In this study, the urinary excretion of previously identified potential biomarkers after intake of red bell peppers is analyzed. METHODS AND RESULTS The urine samples obtained after a two-phase dietary intervention study in which 14 volunteers participated are quantitatively analyzed by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) after an extensive validation. In the first phase, the volunteers abstain completely from bell peppers and paprika products (control group) and in the second phase, the volunteers consume a defined amount of fresh red bell peppers (case group). After analysis, all potential biomarkers show high dispersions of their concentration, indicating interindividual differences. The glucuronidated apocarotenoid (compound 1), which probably resulted from the main carotenoids of red Capsicum fruits, shows a rapid urinary excretion. The other glucuronidated metabolites (compounds 2-8), described as potential derivatives of capsianosides from Capsicum, show a slightly delayed but longer urinary excretion. CONCLUSIONS A correlation between an intake of red bell pepper and the urinary excretion of recently described potential biomarkers is observed. Due to large interindividual differences, it is reasonable to assume that at least the qualitative detection of the consumption of bell peppers and possibly all Capsicum fruits is feasible.
Collapse
Affiliation(s)
- Mareike Schulz
- Institute of Food Chemistry, University of Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Florian Hübner
- Institute of Food Chemistry, University of Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstrasse 45, 48149, Münster, Germany
| |
Collapse
|
10
|
Bohn T, de Lera AR, Landrier JF, Rühl R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptor-mediated signalling. Nutr Res Rev 2023; 36:498-511. [PMID: 36380523 DOI: 10.1017/s095442242200021x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many epidemiological studies have emphasised the relation between carotenoid dietary intake and their circulating concentrations and beneficial health effects, such as lower risk of cardiometabolic diseases and cancer. However, there is dispute as to whether the attributed health benefits are due to native carotenoids or whether they are instead induced by their metabolites. Several categories of metabolites have been reported, most notably involving (a) modifications at the cyclohexenyl ring or the polyene chain, such as epoxides and geometric isomers, (b) excentric cleavage metabolites with alcohol-, aldehyde- or carboxylic acid-functional groups or (c) centric cleaved metabolites with additional hydroxyl, aldehyde or carboxyl functionalities, not counting their potential phase-II glucuronidated / sulphated derivatives. Of special interest are the apo-carotenoids, which originate in the intestine and other tissues from carotenoid cleavage by β-carotene oxygenases 1/2 in a symmetrical / non-symmetrical fashion. These are more water soluble and more electrophilic and, therefore, putative candidates for interactions with transcription factors such as NF-kB and Nrf2, as well as ligands for RAR-RXR nuclear receptor interactions. In this review, we discuss in vivo detected apo-carotenoids, their reported tissue concentrations, and potential associated health effects, focusing exclusively on the human situation and based on quantified / semi-quantified carotenoid metabolites proven to be present in humans.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Precision Health Department, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Angel R de Lera
- Departmento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Ralph Rühl
- CISCAREX UG, Berlin, Germany
- Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
11
|
Li H, Chen L, Yuan C, Yang H, Ma Z, Zuo J. Diet-derived antioxidants and osteoporosis: A Mendelian randomization study. PLoS One 2023; 18:e0293145. [PMID: 38019728 PMCID: PMC10686434 DOI: 10.1371/journal.pone.0293145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Antioxidants can prevent osteoporosis, but the association between serum antioxidants and the cause of osteoporosis remains unknown. We aimed to utilize Mendelian randomization (MR) to determine whether genetically predicted serum levels of diet-derived antioxidants can affect the risk of osteoporosis, to determine the effect of dietary supplementation of antioxidants. METHODS Genetic variants associated with diet-derived antioxidants were selected from the genome-wide association studies. A total of 12,946 osteoporosis cases and 506,624 healthy controls were obtained from UK Biobank (UKB) and Genetic Factors of Osteoporosis (GEFOS) consortia. We implemented a two-sample MR design and performed several sensitivity analyses to evaluate the causal relationship. RESULTS In UKB, the genetically predicted higher β-carotene (OR = 0.863, p = 7.37 × 10-6, power = 100%) and γ-tocopherol (OR = 0.701, p = 0.021, power = 5%) had an inverse relationship with osteoporosis. However, only the association of serum β-carotene passed FDR correction. In GEFOS, there were no significant diet-derived antioxidants. The direction of the association of β-carotene with osteoporosis (OR = 0.844, p = 0.106, power = 87%) was consistent with that in the UKB dataset. A fixed-effects meta-analysis confirmed that β-carotene (OR = 0.862, p = 2.21 × 10-6) and γ-tocopherol (OR = 0.701, p = 2.31 × 10-2) could decrease the risk of osteoporosis. To reduce exclusion limit bias, we used total body bone mineral density, lumbar spine bone mineral density and femoral neck bone mineral density as surrogates and found that the genetically elevated circulating β-carotene level could increase total body BMD (beta = 0.043, p-value = 8.26 x 10-5, power = 100%), lumbar spine BMD (beta = 0.226, p-value = 0.001, power = 100%) and femoral neck BMD(beta = 0.118, p-value = 0.016, power = 100%). CONCLUSIONS We observed that genetically predicted serum β-carotene could elevate BMD and prevent osteoporosis.
Collapse
Affiliation(s)
- Haitao Li
- Department of Orthopeadics, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lanlan Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Chaofeng Yuan
- Department of Gastrointestinal Colorectal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hongqun Yang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Zhuangzhuang Ma
- Department of Orthopeadics, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Fayez D, Youssif A, Sabry S, Ghozlan H, El-Sayed F. Some novel bioactivities of Virgibacillus halodenitrificans carotenoids, isolated from Wadi El-Natrun lakes. Saudi J Biol Sci 2023; 30:103825. [PMID: 37869364 PMCID: PMC10587757 DOI: 10.1016/j.sjbs.2023.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Carotenoids come in second among the most frequent natural pigments and are utilized in medications, nutraceuticals, cosmetics, food pigments, and feed supplements. Based on recent complementary work, Virgibacillus was announced for the first time as a member of Wadi El-Natrun salt and soda lakes microbiota, identified as Virgibacillus halodenitrificans, and named V. halodenitrificans DASH; hence, this work aimed to investigate several in vitro medicinal bioactivities of V. halodenitrificans DASH carotenoids. The carotenoid methanolic extract showed antioxidant activity based on diphenylpicrylhydrazyl (DPPH) scavenging capacity with a half-maximal concentration (IC50) of 1.6 mg/mL as well as nitric oxide (NO) scavenging action expressed by an IC50 of 46.4 µg/mL. The extract showed considerable inhibitory activity for alpha-amylase (α-amylase) and alpha-glucosidase (α-glucosidase) enzymes (IC50 of 100 and 173.4 μg/mL, respectively). Moreover, the extract displayed selective anticancer activity against Caco-2 (IC50 = 138.96 µg/mL) and HepG-2 cell lines (IC50 = 31.25 µg/mL), representing colorectal adenocarcinoma and hepatoblastoma. Likewise, the extract showed 98.9 % clearance for human hepatitis C virus (HCV) using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), HCV-NS5B polymerase activity inhibition (IC50 = 27.4 µg/mL), and selective inhibitory activity against human coronavirus (HCoV 229E) using the plaque reduction assay (IC50 = 53.5 µg/mL). As far as we can tell, the anticancer, antiviral, and antidiabetic attributes of Virgibacillus carotenoids are, de novo, reported in this work which accordingly invokes further exploration of the other medicinal, biotechnological, and industrial applications of Virgibacillus and haloalkaliphilic bacteria carotenoids.
