1
|
Abdi J, Redegeld F. Toll-like receptor 1/2 activation reduces immunoglobulin free light chain production by multiple myeloma cells in the context of bone marrow stromal cells and fibronectin. PLoS One 2025; 20:e0310395. [PMID: 39874349 PMCID: PMC11774389 DOI: 10.1371/journal.pone.0310395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
Toll-like receptor (TLRs) activation in multiple myeloma (MM) cells induces heterogeneous functional responses including cell growth and proliferation, survival or apoptosis. These effects have been suggested to be partly due to increase in secretion of cytokines such as IL-6 or IFNα among others from MM cells following TLR activation. However, whether triggering of these receptors also modulates production of immunoglobulin free light chains (FLCs), which largely contribute to MM pathology, has not been investigated in MM cells before. This study explored the effect of TLR1/2 ligand (Pam3CSK4) alone or combined with bortezomib (BTZ) on production of FLCs in human myeloma cell lines, L363, OPM-2, U266 and NCI-H929. It also investigated the above effect when MM cells were exposed to bone marrow stromal cells (BMSCs) or fibronectin (FN). Adhesion to BMSCs or FN increased secretion of FLC in MM cells. Pam3CSK4 decreased FLC production, and this effect was enhanced in combination with BTZ but attenuated when MM cells adhered to BMSCs or FN. The findings of this study imply that activation of TLR1/2 downregulates FLC production in MM cells even in the context of bone marrow microenvironment components and suggest that targeting some TLRs such as TLR1/2 might have therapeutic potential.
Collapse
Affiliation(s)
- Jahan Abdi
- Department of Clinical Science, CHHSN, California State University Dominguez Hills, Carson, California, United States of America
| | - Frank Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 PMCID: PMC11611669 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Cipu RI, Stănişteanu ML, Andrei MA, Banciu DD, Banciu A. Theoretical Model for In Vivo Induction of Chemotherapy Sensitization Using miRNA Packaged in Distinct Layered Liposomes. J Funct Biomater 2024; 15:298. [PMID: 39452596 PMCID: PMC11508823 DOI: 10.3390/jfb15100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Resistance to chemotherapy is a problem of major social and economic importance, when looking at factors like the decrease in life expectancy, the associated therapeutic costs, and a significant number of cancers that resist current chemotherapy. The development of chemotherapeutics for all theoretically possible tumor variants is an approach that requires unreasonable resources. We propose a theoretical model that serves the purpose of overcoming resistance to chemotherapeutic agents used in cancer therapy. The model describes a gene delivery system based on liposomes, which are optically guided to the tumor's location. The main aim of the gene delivery system is inhibiting the activity of enzymes involved in drug metabolism, hence offering the opportunity to use inexpensive chemotherapeutics that are already on the market. This model will reduce the costs of chemotherapy and will assure a positive outcome for patients.
Collapse
Affiliation(s)
| | | | | | - Daniel Dumitru Banciu
- Department of Biomaterials and Medical Devices, Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (R.-I.C.); (M.-L.S.); (M.-A.A.); (A.B.)
| | | |
Collapse
|
4
|
Jacob LA, Choudhary SK, Babu MCS, K N L, Rudresha AH, Rajeev LK, Saldanha SC, Hegde A, B M V. Unmasking Infection Risks in Multiple Myeloma: Insights from a Retrospective Analysis. Indian J Hematol Blood Transfus 2024; 40:588-595. [PMID: 39469170 PMCID: PMC11512961 DOI: 10.1007/s12288-024-01753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/11/2024] [Indexed: 10/30/2024] Open
Abstract
Multiple myeloma (MM) has witnessed significant therapeutic advancements through the introduction of proteasome inhibitors and immunomodulators, leading to improved treatment outcomes. However, infections remain a formidable challenge for MM patients. The objective of our research is to investigate the factors that can forecast infection risk in MM patients. In pursuit of this, we conducted a thorough retrospective examination of medical records from Kidwai Memorial Institute of Oncology, Bangalore, involving 145 MM patients. Out of the 145 patients analyzed, almost half (47.5%; n = 69) encountered at least one infection during the course of their disease. Respiratory-related infections were the most prevalent (76.2%), followed by urinary tract infections (10%) and instances of diarrhea (8.8%). Notably, gram-positive bacteria constituted the majority of identified causative organisms, accounting for 48.2% of isolated pathogens, while gram-negative bacteria comprised 37.9% of the isolated organisms. Most infections were observed either at the time of presentation or during the first month (40.5%). Overall mortality during the study period was 4.8% (n = 7). Infections contributed to 57.1% (n = 4 out of 7 deaths) of the mortality. Moreover, patients in advanced stages exhibited an elevated risk of infection at presentation. Infections remain a major cause of morbidity and mortality in patients with MM. Nearly half of MM patients experience an episode of infection during treatment.Gram-positive bacteria are the most common pathogens, with respiratory infections being the most common foci. Prompt identification and treatment of infections is essential, but can be challenging due to atypical or absent symptoms. Antibacterial prophylaxis is an important preventive strategy, but further research is needed to develop innovative approaches to infection prevention and targeted therapeutic interventions. We must strive to develop innovative approaches to infection prevention in MM patients. Also we need to advance our understanding of the interplay between infections and MM to improve quality of care and outcomes for these individuals. By addressing these challenges, we can aspire to offer MM patients a brighter and healthier future.
