1
|
Santi L, Beretta S, Berti M, Savoia EO, Passerini L, Mancino M, De Ponti G, Alberti G, Quaranta P, Basso-Ricci L, Avanzini MA, Merelli I, Scala S, Ferrari S, Aiuti A, Bernardo ME, Crippa S. Transcriptomic analysis of BM-MSCs identified EGR1 as a transcription factor to fully exploit their therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119818. [PMID: 39168411 PMCID: PMC11480207 DOI: 10.1016/j.bbamcr.2024.119818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Bone marrow-mesenchymal stromal cells (BM-MSCs) are key components of the BM niche, where they regulate hematopoietic stem progenitor cell (HSPC) homeostasis by direct contact and secreting soluble factors. BM-MSCs also protect the BM niche from excessive inflammation by releasing anti-inflammatory factors and modulating immune cell activity. Thanks to these properties, BM-MSCs were successfully employed in pre-clinical HSPC transplantation models, increasing the rate of HSPC engraftment, accelerating the hematological reconstitution, and reducing the risk of graft failure. However, their clinical use requires extensive in vitro expansion, potentially altering their biological and functional properties. In this work, we analyzed the transcriptomic profile of human BM-MSCs sorted as CD45-, CD105+, CD73+, and CD90+ cells from the BM aspirates of heathy-donors and corresponding ex-vivo expanded BM-MSCs. We found the expression of immune and inflammatory genes downregulated upon cell culture and selected the transcription factor EGR1 to restore the MSC properties. We overexpressed EGR1 in BM-MSCs and performed in vitro tests to study the functional properties of EGR1-overexpressing BM-MSCs. We concluded that EGR1 increased the MSC response to inflammatory stimuli and immune cell control and potentiated the MSC hematopoietic supportive activity in co-culture assay, suggesting that the EGR1-based reprogramming may improve the BM-MSC clinical use.
Collapse
Affiliation(s)
- Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Evelyn Oliva Savoia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marilena Mancino
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gaia Alberti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy.
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Silva-Sousa T, Usuda JN, Al-Arawe N, Frias F, Hinterseher I, Catar R, Luecht C, Riesner K, Hackel A, Schimke LF, Dias HD, Filgueiras IS, Nakaya HI, Camara NOS, Fischer S, Riemekasten G, Ringdén O, Penack O, Winkler T, Duda G, Fonseca DLM, Cabral-Marques O, Moll G. The global evolution and impact of systems biology and artificial intelligence in stem cell research and therapeutics development: a scoping review. Stem Cells 2024; 42:929-944. [PMID: 39230167 DOI: 10.1093/stmcls/sxae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Advanced bioinformatics analysis, such as systems biology (SysBio) and artificial intelligence (AI) approaches, including machine learning (ML) and deep learning (DL), is increasingly present in stem cell (SC) research. An approximate timeline on these developments and their global impact is still lacking. We conducted a scoping review on the contribution of SysBio and AI analysis to SC research and therapy development based on literature published in PubMed between 2000 and 2024. We identified an 8 to 10-fold increase in research output related to all 3 search terms between 2000 and 2021, with a 10-fold increase in AI-related production since 2010. Use of SysBio and AI still predominates in preclinical basic research with increasing use in clinically oriented translational medicine since 2010. SysBio- and AI-related research was found all over the globe, with SysBio output led by the (US, n = 1487), (UK, n = 1094), Germany (n = 355), The Netherlands (n = 339), Russia (n = 215), and France (n = 149), while for AI-related research the US (n = 853) and UK (n = 258) take a strong lead, followed by Switzerland (n = 69), The Netherlands (n = 37), and Germany (n = 19). The US and UK are most active in SCs publications related to AI/ML and AI/DL. The prominent use of SysBio in ESC research was recently overtaken by prominent use of AI in iPSC and MSC research. This study reveals the global evolution and growing intersection among AI, SysBio, and SC research over the past 2 decades, with substantial growth in all 3 fields and exponential increases in AI-related research in the past decade.
Collapse
Affiliation(s)
- Thayna Silva-Sousa
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, 16816 Neuruppin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburgischen Technischen Universität Cottbus-Senftenberg, 14476 Potsdam, Germany
| | - Júlia Nakanishi Usuda
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, 16816 Neuruppin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburgischen Technischen Universität Cottbus-Senftenberg, 14476 Potsdam, Germany
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo (SP), Brazil
| | - Nada Al-Arawe
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, 16816 Neuruppin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburgischen Technischen Universität Cottbus-Senftenberg, 14476 Potsdam, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Hematology, Oncology, and Tumorimmunology, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Francisca Frias
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, 16816 Neuruppin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburgischen Technischen Universität Cottbus-Senftenberg, 14476 Potsdam, Germany
| | - Irene Hinterseher
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, 16816 Neuruppin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburgischen Technischen Universität Cottbus-Senftenberg, 14476 Potsdam, Germany
- Vascular Surgery, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Christian Luecht
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Katarina Riesner
- Department of Hematology, Oncology, and Tumorimmunology, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Alexander Hackel
- Clinic for Rheumatology and Clinical Immunology, University Medical Center Schleswig Holstein Campus Lübeck, 23538 Lübeck, Germany
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, USP, SP, Brazil
| | - Haroldo Dutra Dias
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), USP, SP, Brazil
| | | | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo (SP), Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, USP School of Medicine (USPM), São Paulo (SP), Brazil
| | - Niels Olsen Saraiva Camara
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo (SP), Brazil
| | - Stefan Fischer
- Clinic for Rheumatology and Clinical Immunology, University Medical Center Schleswig Holstein Campus Lübeck, 23538 Lübeck, Germany
| | - Gabriela Riemekasten
- Clinic for Rheumatology and Clinical Immunology, University Medical Center Schleswig Holstein Campus Lübeck, 23538 Lübeck, Germany
| | - Olle Ringdén
- Division of Pediatrics, Department of CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Olaf Penack
- Department of Hematology, Oncology, and Tumorimmunology, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Tobias Winkler
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Georg Duda
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Dennyson Leandro M Fonseca
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), USP, SP, Brazil
| | - Otávio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo (SP), Brazil
- Department of Immunology, Institute of Biomedical Sciences, USP, SP, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), USP, SP, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, USP School of Medicine (USPM), São Paulo (SP), Brazil
- D'OR Institute Research and Education, SP, Brazil
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätzsmedizin, 10117 Berlin, Germany
| |
Collapse
|
3
|
Yuan H, Li Y, Kong Z, Peng L, Song J, Hou X, Zhang W, Liu R, Feng T, Zhu C. IL-33-Pretreated Mesenchymal Stem Cells Attenuate Acute Liver Failure by Improving Homing and Polarizing M2 Macrophages. Stem Cells Int 2024; 2024:1273099. [PMID: 39478979 PMCID: PMC11524710 DOI: 10.1155/2024/1273099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/05/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are highly effective in the treatment of acute liver failure (ALF). The efficacy of MSCs is closely related to the inflammatory environment. Therefore, we investigated the functional changes of MSCs in response to interleukin-33 (IL-33) stimulation. The results showed that bone marrow mesenchymal stem cells (BMSCs) pretreated with IL-33 had increased CCR2 expression, targeted CCL2 in the injured liver tissue, and improved the migration ability. Under LPS stimulation, the NF-κB pathway of BMDM was activated, and its phenotype polarized to the M1-type, while BMSCs pretreated with IL-33 inhibited the NF-κB pathway and enhanced M2 macrophage polarization. The M2-type macrophages could further inhibit hepatocytes inflammation, reduce hepatocytes apoptosis, and promote hepatocytes repair. These results suggest that IL-33 can enhance the efficacy of BMSCs in ALF and provide a new strategy for cell therapy of liver diseases.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Kong
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Linya Peng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Song
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxue Hou
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Tiantong Feng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Zhou X, He S, He J, Xiong Y, Hu Z, Xian H, Guo G, Tan S, Ouyang D, Liu R, Gao Z, Zhu X, Abulimiti A, Zheng S, Hu D. HUC-MSC-derived exosomes repaired the damage induced by hydroquinone to 16HBE cells via miR-221/PTEN pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117120. [PMID: 39357375 DOI: 10.1016/j.ecoenv.2024.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Mesenchymal stem cell - originated exosomes (MSC-exo) are promising non-cellular treatment agents for various diseases. The present study aimed to explore whether human umbilical cord MSC - originated exosomes (HUC-MSC-exo) have the function of protecting human cells (16HBE) against the damage caused by HQ and the related mechanism. HUC-MSC-exo was isolated with differential gradient ultracentrifugation method and characterized by using transmission electron microscope (TEM). 16HBE cells were used as the tool cells and co-cultured with HUC-MSC-exo. Confocal laser scanning microscope was employed to confirm the ingestion of HUC-MSC-exo by 16HBE. Cell proliferation, migration, oxidative stress, DNA and chromosome damages of 16HBE were analyzed under HQ stress, and the role of miR-221/PTEN axis was investigated. Our data showed that under HQ stress, different groups of cells exhibited significantly decreased proliferation and migration abilities, and significant oxidative stress, DNA and chromosome damage effects. HUC-MSC-exo could alleviate the cytotoxic, oxidative stress and genotoxic damage effects of HQ on 16HBE cells. Mechanistically, HQ exposure up-regulated the level of miR-221 and down-regulated PTEN, while HUC-MSC-exo could significantly reduce the level of miR-221 and promote PTEN expression, which was involved in alleviating the toxic effects of HQ on 16HBE cells. Our data indicates that HUC-MSC-exo can alleviate the oxidative stress, cytotoxic and genotoxic effects of HQ on 16HBE cells via miR-221/PTEN pathway, and it may be a promising agent for protecting against the toxicity of HQ.
Collapse
Affiliation(s)
- Xiaotao Zhou
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan District, Shenzhen City 518000, PR China
| | - Shanshan He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Jiayi He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Yiren Xiong
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zuqing Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Guoqiang Guo
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan District, Shenzhen City 518000, PR China
| | - Suqin Tan
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Di Ouyang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Renyi Liu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zhenjie Gao
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Xiaoqi Zhu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Abudumijiti Abulimiti
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Sujin Zheng
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China.
| |
Collapse
|
5
|
Seo HM, Lew BL, Lee YW, Son SW, Park CO, Park YL, Baek JO, Shin MK, Kim DH, Lee DH, Jang YH, Ko HC, Na CH, Seo YJ, Ham DS, Kim DJ, Choi GS. Phase 1/2 trials of human bone marrow-derived clonal mesenchymal stem cells for treatment of adults with moderate to severe atopic dermatitis. J Allergy Clin Immunol 2024; 154:965-973. [PMID: 38944393 DOI: 10.1016/j.jaci.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play important roles in therapeutic applications by regulating immune responses. OBJECTIVE We investigated the safety and efficacy of allogenic human bone marrow-derived clonal MSCs (hcMSCs) in subjects with moderate to severe atopic dermatitis (AD). METHODS The study included a phase 1 open-label trial followed by a phase 2 randomized, double-blind, placebo-controlled trial that involved 72 subjects with moderate to severe AD. RESULTS In phase 1, intravenous administration of hcMSCs at 2 doses (1 × 106 and 5 × 105 cells/kg) was safe and well tolerated in 20 subjects. Because there was no difference between the 2 dosage groups (P = .9), it was decided to administer low-dose hcMSCs only for phase 2. In phase 2, subjects receiving 3 weekly intravenous infusions of hcMSCs at 5 × 105 cells/kg showed a higher proportion of an Eczema Area and Severity Index (EASI)-50 response at week 12 compared to the placebo group (P = .038). The differences between groups in the Dermatology Life Quality Index and pruritus numeric rating scale scores were not statistically significant. Most adverse events were mild or moderate and resolved by the end of the study period. CONCLUSIONS The hcMSC treatment resulted in a significantly higher rate of EASI-50 at 12 weeks compared to the control group in subjects with moderate to severe AD. The safety profile of hcMSC treatment was acceptable. Further larger-scale studies are necessary to confirm these preliminary findings.