Collapse
Affiliation(s)
- Doaa Fayez
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Asmaa Youssif
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Soraya Sabry
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Hanan Ghozlan
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Fatma El-Sayed
- Cell Culture Unit, Medical Technology Center, Medical Research Institute, University of Alexandria, Egypt
| |
Collapse
|
13
|
Bernabeu M, Gharibzahedi SMT, Ganaie AA, Macha MA, Dar BN, Castagnini JM, Garcia-Bonillo C, Meléndez-Martínez AJ, Altintas Z, Barba FJ. The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Crit Rev Food Sci Nutr 2023; 64:12555-12573. [PMID: 37691412 DOI: 10.1080/10408398.2023.2254383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gut microbiota plays a crucial role in regulating the response to immune checkpoint therapy, therefore modulation of the microbiome with bioactive molecules like carotenoids might be a very effective strategy to reduce the risk of chronic diseases. This review highlights the bio-functional effect of carotenoids on Gut Microbiota modulation based on a bibliographic search of the different databases. The methodology given in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) has been employed for developing this review using papers published over two decades considering keywords related to carotenoids and gut microbiota. Moreover, studies related to the health-promoting properties of carotenoids and their utilization in the modulation of gut microbiota have been presented. Results showed that there can be quantitative changes in intestinal bacteria as a function of the type of carotenoid. Due to the dependency on several factors, gut microbiota continues to be a broad and complex study subject. Carotenoids are promising in the modulation of Gut Microbiota, which favored the appearance of beneficial bacteria, resulting in the protection of villi and intestinal permeability. In conclusion, it can be stated that carotenoids may help to protect the integrity of the intestinal epithelium from pathogens and activate immune cells.
Collapse
Affiliation(s)
- Manuel Bernabeu
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Seyed Mohammad Taghi Gharibzahedi
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Arsheed A Ganaie
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Muzafar A Macha
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| | | | | | - Zeynep Altintas
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| |
Collapse
|
14
|
Bandara S, Moon J, Ramkumar S, von Lintig J. ASTER-B regulates mitochondrial carotenoid transport and homeostasis. J Lipid Res 2023; 64:100369. [PMID: 37030626 PMCID: PMC10193236 DOI: 10.1016/j.jlr.2023.100369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023] Open
Abstract
The scavenger receptor class B type 1 (SR-B1) facilitates uptake of cholesterol and carotenoids into the plasma membrane (PM) of mammalian cells. Downstream of SR-B1, ASTER-B protein mediates the nonvesicular transport of cholesterol to mitochondria for steroidogenesis. Mitochondria also are the place for the processing of carotenoids into diapocarotenoids by β-carotene oxygenase-2. However, the role of these lipid transport proteins in carotenoid metabolism has not yet been established. Herein, we showed that the recombinant StART-like lipid-binding domain of ASTER-A and B preferentially binds oxygenated carotenoids such as zeaxanthin. We established a novel carotenoid uptake assay and demonstrated that ASTER-B expressing A549 cells transport zeaxanthin to mitochondria. In contrast, the pure hydrocarbon β-carotene is not transported to the organelles, consistent with its metabolic processing to vitamin A in the cytosol by β-carotene oxygenase-1. Depletion of the PM from cholesterol by methyl-β-cyclodextrin treatment enhanced zeaxanthin but not β-carotene transport to mitochondria. Loss-of-function assays by siRNA in A549 cells and the absence of zeaxanthin accumulation in mitochondria of ARPE19 cells confirmed the pivotal role of ASTER-B in this process. Together, our study in human cell lines established ASTER-B protein as key player in nonvesicular transport of zeaxanthin to mitochondria and elucidated the molecular basis of compartmentalization of the metabolism of nonprovitamin A and provitamin A carotenoids in mammalian cells.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
15
|
Eroglu A, Al'Abri IS, Kopec RE, Crook N, Bohn T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv Nutr 2023; 14:238-255. [PMID: 36775788 DOI: 10.1016/j.advnut.2022.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoids have been related to a number of health benefits. Their dietary intake and circulating levels have been associated with a reduced incidence of obesity, diabetes, certain types of cancer, and even lower total mortality. Their potential interaction with the gut microbiota (GM) has been generally overlooked but may be of relevance, as carotenoids largely bypass absorption in the small intestine and are passed on to the colon, where they appear to be in part degraded into unknown metabolites. These may include apo-carotenoids that may have biological effects because of higher aqueous solubility and higher electrophilicity that could better target transcription factors, i.e., NF-κB, PPARγ, and RAR/RXRs. If absorbed in the colon, they could have both local and systemic effects. Certain microbes that may be supplemented were also reported to produce carotenoids in the colon. Although some bactericidal aspects of carotenoids have been shown in vitro, a few studies have also demonstrated a prebiotic-like effect, resulting in bacterial shifts with health-associated properties. Also, stimulation of IgA could play a role in this respect. Carotenoids may further contribute to mucosal and gut barrier health, such as stabilizing tight junctions. This review highlights potential gut-related health-beneficial effects of carotenoids and emphasizes the current research gaps regarding carotenoid-GM interactions.
Collapse
Affiliation(s)
- Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, USA.
| | - Ibrahim S Al'Abri
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, rue 1 A-B, Thomas Edison, L-1445 Strassen, Luxembourg.
| |
Collapse
|
16
|
Hammerling U, Kim YK, Quadro L. Quantum chemistry rules retinoid biology. Commun Biol 2023; 6:227. [PMID: 36854887 PMCID: PMC9974979 DOI: 10.1038/s42003-023-04602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
This Perspective discusses how retinol catalyzes resonance energy transfer (RET) reactions pivotally important for mitochondrial energy homeostasis by protein kinase C δ (PKCδ). PKCδ signals to the pyruvate dehydrogenase complex, controlling oxidative phosphorylation. The PKCδ-retinol complex reversibly responds to the redox potential of cytochrome c, that changes with the electron transfer chain workload. In contrast, the natural retinoid anhydroretinol irreversibly activates PKCδ. Its elongated conjugated-double-bond system limits the energy quantum absorbed by RET. Consequently, while capable of triggering the exergonic activating pathway, anhydroretinol fails to activate the endergonic silencing path, trapping PKCδ in the ON position and causing harmful levels of reactive oxygen species. However, physiological retinol levels displace anhydroretinol, buffer cyotoxicity and potentially render anhydroretinol useful for rapid energy generation. Intriguingly, apocarotenoids, the primary products of the mitochondrial β-carotene,9'-10'-oxygenase, have all the anhydroretinol-like features, including modulation of energy homeostasis. We predict significant conceptual advances to stem from further understanding of the retinoid-catalyzed RET.
Collapse
Affiliation(s)
- Ulrich Hammerling
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
17
|
β-Cryptoxanthin Attenuates Cigarette-Smoke-Induced Lung Lesions in the Absence of Carotenoid Cleavage Enzymes (BCO1/BCO2) in Mice. Molecules 2023; 28:molecules28031383. [PMID: 36771049 PMCID: PMC9920649 DOI: 10.3390/molecules28031383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
High dietary intake of β-cryptoxanthin (BCX, an oxygenated provitamin A carotenoid) is associated with a lower risk of lung disease in smokers. BCX can be cleaved by β-carotene-15,15'-oxygenase (BCO1) and β-carotene-9',10'-oxygenase (BCO2) to produce retinol and apo-10'-carotenoids. We investigated whether BCX has protective effects against cigarette smoke (CS)-induced lung injury, dependent or independent of BCO1/BCO2 and their metabolites. Both BCO1-/-/BCO2-/- double knockout mice (DKO) and wild type (WT) littermates were supplemented with BCX 14 days and then exposed to CS for an additional 14 days. CS exposure significantly induced macrophage and neutrophil infiltration in the lung tissues of mice, regardless of genotypes, compared to the non-exposed littermates. BCX treatment significantly inhibited CS-induced inflammatory cell infiltration, hyperplasia in the bronchial epithelium, and enlarged alveolar airspaces in both WT and DKO mice, regardless of sex. The protective effects of BCX were associated with lower expression of IL-6, TNF-α, and matrix metalloproteinases-2 and -9. BCX treatment led to a significant increase in hepatic BCX levels in DKO mice, but not in WT mice, which had significant increase in hepatic retinol concentration. No apo-10'-carotenoids were detected in any of the groups. In vitro BCX, at comparable doses of 3-OH-β-apo-10'-carotenal, was effective at inhibiting the lipopolysaccharide-induced inflammatory response in a human bronchial epithelial cell line. These data indicate that BCX can serve as an effective protective agent against CS-induced lung lesions in the absence of carotenoid cleavage enzymes.