Collapse
Affiliation(s)
- Linu Abraham Jacob
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Dr. M H Marigowda Rd., Hombegowda Nagar, Bengaluru, Karnataka 560029 India
| | - Sabeena K. Choudhary
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Dr. M H Marigowda Rd., Hombegowda Nagar, Bengaluru, Karnataka 560029 India
| | - M. C. Suresh Babu
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Dr. M H Marigowda Rd., Hombegowda Nagar, Bengaluru, Karnataka 560029 India
| | - Lokesh K N
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Dr. M H Marigowda Rd., Hombegowda Nagar, Bengaluru, Karnataka 560029 India
| | - A. H. Rudresha
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Dr. M H Marigowda Rd., Hombegowda Nagar, Bengaluru, Karnataka 560029 India
| | - L. K. Rajeev
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Dr. M H Marigowda Rd., Hombegowda Nagar, Bengaluru, Karnataka 560029 India
| | - Smitha C. Saldanha
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Dr. M H Marigowda Rd., Hombegowda Nagar, Bengaluru, Karnataka 560029 India
| | - Anup Hegde
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Dr. M H Marigowda Rd., Hombegowda Nagar, Bengaluru, Karnataka 560029 India
| | - Vivek B M
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Dr. M H Marigowda Rd., Hombegowda Nagar, Bengaluru, Karnataka 560029 India
| |
Collapse
|
5
|
Kooshari A, Shahriyary F, Shahidi M, Vafajoo M, Amirzargar MR. Tetrahydroisoquinoline reduces angiogenesis by interacting myeloma cells with HUVECs mediated by extracellular vesicles. Med Oncol 2024; 41:217. [PMID: 39102060 DOI: 10.1007/s12032-024-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Multiple myeloma (MM) is a neoplastic condition resulting from the uncontrolled expansion of B-cell-derived plasma cells. The importance of angiogenesis in MM development has also been demonstrated. Extracellular vesicles (EVs) have vital functions in interactions between neighboring cells, such as angiogenesis. The objective of this in vitro study was to examine the transfection and angiogenesis effects of MM-EVs on endothelial cells (ECs) upon treatment with Tetrahydroisoquinoline (THIQ) as a bioactive organic compound derivative from isoquinoline. Following treatment of multiple myeloma cells (U266) with THIQ, MM-EVs were harvested and transmigrated to human umbilical vein endothelial cells (HUVEC) in a co-culture model. EVs transmigration was traced by flow cytometry. Correspondingly, the expression of angiogenic genes and/or proteins in U266 cells and HUVECs was measured by RT-PCR and ELISA methods. Likewise, the proliferation and migration of HUVECs treated with THIQ-treated MM-EVs were visualized and estimated by performing both tube formation and scratch wound healing methods. Surprisingly, the anti-angiogenic effect of THIQ-treated MM-EVs was evident by the decreased expression of CD34, VEGFR2, and IL-6 at the mRNA and/or protein levels after internalization of MM-EVs in HUVEC. Finally, tube formation and scratch wound healing experiments showed inhibition of HUVEC cell proliferation and migration by THIQ-treated MM-EVs compared to control MM-EVs. MM-EVs derived from THIQ-treated myeloma cells (U266) inhibited angiogenesis in HUVECs. This phenomenon is coordinated by the internalized THIQ-treated MM-EVs in HUVECs, and ultimately the reduction of angiogenic factors and inhibition of tube formation and scratch wound healing.
Collapse
Affiliation(s)
- Ahmad Kooshari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Fahimeh Shahriyary
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran.
| | - Mahshid Vafajoo
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| |
Collapse
|
6
|
Tagami N, Uchiyama M, Suzuki K, Shirai H, Seto T, Nishina S, Iida S. Isatuximab with pomalidomide-dexamethasone in relapsed/refractory multiple myeloma: post-marketing surveillance in Japan. Int J Hematol 2024; 120:217-228. [PMID: 38811413 PMCID: PMC11284182 DOI: 10.1007/s12185-024-03800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
This post-marketing surveillance assessed the safety and effectiveness of isatuximab plus pomalidomide and dexamethasone (Isa-Pd) for relapsed or refractory multiple myeloma (RRMM) during real-world use in Japan. Data from 211 individuals with RRMM treated with Isa-Pd in Japan between October 2020 and October 2021 were collected, with follow-up for up to 12 months after initiation of Isa-Pd or until treatment discontinuation. The incidence of adverse drug reactions (ADRs), ADRs of special interest (infusion reactions, bone marrow suppression, infections, cardiac disorders, other ADRs of Grade ≥ 3), and serious ADRs was assessed. Best overall response and overall response rate (ORR) were determined. In the safety analysis set (n = 120), ADR incidence was 57.5%. Most ADRs were hematologic, and serious ADRs occurred in 28.3%. Bone marrow suppression occurred in 46.7% of participants (19.2% serious), infusion reactions in 18.3% (6.7% serious), infections in 11.7% (8.3% serious), and a serious cardiac disorder in one participant; other Grade ≥ 3 ADRs were reported in 3.3% (1.7% serious). In the effectiveness analysis set (n = 108), the most common best overall response was very good partial response (24.1%), and ORR was 51.9%. These findings support the safety and effectiveness of Isa-Pd for RRMM in real-life settings in Japan.