Collapse
Affiliation(s)
- Hyun-Min Seo
- Department of Dermatology, College of Medicine, Hanyang University Guri Hospital, Hanyang University, Seoul, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Bark-Lynn Lew
- Department of Dermatology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Yang Won Lee
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| | | | - Chang Ook Park
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Lip Park
- Department of Dermatology, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jin-Ok Baek
- Department of Dermatology, Gachon University Gil Medical Center, Incheon, Korea
| | - Min Kyung Shin
- Department of Dermatology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Dong Hyun Kim
- CHA Bundang Medical Center, CHA University School of Medicine, Pangyo, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun-Chang Ko
- Department of Dermatology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Chan-Ho Na
- Department of Dermatology, College of Medicine, Chosun University, Gwangju, Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | | | | | - Gwang Seong Choi
- Department of Dermatology, School of Medicine, INHA University, Incheon, Korea.
| |
Collapse
|
6
|
Lana JF, de Brito GC, Kruel A, Brito B, Santos GS, Caliari C, Salamanna F, Sartori M, Barbanti Brodano G, Costa FR, Jeyaraman M, Dallo I, Bernaldez P, Purita J, de Andrade MAP, Everts PA. Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances. Bioengineering (Basel) 2024; 11:979. [PMID: 39451354 PMCID: PMC11504458 DOI: 10.3390/bioengineering11100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Bone marrow cellular therapy has undergone a remarkable evolution, significantly impacting the treatment of musculoskeletal disorders. This review traces the historical trajectory from early mythological references to contemporary scientific advancements. The groundbreaking work of Friedenstein in 1968, identifying fibroblast colony-forming cells in bone marrow, laid the foundation for future studies. Caplan's subsequent identification of mesenchymal stem cells (MSCs) in 1991 highlighted their differentiation potential and immunomodulatory properties, establishing them as key players in regenerative medicine. Contemporary research has focused on refining techniques for isolating and applying bone marrow-derived MSCs. These cells have shown promise in treating conditions like osteonecrosis, osteoarthritis, and tendon injuries thanks to their ability to promote tissue repair, modulate immune responses, and enhance angiogenesis. Clinical studies have demonstrated significant improvements in pain relief, functional recovery, and tissue regeneration. Innovations such as the ACH classification system and advancements in bone marrow aspiration methods have standardized practices, improving the consistency and efficacy of these therapies. Recent clinical trials have validated the therapeutic potential of bone marrow-derived products, highlighting their advantages in both surgical and non-surgical applications. Studies have shown that MSCs can reduce inflammation, support bone healing, and enhance cartilage repair. However, challenges remain, including the need for rigorous characterization of cell populations and standardized reporting in clinical trials. Addressing these issues is crucial for advancing the field and ensuring the reliable application of these therapies. Looking ahead, future research should focus on integrating bone marrow-derived products with other regenerative techniques and exploring non-surgical interventions. The continued innovation and refinement of these therapies hold promise for revolutionizing the treatment of musculoskeletal disorders, offering improved patient outcomes, and advancing the boundaries of medical science.
Collapse
Affiliation(s)
- José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13820-000, SP, Brazil
| | - Gabriela Caponero de Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - André Kruel
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Benjamim Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Carolina Caliari
- Cell Therapy, In Situ Terapia Celular, Ribeirão Preto 14056-680, SP, Brazil;
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | | | - Fábio Ramos Costa
- Department of Orthopaedics, FC Sports Traumatology, Salvador 40296-210, BA, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India;
- Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Clinical Research Scientist, Virginia Tech India, Chennai 600095, Tamil Nadu, India
| | - Ignácio Dallo
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Orthopedics, SportMe Medical Center, 41013 Seville, Spain;
| | | | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | | | - Peter Albert Everts
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Gulf Coast Biologics, Fort Myers, FL 33916, USA
| |
Collapse
|
7
|
Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D, Oksenych V. The Role of Mesenchymal Stem Cells in Modulating Adaptive Immune Responses in Multiple Sclerosis. Cells 2024; 13:1556. [PMID: 39329740 PMCID: PMC11430382 DOI: 10.3390/cells13181556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, leading to significant disability through neurodegeneration. Despite advances in the understanding of MS pathophysiology, effective treatments remain limited. Mesenchymal stem cells (MSCs) have gained attention as a potential therapeutic option due to their immunomodulatory and regenerative properties. This review examines MS pathogenesis, emphasizing the role of immune cells, particularly T cells, in disease progression, and explores MSCs' therapeutic potential. Although preclinical studies in animal models show MSC efficacy, challenges such as donor variability, culture conditions, migratory capacity, and immunological compatibility hinder widespread clinical adoption. Strategies like genetic modification, optimized delivery methods, and advanced manufacturing are critical to overcoming these obstacles. Further research is needed to validate MSCs' clinical application in MS therapy.
Collapse
Affiliation(s)
- Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hossein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
8
|
Li T, Zhang X, Hu Y, Gao X, Yao X, Xu Z. Development of gelatin-methacryloyl composite carriers for bone morphogenetic Protein-2 delivery: A potential strategy for spinal fusion. J Biomater Appl 2024; 39:195-206. [PMID: 38877801 DOI: 10.1177/08853282241258302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
To reduce the risk of nonunion after spinal fusion surgery, the in situ transplantation of bone marrow mesenchymal stem cells (BMSCs) induced toward osteogenic differentiation by bone morphogenetic protein-2 (BMP2) has been proven effective. However, the current biological agents used for transplantation have limitations, such as a short half-life and low bioavailability. To address this, our study utilized a safe and effective gelatin-methacryloyl (GelMA) as a carrier for BMP2. In vitro, experiments were conducted to observe the ability of this composite vehicle to induce osteogenic differentiation of BMSCs. The results showed that the GelMA hydrogel, with its critical properties and controlled release performance of BMP2, exhibited a slow release of BMP2 over 30 days. Moreover, the GelMA hydrogel not only enhanced the proliferation activity of BMSCs but also significantly promoted their osteogenic differentiation ability, surpassing the BMP2 effects. To investigate the potential of the GelMA-BMP2 composite vehicle, a rabbit model was employed to explore its ability to induce in situ intervertebral fusion by BMSCs. Transplantation experiments in rabbits demonstrated the effective induction of intervertebral bone fusion by the GelMA-BMP2-BMSC composite vehicle. In conclusion, the GelMA-BMP2-BMSC composite vehicle shows promising prospects in preclinical translational therapy for spinal intervertebral fusion. It addresses the limitations of current biological agents and offers a controlled release of BMP2, enhancing the proliferation and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Tao Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, PR China
| | - Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, PR China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, PR China
| | - Xin Yao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, PR China
| | - Zhengwei Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, PR China
| |
Collapse
|
9
|
Radan M, Abol Nejadian F, Bayati V, Hemmati AA, Hoseinynejad K, Mard SA. N-acetyl cysteine augments adipose tissue-derived stem cell efficacy on inflammatory markers and regulatory T cell system balance in an allergic asthma model. J Asthma 2024; 61:1029-1041. [PMID: 38376812 DOI: 10.1080/02770903.2024.2321296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Allergic asthma is a destructive inflammatory process in the respiratory system. The anti-inflammatory and antioxidant effects of N-acetylcysteine (NAC) have been reported in patients with obstructive pulmonary disease. On the other hand, several studies have shown the modulatory effects of mesenchymal stem cells on the immune system and inflammatory responses. Accordingly, the purpose of the current study was to evaluate the effect of administration of adipose tissue-derived stem cells (ADSCs) plus NAC on regulatory T cell system balance in an allergic asthma model. METHODS Eighty Sprague- Dawley rats were randomly divided into the following groups: Control, Plasmalite, Allergic asthma, Allergic asthma + ADSCs, NAC, Allergic asthma + NAC, Allergic asthma + ADSCs + NAC and Allergic asthma + Prednisolone. at the end of the experiment, arterial blood gas analysis, inflammatory cell counts in bronchoalveolar lavage fluid (BALF), inflammatory cytokine concentration, total IgE and specific OVA-IgE levels, gene expression levels of CD4+-T cell subsets, pulmonary indicators, edema, and lung histopathology were evaluated in all groups. RESULTS Administration of NAC plus ADSCs demonstrated a significant decrease in total WBC and eosinophil counts, which was in line with remarkable decrease in IL-17 and TNF-α concentrations and increases in IL-10 level compared with other treated groups. NAC plus ADSC treatment showed significant increases in Treg gene expression, although Th17 and Th2 expression significantly decreased compared with that in prednisolone- treated rats. CONCLUSION The results of the present study documented that the administration of ADSCs plus NAC has an inhibitory effect on the inflammation caused by allergic asthma in a rat model. The improvement of inflammatory indexes was significantly higher than that with prednisolone treatment.
Collapse
Affiliation(s)
- Maryam Radan
- Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhad Abol Nejadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asghar Hemmati
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khojasteh Hoseinynejad
- Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Hisamatsu D, Ikeba A, Yamato T, Mabuchi Y, Watanabe M, Akazawa C. Optimization of transplantation methods using isolated mesenchymal stem/stromal cells: clinical trials of inflammatory bowel diseases as an example. Inflamm Regen 2024; 44:37. [PMID: 39152520 PMCID: PMC11328379 DOI: 10.1186/s41232-024-00350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are distributed in various tissues and are used in clinical applications as a source of transplanted cells because of their easy harvestability. Although MSCs express numerous cell-surface antigens, single-cell analyses have revealed a highly heterogeneous cell population depending on the original tissue and donor conditions, including age and interindividual differences. This heterogeneity leads to differences in their functions, such as multipotency and immunomodulatory effects, making it challenging to effectively treat targeted diseases. The therapeutic efficacy of MSCs is controversial and depends on the implantation site. Thus, there is no established recipe for the transplantation of MSCs (including the type of disease, type of origin, method of cell culture, form of transplanted cells, and site of delivery). Our recent preclinical study identified appropriate MSCs and their suitable transplantation routes in a mouse model of inflammatory bowel disease (IBD). Three-dimensional (3D) cultures of MSCs have been demonstrated to enhance their properties and sustain engraftment at the lesion site. In this note, we explore the methods of MSC transplantation for treating IBDs, especially Crohn's disease, from clinical trials published over the past decade. Given the functional changes in MSCs in 3D culture, we also investigate the clinical trials using 3D constructs of MSCs and explore suitable diseases that might benefit from this approach. Furthermore, we discuss the advantages of the prospective isolation of MSCs in terms of interindividual variability. This note highlights the need to define the method of MSC transplantation, including interindividual variability, the culture period, and the transplantation route.
Collapse
Affiliation(s)
- Daisuke Hisamatsu
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Akimi Ikeba
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Taku Yamato
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Yo Mabuchi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Tokyo, Japan
| | - Mamoru Watanabe
- Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
11
|
Faircloth TU, Temple S, Parr RN, Tucker AB, Rajan D, Hematti P, Kugathasan S, Chinnadurai R. Vascular endothelial growth factor secretion and immunosuppression are distinct potency mechanisms of human bone marrow mesenchymal stromal cells. Stem Cells 2024; 42:736-751. [PMID: 38826008 DOI: 10.1093/stmcls/sxae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Mesenchymal stromal cells (MSCs) are investigated as cellular therapeutics for inflammatory bowel diseases and associated perianal fistula, although consistent efficacy remains a concern. Determining host factors that modulate MSCs' potency including their secretion of angiogenic and wound-healing factors, immunosuppression, and anti-inflammatory properties are important determinants of their functionality. We investigated the mechanisms that regulate the secretion of angiogenic and wound-healing factors and immune suppression of human bone marrow MSCs. Secretory analysis of MSCs focusing on 18 angiogenic and wound-healing secretory molecules identified the most abundancy of vascular endothelial growth factor A (VEGF-A). MSC viability and secretion of other angiogenic factors are not dependent on VEGF-A secretion which exclude the autocrine role of VEGF-A on MSC's fitness. However, the combination of inflammatory cytokines IFNγ and TNFα reduces MSC's VEGF-A secretion. To identify the effect of intestinal microvasculature on MSCs' potency, coculture analysis was performed between human large intestine microvascular endothelial cells (HLMVECs) and human bone marrow-derived MSCs. HLMVECs do not attenuate MSCs' viability despite blocking their VEGF-A secretion. In addition, HLMVECs neither attenuate MSC's IFNγ mediated upregulation of immunosuppressive enzyme indoleamine 2,3-dioxygenase nor abrogate suppression of T-cell proliferation despite the attenuation of VEGF-A secretion. We found that HLMVECs express copious amounts of endothelial nitric oxide synthase and mechanistic analysis showed that pharmacological blocking reverses HLMVEC-mediated attenuation of MSC's VEGF-A secretion. Together these results suggest that secretion of VEGF-A and immunosuppression are separable functions of MSCs which are regulated by distinct mechanisms in the host.