Collapse
|
18
|
Bohn T, de Lera AR, Landrier JF, Carlsen H, Merk D, Todt T, Renaut J, Rühl R. State-of-the-art methodological investigation of carotenoid activity and metabolism - from organic synthesis via metabolism to biological activity - exemplified by a novel retinoid signalling pathway. Food Funct 2023; 14:621-638. [PMID: 36562448 DOI: 10.1039/d2fo02816f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carotenoids are the most abundant lipophilic secondary plant metabolites and their dietary intake has been related to a large number of potential health benefits relevant for humans, including even reduced total mortality. An important feature is their potential to impact oxidative stress and inflammatory pathways, by interacting with transcription factors. For example, they may act as precursors of bioactive derivatives activating nuclear hormone receptor mediated signalling. These bioactive derivatives, originating e.g. from β-carotene, i.e. retinoids / vitamin A, can activate the nuclear hormone receptors RARs (retinoic acid receptors). Due to new analytical insights, various novel metabolic pathways were recently outlined to be mediated via distinct nuclear hormone receptor activating pathways that were predicted and further confirmed. In this article, we describe old and novel metabolic pathways from various carotenoids towards novel ligands of alternative nuclear hormone receptors. However, to fully elucidate these pathways, a larger array of techniques and tools, starting from organic synthesis, lipidomics, reporter models, classical in vitro and in vivo models and further omics-approaches and their statistical evaluation are needed to comprehensively and conclusively study this topic. Thus, we further describe state-of-the-art techniques from A to Ω elucidating carotenoid biological mediated activities and describe in detail required materials and methods needed - in practical protocol form - for the various steps of carotenoid investigations.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of Health, Nutrition and Health Research Group, Department of Precision Health, 1 A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Daniel Merk
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Tilman Todt
- HAN University of Applied Sciences, School of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Ralph Rühl
- CISCAREX UG, Berlin, Germany. .,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
19
|
Gómez Gómez L, Morote L, Frusciante S, Rambla JL, Diretto G, Niza E, López-Jimenez AJ, Mondejar M, Rubio-Moraga Á, Argandoña J, Presa S, Martín-Belmonte A, Luján R, Granell A, Ahrazem O. Fortification and bioaccessibility of saffron apocarotenoids in potato tubers. Front Nutr 2022; 9:1045979. [DOI: 10.3389/fnut.2022.1045979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Carotenoids are C40 isoprenoids with well-established roles in photosynthesis, pollination, photoprotection, and hormone biosynthesis. The enzymatic or ROS-induced cleavage of carotenoids generates a group of compounds named apocarotenoids, with an increasing interest by virtue of their metabolic, physiological, and ecological activities. Both classes are used industrially in a variety of fields as colorants, supplements, and bio-actives. Crocins and picrocrocin, two saffron apocarotenoids, are examples of high-value pigments utilized in the food, feed, and pharmaceutical industries. In this study, a unique construct was achieved, namely O6, which contains CsCCD2L, UGT74AD1, and UGT709G1 genes responsible for the biosynthesis of saffron apocarotenoids driven by a patatin promoter for the generation of potato tubers producing crocins and picrocrocin. Different tuber potatoes accumulated crocins and picrocrocin ranging from 19.41–360 to 105–800 μg/g DW, respectively, with crocetin, crocin 1 [(crocetin-(β-D-glucosyl)-ester)] and crocin 2 [(crocetin)-(β-D-glucosyl)-(β-D-glucosyl)-ester)] being the main compounds detected. The pattern of carotenoids and apocarotenoids were distinct between wild type and transgenic tubers and were related to changes in the expression of the pathway genes, especially from PSY2, CCD1, and CCD4. In addition, the engineered tubers showed higher antioxidant capacity, up to almost 4-fold more than the wild type, which is a promising sign for the potential health advantages of these lines. In order to better investigate these aspects, different cooking methods were applied, and each process displayed a significant impact on the retention of apocarotenoids. More in detail, the in vitro bioaccessibility of these metabolites was found to be higher in boiled potatoes (97.23%) compared to raw, baked, and fried ones (80.97, 78.96, and 76.18%, respectively). Overall, this work shows that potatoes can be engineered to accumulate saffron apocarotenoids that, when consumed, can potentially offer better health benefits. Moreover, the high bioaccessibility of these compounds revealed that potato is an excellent way to deliver crocins and picrocrocin, while also helping to improve its nutritional value.
Collapse
|
20
|
Guo Z, Liu Y, Luo Y. Mechanisms of carotenoid intestinal absorption and the regulation of dietary lipids: lipid transporter-mediated transintestinal epithelial pathways. Crit Rev Food Sci Nutr 2022; 64:1791-1816. [PMID: 36069234 DOI: 10.1080/10408398.2022.2119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary lipids are key ingredients during cooking, processing, and seasoning of carotenoid-rich fruits and vegetables, playing vitals in affecting the absorption and utilization of carotenoids for achieving their health benefits. Besides, dietary lipids have also been extensively studied to construct various delivery systems for carotenoids, such as micro/nanoparticles, micro/nanoemulsions, and liposomes. Currently, the efficacies of these techniques on improving carotenoid bioavailability are often evaluated using the micellization rate or "bioaccessibility" based on in vitro models. However, recent studies have found that dietary lipids may also affect the carotenoid uptake via intestinal epithelial cells and the efflux of intracellular chyle particles via lipid transporters. An increasing number of studies reveal the varied impact of different dietary lipids on the absorption of different carotenoids and some lipids may even have an inhibitory effect. Consequently, it is necessary to clarify the relationship between the addition of dietary lipids and the intestinal absorption of carotenoid to fully understand the role of lipids during this process. This paper first introduces the intestinal absorption mechanism of carotenoids, including the effect of bile salts and lipases on mixed micelles, the types and regulation of lipid transporters, intracellular metabolizing enzymes, and the efflux process of chyle particles. Then, the regulatory mechanism of dietary lipids during intestinal carotenoid absorption is further discussed. Finally, the importance of selecting the dietary lipids for the absorption and utilization of different carotenoids and the design of an efficient delivery carrier are emphasized. This review provides suggestions for precise dietary carotenoid supplementation and offere an important reference for constructing efficient transport carriers for liposoluble nutrients.
Collapse
Affiliation(s)
- Zixin Guo
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
21
|
Holloway C, Zhong G, Kim YK, Ye H, Sampath H, Hammerling U, Isoherranen N, Quadro L. Retinoic acid regulates pyruvate dehydrogenase kinase 4 (Pdk4) to modulate fuel utilization in the adult heart: Insights from wild-type and β-carotene 9',10' oxygenase knockout mice. FASEB J 2022; 36:e22513. [PMID: 36004605 PMCID: PMC9544431 DOI: 10.1096/fj.202101910rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
Regulation of the pyruvate dehydrogenase (PDH) complex by the pyruvate dehydrogenase kinase PDK4 enables the heart to respond to fluctuations in energy demands and substrate availability. Retinoic acid, the transcriptionally active form of vitamin A, is known to be involved in the regulation of cardiac function and growth during embryogenesis as well as under pathological conditions. Whether retinoic acid also maintains cardiac health under physiological conditions is unknown. However, vitamin A status and intake of its carotenoid precursor β-carotene have been linked to the prevention of heart diseases. Here, we provide in vitro and in vivo evidence that retinoic acid regulates cardiac Pdk4 expression and thus PDH activity. Furthermore, we show that mice lacking β-carotene 9',10'-oxygenase (BCO2), the only enzyme of the adult heart that cleaves β-carotene to generate retinoids (vitamin A and its derivatives), displayed cardiac retinoic acid insufficiency and impaired metabolic flexibility linked to a compromised PDK4/PDH pathway. These findings provide novel insights into the functions of retinoic acid in regulating energy metabolism in adult tissues, especially the heart.