Collapse
Affiliation(s)
- Nami Tagami
- Oncology Medical in Specialty Care, Sanofi K.K., Tokyo, Japan
| | - Michihiro Uchiyama
- Department of Hematology, Japanese Red Cross Society Suwa Hospital, Suwa, Japan
| | - Kenshi Suzuki
- Myeloma/Amyloidosis Center, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Heigoroh Shirai
- Oncology Medical in Specialty Care, Sanofi K.K., Tokyo, Japan
| | - Takeshi Seto
- Medical Affairs, Post-Authorization Regulatory Studies, Sanofi K.K., Tokyo, Japan
| | - Satoshi Nishina
- Medical Affairs, Post-Authorization Regulatory Studies, Sanofi K.K., Tokyo, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Institute of Medical and Pharmaceutical Sciences, Nagoya City University, Kawasaki 1, Mizuno-cho, Mizuno-ku, Nagoya City, Aichi, 467-8601, Japan.
| |
Collapse
|
7
|
Panahizadeh R, Vatankhah MA, Safari A, Danesh H, Nazmi N, Gholizadeh P, Soozangar N, Jeddi F. The interplay between microRNAs and Nrf2 signaling in human cancers. Cancer Cell Int 2024; 24:234. [PMID: 38970040 PMCID: PMC11225148 DOI: 10.1186/s12935-024-03430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
MicroRNAs (miRNAs), as a class of nonprotein-coding RNAs, post-transcriptionally regulate the expression of target genes by base pairing to 3'-untranslated regions (3'-UTRs). Nuclear factor E2-related factor 2 (Nrf2) has been identified as a critical component of the antioxidant defense mechanism. Dysregulation is associated with chemoresistance and radioresistance in cancerous cells. MiRNA-mediated regulation of the Nrf2 signaling pathway has been shown to have important implications for the development of various cancers. In this article, we review the roles of miRNAs as regulators of the Nrf2 pathway in different human cancers. Ras-associated binding (Rab) proteins have an essential role regulation of vesicle transport, as well as oncogenic functions in preventing chemotherapy efficacy and cancer development. More importantly, increased evidence indicated that the interaction between miRNAs and Rabs has been determined to play critical roles in cancer therapy. However, the significant limitations in using miRNAs for therapeutic applications include cross-targeting and instability of miRNAs. The detailed aspect of the interaction of miRNAs and Rabs is not clearly understood. In the current review, we highlighted the involvement of these molecules as regulators of the Nrf2 pathway in cancer pathogenesis. Potential methods and several obstacles in developing miRNAs as an anticancer therapy are also mentioned.
Collapse
Affiliation(s)
- Reza Panahizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Ali Safari
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hesam Danesh
- Department of Orthopedics, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Nazmi
- School of Medicine, Islamic Azad University, Ardabil, Iran
| | - Pourya Gholizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
8
|
Al-Hawary SIS, Jasim SA, Altalbawy FMA, Hjazi A, Jyothi SR, Kumar A, Eldesoqui M, Rasulova MT, Sinha A, Zwamel AH. Highlighting the role of long non-coding RNA (LncRNA) in multiple myeloma (MM) pathogenesis and response to therapy. Med Oncol 2024; 41:171. [PMID: 38849654 DOI: 10.1007/s12032-024-02392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Transcripts longer than 200 nucleotides that are not translated into proteins are known as long non-coding RNAs, or lncRNAs. Now, they are becoming more significant as important regulators of gene expression, and as a result, of many biological processes in both healthy and pathological circumstances, such as blood malignancies. Through controlling alternative splicing, transcription, and translation at the post-transcriptional level, lncRNAs have an impact on the expression of genes. In multiple myeloma (MM), the majority of lncRNAs is elevated and promotes the proliferation, adhesion, drug resistance and invasion of MM cells by blocking apoptosis and altering the tumor microenvironment (TME). To control mRNA splicing, stability, and translation, they either directly attach to the target mRNA or transfer RNA-binding proteins (RBPs). By expressing certain miRNA-binding sites that function as competitive endogenous RNAs (ceRNAs), most lncRNAs mimic the actions of miRNAs. Here, we highlight lncRNAs role in the MM pathogenesis with emphasize on their capacity to control the molecular mechanisms known as "hallmarks of cancer," which permit earlier tumor initiation and progression and malignant cell transformation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia.
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - M T Rasulova
- Department of Physiology, Dean of the Faculty of Therapeutics, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University Dehradun, Dehradun, Uttarakhand, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
9
|
Hoff FW, Banerjee R, Khan AM, McCaughan G, Wang B, Wang X, Roose J, Anderson LD, Cowan AJ, Rajkumar SV, Kaur G. Once-weekly versus twice-weekly bortezomib in newly diagnosed multiple myeloma: a real-world analysis. Blood Cancer J 2024; 14:52. [PMID: 38519476 PMCID: PMC10959949 DOI: 10.1038/s41408-024-01034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Induction regimens for multiple myeloma (MM) commonly include bortezomib, which has typically been administered twice weekly despite studies demonstrating comparable efficacy and less peripheral neuropathy (PN) with once-weekly bortezomib. We aimed to analyze the real-world prevalence and efficacy of once-weekly versus twice-weekly bortezomib regimens in newly diagnosed MM. We analyzed 2497 US patients aged 18-70 years treated with commercial first-line bortezomib using nationwide Flatiron Health electronic health record-derived data, including 910 (36.4%) patients who received twice-weekly and 1522 (63.2%) who received once-weekly bortezomib. Once-weekly bortezomib use increased over time, from 57.7% in 2017 to 73.1% in 2022. Multivariate analysis identified worsened performance status and more recent year of diagnosis with higher odds of receiving once-weekly bortezomib. Real-world progression-free survival (median 37.2 months with once-weekly versus 39.6 months with twice-weekly, p = 0.906) and overall survival (medians not reached in either cohort, p = 0.800) were comparable. PN rates were higher in patients receiving twice-weekly bortezomib (34.7% versus 18.5%, p < 0.001). In conclusion, once-weekly bortezomib is clearly associated with similar efficacy and fewer toxicities compared to twice-weekly bortezomib. Our findings support once-weekly bortezomib as a standard-of-care regimen for newly diagnosed patients with MM.