Collapse
Affiliation(s)
- Tyler U Faircloth
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| | - Sara Temple
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| | - Rhett N Parr
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| | - Anna B Tucker
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| | - Peiman Hematti
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| |
Collapse
|
12
|
Prakashan D, Singh A, Deshpande AD, Chandra V, Sharma GT, Gandhi S. Bone marrow derived mesenchymal stem cells enriched PCL-gelatin nanofiber scaffold for improved wound healing. Int J Biol Macromol 2024; 274:133447. [PMID: 38944073 DOI: 10.1016/j.ijbiomac.2024.133447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Electrospun nanofibers exhibit a significant potential in the synthesis of nanostructured materials, thereby offering a promising avenue for enhancing the efficacy of wound care. The present study aimed to investigate the wound-healing potential of two biomacromolecules, PCL-Gelatin nanofiber adhered with bone marrow-derived mesenchymal stem cells (BMSCs). Characterisation of the nanofiber revealed a mean fiber diameter ranging from 200 to 300 nm, with distinctive elemental peaks corresponding to polycaprolactone (PCL) and gelatin. Additionally, BMSCs derived from bone marrow were integrated into nanofibers, and their wound-regenerative potential was systematically evaluated through both in-vitro and in-vivo methodologies. In-vitro assessments substantiated that BMSC-incorporated nanofibers enhanced cell viability and crucial cellular processes such as adhesion, and proliferation. Subsequently, in-vivo studies were performed to demonstrate the wound-healing efficacy of nanofibers. It was observed that the rate of wound healing of BMSCs incorporated nanofibers surpassed both, nanofiber and BMSCs alone. Furthermore, histomorphological analysis revealed accelerated re-epithelization and improved wound contraction in BMSCs incorporated nanofiber group. The fabricated nanofiber incorporated with BMSCs exhibited superior wound regeneration in animal model and may be utilised as a wound healing patch.
Collapse
Affiliation(s)
- Drishya Prakashan
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad-500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad-121001, Haryana, India
| | - Archita Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar-243122, U.P., India
| | - Aditya D Deshpande
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad-500032, Telangana, India; ICAR-Indian Veterinary Research Institute, Izatnagar-243122, U.P., India
| | - Vikash Chandra
- ICAR-Indian Veterinary Research Institute, Izatnagar-243122, U.P., India
| | - G Taru Sharma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad-500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad-121001, Haryana, India.
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad-500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad-121001, Haryana, India.
| |
Collapse
|
13
|
Zhang X, Liu T, Ran C, Wang W, Piao F, Yang J, Tian S, Li L, Zhao D. Immunoregulatory paracrine effect of mesenchymal stem cells and mechanism in the treatment of osteoarthritis. Front Cell Dev Biol 2024; 12:1411507. [PMID: 39129785 PMCID: PMC11310049 DOI: 10.3389/fcell.2024.1411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. At present, the treatment of OA includes drug therapy to relieve symptoms and joint replacement therapy for advanced OA. However, these palliatives cannot truly block the progression of the disease from the immunological pathogenesis of OA. In recent years, bone marrow mesenchymal stem cell (BMSC) transplantation has shown great potential in tissue engineering repair. In addition, many studies have shown that BMSC paracrine signals play an important role in the treatment of OA through immune regulation and suppressing inflammation. At present, the mechanism of inflammation-induced OA and the use of BMSC transplantation in joint repair have been reviewed, but the mechanism and significance of BMSC paracrine signals in the treatment of OA have not been fully reviewed. Therefore, this article focused on the latest research progress on the paracrine effects of BMSCs in the treatment of OA and the related mechanisms by which BMSCs secrete cytokines to inhibit the inflammatory response, regulate immune balance, and promote cell proliferation and differentiation. In addition, the application potential of BMSC-Exos as a new type of cell-free therapy for OA is described. This review aimed to provide systematic theoretical support for the clinical application of BMSC transplantation in the treatment of OA.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tianhao Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Weidan Wang
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Fengyuan Piao
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Jiahui Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Simiao Tian
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Lu Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
14
|
Sutthiwanjampa C, Kang SH, Kim MK, Hwa Choi J, Kim HK, Woo SH, Bae TH, Kim WJ, Kang SH, Park H. Tumor necrosis factor-α-treated human adipose-derived stem cells enhance inherent radiation tolerance and alleviate in vivo radiation-induced capsular contracture. J Adv Res 2024:S2090-1232(24)00295-9. [PMID: 39019109 DOI: 10.1016/j.jare.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION Post-mastectomy radiotherapy plays a crucial role in breast cancer treatment but can lead to an inflammatory response causing soft tissue damage, particularly radiation-induced capsular contracture (RICC), impacting breast reconstruction outcomes. Adipose-derived stem cells (ADSCs), known for their regenerative potential via paracrine capacity, exhibit inherent radiotolerance. The influence of tumor necrosis factor-alpha (TNF-α) on ADSCs has been reported to enhance the paracrine effect of ADSCs, promoting wound healing by modulating inflammatory responses. OBJECTIVE This study investigates the potential of TNF-α-treated human ADSCs (T-hASCs) on silicone implants to alleviate RICC, hypothesizing to enhance suppressive effects on RICC by modulating inflammatory responses in a radiation-exposed environment. METHODS In vitro, T-hASCs were cultured on various surfaces to assess viability after exposure to radiation up to 20 Gy. In vivo, T-hASC and non-TNF-α-treated hASC (C-hASCs)-coated membranes were implanted in mice before radiation exposure, and an evaluation of the RICC mitigation took place 4 and 8 weeks after implantation. In addition, the growth factors released from T-hASCs were assessed. RESULTS In vitro, hASCs displayed significant radiotolerance, maintaining consistent viability after exposure to 10 Gy. TNF-α treatment further enhanced radiation tolerance, as evidenced by significantly higher viability than C-hASCs at 20 Gy. In vivo, T-hASC-coated implants effectively suppressed RICC, reducing capsule thickness. T-hASCs exhibited remarkable modulation of the inflammatory response, suppressing M1 macrophage polarization while enhancing M2 polarization. The elevated secretion of vascular endothelial growth factor from T-hASCs is believed to induce macrophage polarization, potentially reducing RICC. CONCLUSION This study establishes T-hASCs as a promising strategy for ameliorating the adverse effects experienced by breast reconstruction patients after mastectomy and radiation therapy. The observed radiotolerance, anti-fibrotic effects, and immune modulation suggest the possibility of enhancing patient outcomes and quality of life. Further research and clinical trials are warranted for broader clinical uses.
Collapse
Affiliation(s)
- Chanutchamon Sutthiwanjampa
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seung Hyun Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Mi Kyung Kim
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Departments of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Jin Hwa Choi
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Radiation Oncology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Han Koo Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Soo Hyun Woo
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Tae Hui Bae
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Woo Joo Kim
- Department of Plastic Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| | - Shin Hyuk Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
15
|
Waqar MA, Zaman M, Khan R, Shafeeq Ur Rahman M, Majeed I. Navigating the tumor microenvironment: mesenchymal stem cell-mediated delivery of anticancer agents. J Drug Target 2024; 32:624-634. [PMID: 38652480 DOI: 10.1080/1061186x.2024.2347356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
Scientific knowledge of cancer has advanced greatly throughout the years, with most recent studies findings includes many hallmarks that capture disease's multifaceted character. One of the novel approach utilised for the delivery of anti-cancer agents includes mesenchymal stem cell mediated drug delivery. Mesenchymal stem cells (MSCs) are non-haematopoietic progenitor cells that may be extracted from bone marrow, tooth pulp, adipose tissue and placenta/umbilical cord blood dealing with adult stem cells. MSCs are mostly involved in regeneration of tissue, they have also been shown to preferentially migrate to location of several types of tumour in-vivo. Usage of MSCs ought to improve both effectiveness and safety of anti-cancer drugs by enhancing delivery efficiency of anti-cancer therapies to tumour site. Numerous researches has demonstrated that various drugs, when delivered via mesenchymal stem cell mediated delivery can elicit anti-tumour effect of cells in cancers of breast cells and thyroid cells. MSCs have minimal immunogenicity because to lack of co-stimulatory molecule expression, which means there is no requirement for immunosuppression after allogenic transplantation. This current review elaborates recent advancements of mesenchyma stem cell mediated drug delivery of anti-cancer agents along with its mechanism and previously reported studies of drugs manufactured via this drug delivery system.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Rabeel Khan
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | | | - Imtiaz Majeed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
16
|
Pronk AJM, Beek KJ, Wildenberg ME, Bemelman WA, Stoker J, Buskens CJ. Mesenchymal stem cell therapy for therapy refractory complex Crohn's perianal fistulas: a case series. Stem Cell Res Ther 2024; 15:161. [PMID: 38853278 PMCID: PMC11163712 DOI: 10.1186/s13287-024-03779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell treatment (MST) has emerged as a new therapeutic strategy for Crohn's perianal fistulas. It has been demonstrated that a fibrotic tract on MRI with a MAGNIFI-CD score ≤ 6 is the best predictor for long-term clinical closure. Therefore, the aim of the current study was to analyse the effectiveness of MST for complex Crohn's perianal fistulas based on MRI. METHODS Consecutive patients with complex Crohn's perianal fistulas, previously failing both anti-TNF treatment and surgical closure, who had surgical closure of the internal opening with MST were included. The primary endpoint was radiological remission of the fistula(s) defined as a MAGNIFI-CD ≤ 6 on MRI, read by an experienced radiologist. RESULTS Between December 2019 and March 2023, 30 patients (15 males) with 48 fistula tracts were included with a median follow-up of 16.5 months. Radiological remission was achieved in thirteen patients (43.3%) after a median follow-up of 5.0 months (IQR 3.0-6.0). The median MAGNIFI-CD at baseline was 15.0 (IQR 7.0-20.0) which significantly decreased to 8.0 (IQR 3.0-15.0) after treatment (p = 0.001). Clinical closure was achieved in 21 patients (70.0%). Three patients (14.3%) developed a recurrence during long-term FU, all with clinically closed fistula(s), but no radiological remission. The median PDAI decreased significantly from 10.5 (IQR 7.0-14.0) to 4.0 (IQR 0.0-7.3) (p = 0.001). CONCLUSION MST is a promising treatment strategy for therapy refractory Crohn's perianal fistulas, resulting in > 40% radiological remission, clinical closure in 70% and a significant improvement in quality of life. No recurrences were seen in patients with radiological remission.
Collapse
Affiliation(s)
- A J M Pronk
- Department of Surgery, Amsterdam UMC, location VUMC, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - K J Beek
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M E Wildenberg
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands
| | - W A Bemelman
- Department of Surgery, Amsterdam UMC, location VUMC, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - J Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - C J Buskens
- Department of Surgery, Amsterdam UMC, location VUMC, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Jakobsen KK, Carlander ALF, Todsen T, Melchiors J, Paaske N, Østergaard Madsen AK, Kloch Bendtsen S, Mordhorst C, Stampe H, Kastrup J, Ekblond A, Haack-Sørensen M, Farhadi M, Maare C, Friborg J, Lynggaard CD, Werner Hauge A, Christensen R, Grønhøj C, von Buchwald C. Mesenchymal Stem/Stromal Cell Therapy for Radiation-Induced Xerostomia in Previous Head and Neck Cancer Patients: A Phase II Randomized, Placebo-Controlled Trial. Clin Cancer Res 2024; 30:2078-2084. [PMID: 38441659 PMCID: PMC11094414 DOI: 10.1158/1078-0432.ccr-23-3675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE No effective treatment exists for radiation-induced xerostomia. The objective of this study was to compare the effect of adipose-derived mesenchymal stem/stromal cell (ASC) injection, relative to placebo, on salivary gland function in patients with radiation-induced xerostomia. PATIENT AND METHODS In this single-centre, double-blind, placebo-controlled trial, patients with hyposalivation were randomised to receive ultrasound-guided injections of allogeneic ASCs or placebo into the submandibular glands. Patients were followed for 4 months. We evaluated unstimulated whole salivary flow rate (UWS), stimulated salivary flow rate, and patient-reported outcomes. Adverse events were recorded and immune response determined in blood samples. RESULTS We enrolled 120 patients. ASC treatment resulted in a statistically significant UWS increase of 0.04 [95% confidence interval (CI), 0.02-0.06] mL/min (38%) compared with pretreatment baseline whereas placebo treatment did not cause a significant increase [0.01 (95% CI, -0.01 to 0.04) mL/min (21%)]. Both the ASC and placebo treatment yielded notable symptom reductions, with dry mouth decreasing by 13.6 and 7.7 units, sticky saliva decreased by 14.8 and 9.3 units, swallowing difficulties decreased by 7.9 and 8.0 units, and the summary score of the Xerostomia Questionnaire decreased 5.9 and 5.1 units for the ASC and placebo arms, respectively. We found no statistically significant group difference between the ASC and placebo arms for any of the outcomes. CONCLUSIONS We could not confirm superiority of the ASC relative to placebo. ASC therapy significantly improved UWS in previous patients with head and neck cancer, whereas placebo resulted in an insignificant increase.