Collapse
Affiliation(s)
- Chelsee Holloway
- Graduate Program in Endocrinology and Animal Bioscience, Rutgers University, New Brunswick, New Jersey, USA.,Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Guo Zhong
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Hong Ye
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Harini Sampath
- Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ulrich Hammerling
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Nina Isoherranen
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
22
|
Beltrán J, Wurtzel ET. Enzymatic isomerization of ζ-carotene mediated by the heme-containing isomerase Z-ISO. Methods Enzymol 2022; 671:153-170. [PMID: 35878976 DOI: 10.1016/bs.mie.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Carotenoids are a large and diverse class of isoprenoid compounds synthesized by plants, algae, some bacteria, arthropods, and fungi. These pigments contribute to plant growth and survival by protecting plants from photooxidative stress and serving as precursors of plant hormones and other signaling compounds. In humans, carotenoids are essential components of the diet and contribute anti-oxidant and provitamin A activities. Carotenoids are synthesized in the membranes of plant plastids where phytoene is converted into all trans lycopene by a biosynthetic pathway that was only recently completed by the discovery of the new enzyme, 15-cis-ζ-carotene isomerase (Z-ISO), which controls carotenoid pathway flux to products necessary for plant development and function. Z-ISO catalysis of the cis to trans isomerization of the 15-cis double bond in 15-cis-ζ-carotene is mediated by a unique mechanism dependent on the redox-state of a heme b cofactor. This chapter describe methods for the functional analysis of Z-ISO, including complementation of Z-ISO in engineered E. coli, separation of Z-ISO enzyme substrate and products, ζ-carotene isomers, by high pressure liquid chromatography (HPLC), expression and purification of Z-ISO and in vitro enzymatic reactions.
Collapse
Affiliation(s)
- Jesús Beltrán
- Department of Biological Sciences, Lehman College, City University of New York (CUNY), Bronx, NY, United States; Graduate School and University Center, CUNY, New York, NY, United States
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, City University of New York (CUNY), Bronx, NY, United States; Graduate School and University Center, CUNY, New York, NY, United States.
| |
Collapse
|
23
|
Combinatorial Engineering of Upper Pathways and Carotenoid Cleavage Dioxygenase in Escherichia coli for Pseudoionone Production. Appl Biochem Biotechnol 2022; 194:5977-5991. [DOI: 10.1007/s12010-022-04078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
|
24
|
Abstract
Carotenoids constitute an essential dietary component of animals and other non-carotenogenic species which use these pigments in both their modified and unmodified forms. Animals utilize uncleaved carotenoids to mitigate light damage and oxidative stress and to signal fitness and health. Carotenoids also serve as precursors of apocarotenoids including retinol, and its retinoid metabolites, which carry out essential functions in animals by forming the visual chromophore 11-cis-retinaldehyde. Retinoids, such as all-trans-retinoic acid, can also act as ligands of nuclear hormone receptors. The fact that enzymes and biochemical pathways responsible for the metabolism of carotenoids in animals bear resemblance to the ones in plants and other carotenogenic species suggests an evolutionary relationship. We will explore some of the modes of transmission of carotenoid genes from carotenogenic species to metazoans. This apparent relationship has been successfully exploited in the past to identify and characterize new carotenoid and retinoid modifying enzymes. We will review approaches used to identify putative animal carotenoid enzymes, and we will describe methods used to functionally validate and analyze the biochemistry of carotenoid modifying enzymes encoded by animals.
Collapse
Affiliation(s)
- Alexander R Moise
- Northern Ontario School of Medicine, Sudbury, ON, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
25
|
Carotenoids, β-Apocarotenoids, and Retinoids: The Long and the Short of It. Nutrients 2022; 14:nu14071411. [PMID: 35406024 PMCID: PMC9003029 DOI: 10.3390/nu14071411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Naturally occurring retinoids (retinol, retinal, retinoic acid, retinyl esters) are a subclass of β-apocarotenoids, defined by the length of the polyene side chain. Provitamin A carotenoids are metabolically converted to retinal (β-apo-15-carotenal) by the enzyme β-carotene-15,15′-dioxygenase (BCO1) that catalyzes the oxidative cleavage of the central C=C double bond. A second enzyme β-carotene-9′-10′-dioxygenase cleaves the 9′,10′ bond to yield β-apo-10′-carotenal and β-ionone. Chemical oxidation of the other double bonds leads to the generation of other β-apocarotenals. Like retinal, some of these β-apocarotenals are metabolically oxidized to the corresponding β-apocarotenoic acids or reduced to the β-apocarotenols, which in turn are esterified to β-apocarotenyl esters. Other metabolic fates such as 5,6-epoxidation also occur as for retinoids. Whether the same enzymes are involved remains to be understood. β-Apocarotenoids occur naturally in plant-derived foods and, therefore, are present in the diet of animals and humans. However, the levels of apocarotenoids are relatively low, compared with those of the parent carotenoids. Moreover, human studies show that there is little intestinal absorption of intact β-apocarotenoids. It is possible that they are generated in vivo under conditions of oxidative stress. The β-apocarotenoids are structural analogs of the naturally occurring retinoids. As such, they may modulate retinoid metabolism and signaling. In deed, those closest in size to the C-20 retinoids—namely, β-apo-14′-carotenoids (C-22) and β-apo-13-carotenone (C-18) bind with high affinity to purified retinoid receptors and function as retinoic acid antagonists in transactivation assays and in retinoic acid induction of target genes. The possible pathophysiologic relevance in human health remains to be determined.
Collapse
|
26
|
Ahrazem O, Diretto G, Rambla JL, Rubio-Moraga Á, Lobato-Gómez M, Frusciante S, Argandoña J, Presa S, Granell A, Gómez-Gómez L. Engineering high levels of saffron apocarotenoids in tomato. HORTICULTURE RESEARCH 2022; 9:uhac074. [PMID: 35669709 PMCID: PMC9157650 DOI: 10.1093/hr/uhac074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
Crocins and picrocrocin are high-value hydrophilic pigments produced in saffron and used commercially in the food and pharmaceutical industries. These apocarotenoids are derived from the oxidative cleavage of zeaxanthin by specific carotenoid cleavage dioxygenases. The pathway for crocins and picrocrocin biosynthesis was introduced into tomato using fruit specific and constitutive promoters and resulted in 14.48 mg/g of crocins and 2.92 mg/g of picrocrocin in the tomato DW, without compromising plant growth. The strategy involved expression of CsCCD2L to produce crocetin dialdehyde and 2,6,6-trimethyl-4-hydroxy-1-carboxaldehyde-1-cyclohexene, and of glycosyltransferases UGT709G1 and CsUGT2 for picrocrocin and crocins production, respectively. Metabolic analyses of the engineered fruits revealed picrocrocin and crocetin-(β-D-gentiobiosyl)-(β-D-glucosyl)-ester, as the predominant crocin molecule, as well as safranal, at the expense of the usual tomato carotenoids. The results showed the highest crocins content ever obtained by metabolic engineering in heterologous systems. In addition, the engineered tomatoes showed higher antioxidant capacity and were able to protect against neurological disorders in a Caenorhabditis elegans model of Alzheimer's disease. Therefore, these new developed tomatoes could be exploited as a new platform to produce economically competitive saffron apocarotenoids with health-promoting properties.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Biotechnology laboratory, Casaccia Research Centre, 00123 Rome, Italy
| | - José Luis Rambla
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12006 Castellón de la Plana, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - María Lobato-Gómez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de València, Valencia 46022, Spain
| | - Sarah Frusciante
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Biotechnology laboratory, Casaccia Research Centre, 00123 Rome, Italy
| | - Javier Argandoña
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Silvia Presa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de València, Valencia 46022, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de València, Valencia 46022, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| |
Collapse
|
27
|
Wang J, Hu X, Chen J, Wang T, Huang X, Chen G. The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits. Foods 2022; 11:foods11040502. [PMID: 35205979 PMCID: PMC8871089 DOI: 10.3390/foods11040502] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023] Open
Abstract
β-carotene, a member of the carotenoid family, is a provitamin A, and can be converted into vitamin A (retinol), which plays essential roles in the regulation of physiological functions in animal bodies. Microalgae synthesize a variety of carotenoids including β-carotene and are a rich source of natural β-carotene. This has attracted the attention of researchers in academia and the biotech industry. Methods to enrich or purify β-carotene from microalgae have been investigated, and experiments to understand the biological functions of microalgae products containing β-carotene have been conducted. To better understand the use of microalgae to produce β-carotene and other carotenoids, we have searched PubMed in August 2021 for the recent studies that are focused on microalgae carotenoid content, the extraction methods to produce β-carotene from microalgae, and the bioactivities of β-carotene from microalgae. Articles published in peer-reviewed scientific journals were identified, screened, and summarized here. So far, various types and amounts of carotenoids have been identified and extracted in different types of microalgae. Diverse methods have been developed overtime to extract β-carotene efficiently and practically from microalgae for mass production. It appears that methods have been developed to simplify the steps and extract β-carotene directly and efficiently. Multiple studies have shown that extracts or whole organism of microalgae containing β-carotene have activities to promote lifespan in lab animals and reduce oxidative stress in culture cells, etc. Nevertheless, more studies are warranted to study the health benefits and functional mechanisms of β-carotene in these microalgae extracts, which may benefit human and animal health in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China; (J.W.); (X.H.)