Collapse
Affiliation(s)
- Fieke W Hoff
- Myeloma, Waldenstrom's, and Amyloidosis Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rahul Banerjee
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adeel M Khan
- Myeloma, Waldenstrom's, and Amyloidosis Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Georgia McCaughan
- Department of Haematology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Bo Wang
- Willamette Valley Cancer Institute, Eugene, OR, USA
| | | | | | - Larry D Anderson
- Myeloma, Waldenstrom's, and Amyloidosis Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrew J Cowan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Gurbakhash Kaur
- Myeloma, Waldenstrom's, and Amyloidosis Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Steinhart J, Möller P, Kull M, Krönke J, Barth TFE. CDK6 protein expression is associated with disease progression and treatment resistance in multiple myeloma. Hemasphere 2024; 8:e32. [PMID: 38434534 PMCID: PMC10878183 DOI: 10.1002/hem3.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/13/2023] [Indexed: 03/05/2024] Open
Abstract
Multiple myeloma (MM) is a heterogeneous malignancy of plasma cells. Despite improvement in the prognosis of MM patients after the introduction of many new drugs in the past decades, MM remains incurable since most patients become treatment-resistant. Cyclin-dependent kinase 6 (CDK6) is activated in many types of cancer and has been associated with drug resistance in MM. However, its association with disease stage, genetic alterations, and outcome has not been systematically investigated in large cohorts. Here, we analyzed CDK6 expression using immunohistochemistry in 203 formalin-fixed paraffin-embedded samples of 146 patients and four healthy individuals. We found that 61.5% of all MM specimens express CDK6 at various levels. CDK6 expression increased with the progression of disease with a median of 0% of CDK6-positive plasma cells in monoclonal gammopathy of undetermined significance (MGUS) (n = 10) to 30% in newly diagnosed MM (n = 78) and up to 70% in relapsed cases (n = 55). The highest median CDK6 was observed in extramedullary myeloma (n = 12), a highly aggressive manifestation of MM. Longitudinal analyses revealed that CDK6 is significantly increased in lenalidomide-treated patients but not in those who did not receive lenalidomide. Furthermore, we observed that patients who underwent lenalidomide-comprising induction therapy had significantly shorter progression-free survival when their samples were CDK6 positive. These data support that CDK6 protein expression is a marker for aggressive and drug-resistant disease and describes a potential drug target in MM.
Collapse
Affiliation(s)
- Johannes Steinhart
- Department of PathologyUlm University HospitalUlmGermany
- Department of Internal Medicine IIIUlm University HospitalUlmGermany
| | - Peter Möller
- Department of PathologyUlm University HospitalUlmGermany
| | - Miriam Kull
- Department of Internal Medicine IIIUlm University HospitalUlmGermany
| | - Jan Krönke
- Department of Internal Medicine IIIUlm University HospitalUlmGermany
- Department of Hematology, Oncology and Cancer Immunology, Charité ‐ Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK) partner site Berlin and German Cancer Research Center (DKFZ)HeidelbergGermany
| | | |
Collapse
|
11
|
Gu X, Sun C, Xu J, Lin Z, Zhang L, Zheng Y. Optimal timing and drug combination of selinexor in multiple myeloma: a systematic review and meta-analysis. Hematology 2023; 28:2187972. [PMID: 36920065 DOI: 10.1080/16078454.2023.2187972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVES Multiple myeloma (MM) remains an incurable disease despite advances in treatment options. Recently, selinexor has shown promising efficacy for relapsed/refractory multiple myeloma (RRMM), whereas its optimal timing and drug combination remain unclear. In order to assess the various regimens that incorporate selinexor, a systematic review and meta-analysis was conducted. METHODS Clinical trials and real-world studies involving MM patients treated with selinexor were included. Pooled risk ratio (RR) was calculated to compare the rates, along with a 95% confidence interval (CI) and concurrent p-value assessment. A random-effects model was employed to provide a more conservative evaluation. RESULTS A total of 16 studies enrolling 817 patients were reviewed. The usage of selinexor as the fifth-line or prior therapy achieved a higher objective response rate (ORR) (65.9% versus 23.4%, p < 0.01) and longer pooled progression-free survival (PFS) (median: 12.5 months versus 2.9 months, p < 0.01) than those after the fifth-line usage. In addition, early usage also resulted in a consistent trend of pooled overall survival (median: 22.7 months versus 8.9 months, p = 0.26), compared with post-fifth-line usage. Selinexor and dexamethasone (Xd) plus either protease inhibitors (PIs) or immunomodulatory drugs (IMiDs) achieved better ORRs than the Xd-only regimen for RRMM, with ORRs of 56.1%, 52.5% and 24.6%, respectively (p < 0.01). CONCLUSION In conclusion, using selinexor as the fifth-line or prior therapy had a beneficial impact on RRMM. The regimen of Xd plus PIs or IMiDs was recommended.