Collapse
Affiliation(s)
- Kathrine Kronberg Jakobsen
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Amanda-Louise Fenger Carlander
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Tobias Todsen
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Jacob Melchiors
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Natasja Paaske
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Anne Kathrine Østergaard Madsen
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Simone Kloch Bendtsen
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Christine Mordhorst
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Helene Stampe
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
| | | | - Christian Maare
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Jeppe Friborg
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Charlotte D. Lynggaard
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Anne Werner Hauge
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| |
Collapse
|
19
|
Dawoud C, Widmann KM, Czipin S, Pramhas M, Scharitzer M, Stift A, Harpain F, Riss S. Efficacy of cx601 (darvadstrocel) for the treatment of perianal fistulizing Crohn's disease-A prospective nationwide multicenter cohort study. Wien Klin Wochenschr 2024; 136:289-294. [PMID: 37823920 PMCID: PMC11078846 DOI: 10.1007/s00508-023-02283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The use of mesenchymal stem cells is considered a novel and promising therapeutic option for patients with perianal fistulizing Crohn's disease; however, data on its clinical application remain scarce. This multicenter nationwide study aimed to assess the clinical efficacy of mesenchymal stem cells in closing complex anal fistulas. METHODS In this study 14 Crohn's disease patients (3 males, 11 females) with complex anal fistulas treated in 3 tertiary hospitals in Austria were included between October 2018 and April 2021. Injection of 120 million allogeneic expanded adipose-derived mesenchymal stem cells (Cx601-darvadstrocel) was performed in each patient. Closure of the external fistula opening without secretion by external manual compression was defined as treatment success. RESULTS The median age of the patient population at the time of surgery was 32 years (range 26-53 years) with a median body mass index of 21.7 kg/m2 (range 16.7-26.6 kg/m2). Of the patients 12 (86%) received monoclonal antibodies (infliximab, adalimumab, ustekinumab, vedolizumab) at the time of surgery. The median number of complex fistulas was 1.4 (range 1-2), The median operative time was 20 min (range 6-50 min) with no perioperative complications. After a median follow-up of 92 weeks, we found successful fistula closure in 57.1% (n = 8) of treated patients. The perianal disease activity index did not improve significantly from initially 7 to a median of 6 after 52 weeks (p = 0.495). CONCLUSION Darvadstrocel is a safe, minimally invasive surgical technique without significant perioperative complications. Clinical success can be expected in about half of the treated patients.
Collapse
Affiliation(s)
- Christopher Dawoud
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kerstin Melanie Widmann
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sascha Czipin
- Department of Visceral, Transplant and Thoracic Surgery, Centre for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Pramhas
- First Surgical Department, Klinik Landstraße, Vienna, Austria
| | - Martina Scharitzer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Anton Stift
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Felix Harpain
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Riss
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
20
|
Carlander ALF, Gundestrup AK, Jansson PM, Follin B, Hoeeg C, Kousholt BS, Larsen RT, Jakobsen KK, Rimborg S, Fischer-Nielsen A, Grønhøj C, Buchwald CV, Lynggaard CD. Mesenchymal Stromal/Stem Cell Therapy Improves Salivary Flow Rate in Radiation-Induced Salivary Gland Hypofunction in Preclinical in vivo Models: A Systematic Review and Meta-Analysis. Stem Cell Rev Rep 2024; 20:1078-1092. [PMID: 38430363 PMCID: PMC11087340 DOI: 10.1007/s12015-024-10700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) have been suggested for salivary gland (SG) restoration following radio-induced salivary gland damage. This study aimed to determine the safety and effectiveness of MSC therapy on radio-induced SG damage and hypofunction in preclinical in vivo studies. METHODS PubMed and EMBASE were systematically searched for preclinical in vivo interventional studies evaluating efficacy and safety of MSC treatment following radio-induced salivary gland damage published before 10th of January 2022. The primary endpoint was salivary flow rate (SFR) evaluated in a meta-analysis. The study protocol was published and registered on PROSPERO ( www.crd.ac.uk/prospero ), registration number CRD42021227336. RESULTS A total of 16 preclinical in vivo studies were included for qualitative analysis (858 experimental animals) and 13 in the meta-analysis (404 experimental animals). MSCs originated from bone marrow (four studies), adipose tissue (10 studies) and salivary gland tissue (two studies) and were administered intravenously (three studies), intra-glandularly (11 studies) or subcutaneously (one study). No serious adverse events were reported. The overall effect on SFR was significantly increased with a standardized mean difference (SMD) of 6.99 (95% CI: 2.55-11.42). Studies reported improvements in acinar tissue, vascular areas and paracrine factors. CONCLUSION In conclusion, this systematic review and meta-analysis showed a significant effect of MSC therapy for restoring SG functioning and regenerating SG tissue following radiotherapy in preclinical in vivo studies without serious adverse events. MSC therapy holds significant therapeutic potential in the treatment of radio-induced xerostomia, but comprehensive, randomized, clinical trials in humans are required to ascertain their efficacy in a clinical setting.
Collapse
Affiliation(s)
- Amanda-Louise Fenger Carlander
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University hospital, Copenhagen, Denmark.
| | - Anders Kierkegaard Gundestrup
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Per Marcus Jansson
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarke Follin
- Cardiology Stem Cell Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cecilie Hoeeg
- Cardiology Stem Cell Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birgitte Saima Kousholt
- Department of Clinical Medicine, Aarhus University Group for Understanding Systematic Reviews and Meta analyses in Translational Preclinical Science, Aarhus University, Copenhagen, Denmark
| | - Rasmus Tolstrup Larsen
- Department of Occupational Therapy and Physiotherapy, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Section of Social Medicine, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Kronberg Jakobsen
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Susie Rimborg
- The Royal Danish Library, Copenhagen University Library, Copenhagen, Denmark
| | - Anne Fischer-Nielsen
- Department of Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte Duch Lynggaard
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
21
|
Jiang M, Zhu D, Zhao D, Liu Y, Li J, Zheng Z. Integrated Analysis of Clinical Outcome of Mesenchymal Stem Cell-related Genes in Pan-cancer. Curr Genomics 2024; 25:298-315. [PMID: 39156727 PMCID: PMC11327807 DOI: 10.2174/0113892029291247240422060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 08/20/2024] Open
Abstract
Background Although the application of mesenchymal stem cells (MSCs) in engineered medicine, such as tissue regeneration, is well known, new evidence is emerging that shows that MSCs can also promote cancer progression, metastasis, and drug resistance. However, no large-scale cohort analysis of MSCs has been conducted to reveal their impact on the prognosis of cancer patients. Objectives We propose the MSC score as a novel surrogate for poor prognosis in pan-cancer. Methods We used single sample gene set enrichment analysis to quantify MSC-related genes into a signature score and identify the signature score as a potential independent prognostic marker for cancer using multivariate Cox regression analysis. TIDE algorithm and neural network were utilized to assess the predictive accuracy of MSC-related genes for immunotherapy. Results MSC-related gene expression significantly differed between normal and tumor samples across the 33 cancer types. Cox regression analysis suggested the MSC score as an independent prognostic marker for kidney renal papillary cell carcinoma, mesothelioma, glioma, and stomach adenocarcinoma. The abundance of fibroblasts was also more representative of the MSC score than the stromal score. Our findings supported the combined use of the TIDE algorithm and neural network to predict the accuracy of MSC-related genes for immunotherapy. Conclusion We comprehensively characterized the transcriptome, genome, and epigenetics of MSCs in pan-cancer and revealed the crosstalk of MSCs in the tumor microenvironment, especially with cancer-related fibroblasts. It is suggested that this may be one of the key sources of resistance to cancer immunotherapy.
Collapse
Affiliation(s)
- Mingzhe Jiang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dantong Zhu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yongye Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
22
|
Bastami F, Safavi SM, Seifi S, Nadjmi N, Khojasteh A. Addition of Bone-Marrow Mesenchymal Stem Cells to 3D-Printed Alginate/Gelatin Hydrogel Containing Freeze-Dried Bone Nanoparticles Accelerates Regeneration of Critical Size Bone Defects. Macromol Biosci 2024; 24:e2300065. [PMID: 37846197 DOI: 10.1002/mabi.202300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/20/2023] [Indexed: 10/18/2023]
Abstract
A 3D-printed biodegradable hydrogel, consisting of alginate, gelatin, and freeze-dried bone allograft nanoparticles (npFDBA), is developed as a scaffold for enhancing cell adhesion, proliferation, and osteogenic differentiation when combined with rat bone marrow mesenchymal stem cells (rBMSCs). This composite hydrogel is intended for the regeneration of critical-sized bone defects using a rat calvaria defect model. The behavior of rBMSCs seeded onto the scaffold is evaluated through scanning electron microscope, MTT assays, and quantitative real-time PCR. In a randomized study, thirty rats are assigned to five treatment groups: 1) rBMSCs-loaded hydrogel, 2) rBMSCs-loaded FDBA microparticles, 3) hydrogel alone, 4) FDBA alone, and 5) an empty defect serving as a negative control. After 8 weeks, bone regeneration is assessed using H&E, Masson's trichrome staining, and immunohistochemistry. The 3D-printed hydrogel displays excellent adhesion, proliferation, and differentiation of rBMSCs. The rBMSCs-loaded hydrogel exhibits comparable new bone regeneration to the rBMSCs-loaded FDBA group, outperforming other groups with statistical significance (P-value < 0.05). These findings are corroborated by Masson's trichrome staining and osteocalcin expression. The rBMSCs-loaded 3D-printed hydrogel demonstrates promising potential for significantly enhancing bone regeneration, surpassing the conventional clinical approach (FDBA).
Collapse
Affiliation(s)
- Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh-Mina Safavi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sina Seifi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Nadjmi
- Department of Cranio-Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Cranio-Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Song C, Wang K, Qian B, Lu J, Qiao M, Qiu Y, Wang B, Yu Y. Nrf-2/ROS/NF-κB pathway is modulated by cynarin in human mesenchymal stem cells in vitro from ankylosing spondylitis. Clin Transl Sci 2024; 17:e13748. [PMID: 38450992 PMCID: PMC10918724 DOI: 10.1111/cts.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Ankylosing spondylitis (AS) is an immune chronic inflammatory disease, resulting in back pain, stiffness, and thoracolumbar kyphotic deformity. Based on the reported anti-inflammatory and antioxidant capacities of cynarin (Cyn), this study explored its protective role and molecular mechanisms in mesenchymal stem cells (MSCs) from AS. The target pathways and genes were verified using Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescent staining, while molecular docking analysis was conducted. In AS-MSCs, we found that the expression levels of p-NF-κB, IL-6, IL-1β, and TNF-α were higher and IκB-α, Nrf-2, and HO-1 were lower compared with healthy control (HC)-MSCs. With molecular docking analysis, the biding affinities between Cyn and Keap1-Nrf-2 and p65-IκB-α were predicted. The mRNA and protein expression of p-NF-κB, IL-6, IL-1β, and TNF-α and the reactive oxygen species (ROS) generation were downregulated following Cyn administration. Meanwhile, the expression level of IκB-α, Nrf-2, and HO-1 were significantly increased after Cyn pretreatment. The results suggested that the protective mechanisms of Cyn in AS-MSCs were based on enhancing the antioxidation and suppression of excessive inflammatory responses via Nrf-2/ROS/NF-κB axis. Our findings demonstrate that Cyn is a potential candidate for alleviating inflammation in AS.
Collapse
Affiliation(s)
- Chenyu Song
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Kaiyang Wang
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Bangping Qian
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Jingshun Lu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Mu Qiao
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Bin Wang
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yang Yu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| |
Collapse
|
24
|
Tao H, Lv Q, Zhang J, Chen L, Yang Y, Sun W. Different Levels of Autophagy Activity in Mesenchymal Stem Cells Are Involved in the Progression of Idiopathic Pulmonary Fibrosis. Stem Cells Int 2024; 2024:3429565. [PMID: 38390035 PMCID: PMC10883747 DOI: 10.1155/2024/3429565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/17/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related lung interstitial disease that occurs predominantly in people over 65 years of age and for which there is a lack of effective therapeutic agents. It has demonstrated that mesenchymal stem cells (MSCs) including alveolar epithelial cells (AECs) can perform repair functions. However, MSCs lose their repair functions due to their distinctive aging characteristics, eventually leading to the progression of IPF. Recent breakthroughs have revealed that the degree of autophagic activity influences the renewal and aging of MSCs and determines the prognosis of IPF. Autophagy is a lysosome-dependent pathway that mediates the degradation and recycling of intracellular material and is an efficient way to renew the nonnuclear (cytoplasmic) part of eukaryotic cells, which is essential for maintaining cellular homeostasis and is a potential target for regulating MSCs function. Therefore, this review focuses on the changes in autophagic activity of MSCs, clarifies the relationship between autophagy and health status of MSCs and the effect of autophagic activity on MSCs senescence and IPF, providing a theoretical basis for promoting the clinical application of MSCs.