| | - Xinge Hu
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| | - Junbin Chen
- School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China; (J.W.); (X.H.)
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
- Correspondence: ; Tel.: +1-865-974-6257
| |
Collapse
|
28
|
Pan W, Zhou YL, Wang J, Dai HE, Wang X, Liu L. Structural and Functional Analysis of Nonheme Iron Enzymes BCMO-1 and BCMO-2 from Caenorhabditis elegans. Front Mol Biosci 2022; 9:844453. [PMID: 35223999 PMCID: PMC8866865 DOI: 10.3389/fmolb.2022.844453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Carotenoid metabolism is critical for diverse physiological processes. The nematode Caenorhabditis elegans has two genes that are annotated as β-carotene 15,15′-monooxygenase (BCMO) and are 17 centimorgan apart on chromosome II, but the function of BCMO-1 and BCMO-2 remains uncharacterized. Sequence homology indicates that the two enzymes belong to the carotenoid cleavage dioxygenase family that share a seven-bladed β-propeller fold with a nonheme iron center. Here we determined crystal structures of BCMO-1 and BCMO-2 at resolutions of 1.8 and 1.9 Å, respectively. Structural analysis reveals that BCMO-1 and BCMO-2 are strikingly similar to each other. We also characterized their β-carotene cleavage activity, but the results suggest that they may not act as β-carotene 15,15′-oxygenases.
Collapse
Affiliation(s)
- Weimin Pan
- School of Life Sciences, Anhui University, Hefei, China
| | | | - Jian Wang
- School of Life Sciences, Anhui University, Hefei, China
| | - Huai-En Dai
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
- *Correspondence: Lin Liu,
| |
Collapse
|
29
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
30
|
Analysis of plant-derived carotenoids in camouflaging stick and leaf insects (Phasmatodea). Methods Enzymol 2022; 670:499-524. [DOI: 10.1016/bs.mie.2022.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Nishida Y, Nawaz A, Hecht K, Tobe K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2021; 14:nu14010107. [PMID: 35010981 PMCID: PMC8746862 DOI: 10.3390/nu14010107] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a member of the carotenoid family that is found abundantly in marine organisms, and has been gaining attention in recent years due to its varied biological/physiological activities. It has been reported that astaxanthin functions both as a pigment, and as an antioxidant with superior free radical quenching capacity. We recently reported that astaxanthin modulated mitochondrial functions by a novel mechanism independent of its antioxidant function. In this paper, we review astaxanthin’s well-known antioxidant activity, and expand on astaxanthin’s lesser-known molecular targets, and its role in mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| |
Collapse
|
32
|
Schulz M, Hövelmann Y, Hübner F, Humpf HU. Identification of Potential Urinary Biomarkers for Bell Pepper Intake by HPLC-HRMS-Based Metabolomics and Structure Elucidation by NMR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13644-13656. [PMID: 34735138 DOI: 10.1021/acs.jafc.1c04210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary biomarkers show great promise for objectively assessing the food intake in humans. In this study, potential urinary biomarkers for red bell pepper intake were identified based on a dietary intervention study and a comprehensive metabolomics approach. Spot urine samples from 14 volunteers were collected in the two phases of the study (control phase: abstaining from any bell pepper/paprika products; case phase: consumption of a defined amount of fresh red bell pepper and abstaining from any further bell pepper/paprika products) and analyzed by high-performance liquid chromatography high-resolution mass spectrometry (HPLC-HRMS). Comparison of the obtained metabolomics data using statistical analysis revealed that the respective urine metabolomes differ significantly, which was attributable to the bell pepper intake. Some of the most discriminating metabolites were selected and isolated from human urine for unequivocal structure elucidation by nuclear magnetic resonance (NMR) spectroscopy. Herein, seven novel glucuronidated metabolites most likely derived from capsanthin and capsianosides were identified, implying their potential application as dietary biomarkers for the entire Capsicum genus.
Collapse
Affiliation(s)
- Mareike Schulz
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Yannick Hövelmann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Florian Hübner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
33
|
Abstract
Vitamin A, acting through its metabolite, all-trans-retinoic acid, is a potent transcriptional regulator affecting expression levels of hundreds of genes through retinoic acid response elements present within these genes. However, the literature is replete with claims that consider vitamin A to be an antioxidant vitamin, like vitamins C and E. This apparent contradiction in the understanding of how vitamin A acts mechanistically within the body is a major focus of this review. Vitamin E, which is generally understood to act as a lipophilic antioxidant protecting polyunsaturated fatty acids present in membranes, is often proposed to be a transcriptional regulator. The evaluation of this claim is another focus of the review. We conclude that vitamin A is an indirect antioxidant, whose indirect function is to transcriptionally regulate a number of genes involved in mediating the body's canonical antioxidant responses. Vitamin E, in addition to being a direct antioxidant, prevents the increase of peroxidized lipids that alter both metabolic pathways and gene expression profiles within tissues and cells. However, there is little compelling evidence that vitamin E has a direct transcriptional mechanism like that of vitamin A. Thus, we propose that the term antioxidant not be applied to vitamin A, and we discourage the use of the term transcriptional mediator when discussing vitamin E.
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, Columbia University, New York, NY 10032, USA;
| | - Igor O Shmarakov
- Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
34
|
Zalesak-Kravec S, Huang W, Wang P, Yu J, Liu T, Defnet AE, Moise AR, Farese AM, MacVittie TJ, Kane MA. Multi-omic Analysis of Non-human Primate Heart after Partial-body Radiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:352-371. [PMID: 34546217 PMCID: PMC8554778 DOI: 10.1097/hp.0000000000001478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic and gastrointestinal acute radiation syndromes followed by delayed effects of acute radiation exposure, which encompasses multiple organs, including heart, kidney, and lung. Here we sought to further characterize the natural history of radiation-induced heart injury via determination of differential protein and metabolite expression in the heart. We quantitatively profiled the proteome and metabolome of left and right ventricle from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Global proteome profiling identified more than 2,200 unique proteins, with 220 and 286 in the left and right ventricles, respectively, showing significant responses across at least three time points compared to baseline levels. High-throughput targeted metabolomics analyzed a total of 229 metabolites and metabolite combinations, with 18 and 22 in the left and right ventricles, respectively, showing significant responses compared to baseline levels. Bioinformatic analysis performed on metabolomic and proteomic data revealed pathways related to inflammation, energy metabolism, and myocardial remodeling were dysregulated. Additionally, we observed dysregulation of the retinoid homeostasis pathway, including significant post-radiation decreases in retinoic acid, an active metabolite of vitamin A. Significant differences between left and right ventricles in the pathology of radiation-induced injury were identified. This multi-omic study characterizes the natural history and molecular mechanisms of radiation-induced heart injury in NHP exposed to PBI with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Pengcheng Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
35
|
Yu J, Huang W, Liu T, Defnet AE, Zalesak-Kravec S, Farese AM, MacVittie TJ, Kane MA. Effect of Radiation on the Essential Nutrient Homeostasis and Signaling of Retinoids in a Non-human Primate Model with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:406-418. [PMID: 34546221 PMCID: PMC8549574 DOI: 10.1097/hp.0000000000001477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic (H) and gastrointestinal (GI) acute radiation syndromes (ARS) followed by delayed effects of acute radiation exposure (DEARE), which include damage to lung, heart, and GI. Whereas DEARE includes inflammation and fibrosis in multiple tissues, the molecular mechanisms contributing to inflammation and to the development of fibrosis remain incompletely understood. Reports that radiation dysregulates retinoids and proteins within the retinoid pathway indicate that radiation disrupts essential nutrient homeostasis. An active metabolite of vitamin A, retinoic acid (RA), is a master regulator of cell proliferation, differentiation, and apoptosis roles in inflammatory signaling and the development of fibrosis. As facets of inflammation and fibrosis are regulated by RA, we surveyed radiation-induced changes in retinoids as well as proteins related to and targets of the retinoid pathway in the non-human primate after high dose radiation with minimal bone marrow sparing (12 Gy PBI/BM2.5). Retinoic acid was decreased in plasma as well as in lung, heart, and jejunum over time, indicating a global disruption of RA homeostasis after IR. A number of proteins associated with fibrosis and with RA were significantly altered after radiation. Together these data indicate that a local deficiency of endogenous RA presents a permissive environment for fibrotic transformation.