Collapse
Affiliation(s)
- Xinyuan Gu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Juan Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Chengdu University, Chengdu, People's Republic of China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
12
|
Ng A, Lovat F, Shih AJ, Ma Y, Pekarsky Y, DiCaro F, Crichton L, Sharma E, Yan XJ, Sun D, Song T, Zou YR, Will B, Croce CM, Chiorazzi N. Complete miRNA-15/16 loss in mice promotes hematopoietic progenitor expansion and a myeloid-biased hyperproliferative state. Proc Natl Acad Sci U S A 2023; 120:e2308658120. [PMID: 37844234 PMCID: PMC10614620 DOI: 10.1073/pnas.2308658120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
Dysregulated apoptosis and proliferation are fundamental properties of cancer, and microRNAs (miRNA) are critical regulators of these processes. Loss of miR-15a/16-1 at chromosome 13q14 is the most common genomic aberration in chronic lymphocytic leukemia (CLL). Correspondingly, the deletion of either murine miR-15a/16-1 or miR-15b/16-2 locus in mice is linked to B cell lymphoproliferative malignancies. However, unexpectedly, when both miR-15/16 clusters are eliminated, most double knockout (DKO) mice develop acute myeloid leukemia (AML). Moreover, in patients with CLL, significantly reduced expression of miR-15a, miR-15b, and miR-16 associates with progression of myelodysplastic syndrome to AML, as well as blast crisis in chronic myeloid leukemia. Thus, the miR-15/16 clusters have a biological relevance for myeloid neoplasms. Here, we demonstrate that the myeloproliferative phenotype in DKO mice correlates with an increase of hematopoietic stem and progenitor cells (HSPC) early in life. Using single-cell transcriptomic analyses, we presented the molecular underpinning of increased myeloid output in the HSPC of DKO mice with gene signatures suggestive of dysregulated hematopoiesis, metabolic activities, and cell cycle stages. Functionally, we found that multipotent progenitors (MPP) of DKO mice have increased self-renewing capacities and give rise to significantly more progeny in the granulocytic compartment. Moreover, a unique transcriptomic signature of DKO MPP correlates with poor outcome in patients with AML. Together, these data point to a unique regulatory role for miR-15/16 during the early stages of hematopoiesis and to a potentially useful biomarker for the pathogenesis of myeloid neoplasms.
Collapse
Affiliation(s)
- Anita Ng
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Francesca Lovat
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Andrew J. Shih
- Boas Center for Human Genetics and Genomics, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Yuri Pekarsky
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Frank DiCaro
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Lita Crichton
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Esha Sharma
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Xiao Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Tengfei Song
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Yong-Rui Zou
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
- Departments of Medicine and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
- Departments of Medicine and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| |
Collapse
|
13
|
Midha S, Nadeem O, Selamet U. Updates in Plasma Cell Dyscrasias and Related Monoclonal Immunoglobulin-Mediated Renal Disease. Semin Nephrol 2023; 42:151352. [PMID: 37257390 DOI: 10.1016/j.semnephrol.2023.151352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pathogenic roles of monoclonal immunoglobulins in kidney disease have been attributed previously to malignant plasma cell and lymphoproliferative disorders such as multiple myeloma, lymphoplasmacytic lymphoma, chronic lymphocytic leukemia, or amyloid light chain amyloidosis. Improved technology, advancements in molecular diagnostics, and highly sensitive imaging techniques have established the need to redefine monoclonal gammopathies and the kidney disorders that are associated with monoclonal immunoglobulins regardless of tumor burden. This has led to the establishment of monoclonal gammopathy with renal significance (MGRS). MGRS was defined by the International Kidney and Monoclonal Gammopathy Research Group in 2012 as a clonal proliferative disorder that produces a nephrotoxic monoclonal immunoglobulin and does not meet previously defined hematological criteria for treatment of a specific malignancy. MGRS encompasses a wide array of pathologies with knowledge surrounding its incidence, prognosis, and management continuously increasing. This review examines the current evidence on the diagnosis, prognosis, pathogenesis, and therapy of plasma cell dyscrasias and related MGRS.
Collapse
Affiliation(s)
- Shonali Midha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.
| | - Omar Nadeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Umut Selamet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
14
|
Urdeitx P, Mousavi SJ, Avril S, Doweidar MH. Computational modeling of multiple myeloma interactions with resident bone marrow cells. Comput Biol Med 2023; 153:106458. [PMID: 36599211 DOI: 10.1016/j.compbiomed.2022.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
The interaction of multiple myeloma with bone marrow resident cells plays a key role in tumor progression and the development of drug resistance. The tumor cell response involves contact-mediated and paracrine interactions. The heterogeneity of myeloma cells and bone marrow cells makes it difficult to reproduce this environment in in-vitro experiments. The use of in-silico established tools can help to understand these complex problems. In this article, we present a computational model based on the finite element method to define the interactions of multiple myeloma cells with resident bone marrow cells. This model includes cell migration, which is controlled by stress-strain equilibrium, and cell processes such as proliferation, differentiation, and apoptosis. A series of computational experiments were performed to validate the proposed model. Cell proliferation by the growth factor IGF-1 is studied for different concentrations ranging from 0-10 ng/mL. Cell motility is studied for different concentrations of VEGF and fibronectin in the range of 0-100 ng/mL. Finally, cells were simulated under a combination of IGF-1 and VEGF stimuli whose concentrations are considered to be dependent on the cancer-associated fibroblasts in the extracellular matrix. Results show a good agreement with previous in-vitro results. Multiple myeloma growth and migration are shown to correlate linearly to the IGF-1 stimuli. These stimuli are coupled with the mechanical environment, which also improves cell growth. Moreover, cell migration depends on the fiber and VEGF concentration in the extracellular matrix. Finally, our computational model shows myeloma cells trigger mesenchymal stem cells to differentiate into cancer-associated fibroblasts, in a dose-dependent manner.