Collapse
Affiliation(s)
- Hongxia Tao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin Lv
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Jing Zhang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Lijuan Chen
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Wei Sun
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
25
|
Pilny E, Czapla J, Drzyzga A, Smolarczyk R, Matuszczak S, Jarosz-Biej M, Krakowczyk Ł, Cichoń T. The comparison of adipose-derived stromal cells (ADSCs) delivery method in a murine model of hindlimb ischemia. Stem Cell Res Ther 2024; 15:27. [PMID: 38303049 PMCID: PMC10836003 DOI: 10.1186/s13287-024-03634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Adipose-derived stromal cells (ADSCs) demonstrate ability to promote tissue healing and down-regulate excessive inflammation. ADSCs have been used to treat critical limb ischemia in preclinical and clinical trials, but still, there is little known about their optimal delivery strategy. To date, no direct analysis of different methods of ADSCs delivery has been performed in the hindlimb ischemia model. Therefore, in this study we focused on the therapeutic efficacy of different ADSCs delivery methods in a murine model of hindlimb ischemia. METHODS For the hADSCs isolation, we used the subcutaneous adipose tissue collected during the surgery. The murine hindlimb ischemia was used as a model. The unilateral femoral artery ligation was performed on 10-12-week-old male C57BL/6. ADSCs were delivered directly into ischemic muscle, into the contralateral muscle or intravenously. 7 and 14 days after the surgery, the gastrocnemius and quadriceps muscles were collected for the immunohistochemical analysis. The results were analyzed with relevant tests using the Statistica software. RESULTS Our research revealed that muscle regeneration, angiogenesis, arteriogenesis and macrophage infiltration in murine model of hindlimb ischemia differ depending on ADSCs delivery method. We have demonstrated that intramuscular method (directly into ischemic limb) of ADSCs delivery is more efficient in functional recovery after critical limb ischemia than intravenous or contralateral route. CONCLUSIONS We have noticed that injection of ADSCs directly into ischemic limb is the optimal delivery strategy because it increases: (1) muscle fiber regeneration, (2) the number of capillaries and (3) the influx of macrophages F4/80+/CD206+.
Collapse
Affiliation(s)
- Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Łukasz Krakowczyk
- Department of Oncologic and Reconstructive Surgery, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
26
|
Bu X, Gao Y, Pan W, Liu L, Wang J, Yin Z, Ping B. Human Amniotic Membrane-Derived Mesenchymal Stem Cells Prevent Acute Graft-Versus-Host Disease in an Intestinal Microbiome-Dependent Manner. Transplant Cell Ther 2024; 30:189.e1-189.e13. [PMID: 37939900 DOI: 10.1016/j.jtct.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Acute graft-versus-host disease (aGVHD) represents a fatal severe complication after allogeneic hematopoietic stem cell transplantation. As a promising cell therapeutic strategy of aGVHD, the mechanism of mesenchymal stem cells (MSC) to ameliorate aGVHD has not been fully clarified, especially in the field of intestinal homeostasis including the intestinal microbiome involved in the pathogenesis of aGVHD. The present study aimed to explore the effect of MSC on intestinal homeostasis including the intestinal barrier and intestinal microbiome and its metabolites, as well as the role of intestinal microbiome in the preventive process of hAMSCs ameliorating aGVHD. The preventive effects of human amniotic membrane-derived MSC (hAMSCs) was assessed in humanized aGVHD mouse models. Immunohistochemistry and RT-qPCR were used to evaluate intestinal barrier function. The 16S rRNA sequencing and targeted metabolomics assay were performed to observe the alternation of intestinal microbiome and the amounts of medium-chain fatty acids (MCFAs) and short-chain fatty acids (SCFAs), respectively. Flow cytometry was performed to analyze the frequencies of T immune cells. Through animal experiments, we found that hAMSCs had the potential to prevent aGVHD. HAMSCs could repair the damage of intestinal barrier structure and function, as well as improve the dysbiosis of intestinal microbiome induced by aGVHD, and meanwhile, upregulate the concentration of metabolites SCFAs, so as to reshape intestinal homeostasis. Gut microbiota depletion and fecal microbial transplantation confirmed the involvement of intestinal microbiome in the preventive process of hAMSCs on aGVHD. Our findings showed that hAMSCs prevented aGVHD in an intestinal microbiome-dependent manner, which might shed light on a new mechanism of hAMSCs inhibiting aGVHD and promote the development of new prophylaxis regimes for aGVHD prevention.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weifeng Pan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baohong Ping
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Wang X, Wang Q, Meng L, Tian R, Guo H, Tan Z, Tan Y. Biodistribution-based Administration of cGMP-compliant Human Umbilical Cord Mesenchymal Stem Cells Affects the Therapeutic Effect of Wound Healing. Stem Cell Rev Rep 2024; 20:329-346. [PMID: 37889447 DOI: 10.1007/s12015-023-10644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) are used as therapeutic agents for skin injury therapy, few studies have reported the effects of dosing duration and delivery frequency on wound healing. In addition, before the clinical application of MSCs, it is important to assess whether their usage might influence tumor occurrence. METHODS We described the metabolic patterns of subcutaneous injection of hUC-MSCs using fluorescence tracing and qPCR methods and applied them to the development of drug delivery strategies for promoting wound healing. RESULTS (i) We developed cGMP-compliant hUC-MSC products with critical quality control points for wound healing; (ii) The products did not possess any tumorigenic or tumor-promoting/inhibiting ability in vivo; (iii) Fluorescence tracing and qPCR analyses showed that the subcutaneous application of hUC-MSCs did not result in safety-relevant biodistribution or ectopic migration; (iv) Reinjecting hUC-MSCs after significant consumption significantly improved reepithelialization and dermal regeneration. CONCLUSIONS Our findings provided a reference for controlling the quality of MSC products used for wound healing and highlighted the importance of delivery time and frequency for designing in vivo therapeutic studies.
Collapse
Affiliation(s)
- Xin Wang
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Qiuhong Wang
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Lingjiao Meng
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Ruifeng Tian
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Huizhen Guo
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Zengqi Tan
- School of Medicine, Northwest University, Xi'an, China
| | - Yi Tan
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China.
- Shandong Yinfeng Life Science Research Institute, Ji'nan, People's Republic of China.
| |
Collapse
|
28
|
He T, Zhou B, Sun G, Yan Q, Lin S, Ma G, Yao Q, Wu X, Zhong Y, Gan D, Huo S, Jin W, Chen D, Bai X, Cheng T, Cao H, Xiao G. The bone-liver interaction modulates immune and hematopoietic function through Pinch-Cxcl12-Mbl2 pathway. Cell Death Differ 2024; 31:90-105. [PMID: 38062244 PMCID: PMC10781991 DOI: 10.1038/s41418-023-01243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are used to treat infectious and immune diseases and disorders; however, its mechanism(s) remain incompletely defined. Here we find that bone marrow stromal cells (BMSCs) lacking Pinch1/2 proteins display dramatically reduced ability to suppress lipopolysaccharide (LPS)-induced acute lung injury and dextran sulfate sodium (DSS)-induced inflammatory bowel disease in mice. Prx1-Cre; Pinch1f/f; Pinch2-/- transgenic mice have severe defects in both immune and hematopoietic functions, resulting in premature death, which can be restored by intravenous injection of wild-type BMSCs. Single cell sequencing analyses reveal dramatic alterations in subpopulations of the BMSCs in Pinch mutant mice. Pinch loss in Prx1+ cells blocks differentiation and maturation of hematopoietic cells in the bone marrow and increases production of pro-inflammatory cytokines TNF-α and IL-1β in monocytes. We find that Pinch is critical for expression of Cxcl12 in BMSCs; reduced production of Cxcl12 protein from Pinch-deficient BMSCs reduces expression of the Mbl2 complement in hepatocytes, thus impairing the innate immunity and thereby contributing to infection and death. Administration of recombinant Mbl2 protein restores the lethality induced by Pinch loss in mice. Collectively, we demonstrate that the novel Pinch-Cxcl12-Mbl2 signaling pathway promotes the interactions between bone and liver to modulate immunity and hematopoiesis and may provide a useful therapeutic target for immune and infectious diseases.
Collapse
Affiliation(s)
- Tailin He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Bo Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China
| | - Qinnan Yan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Donghao Gan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Wenfei Jin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China.
| |
Collapse
|
29
|
Yang LF, He JD, Jiang WQ, Wang XD, Yang XC, Liang Z, Zhou YK. Interferon-gamma Treatment of Human Umbilical Cord Mesenchymal Stem Cells can Significantly Reduce Damage Associated with Diabetic Peripheral Neuropathy in Mice. Curr Stem Cell Res Ther 2024; 19:1129-1141. [PMID: 37644749 DOI: 10.2174/1574888x19666230829155046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Diabetic peripheral neuropathy causes significant pain to patients. Umbilical cord mesenchymal stem cells have been shown to be useful in the treatment of diabetes and its complications. The aim of this study was to investigate whether human umbilical cord mesenchymal stem cells treated with interferon-gamma can ameliorate nerve injury associated with diabetes better than human umbilical cord mesenchymal stem cells without interferon-gamma treatment. METHODS Human umbilical cord mesenchymal stem cells were assessed for adipogenic differentiation, osteogenic differentiation, and proliferation ability. Vonfry and a hot disc pain tester were used to evaluate tactile sensation and thermal pain sensation in mice. Hematoxylin-eosin and TUNEL staining were performed to visualize sciatic nerve fiber lesions and Schwann cell apoptosis in diabetic mice. Western blotting was used to detect expression of the apoptosis-related proteins Bax, B-cell lymphoma-2, and caspase-3 in mouse sciatic nerve fibers and Schwann cells. Real-Time Quantitative PCR was used to detect mRNA levels of the C-X-C motif chemokine ligand 1, C-X-C motif chemokine ligand 2, C-X-C motif chemokine ligand 9, and C-X-C motif chemokine ligand 10 in mouse sciatic nerve fibers and Schwann cells. Enzyme-linked immunosorbent assay was used to detect levels of the inflammatory cytokines, interleukin- 1β, interleukin-6, and tumor necrosis factor-α in serum and Schwann cells. RESULTS The adipogenic differentiation capacity, osteogenic differentiation capacity, and proliferation ability of human umbilical cord mesenchymal stem cells were enhanced after interferon-gamma treatment. Real-Time Quantitative PCR revealed that interferon-gamma promoted expression of the adipogenic markers, PPAR-γ and CEBP-α, as well as of the osteogenic markers secreted phosphoprotein 1, bone gamma-carboxyglutamate protein, collagen type I alpha1 chain, and Runt-related transcription factor 2. The results of hematoxylin-eosin and TUNEL staining showed that pathological nerve fiber damage and Schwann cell apoptosis were reduced after the injection of interferon-gamma-treated human umbilical cord mesenchymal stem cells. Expression of the apoptosis-related proteins, caspase-3 and Bax, was significantly reduced, while expression of the anti-apoptotic protein B-cell lymphoma-2 was significantly increased. mRNA levels of the cell chemokines, C-X-C motif chemokine ligand 1, C-X-C motif chemokine ligand 2, C-X-C motif chemokine ligand 9, and C-X-C motif chemokine ligand 10, were significantly reduced, and levels of the inflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, were decreased. Tactile and thermal pain sensations were improved in diabetic mice. CONCLUSION Interferon-gamma treatment of umbilical cord mesenchymal stem cells enhanced osteogenic differentiation, adipogenic differentiation, and proliferative potential. It can enhance the ability of human umbilical cord mesenchymal stem cells to alleviate damage to diabetic nerve fibers and Schwann cells, in addition to improving the neurological function of diabetic mice.