Collapse
Affiliation(s)
- Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| |
Collapse
|
36
|
Varghese R, S UK, C GPD, Ramamoorthy S. Unraveling the versatility of CCD4: Metabolic engineering, transcriptomic and computational approaches. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110991. [PMID: 34315605 DOI: 10.1016/j.plantsci.2021.110991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are economically valuable isoprenoids synthesized by plants and microorganisms, which play a paramount role in their overall growth and development. Carotenoid cleavage dioxygenases are a vast group of enzymes that specifically cleave thecarotenoids to produce apocarotenoids. Recently, CCDs are a subject of talk because of their contributions to different aspects of plant growth and due to their significance in the production of economically valuable apocarotenoids. Among them, CCD4 stands unique because of its versatility in performing metabolic roles. This review focuses on the multiple functionalities of CCD4 like pigmentation, volatile apocarotenoid production, stress responses, etc. Interestingly, through our literature survey we arrived at a conclusion that CCD4 could perform functions of other carotenoid cleaving enzymes.The metabolic engineering, transcriptomic, and computational approaches adopted to reveal the contributions of CCD4 were also considered here for the study.Phylogenetic analysis was performed to delve into the evolutionary relationships of CCD4 in different plant groups. A tree of 81CCD genes from 64 plant species was constructed, signifying the presence of well-conserved families. Gene structures were illustrated and the difference in the number and position of exons could be considered as a factor behind functional versatility and substrate tolerance of CCD4 in different plants.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Udhaya Kumar S
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - George Priya Doss C
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
37
|
Schneider A, Jegl P, Hauer B. Stereoselective Directed Cationic Cascades Enabled by Molecular Anchoring in Terpene Cyclases. Angew Chem Int Ed Engl 2021; 60:13251-13256. [PMID: 33769659 PMCID: PMC8251838 DOI: 10.1002/anie.202101228] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Indexed: 01/27/2023]
Abstract
Cascade reactions appeared as a cutting‐edge strategy to streamline the assembly of complex structural scaffolds from naturally available precursors in an atom‐, as well as time, labor‐ and cost‐efficient way. We herein report a strategy to control cationic cyclization cascades by exploiting the ability of anchoring dynamic substrates in the active site of terpene cyclases via designed hydrogen bonding. Thereby, it is possible to induce “directed” cyclizations in contrast to established “non‐stop” cyclizations (99:1) and predestinate cascade termination at otherwise catalytically barely accessible intermediates. As a result, we are able to provide efficient access to naturally widely occurring apocarotenoids, value‐added flavors and fragrances in gram‐scale by replacing multi‐stage synthetic routes to a single step with unprecedented selectivity (>99.5 % ee) and high yields (up to 89 %).
Collapse
Affiliation(s)
- Andreas Schneider
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart-Vaihingen, Germany
| | - Philipp Jegl
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart-Vaihingen, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart-Vaihingen, Germany
| |
Collapse
|
38
|
Schneider A, Jegl P, Hauer B. Stereoselektive gerichtete kationische Kaskaden ermöglicht durch molekulare Verankerung in Terpencyclasen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andreas Schneider
- Institut der Biochemie und technischen Biochemie Universität Stuttgart Allmandring 31 70569 Stuttgart-Vaihingen Deutschland
| | - Philipp Jegl
- Institut der Biochemie und technischen Biochemie Universität Stuttgart Allmandring 31 70569 Stuttgart-Vaihingen Deutschland
| | - Bernhard Hauer
- Institut der Biochemie und technischen Biochemie Universität Stuttgart Allmandring 31 70569 Stuttgart-Vaihingen Deutschland
| |
Collapse
|
39
|
Takatani N, Beppu F, Yamano Y, Maoka T, Hosokawa M. Seco-type β-Apocarotenoid Generated by β-Carotene Oxidation Exerts Anti-inflammatory Effects against Activated Macrophages. J Oleo Sci 2021; 70:549-558. [PMID: 33692243 DOI: 10.5650/jos.ess20329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
β-Apocarotenoids are the cleavage products of β-carotene. They are found in plants, carotenoid-containing foods, and animal tissues. However, limited information is available regarding the health benefits of β-apocarotenoids. Here, we prepared seco-type β-apocarotenoids through the chemical oxidation of β-carotene and investigated their anti-inflammatory effects against activated macrophages. Oxidation of β-carotene with potassium permanganate produced seco-β-apo-8'-carotenal, in which one end-group formed an "open" β-ring and the other was cleaved at the C-7',8' position. In lipopolysaccharide-stimulated murine macrophage-like RAW264.7 cells, seco-β-apo-8'-carotenal inhibited the secretion and mRNA expression of inflammatory mediators such as nitric oxide, interleukin (IL)-6 and IL-1β, and monocyte chemoattractant protein-1. Furthermore, seco-β-apo-8'-carotenal suppressed phosphorylation of c-Jun N-terminal kinase and the inhibitor of nuclear factor (NF)-κB as well as the nuclear accumulation of NF-κB p65. Notably, since seco-β-apo-8'-carotenal exhibited remarkable anti-inflammatory activity compared with β-apo-8'-carotenal, its anti-inflammatory action could depend on the opened β-ring structure. These results suggest that seco-β-apo-8'-carotenal has high potential for the prevention of inflammation-related diseases.
Collapse
Affiliation(s)
| | | | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University
| | | | | |
Collapse
|
40
|
Avoseh ON, Mtunzi FM, Ogunwande IA, Ascrizzi R, Guido F. Albizia lebbeck and Albizia zygia volatile oils exhibit anti-nociceptive and anti-inflammatory properties in pain models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113676. [PMID: 33301915 DOI: 10.1016/j.jep.2020.113676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Albizia lebbeck and Albizia zygia are used in Nigeria, South Africa and other countries for the treatment of flu, fever, pain, epilepsy, and inflammation. AIM OF THE STUDY Application of plant essence for treating ailments is common among local communities. This research was designed to characterize the volatile compounds and evaluate the toxicity, anti-inflammatory and anti-nociceptive properties of this plant species. MATERIALS AND METHODS The volatile oils were analysed comprehensively utilizing gas chromatography-flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS) using the HP-5 column. The toxicity was evaluated using the toxicity assay. The anti-nociceptive and anti-inflammatory assays were analysed by a hot plate, Formalin, and carrageenan-induced edema assays, respectively. RESULTS The essential oils were obtained in a yield of 0.1% (v/w) calculated on a dry weight basis for both oils. The main compounds of A. lebbeck were 2-pentylfuran (16.4%), (E)-geranyl acetone (15.46%), (E)-α-ionone (15.45%) and 3-Octanone (11.61%), while the oil of A. zygia is mainly hexahydrofarnesyl acetone (33.14%), (E)-methyl isoeugenol (11.7%) and 2-methyl tetradecane (6.64%). The volatile oils are non-toxic to about 5000 mg/kg dose. Albizia zygia significantly (P < 0.001) suppressed the nociceptive afferent fibres in a non-dose dependent manner in comparison to A. lebbeck in the hot plate model. Both oils inhibited nociceptive mediators at both phases of the formalin-induced assay, with a maximum inhibition (100%) at the inflammatory stage. The volatile oils inhibited the Carrageenan-induced inflammation at all phases ranging from P < 0.05 to P < 0.001. The probable pro-inflammatory inhibitory mechanism might be the suppression of some pain biomarkers such as histamine, serotonin, bradykinin, and the Interleukins (ILs) induced by the edema. Volatile constituents such as ionones, eugenol derivatives and other compounds cause the anti-nociceptive and anti-inflammatory activities reported. CONCLUSION This is the first report of the volatile oils and bioassays of Albizia zygia, while the study also confirms previous studies of A. lebbeck. Generally, the findings further prove the use of the plants as pain ameliorating agents.