Collapse
Affiliation(s)
- Pau Urdeitx
- School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, 50018, Spain; Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, 50018, Spain
| | - S Jamaleddin Mousavi
- Mines Saint-Étienne, University of Lyon, University of Jean Monnet, INSERM, Saint-Etienne, 42023, France
| | - Stephane Avril
- Mines Saint-Étienne, University of Lyon, University of Jean Monnet, INSERM, Saint-Etienne, 42023, France; Institute for Mechanics of Materials and Structures, TU Wien-Vienna University of Technology, Vienna, 1040, Austria
| | - Mohamed H Doweidar
- School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, 50018, Spain; Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, 50018, Spain.
| |
Collapse
|
15
|
Cariello M, Squilla A, Piacente M, Venutolo G, Fasano A. Drug Resistance: The Role of Exosomal miRNA in the Microenvironment of Hematopoietic Tumors. Molecules 2022; 28:molecules28010116. [PMID: 36615316 PMCID: PMC9821808 DOI: 10.3390/molecules28010116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, have an important role thanks to their ability to communicate and exchange information between tumor cells and the tumor microenvironment (TME), and have also been associated with communicating anti-cancer drug resistance (DR). The increase in proliferation of cancer cells alters oxygen levels, which causes hypoxia and results in a release of exosomes by the cancer cells. In this review, the results of studies examining the role of exosomal miRNA in DR, and their mechanism, are discussed in detail in hematological tumors: leukemia, lymphoma, and multiple myeloma. In conclusion, we underline the exosome's function as a possible drug delivery vehicle by understanding its cargo. Engineered exosomes can be used to be more specific for personalized therapy.
Collapse
Affiliation(s)
- Mariaconcetta Cariello
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 84125 Salerno, Italy
| | - Angela Squilla
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 84125 Salerno, Italy
| | - Martina Piacente
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 84125 Salerno, Italy
| | - Giorgia Venutolo
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 84125 Salerno, Italy
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 84125 Salerno, Italy
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA 02114, USA
- Correspondence: ; Tel.: +1-617-724-4604
| |
Collapse
|
16
|
Ding K, Jiang W, Jia H, Lei M. Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib. Biomolecules 2022; 12:1647. [PMID: 36358997 PMCID: PMC9687375 DOI: 10.3390/biom12111647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/02/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell tumor originating from a post-mitotic lymphoid B-cell lineage. Bortezomib(BTZ), a first-generation protease inhibitor, has increased overall survival, progression-free survival, and remission rates in patients with MM since its clinical approval in 2003. However, the use of BTZ is challenged by the malignant features of MM and drug resistance. Polyphenols, classified into flavonoid and non-flavonoid polyphenols, have potential health-promoting activities, including anti-cancer. Previous preclinical studies have demonstrated the anti-MM potential of some dietary polyphenols. Therefore, these dietary polyphenols have the potential to be alternative therapies in anti-MM treatment regimens. This systematic review examines the synergistic effects of flavonoids and non-flavonoid polyphenols on the anti-MM impacts of BTZ. Preclinical studies on flavonoids and non-flavonoid polyphenols-BTZ synergism in MM were collected from PubMed, Web of Science, and Embase published between 2008 and 2020. 19 valid preclinical studies (Published from 2008 to 2020) were included in this systematic review. These studies demonstrated that eight flavonoids (icariin, icariside II, (-)-epigallocatechin-3-gallate, scutellarein, wogonin, morin, formononetin, daidzin), one plant extract rich in flavonoids (Punica granatum juice) and four non-flavonoid polyphenols (silibinin, resveratrol, curcumin, caffeic acid) synergistically enhanced the anti-MM effect of BTZ. These synergistic effects are mediated through the regulation of cellular signaling pathways associated with proliferation, apoptosis, and drug resistance. Given the above, flavonoids and non-flavonoid polyphenols can benefit MM patients by overcoming the challenges faced in BTZ treatment. Despite the positive nature of this preclinical evidence, some additional investigations are still needed before proceeding with clinical studies. For this purpose, we conclude by providing some suggestions for future research directions.
Collapse
|
17
|
Kim K, Kim JS, Yoon SS, Yoon DH, Eom HS, Lee JJ, Yim HW, Park M, Lee H, Min CK. Characteristics and clinical outcome of high-risk multiple myeloma patients in Korea (KMM 1805). Int J Hematol 2022; 116:110-121. [PMID: 35543899 DOI: 10.1007/s12185-022-03332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Optimal treatments for multiple myeloma (MM) patients with high-risk cytogenetics must be determined, but subgroup features are not well-defined. We used real-world data from the Korean Myeloma Registry (KMR) to analyze the characteristics and clinical outcomes of newly diagnosed MM patients with ≥ 1 high-risk cytogenetic abnormality: Group 1: t(4;14) or t(14;16); Group 2: del(17p); Group 3: t(4;14)/del(17p) or t(14;16)/del(17p). Overall, 347 high-risk patients were identified (males, 48.7%; median age, 63 years). Median progression-free survival (PFS) and overall survival (OS) were 19.0 months (95% CI 17.0-20.0) and 50.0 months (95% CI 37.0-61.0), respectively. PFS (p = 0.047) and OS (p = 0.020) differed significantly between groups. After stratification by transplant eligibility, PFS and OS were significantly poorer in Group 3 among transplant-eligible patients, and even poorer in those with gain(1q). Patients stratified by cytogenetic abnormality and revised International Staging System (R-ISS) had significantly different PFS (p < 0.001) and OS (p = 0.003), with the worst survival in R-ISS III/Group 3 (median OS 21.0 months). Higher number of high-risk cytogenetic abnormalities was a negative prognostic marker for PFS and OS (p < 0.001). Real-world KMR data showed that risk factors for poor prognosis of MM patients included del(17p), R-ISS stage, and number of cytogenetic abnormalities.