Collapse
Affiliation(s)
- Li-Fen Yang
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province, China
| | - Jun-Dong He
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province, China
- Medical School, Kunming University of Science and Technology, Kunming, 650300, Yunnan Province, People's Republic of China
| | - Wei-Qi Jiang
- The First Clinical Medical College, Kunming Medical University, Kunming, 650050, People's Republic of China
| | - Xiao-Dan Wang
- Kunming Yan'an Hospital Kunming, 650051, People's Republic of China
| | - Xiao-Chun Yang
- Department of Ophthalmology First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, People's Republic of China
| | - Zhi Liang
- Department of Information Center, First People's Hospital of Yunnan Province, China
| | - Yi-Kun Zhou
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province, China
| |
Collapse
|
30
|
Soto-Gamez A, van Es M, Hageman E, Serna-Salas SA, Moshage H, Demaria M, Pringle S, Coppes RP. Mesenchymal stem cell-derived HGF attenuates radiation-induced senescence in salivary glands via compensatory proliferation. Radiother Oncol 2024; 190:109984. [PMID: 37926332 DOI: 10.1016/j.radonc.2023.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND & AIM Irradiation of the salivary glands during head and neck cancer treatment induces cellular senescence in response to DNA damage and contributes to radiation-induced hyposalivation by affecting the salivary gland stem/progenitor cell (SGSC) niche. Cellular senescence, such as that induced by radiation, is a state of cell-cycle arrest, accompanied by an altered pro-inflammatory secretome known as the senescence-associated secretory phenotype (SASP) with potential detrimental effects on the surrounding microenvironment. We hypothesized that the pro-regenerative properties of mesenchymal stem cells (MSCs) may attenuate cellular senescence post-irradiation. Therefore, here we evaluated the effects of adipose-derived MSCs (ADSCs) on the radiation-induced response of salivary gland organoids (SGOs). METHODS Proteomic analyses to identify soluble mediators released by ADSCs co-cultured with SGOS revealed secretion of hepatocyte growth factor (HGF) in ADSCs, suggesting a possible role in the stem cell crosstalk. Next, the effect of recombinant HGF in the culture media of ex vivo grown salivary gland cells was tested in 2D monolayers and 3D organoid models. RESULTS Treatment with HGF robustly increased salivary gland cell proliferation. Importantly, HGF supplementation post-irradiation enhanced proliferation at lower doses of radiation (0, 3, 7 Gy), but not at higher doses (10, 14 Gy) where most cells stained positive for senescence-associated beta-galactosidase. Furthermore, HGF had no effect on the senescence-associated secretory phenotype (SASP) of irradiated SGOs, suggesting there may be compensatory proliferation by cell-division competent cells instead of a reversal of cellular senescence after irradiation. CONCLUSION ADSCs may positively influence radiation recovery through HGF secretion and can promote the ex vivo expansion of salivary gland stem/progenitor cells to enhance the effects of co-transplanted SGSC.
Collapse
Affiliation(s)
- A Soto-Gamez
- Dept. of Biomedical Sciences of Cells & Systems, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands; Dept. of Radiation Oncology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - M van Es
- Dept. of Biomedical Sciences of Cells & Systems, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands; Dept. of Radiation Oncology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - E Hageman
- Dept. of Biomedical Sciences of Cells & Systems, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands; Dept. of Radiation Oncology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - S A Serna-Salas
- Dept of Gastroenterology and Hepatology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - H Moshage
- Dept of Gastroenterology and Hepatology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - S Pringle
- Dept. of Rheumatology and Clinical Immunology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - R P Coppes
- Dept. of Biomedical Sciences of Cells & Systems, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands; Dept. of Radiation Oncology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
31
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
32
|
Ren D, Chen J, Yu M, Yi C, Hu X, Deng J, Guo S. Emerging strategies for tissue engineering in vascularized composite allotransplantation: A review. J Tissue Eng 2024; 15:20417314241254508. [PMID: 38826796 PMCID: PMC11143860 DOI: 10.1177/20417314241254508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Vascularized composite allotransplantation (VCA), which can effectively improve quality of life, is a promising therapy for repair and reconstruction after face or body trauma. However, intractable issues are associated with VCA, such as the inevitable multiple immunogenicities of different tissues that cause severe rejection, the limited protocols available for clinical application, and the shortage of donor sources. The existing regimens used to extend the survival of patients receiving VCAs and suppress rejection are generally the lifelong application of immunosuppressive drugs, which have side effects. Consequently, studies aiming at tissue engineering methods for VCA have become a topic. In this review, we summarize the emerging therapeutic strategies for tissue engineering aimed to prolong the survival time of VCA grafts, delay the rejection and promote prevascularization and tissue regeneration to provide new ideas for future research on VCA treatment.
Collapse
Affiliation(s)
- Danyang Ren
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Department of Plastic Surgery, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueqing Hu
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Xie Q, Gu J. Therapeutic and Safety Promise of Mesenchymal Stem Cells for Liver Failure: From Preclinical Experiment to Clinical Application. Curr Stem Cell Res Ther 2024; 19:1351-1368. [PMID: 37807649 DOI: 10.2174/011574888x260690230921174343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023]
Abstract
Liver failure (LF) is serious liver damage caused by multiple factors, resulting in severe impairment or decompensation of liver synthesis, detoxification, metabolism, and biotransformation. The general prognosis of LF is poor with high mortality in non-transplant patients. The clinical treatments for LF are mainly internal medicine comprehensive care, artificial liver support system, and liver transplantation. However, none of the above treatment strategies can solve the problems of all liver failure patients and has its own limitations. Mesenchymal stem cells (MSCs) are a kind of stem cells with multidirectional differentiation potential and paracrine function, which play an important role in immune regulation and tissue regeneration. In recent years, MSCs have shown multiple advantages in the treatment of LF in pre-clinical experiments and clinical trials. In this work, we reviewed the biological characteristics of MSCs, the possible molecular mechanisms of MSCs in the treatment of liver failure, animal experiments, and clinical application, and also discussed the existing problems of MSCs in the treatment of liver failure.
Collapse
Affiliation(s)
- Qiong Xie
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Jundong Gu
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| |
Collapse
|
34
|
Barrett JG, MacDonald ES. Use of Biologics and Stem Cells in the Treatment of Other Inflammatory Diseases in the Horse. Vet Clin North Am Equine Pract 2023; 39:553-563. [PMID: 37607855 DOI: 10.1016/j.cveq.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are powerful immunomodulatory cells that act via multiple mechanisms to coordinate, inhibit, and control the cells of the immune system. MSCs act as rescuers for various damaged or degenerated cells of the body via (1) cytokines, growth factors, and signaling molecules; (2) extracellular vesicle (exosome) signaling; and (3) direct donation of mitochondria. Several studies evaluating the efficacy of MSCs have used MSCs grown using xenogeneic media, which may reduce or eliminate efficacy. Although more research is needed to optimize the anti-inflammatory potential of MSCs, there is ample evidence that MSC therapeutics are worthy of further development.
Collapse
Affiliation(s)
- Jennifer G Barrett
- Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, VA, USA.
| | - Elizabeth S MacDonald
- Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, VA, USA
| |
Collapse
|
35
|
Ramírez Idarraga JA, Restrepo Múnera LM. Mesenchymal Stem Cells: Their Role in the Tumor Microenvironment. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:681-691. [PMID: 37276173 DOI: 10.1089/ten.teb.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have been seen for years as great candidates for treating different diseases and an alternative to embryonic stem cells due to their differentiation capacity in vitro. More recent research has focused on their ability to modulate the immune response and regeneration at sites associated with inflammation, activities attributable to the release of trophic factors into the extracellular medium, a set of components known as the secretome. It has been possible to demonstrate the presence of these cells within the tumor microenvironment, which is associated with their tropism for sites of inflammation; however, their role here needs to be clarified. In different investigations, the feasibility of using MSCs or their secretome to treat cancer has been sought, with these results being ambiguous. It has been described that MSCs can be activated and present various phenotypes, which could explain the divergence in their action; however, these activation mechanisms and the different phenotypes still need to be well known. This review explores MSCs and their use in regenerative medicine with a targeted approach to cancer. Impact Statement This text addresses the diverging findings on the role of mesenchymal stem cells in the tumor microenvironment and discrepancies on the use of these cells as cancer treatment, separating the direct use of the cells from the use of the secretome. Multiple authors refer equally to the cells and their secretome to conclude on the positive or negative outcome, without taking into consideration how the cells are affected by their surroundings.
Collapse
Affiliation(s)
- Jhon Alexander Ramírez Idarraga
- Corporación Académica Ciencias Básicas Biomédicas, Universidad de Antioquía, Medellín, Colombia
- Grupo Ingeniería de Tejidos y Terapias Celulares, Instituto de Investigaciones Médicas, Universidad de Antioquía, Medellín, Colombia
| | - Luz Marina Restrepo Múnera
- Grupo Ingeniería de Tejidos y Terapias Celulares, Instituto de Investigaciones Médicas, Universidad de Antioquía, Medellín, Colombia
| |
Collapse
|
36
|
Tolstova T, Dotsenko E, Kozhin P, Novikova S, Zgoda V, Rusanov A, Luzgina N. The effect of TLR3 priming conditions on MSC immunosuppressive properties. Stem Cell Res Ther 2023; 14:344. [PMID: 38031182 PMCID: PMC10687850 DOI: 10.1186/s13287-023-03579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory properties, making them suitable for cell therapy. Toll-like receptors (TLRs) in MSCs respond to viral load by secreting immunosuppressive or proinflammatory molecules. The expression of anti-inflammatory molecules in MSCs can be altered by the concentration and duration of exposure to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)). This study aimed to optimize the preconditioning of MSCs with poly(I:C) to increase immunosuppressive effects and to identify MSCs with activated TLR3 (prMSCs). METHODS Flow cytometry and histochemical staining were used to analyze MSCs for immunophenotype and differentiation potential. MSCs were exposed to poly(I:C) at 1 and 10 μg/mL for 1, 3, and 24 h, followed by determination of the expression of IDO1, WARS1, PD-L1, TSG-6, and PTGES2 and PGE2 secretion. MSCs and prMSCs were cocultured with intact (J-) and activated (J+) Jurkat T cells. The proportion of proliferating and apoptotic J+ and J- cells, IL-10 secretion, and IL-2 production after cocultivation with MSCs and prMSCs were measured. Liquid chromatography-mass spectrometry and bioinformatics analysis identified proteins linked to TLR3 activation in MSCs. RESULTS Poly(I:C) at 10 μg/mL during a 3-h incubation caused the highest expression of immunosuppression markers in MSCs. Activation of prMSCs caused a 18% decrease in proliferation and a one-third increase in apoptotic J+ cells compared to intact MSCs. Cocultures of prMSCs and Jurkat cells had increased IL-10 and decreased IL-2 in the conditioned medium. A proteomic study of MSCs and prMSCs identified 53 proteins with altered expression. Filtering the dataset with Gene Ontology and Reactome Pathway revealed that poly(I:C)-induced proteins activate the antiviral response. Protein‒protein interactions by String in prMSCs revealed that the antiviral response and IFN I signaling circuits were more active than in native MSCs. prMSCs expressed more cell adhesion proteins (ICAM-I and Galectin-3), PARP14, PSMB8, USP18, and GBP4, which may explain their anti-inflammatory effects on Jurkat cells. CONCLUSIONS TLR3 activation in MSCs is dependent on exposure time and poly(I:C) concentration. The maximum expression of immunosuppressive molecules was observed with 10 µg/mL poly(I:C) for 3-h preconditioning. This priming protocol for MSCs enhances the immunosuppressive effects of prMSCs on T cells.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | | | - Peter Kozhin
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121.
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| |
Collapse
|
37
|
Andersen C, Jacobsen S, Uvebrant K, Griffin JF, Vonk LA, Walters M, Berg LC, Lundgren-Åkerlund E, Lindegaard C. Integrin α10β1-Selected Mesenchymal Stem Cells Reduce Pain and Cartilage Degradation and Increase Immunomodulation in an Equine Osteoarthritis Model. Cartilage 2023:19476035231209402. [PMID: 37990503 DOI: 10.1177/19476035231209402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE Integrin α10β1-selected mesenchymal stem cells (integrin α10-MSCs) have previously shown potential in treating cartilage damage and osteoarthritis (OA) in vitro and in animal models in vivo. The aim of this study was to further investigate disease-modifying effects of integrin α10-MSCs. DESIGN OA was surgically induced in 17 horses. Eighteen days after surgery, horses received 2 × 107 integrin α10-MSCs intra-articularly or were left untreated. Lameness and response to carpal flexion was assessed weekly along with synovial fluid (SF) analysis. On day 52 after treatment, horses were euthanized, and carpi were evaluated by computed tomography (CT), MRI, histology, and for macroscopic pathology and integrin α10-MSCs were traced in the joint tissues. RESULTS Lameness and response to carpal flexion significantly improved over time following integrin α10-MSC treatment. Treated horses had milder macroscopic cartilage pathology and lower cartilage histology scores than the untreated group. Prostaglandin E2 and interleukin-10 increased in the SF after integrin α10-MSC injection. Integrin α10-MSCs were found in SF from treated horses up to day 17 after treatment, and in the articular cartilage and subchondral bone from 5 of 8 treated horses after euthanasia at 52 days after treatment. The integrin α10-MSC injection did not cause joint flare. CONCLUSION This study demonstrates that intra-articular (IA) injection of integrin α10-MSCs appears to be safe, alleviate pathological changes in the joint, and improve joint function in an equine post-traumatic osteoarthritis (PTOA) model. The results suggest that integrin α10-MSCs hold promise as a disease-modifying osteoarthritis drug (DMOAD).