Collapse
Affiliation(s)
- Opeyemi N Avoseh
- Institute of Chemical and Biotechnology (ICBT), Sebokeng Campus, Vaal University of Technology, Vanderbijlpark, South Africa; Department of Chemistry, Faculty of Science, Lagos State University, Badagry Expressway, Ojo, PMB 0001, LASU. Post Office, Ojo, Lagos, Nigeria.
| | - Fanyana M Mtunzi
- Institute of Chemical and Biotechnology (ICBT), Sebokeng Campus, Vaal University of Technology, Vanderbijlpark, South Africa.
| | | | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| | - Flamini Guido
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| |
Collapse
|
41
|
Bandara S, Thomas LD, Ramkumar S, Khadka N, Kiser PD, Golczak M, von Lintig J. The Structural and Biochemical Basis of Apocarotenoid Processing by β-Carotene Oxygenase-2. ACS Chem Biol 2021; 16:480-490. [PMID: 33600157 DOI: 10.1021/acschembio.0c00832] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammals, carotenoids are converted by two carotenoid cleavage oxygenases into apocarotenoids, including vitamin A. Although knowledge about β-carotene oxygenase-1 (BCO1) and vitamin A metabolism has tremendously increased, the function of β-carotene oxygenase-2 (BCO2) remains less well-defined. We here studied the role of BCO2 in the metabolism of long chain β-apocarotenoids, which recently emerged as putative regulatory molecules in mammalian biology. We showed that recombinant murine BCO2 converted the alcohol, aldehyde, and carboxylic acid of a β-apocarotenoid substrate by oxidative cleavage at position C9,C10 into a β-ionone and a diapocarotenoid product. Chain length variation (C20 to C40) and ionone ring site modifications of the apocarotenoid substrate did not impede catalytic activity or alter the regioselectivity of the double bond cleavage by BCO2. Isotope labeling experiments revealed that the double bond cleavage of an apocarotenoid followed a dioxygenase reaction mechanism. Structural modeling and site directed mutagenesis identified amino acid residues in the substrate tunnel of BCO2 that are critical for apocarotenoid binding and catalytic processing. Mice deficient for BCO2 accumulated apocarotenoids in their livers, indicating that the enzyme engages in apocarotenoid metabolism. Together, our study provides novel structural and functional insights into BCO2 catalysis and establishes the enzyme as a key component of apocarotenoid homeostasis in mice.
Collapse
Affiliation(s)
| | | | | | | | - Philip D. Kiser
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States
- Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California 90822, United States
| | | | | |
Collapse
|
42
|
LÓPEZ AMQ, SANTOS FARD, MARTINS ES, SILVA ALDS, SANTOS ECLD. Pink and white shrimps from the Brazilian coast: pigment identification, antioxidant activity and microbial quality under different freezing-times. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.29920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Takatani N, Taya D, Katsuki A, Beppu F, Yamano Y, Wada A, Miyashita K, Hosokawa M. Identification of Paracentrone in Fucoxanthin-Fed Mice and Anti-Inflammatory Effect against Lipopolysaccharide-Stimulated Macrophages and Adipocytes. Mol Nutr Food Res 2020; 65:e2000405. [PMID: 33215789 DOI: 10.1002/mnfr.202000405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/22/2020] [Indexed: 12/16/2022]
Abstract
SCOPE Fucoxanthin is converted to fucoxanthinol and amarouciaxanthin A in the mouse body. However, further metabolism such as cleavage products (i.e., apocarotenoids) remains unclear. The fucoxanthin-derived apocarotenoid in vivo is investigated and the anti-inflammatory effect of apocarotenoids with fucoxanthin partial structure such as allenic bond and epoxide residue against activated macrophages and adipocytes in vitro is evaluated. METHODS AND RESULTS LC-MS analysis indicates the presence of paracentrone, a C31 -allenic-apocarotenoid, in white adipose tissue of diabetic/obese KK-Ay and normal C57BL/6J mice fed 0.2% fucoxanthin diet for 1 week. In lipopolysaccharide-activated RAW264.7 macrophages, paracentrone as well as C26 - and C28 -allenic-apocarotenoids suppresses the overexpression of inflammatory factors. Further, apo-10'-fucoxanthinal, a fucoxanthin-derived apocarotenoid which retained epoxide residue, exhibits a most potent anti-inflammatory activity through regulating mitogen-activated protein kinases and nuclear factor-κB inflammatory signal pathways. In contrast, β-apo-8'-carotenal without allenic bond and epoxide residue lacks suppressed inflammation. In 3T3-L1 adipocytes, paracentrone, and apo-10'-fucoxanthinal downregulate the mRNA expression of proinflammatory mediators and chemokines induced by co-culture with RAW264.7 cells. CONCLUSION Dietary fucoxanthin accumulates as paracentrone as well as fucoxanthinol and amarouciaxanthin A in the mouse body. Allenic bond and epoxide residue of fucoxanthin-derived apocarotenoids have pivotal roles for anti-inflammatory action against activated macrophages and adipocytes.