Collapse
Affiliation(s)
- Kihyun Kim
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Jin Seok Kim
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Soo Yoon
- Division of Hematology-Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyeon-Seok Eom
- Department of Hematology-Oncology, Center for Hematologic Malignancy, National Cancer Center, Goyang-si, Gyunggi-do, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanm-do, Korea
| | - Hyeon Woo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Clinical Research Coordinating Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Misun Park
- Clinical Research Coordinating Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Chang-Ki Min
- Department of Hematology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.
| | | |
Collapse
|
18
|
Ndacayisaba LJ, Rappard KE, Shishido SN, Ruiz Velasco C, Matsumoto N, Navarez R, Tang G, Lin P, Setayesh SM, Naghdloo A, Hsu CJ, Maney C, Symer D, Bethel K, Kelly K, Merchant A, Orlowski R, Hicks J, Mason J, Manasanch EE, Kuhn P. Enrichment-Free Single-Cell Detection and Morphogenomic Profiling of Myeloma Patient Samples to Delineate Circulating Rare Plasma Cell Clones. Curr Oncol 2022; 29:2954-2972. [PMID: 35621632 PMCID: PMC9139906 DOI: 10.3390/curroncol29050242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple myeloma is an incurable malignancy that initiates from a bone marrow resident clonal plasma cell and acquires successive mutational changes and genomic alterations, eventually resulting in tumor burden accumulation and end-organ damage. It has been recently recognized that myeloma secondary genomic events result in extensive sub-clonal heterogeneity both in localized bone marrow areas and circulating peripheral blood plasma cells. Rare genomic subclones, including myeloma initiating cells, could be the drivers of disease progression and recurrence. Additionally, evaluation of rare myeloma cells in blood for disease monitoring has numerous advantages over invasive bone marrow biopsies. To this end, an unbiased method for detecting rare cells and delineating their genomic makeup enables disease detection and monitoring in conditions with low abundant cancer cells. In this study, we applied an enrichment-free four-plex (CD138, CD56, CD45, DAPI) immunofluorescence assay and single-cell DNA sequencing for morphogenomic characterization of plasma cells to detect and delineate common and rare plasma cells and discriminate between normal and malignant plasma cells in paired blood and bone marrow aspirates from five patients with newly diagnosed myeloma (N = 4) and monoclonal gammopathy of undetermined significance (n = 1). Morphological analysis confirms CD138+CD56+ cells in the peripheral blood carry genomic alterations that are clonally identical to those in the bone marrow. A subset of altered CD138+CD56- cells are also found in the peripheral blood consistent with the known variability in CD56 expression as a marker of plasma cell malignancy. Bone marrow tumor clinical cytogenetics is highly correlated with the single-cell copy number alterations of the liquid biopsy rare cells. A subset of rare cells harbors genetic alterations not detected by standard clinical diagnostic methods of random localized bone marrow biopsies. This enrichment-free morphogenomic approach detects and characterizes rare cell populations derived from the liquid biopsies that are consistent with clinical diagnosis and have the potential to extend our understanding of subclonality at the single-cell level in this disease. Assay validation in larger patient cohorts has the potential to offer liquid biopsy for disease monitoring with similar or improved disease detection as traditional blind bone marrow biopsies.
Collapse
Affiliation(s)
- Libere J. Ndacayisaba
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Kate E. Rappard
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Carmen Ruiz Velasco
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Nicholas Matsumoto
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Rafael Navarez
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Guilin Tang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.T.); (P.L.)
| | - Pei Lin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.T.); (P.L.)
| | - Sonia M. Setayesh
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Ching-Ju Hsu
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Carlisle Maney
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - David Symer
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (R.O.); (E.E.M.)
| | - Kelly Bethel
- Department of Pathology, Scripps Clinic Medical Group, La Jolla, CA 92037, USA;
| | - Kevin Kelly
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Akil Merchant
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Robert Orlowski
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (R.O.); (E.E.M.)
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Department of Pathology, Scripps Clinic Medical Group, La Jolla, CA 92037, USA;
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Elisabeth E. Manasanch
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (R.O.); (E.E.M.)
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: ; Tel.: +1-213-821-3980
| |
Collapse
|
19
|
Sun J, Park C, Guenthner N, Gurley S, Zhang L, Lubben B, Adebayo O, Bash H, Chen Y, Maksimos M, Muz B, Azab AK. Tumor-associated macrophages in multiple myeloma: advances in biology and therapy. J Immunother Cancer 2022; 10:e003975. [PMID: 35428704 PMCID: PMC9014078 DOI: 10.1136/jitc-2021-003975] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a cancer of plasma cells in the bone marrow (BM) and represents the second most common hematological malignancy in the world. The MM tumor microenvironment (TME) within the BM niche consists of a wide range of elements which play important roles in supporting MM disease progression, survival, proliferation, angiogenesis, as well as drug resistance. Together, the TME fosters an immunosuppressive environment in which immune recognition and response are repressed. Macrophages are a central player in the immune system with diverse functions, and it has been long established that macrophages play a critical role in both inducing direct and indirect immune responses in cancer. Tumor-associated macrophages (TAMs) are a major population of cells in the tumor site. Rather than contributing to the immune response against tumor cells, TAMs in many cancers are found to exhibit protumor properties including supporting chemoresistance, tumor proliferation and survival, angiogenesis, immunosuppression, and metastasis. Targeting TAM represents a novel strategy for cancer immunotherapy, which has potential to indirectly stimulate cytotoxic T cell activation and recruitment, and synergize with checkpoint inhibitors and chemotherapies. In this review, we will provide an updated and comprehensive overview into the current knowledge on the roles of TAMs in MM, as well as the therapeutic targets that are being explored as macrophage-targeted immunotherapy, which may hold key to future therapeutics against MM.