Collapse
Affiliation(s)
- Camilla Andersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
- Xintela AB, Lund, Sweden
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | - John F Griffin
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Marie Walters
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | - Casper Lindegaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
38
|
He J, Zhao M, Ma X, Li D, Kong J, Yang F. The role and application of three IFN-related reactions in psoriasis. Biomed Pharmacother 2023; 167:115603. [PMID: 37776636 DOI: 10.1016/j.biopha.2023.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
The pathophysiology of psoriasis is a highly complicated one. Due to the disease's specificity, it not only affects the patient's skin negatively but also manifests systemic pathological changes. These clinical symptoms seriously harm the patient's physical and mental health. IFN, a common immunomodulatory factor, has been increasingly demonstrated to have a significant role in the development of psoriatic skin disease. Psoriasis is connected with a variety of immunological responses. New targets for the therapy of autoimmune skin diseases may emerge from further research on the mechanics of the associated IFN upstream and downstream pathways. Different forms of IFNs do not behave in the same manner in psoriasis, and understanding how different types of IFNs are involved in psoriasis may provide a better notion for future research. This review focuses on the involvement of three types of IFNs in psoriasis and related therapeutic investigations, briefly describing the three IFNs' production and signaling, as well as the dual effects of IFNs on the skin. It is intended that it would serve as a model for future research.
Collapse
Affiliation(s)
- Jiaming He
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Minghui Zhao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Ma
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dilong Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyan Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
39
|
Pagotto VPF, Camargo CP, Cáceres PV, Altran SC, Gemperli R. Adipose tissue-derived stem cells as a therapeutic strategy for enterocutaneous fistula: an experimental model study. Acta Cir Bras 2023; 38:e384523. [PMID: 37851787 PMCID: PMC10578092 DOI: 10.1590/acb384523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE Enterocutaneous fistula (ECF) is a condition in which there is an abnormal connection between the intestinal tract and the skin. It can lead to high morbidity and mortality rates despite the availability of therapeutic options. Stem cells have emerged as a potential strategy to treat ECF. This study aimed to evaluate the effect of adipose tissue-derived stem cells (ASC) on ECF in an experimental model. METHODS ECF was induced in 21 Wistar rats, and after one month, they were divided into three groups: control group (C), culture medium without ASC group (CM), and allogeneic ASC group (ASC). After 30 days, the animals underwent macroscopic analysis of ECF diameter and histopathological analysis of inflammatory cells, tissue fibrosis, and vascular density. RESULTS The study found a 55% decrease in the ECF diameter in the ASC group (4.5 ± 1.4 mm) compared to the control group (10.0 ± 2.1 mm, p = 0.001) and a 59.1% decrease in the CM group (11.0 ± 4.3 mm, p = 0.003). The fibrosis score in the ASC group was 20.9% lower than the control group (p = 0.03). There were no significant differences in inflammation scores among the three groups. CONCLUSIONS This study suggests that ASC treatment can reduce ECF diameter, and reduction in tissue fibrosis may be a related mechanism. Further studies are needed to understand the underlying mechanisms fully.
Collapse
Affiliation(s)
- Vitor Penteado Figueiredo Pagotto
- Universidade de São Paulo – Faculdade de Medicina – Disciplina de Cirurgia Plástica – São Paulo (SP) – Brazil
- Universidade de São Paulo – Faculdade de Medicina – Hospital das Clínicas – Serviço de Cirurgia Plástica – São Paulo (SP) – Brazil
| | - Cristina Pires Camargo
- Universidade de São Paulo – Faculdade de Medicina – Disciplina de Cirurgia Plástica – São Paulo (SP) – Brazil
- Universidade de São Paulo – Faculdade de Medicina – Hospital das Clínicas – Serviço de Cirurgia Plástica – São Paulo (SP) – Brazil
- Universidade de São Paulo – Faculdade de Medicina – Laboratório de Investigação Médica – São Paulo (SP) – Brazil
| | - Paula Vitória Cáceres
- Universidade de São Paulo – Faculdade de Medicina – Laboratório de Investigação Médica – São Paulo (SP) – Brazil
| | - Silvana Cereijido Altran
- Universidade de São Paulo – Faculdade de Medicina – Laboratório de Investigação Médica – São Paulo (SP) – Brazil
| | - Rolf Gemperli
- Universidade de São Paulo – Faculdade de Medicina – Disciplina de Cirurgia Plástica – São Paulo (SP) – Brazil
- Universidade de São Paulo – Faculdade de Medicina – Hospital das Clínicas – Serviço de Cirurgia Plástica – São Paulo (SP) – Brazil
- Universidade de São Paulo – Faculdade de Medicina – Laboratório de Investigação Médica – São Paulo (SP) – Brazil
| |
Collapse
|
40
|
Vij R, Kim H, Park H, Cheng T, Lotfi D, Chang D. Adipose-derived, autologous mesenchymal stem cell therapy for patients with post-COVID-19 syndrome: an intermediate-size expanded access program. Stem Cell Res Ther 2023; 14:287. [PMID: 37798650 PMCID: PMC10557203 DOI: 10.1186/s13287-023-03522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Evolving mutations of the novel coronavirus continue to fuel up the pandemic. The virus affects the human respiratory system along with other body systems, causing several sequelae in the survivors of the disease, presented as post-COVID-19 syndrome or long-COVID-19. This protocol utilized Hope Biosciences' autologous, adipose-derived mesenchymal stem cells (HB-adMSCs) to evaluate safety and efficacy of HB-adMSC therapy to improve signs and symptoms associated with post-COVID-19 syndrome. METHODS Ten eligible subjects with post-COVID-19 syndrome were enrolled in the program for a duration of 40 weeks who received 5 intravenous infusions of 2 × 108 autologous HB-adMSCs each at week 0, 2, 6, 10 and 14 with a follow-up at week 18 and end of the study at week 40. Safety assessments included incidence of adverse and serious adverse events along with the laboratory measures of hematologic, hepatic, and renal function. Efficacy was examined by quality-of-life assessments, fatigue assessments, Visual analog scale (VAS) of symptoms and monitoring of respiration and oxygen saturation rates. RESULTS VAS scores and Fatigue Assessment scores (FAS) showed significant improvements post-treatment (P = 0.0039, ES = 0.91) compared to baseline. Respiration rates and oxygen saturation levels that were within the normal range at the baseline remained unchanged at the end of the study (EOS). Paired comparison between baseline and EOS for short-form-36 health survey questionnaire (SF-36) scores also showed improved quality-of-life with significant improvements in individual SF-36 evaluations. Mostly mild AEs were reported during the study period with no incidence of serious AEs. Also, no detrimental effects in laboratory values were seen. CONCLUSIONS The results of the expanded access program indicated that treatment with autologous HB-adMSCs resulted in significant improvements in the signs and symptoms associated with post-COVID-19 syndrome as assessed by VAS and FAS scores. Additionally, improvements in the patients' quality-of-life as demonstrated using SF-36 scores that also showed significant improvements in individual scaled scores. Overall, administration of multiple infusions of autologous HB-adMSCs is safe and efficacious for improvements in the quality-of life of patients with post-COVID-19 syndrome. TRIAL REGISTRATION Clinical trial registration number: NCT04798066. Registered on March 15, 2021. ( https://clinicaltrials.gov/ct2/show/NCT04798066?term=hope+biosciences&cond=Post-COVID-19+Syndrome&draw=2&rank=2 ).
Collapse
Affiliation(s)
- Ridhima Vij
- Hope Biosciences Research Foundation, 16700 Creek Bend Dr., Sugar Land, TX, 77478, USA.
| | - Hosu Kim
- Hope Biosciences, Sugar Land, TX, 77478, USA
| | | | - Thanh Cheng
- Hope Biosciences Research Foundation, 16700 Creek Bend Dr., Sugar Land, TX, 77478, USA
| | - Djamchid Lotfi
- Hope Biosciences Research Foundation, 16700 Creek Bend Dr., Sugar Land, TX, 77478, USA
| | - Donna Chang
- Hope Biosciences Research Foundation, 16700 Creek Bend Dr., Sugar Land, TX, 77478, USA
- Hope Biosciences, Sugar Land, TX, 77478, USA
| |
Collapse
|
41
|
Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4:101170. [PMID: 37652015 PMCID: PMC10518608 DOI: 10.1016/j.xcrm.2023.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
The tumor microenvironment (TME) is influenced by a "disorganized" extracellular matrix (ECM) that sensitizes cancer cells toward mechanical stress, signaling, and structural alterations. In hepatocellular carcinoma (HCC), lack of knowledge about key ECM proteins driving the TME refractory to targeted therapies poses a barrier to the identification of new therapeutic targets. Herein, we discuss the contributions of various ECM components that impact hepatocytes and their surrounding support network during tumorigenesis. In addition, the underpinnings by which ECM proteins transduce mechanical signals to the liver TME are detailed. Finally, in view of the bidirectional feedback between the ECM, transformed hepatocytes, and immune cells, we highlight the potential role of the ECM disorganization process in shaping responses to immune checkpoint inhibitors and targeted therapies. Our comprehensive characterization of these ECM components may provide a roadmap for innovative therapeutic approaches to restrain HCC.
Collapse
Affiliation(s)
- Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sayan Chakraborty
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263.
| |
Collapse
|
42
|
Jain K, Mohan KV, Roy G, Sinha P, Jayaraman V, Kiran, Yadav AS, Phasalkar A, Deepanshu, Pokhrel A, Perumal N, Sinha N, Chaudhary K, Upadhyay P. Reconditioned monocytes are immunomodulatory and regulate inflammatory environment in sepsis. Sci Rep 2023; 13:14977. [PMID: 37696985 PMCID: PMC10495550 DOI: 10.1038/s41598-023-42237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Sepsis is caused by dysregulated immune response to severe infection and hyper inflammation plays a central role in worsening the disease. The immunomodulatory properties of mesenchymal stem cells (MSCs) have been evaluated as a therapeutic candidate for sepsis. Reconditioned monocytes (RM), generated from healthy human peripheral blood mononuclear cells (PBMCs) exhibit both macrophage and MSCs-like properties. RM were administered at different stages of sepsis in a mouse model. It reduced serum levels of IL6, MCP-1, IL-10, improved hypothermia, increased survival, and recovery from 0 to 66% when combined with antibiotics in the mouse model. The reduced human leucocyte antigen DR molecules expression on RM enables their co-culture with PBMCs of sepsis patients which resulted in reduced ROS production, and up-regulated TGF-β while down-regulating IL6, IL8, and IL-10 in-vitro. RM are potentially immunomodulatory, enhance survival in sepsis mouse model and modulate inflammatory behaviour of sepsis patient's PBMCs.
Collapse
Affiliation(s)
- Kshama Jain
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - K Varsha Mohan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gargi Roy
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prakriti Sinha
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vignesh Jayaraman
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kiran
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Ajit Singh Yadav
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Akshay Phasalkar
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Deepanshu
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Anupa Pokhrel
- Department of Transfusion Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Nagarajan Perumal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nitin Sinha
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Kiran Chaudhary
- Department of Transfusion Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Pramod Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
43
|
He S, Deng H, Li P, Hu J, Yang Y, Xu Z, Liu S, Guo W, Guo Q. Arthritic Microenvironment-Dictated Fate Decisions for Stem Cells in Cartilage Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207715. [PMID: 37518822 PMCID: PMC10520688 DOI: 10.1002/advs.202207715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Indexed: 08/01/2023]
Abstract
The microenvironment and stem cell fate guidance of post-traumatic articular cartilage regeneration is primarily the focus of cartilage tissue engineering. In articular cartilage, stem cells are characterized by overlapping lineages and uneven effectiveness. Within the first 12 weeks after trauma, the articular inflammatory microenvironment (AIME) plays a decisive role in determining the fate of stem cells and cartilage. The development of fibrocartilage and osteophyte hyperplasia is an adverse outcome of chronic inflammation, which results from an imbalance in the AIME during the cartilage tissue repair process. In this review, the sources for the different types of stem cells and their fate are summarized. The main pathophysiological events that occur within the AIME as well as their protagonists are also discussed. Additionally, regulatory strategies that may guide the fate of stem cells within the AIME are proposed. Finally, strategies that provide insight into AIME pathophysiology are discussed and the design of new materials that match the post-traumatic progress of AIME pathophysiology in a spatial and temporal manner is guided. Thus, by regulating an appropriately modified inflammatory microenvironment, efficient stem cell-mediated tissue repair may be achieved.