Collapse
Affiliation(s)
- Naoki Takatani
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Daisuke Taya
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Ami Katsuki
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Kazuo Miyashita
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| |
Collapse
|
44
|
Quadro L, Giordano E, Costabile BK, Nargis T, Iqbal J, Kim Y, Wassef L, Hussain MM. Interplay between β-carotene and lipoprotein metabolism at the maternal-fetal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158591. [PMID: 31863969 PMCID: PMC7302977 DOI: 10.1016/j.bbalip.2019.158591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023]
Abstract
Vitamin A is an essential nutrient, critical for proper embryonic development in mammals. Both embryonic vitamin A-deficiency or -excess lead to congenital malformations or lethality in mammals, including humans. This is due to the defective transcriptional action of retinoic acid, the active form of vitamin A, that regulates in a spatial- and temporal-dependent manner the expression of genes essential for organogenesis. Thus, an adequate supply of vitamin A from the maternal circulation is vital for normal mammalian fetal development. Provitamin A carotenoids circulate in the maternal bloodstream and are available to the embryo. Of all the dietary carotenoids, β-carotene is the main vitamin A precursor, contributing at least 30% of the vitamin A intake in the industrialized countries and often constituting the sole source of retinoids (vitamin A and its derivatives) in the developing world. In humans, up to 40% of the absorbed dietary β-carotene is incorporated in its intact form in chylomicrons for distribution to other organs within the body, including the developing tissues. Here, it can serve as a source of vitamin A upon conversion into apocarotenoids by its cleavage enzymes. Given that β-carotene is carried in the bloodstream by lipoproteins, and that the placenta acquires, assembles and secretes lipoproteins, it is becoming evident that the maternal-fetal transfer of β-carotene relies on lipoprotein metabolism. Here, we will explore the current knowledge about this important biological process, the cross-talk between carotenoid and lipid metabolism in the context of the maternal-fetal transfer of this provitamin A precursor, and the mechanisms whereby β-carotene is metabolized by the developing tissues. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Loredana Quadro
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA;,Corresponding author: Loredana Quadro, PhD; Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; Tel: +1 848 9325491; Fax: +1 732 9326776;
| | - Elena Giordano
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Brianna K. Costabile
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA;,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Titli Nargis
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, USA
| | - Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA;,King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
| | - Younkyung Kim
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Lesley Wassef
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, USA;,Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
45
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
46
|
Huang W, Yu J, Liu T, Tudor G, Defnet AE, Zalesak S, Kumar P, Booth C, Farese AM, MacVittie TJ, Kane MA. Proteomic Evaluation of the Natural History of the Acute Radiation Syndrome of the Gastrointestinal Tract in a Non-human Primate Model of Partial-body Irradiation with Minimal Bone Marrow Sparing Includes Dysregulation of the Retinoid Pathway. HEALTH PHYSICS 2020; 119:604-620. [PMID: 32947489 PMCID: PMC7541663 DOI: 10.1097/hp.0000000000001351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Exposure to ionizing radiation results in injuries of the hematopoietic, gastrointestinal, and respiratory systems, which are the leading causes responsible for morbidity and mortality. Gastrointestinal injury occurs as an acute radiation syndrome. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the proteome of jejunum from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Jejunum was analyzed by liquid chromatography-tandem mass spectrometry, and pathway and gene ontology analysis were performed. A total of 3,245 unique proteins were quantified out of more than 3,700 proteins identified in this study. Also a total of 289 proteins of the quantified proteins showed significant and consistent responses across at least three time points post-irradiation, of which 263 proteins showed strong upregulations while 26 proteins showed downregulations. Bioinformatic analysis suggests significant pathway and upstream regulator perturbations post-high dose irradiation and shed light on underlying mechanisms of radiation damage. Canonical pathways altered by radiation included GP6 signaling pathway, acute phase response signaling, LXR/RXR activation, and intrinsic prothrombin activation pathway. Additionally, we observed dysregulation of proteins of the retinoid pathway and retinoic acid, an active metabolite of vitamin A, as quantified by liquid chromatography-tandem mass spectrometry. Correlation of changes in protein abundance with a well-characterized histological endpoint, corrected crypt number, was used to evaluate biomarker potential. These data further define the natural history of the gastrointestinal acute radiation syndrome in a non-human primate model of partial body irradiation with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | | | - Amy E Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Praveen Kumar
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | | | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
- Correspondence: Maureen A. Kane, University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room N731, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
47
|
Kim YK, Hammerling U. The mitochondrial PKCδ/retinol signal complex exerts real-time control on energy homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158614. [PMID: 31927141 PMCID: PMC7347429 DOI: 10.1016/j.bbalip.2020.158614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
The review focuses on the role of vitamin A (retinol) in the control of energy homeostasis, and on the manner in which certain retinoids subvert this process, leading potentially to disease. In eukaryotic cells, the pyruvate dehydrogenase complex (PDHC) is negatively regulated by four pyruvate dehydrogenase kinases (PDKs) and two antagonistically acting pyruvate dehydrogenase phosphatases (PDPs). The second isoform, PDK2, is regulated by an autonomous mitochondrial signal cascade that is anchored on protein kinase Cδ (PKCδ), where retinoids play an indispensible co-factor role. Along with its companion proteins p66Shc, cytochrome c, and vitamin A, the PKCδ/retinol complex is located in the intermembrane space of mitochondria. At this site, and in contrast to cytosolic locations, PKCδ is activated by the site-specific oxidation of its cysteine-rich activation domain (CRD) that is configured into a complex RING-finger. Oxidation involves the transfer of electrons from cysteine moieties to oxidized cytochrome c, a step catalyzed by vitamin A. The PKCδ/retinol signalosome monitors the internal cytochrome c redox state that reflects the workload of the respiratory chain. Upon sensing demands for energy PKCδ signals the PDHC to increase glucose-derived fuel flux entering the KREBS cycle. Conversely, if excessive fuel flux surpasses the capacity of the respiratory chain, threatening the release of damaging reactive oxygen species (ROS), the polarity of the cytochrome c redox system is reversed, resulting in the chemical reduction of the PKCδ CRD, restoration of the RING-finger, refolding of PKCδ into the inactive, globular form, and curtailment of PDHC output, thereby constraining the respiratory capacity within safe margins. Several retinoids, notably anhydroretinol and fenretinide, capable of displacing retinol from binding sites on PKCδ, can co-activate PKCδ signaling but, owing to their extended system of conjugated double bonds, are unable to silence PKCδ in a timely manner. Left in the ON position, PKCδ causes chronic overload of the respiratory chain leading to mitochondrial dysfunction. This review explores how defects in the PKCδ signal machinery potentially contribute to metabolic and degenerative diseases.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Ulrich Hammerling
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
48
|
Giuffrida D, Zoccali M, Mondello L. Recent developments in the carotenoid and carotenoid derivatives chromatography-mass spectrometry analysis in food matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Havaux M. β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:35-41. [PMID: 32738580 DOI: 10.1016/j.plaphy.2020.07.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 05/16/2023]
Abstract
β-cyclocitral is a volatile short-chain apocarotenoid generated by enzymatic or non-enzymatic oxidation of the carotenoid β-carotene. β-cyclocitral has recently emerged as a new bioactive compound in various organisms ranging from plants and cyanobacteria to fungi and animals. In vascular plants, β-cyclocitral and its direct oxidation product, β-cyclocitric acid, are stress signals that accumulate under unfavorable environmental conditions such as drought or high light. Both compounds regulate nuclear gene expression through several signaling pathways, leading to stress acclimation. In cyanobacteria, β-cyclocitral functions as an inhibitor of competing microalgae and as a repellent against grazers. As a volatile compound, this apocarotenoid plays also an important role in intra-species and inter-species communication. This review summarizes recent findings on the multiple roles of β-cyclocitral and of some of its derivatives.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, CNRS UMR7265, CEA, Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|
50
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem 2020; 209:112891. [PMID: 33032084 DOI: 10.1016/j.ejmech.2020.112891] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/30/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The present review paper focuses on the chemistry of oxidative stress mitigation by antioxidants. Oxidative stress is understood as a lack of balance between the pro-oxidant and the antioxidant species. Reactive oxygen species in limited amounts are necessary for cell homeostasis and redox signaling. Excessive reactive oxygenated/nitrogenated species production, which counteracts the organism's defense systems, is known as oxidative stress. Sustained attack of endogenous and exogenous ROS results in conformational and oxidative alterations in key biomolecules. Chronic oxidative stress is associated with oxidative modifications occurring in key biomolecules: lipid peroxidation, protein carbonylation, carbonyl (aldehyde/ketone) adduct formation, nitration, sulfoxidation, DNA impairment such strand breaks or nucleobase oxidation. Oxidative stress is tightly linked to the development of cancer, diabetes, neurodegeneration, cardiovascular diseases, rheumatoid arthritis, kidney disease, eye disease. The deleterious action of reactive oxygenated species and their role in the onset and progression of pathologies are discussed. The results of oxidative attack become themselves sources of oxidative stress, becoming part of a vicious cycle that amplifies oxidative impairment. The term antioxidant refers to a compound that is able to impede or retard oxidation, acting at a lower concentration compared to that of the protected substrate. Antioxidant intervention against the radicalic lipid peroxidation can involve different mechanisms. Chain breaking antioxidants are called primary antioxidants, acting by scavenging radical species, converting them into more stable radicals or non-radical species. Secondary antioxidants quench singlet oxygen, decompose peroxides, chelate prooxidative metal ions, inhibit oxidative enzymes. Moreover, four reactivity-based lines of defense have been identified: preventative antioxidants, radical scavengers, repair antioxidants, and those relying on adaptation mechanisms. The specific mechanism of a series of endogenous and exogenous antioxidants in particular aspects of oxidative stress, is detailed. The final section resumes critical conclusions regarding antioxidant supplementation.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Gabriel Predoi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| |
Collapse
|