Collapse
Affiliation(s)
- Songlin He
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Haotian Deng
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Peiqi Li
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Jingjing Hu
- Department of GastroenterologyInstitute of GeriatricsChinese PLA General HospitalBeijing100853China
| | - Yongkang Yang
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Ziheng Xu
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Shuyun Liu
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Weimin Guo
- Department of Orthopaedic SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Quanyi Guo
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| |
Collapse
|
44
|
Bu X, Pan W, Wang J, Liu L, Yin Z, Jin H, Liu Q, Zheng L, Sun H, Gao Y, Ping B. Therapeutic Effects of HLA-G5 Overexpressing hAMSCs on aGVHD After Allo-HSCT: Involving in the Gut Microbiota at the Intestinal Barrier. J Inflamm Res 2023; 16:3669-3685. [PMID: 37645691 PMCID: PMC10461746 DOI: 10.2147/jir.s420747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Background Acute graft-versus-host disease (aGVHD) initiated by intestinal barrier dysfunction and gut microbiota dysbiosis, remains one of the main obstacles for patients undergoing allogenic hematopoietic stem cell transplantation (allo-HSCT) to achieve good prognosis. Studies have suggested that mesenchymal stem cells (MSCs) can suppress immune responses and reduce inflammation, and human leukocyte antigen-G5 (HLA-G5) plays an important role in the immunomodulatory effects of MSCs, but very little is known about the potential mechanisms in aGVHD. Thus, we explored the effect of HLA-G5 on the immunosuppressive properties of human amnion MSCs (hAMSCs) and demonstrated its mechanism related to the gut microbiota at the intestinal barrier in aGVHD. Methods Patients undergoing allo-HSCT were enrolled to detect the levels of plasma-soluble HLA-G (sHLA-G) and regulatory T cells (Tregs). Humanized aGVHD mouse models were established and treated with hAMSCs or HLA-G5 overexpressing hAMSCs (ov-HLA-G5-hAMSCs) to explore the mechanism of HLA-G5 mediated immunosuppressive properties of hAMSCs and the effect of ov-HLA-G5-hAMSCs on the gut microbiota at the intestinal barrier in aGVHD. Results The plasma levels of sHLA-G on day +30 after allo-HSCT in aGVHD patients were lower than those in patients without aGVHD, and the sHLA-G levels were positively correlated with Tregs percentages. ov-HLA-G5-hAMSCs had the potential to inhibit the expansion of CD3+CD4+ T and CD3+CD8+ T cells and promote Tregs differentiation, suppress proinflammatory cytokine secretion but promote anti-inflammatory cytokines release. Besides, ov-HLA-G5-hAMSCs also could reverse the intestinal barrier dysfunction and gut microbiota dysbiosis in aGVHD. Conclusion We demonstrated that HLA-G might work with Tregs to create a regulatory network together to reduce the occurrence of aGVHD. HLA-G5 mediated hAMSCs to exert higher immunosuppressive properties in vivo and reverse the immune imbalance caused by T lymphocytes and cytokines. Furthermore, HLA-G5 overexpressing hAMSCs could restore gut microbiota and intestinal barriers, thereby ameliorating aGVHD.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Weifeng Pan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Junhui Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Liping Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Haitao Sun
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| |
Collapse
|
45
|
Harris VK, Wollowitz J, Greenwald J, Carlson AL, Sadiq SA. Mesenchymal stem cell-neural progenitors are enriched in cell signaling molecules implicated in their therapeutic effect in multiple sclerosis. PLoS One 2023; 18:e0290069. [PMID: 37566599 PMCID: PMC10420335 DOI: 10.1371/journal.pone.0290069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Mesenchymal stem cell-neural progenitors (MSC-NP) are a neural derivative of MSCs that are being investigated in clinical trials as an autologous intrathecal cell therapy to treat patients with secondary progressive (SP) or primary progressive (PP) multiple sclerosis (MS). MSC-NPs promote tissue repair through paracrine mechanisms, however which secreted factors mediate the therapeutic potential of MSC-NPs and how this cell population differs from MSCs remain poorly understood. The objective of this study was to define the transcriptional profile of MSCs and MSC-NPs from MS and non-MS donors to better characterize each cell population. MSCs derived from SPMS, PPMS, or non-MS bone marrow donors demonstrated minimal differential gene expression, despite differences in disease status. MSC-NPs from both MS and non-MS-donors exhibited significant differential gene expression compared to MSCs, with 2,156 and 1,467 genes upregulated and downregulated, respectively. Gene ontology analysis demonstrated pronounced downregulation of cell cycle genes in MSC-NPs compared to MSC consistent with reduced proliferation of MSC-NPs in vitro. In addition, MSC-NPs demonstrated significant enrichment of genes involved in cell signaling, cell communication, neuronal differentiation, chemotaxis, migration, and complement activation. These findings suggest that increased cell signaling and chemotactic capability of MSC-NPs may support their therapeutic potential in MS.
Collapse
Affiliation(s)
- Violaine K. Harris
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Jaina Wollowitz
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Jacelyn Greenwald
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Alyssa L. Carlson
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| |
Collapse
|
46
|
Suzdaltseva Y, Kiselev SL. Mesodermal Derivatives of Pluripotent Stem Cells Route to Scarless Healing. Int J Mol Sci 2023; 24:11945. [PMID: 37569321 PMCID: PMC10418846 DOI: 10.3390/ijms241511945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation during normal tissue regeneration in adults may result in noticeable cosmetic and functional defects and have a significant impact on the quality of life. In contrast, fetal tissues in the mid-gestation period are known to be capable of complete regeneration with the restitution of the initial architecture, organization, and functional activity. Successful treatments that are targeted to minimize scarring can be realized by understanding the cellular and molecular mechanisms of fetal wound regeneration. However, such experiments are limited by the inaccessibility of fetal material for comparable studies. For this reason, the molecular mechanisms of fetal regeneration remain unknown. Mesenchymal stromal cells (MSCs) are central to tissue repair because the molecules they secrete are involved in the regulation of inflammation, angiogenesis, and remodeling of the extracellular matrix. The mesodermal differentiation of human pluripotent stem cells (hPSCs) recapitulates the sequential steps of embryogenesis in vitro and provides the opportunity to generate the isogenic cell models of MSCs corresponding to different stages of human development. Further investigation of the functional activity of cells from stromal differon in a pro-inflammatory microenvironment will procure the molecular tools to better understand the fundamental mechanisms of fetal tissue regeneration. Herein, we review recent advances in the generation of clonal precursors of primitive mesoderm cells and MSCs from hPSCs and discuss critical factors that determine the functional activity of MSCs-like cells in a pro-inflammatory microenvironment in order to identify therapeutic targets for minimizing scarring.
Collapse
Affiliation(s)
- Yulia Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119333 Moscow, Russia;
| | | |
Collapse
|
47
|
Ah-Pine F, Khettab M, Bedoui Y, Slama Y, Daniel M, Doray B, Gasque P. On the origin and development of glioblastoma: multifaceted role of perivascular mesenchymal stromal cells. Acta Neuropathol Commun 2023; 11:104. [PMID: 37355636 PMCID: PMC10290416 DOI: 10.1186/s40478-023-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023] Open
Abstract
Glioblastoma, IDH wild-type is the most common and aggressive form of glial tumors. The exact mechanisms of glioblastoma oncogenesis, including the identification of the glioma-initiating cell, are yet to be discovered. Recent studies have led to the hypothesis that glioblastoma arises from neural stem cells and glial precursor cells and that cell lineage constitutes a key determinant of the glioblastoma molecular subtype. These findings brought significant advancement to the comprehension of gliomagenesis. However, the cellular origin of glioblastoma with mesenchymal molecular features remains elusive. Mesenchymal stromal cells emerge as potential glioblastoma-initiating cells, especially with regard to the mesenchymal molecular subtype. These fibroblast-like cells, which derive from the neural crest and reside in the perivascular niche, may underlie gliomagenesis and exert pro-tumoral effects within the tumor microenvironment. This review synthesizes the potential roles of mesenchymal stromal cells in the context of glioblastoma and provides novel research avenues to better understand this lethal disease.
Collapse
Affiliation(s)
- F. Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - M. Khettab
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - Y. Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - Y. Slama
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
| | - M. Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service de Médecine d’Urgences-SAMU-SMUR, CHU de La Réunion - Site Félix Guyon, Allée Des Topazes CS 11 021, 97400 Saint-Denis, France
| | - B. Doray
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service de Génétique, CHU de La Réunion - Site Félix Guyon, Allée Des Topazes CS 11 021, 97400 Saint-Denis, France
| | - P. Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
| |
Collapse
|
48
|
Subayyil AA, Basmaeil YS, Kulayb HB, Alrodayyan M, Alhaber LAA, Almanaa TN, Khatlani T. Preconditioned Chorionic Villus Mesenchymal Stem/Stromal Cells (CVMSCs) Minimize the Invasive Phenotypes of Breast Cancer Cell Line MDA231 In Vitro. Int J Mol Sci 2023; 24:ijms24119569. [PMID: 37298519 DOI: 10.3390/ijms24119569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 06/12/2023] Open
Abstract
Among the newer choices of targeted therapies against cancer, stem cell therapy is gaining importance because of their antitumor properties. Stem cells suppress growth, metastasis, and angiogenesis, and induce apoptosis in cancer cells. In this study, we have examined the impact of the cellular component and the secretome of preconditioned and naïve placenta-derived Chorionic Villus Mesenchymal Stem Cells (CVMSCs) on the functional characteristics of the Human Breast Cancer cell line MDA231. MDA231 cells were treated with preconditioned CVMSCs and their conditioned media (CM), followed by an evaluation of their functional activities and modulation in gene and protein expression. Human Mammary Epithelial Cells (HMECs) were used as a control. CM obtained from the preconditioned CVMSCs significantly altered the proliferation of MDA231 cells, yet no change in other phenotypes, such as adhesion, migration, and invasion, were observed at various concentrations and time points tested. However, the cellular component of preconditioned CVMSCs significantly inhibited several phenotypes of MDA231 cells, including proliferation, migration, and invasion. CVMSCs-treated MDA231 cells exhibited modulation in the expression of various genes involved in apoptosis, oncogenesis, and Epithelial to Mesenchymal Transition (EMT), explaining the changes in the invasive behavior of MDA231 cells. These studies reveal that preconditioned CVMSCs may make useful candidate in a stem cell-based therapy against cancer.
Collapse
Affiliation(s)
- Abdullah Al Subayyil
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Yasser S Basmaeil
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Hayaa Bin Kulayb
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Maha Alrodayyan
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Lama Abdulaziz A Alhaber
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tanvir Khatlani
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| |
Collapse
|
49
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
50
|
Zhao J, Deng H, Xun C, Chen C, Hu Z, Ge L, Jiang Z. Therapeutic potential of stem cell extracellular vesicles for ischemic stroke in preclinical rodent models: a meta-analysis. Stem Cell Res Ther 2023; 14:62. [PMID: 37013588 PMCID: PMC10071642 DOI: 10.1186/s13287-023-03270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Extracellular vesicles derived from stem cells (SC-EVs) have been proposed as a novel therapy for ischemic stroke. However, their effects remain incompletely understood. Therefore, we conducted this meta-analysis to systematically review the efficacy of SC-EVs on ischemic stroke in preclinical rodent models. METHODS Using PubMed, EMBASE, and the Web of Science, we searched through studies published up to August 2021 that investigated the treatment effects of SC-EVs in a rodent ischemic stroke model. Infarct volume was the primary outcome. Neurological severity scores (mNSS) were the secondary outcome. The standard mean difference (SMD) and the confidence interval (CI) were calculated using a random-effects model. R and Stata 15.1 were used to conduct the meta-analysis. RESULTS Twenty-one studies published from 2015 to 2021 met the inclusion criteria. We also found that SCs-EVs reduced infarct volume by an SMD of - 2.05 (95% CI - 2.70, - 1.40; P < 0.001). Meanwhile, our results revealed an overall positive effect of SCs-derived EVs on the mNSS with an SMD of - 1.42 (95% CI - 1.75, - 1.08; P < 0.001). Significant heterogeneity among studies was observed. Further stratified and sensitivity analyses did not identify the source of heterogeneity. CONCLUSION The present meta-analysis confirmed that SC-EV therapy could improve neuron function and reduce infarct volume in a preclinical rodent ischemic stroke model, providing helpful clues for human clinical trials on SC-EVs.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Chengfeng Xun
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China.
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, People's Republic of China.
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|