Collapse
Affiliation(s)
- Jennifer Sun
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri, USA
| | - Chaelee Park
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nicole Guenthner
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Shannon Gurley
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Luna Zhang
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri, USA
| | - Berit Lubben
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Ola Adebayo
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Hannah Bash
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yixuan Chen
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Mina Maksimos
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Barbara Muz
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri, USA
| |
Collapse
|
20
|
A review on the treatment of multiple myeloma with small molecular agents in the past five years. Eur J Med Chem 2022; 229:114053. [PMID: 34974338 DOI: 10.1016/j.ejmech.2021.114053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is currently incurable, and the incidence rate is increasing year by year worldwide. Although in recent years the combined treatment plan based on proteasome inhibitors and immunomodulatory drugs has greatly improved the treatment effect of multiple myeloma, most patients still relapse and become resistant to current treatments. To solve this problem, scientists are committed to developing drugs with higher specificity, such as iberdomide, which is highly specific to ikaros and aiolos. This review aims to focus on the small molecular agents that are being researched/clinically used for the treatment of multiple myeloma, including the target mechanism, structure-activity relationship and application prospects of small molecular agents.
Collapse
|
21
|
Cheah S, Bassett JK, Bruinsma FJ, Cozen W, Hopper JL, Jayasekara H, Joshua D, MacInnis RJ, Prince HM, Vajdic CM, van Leeuwen MT, Doo NW, Harrison SJ, English DR, Giles GG, Milne RL. Alcohol and tobacco use and risk of multiple myeloma: A case-control study. EJHAEM 2022; 3:109-120. [PMID: 35846225 PMCID: PMC9175849 DOI: 10.1002/jha2.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/08/2022]
Abstract
Multiple myeloma (MM) is the second most common hematological cancer and causes significant mortality and morbidity. Knowledge regarding modifiable risk factors for MM remains limited. This analysis of an Australian population-based case-control family study investigates whether smoking or alcohol consumption is associated with risk of MM and related diseases. Incident cases (n = 789) of MM were recruited via cancer registries in Victoria and New South Wales. Controls (n = 1,113) were either family members of cases (n = 696) or controls recruited for a similarly designed study of renal cancers (n = 417). Adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated using unconditional multivariable logistic regression. Heavy intake (>20 g ethanol/day) of alcohol had a lower risk of MM compared with nondrinkers (OR = 0.68, 95% CI: 0.50-0.93), and there was an inverse dose-response relationship for average daily alcohol intake (OR per 10 g ethanol per day = 0.92, 95% CI: 0.86-0.99); there was no evidence of an interaction with sex. There was no evidence of an association with MM risk for smoking-related exposures (p > 0.18). The associations between smoking and alcohol with MM are similar to those with non-Hodgkin lymphoma. Further research into potential underlying mechanisms is warranted.
Collapse
Affiliation(s)
- Simon Cheah
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Julie K. Bassett
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneAustralia
| | - Fiona J. Bruinsma
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Wendy Cozen
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - John L. Hopper
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Harindra Jayasekara
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Douglas Joshua
- Royal Prince Alfred HospitalSydney Medical SchoolUniversity of SydneySydneyAustralia
| | - Robert J. MacInnis
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - H. Miles Prince
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneAustralia
- Epworth HealthcareMelbourneAustralia
| | - Claire M. Vajdic
- Centre for Big Data Research in HealthThe University of New South WalesSydneyAustralia
| | - Marina T. van Leeuwen
- Centre for Big Data Research in HealthThe University of New South WalesSydneyAustralia
| | | | - Simon J. Harrison
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneAustralia
- Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalParkvilleAustralia
| | - Dallas R. English
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Graham G. Giles
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
- School of Clinical Sciences at Monash HealthPrecision MedicineMonash UniversityClaytonMelbourneAustralia
| | - Roger L. Milne
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
- School of Clinical Sciences at Monash HealthPrecision MedicineMonash UniversityClaytonMelbourneAustralia
| |
Collapse
|
22
|
Yuan K, Kuang W, Chen W, Ji M, Min W, Zhu Y, Hou Y, Wang X, Li J, Wang L, Yang P. Discovery of novel and orally bioavailable CDK 4/6 inhibitors with high kinome selectivity, low toxicity and long-acting stability for the treatment of multiple myeloma. Eur J Med Chem 2022; 228:114024. [PMID: 34875521 DOI: 10.1016/j.ejmech.2021.114024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/03/2022]
Abstract
Multiple myeloma (MM) ranks second in malignant hematopoietic cancers, and the most common anti-MM drugs easily generate resistance. CDK4/6 have been validated to play determinant roles in MM, but no remarkable progress has been obtained from clinical trials of CDK4/6 inhibitors for MM. To discover novel CDK6 inhibitors with better potency and high druggability, structure-based virtual screening was conducted to identify compound 10. Further chemical optimization afforded a better derivative, compound 32, which exhibited strong inhibition of CDK4/6 and showed high selectivity over 360+ kinases, including homologous CDKs. The in vivo evaluation demonstrated that compound 32 possessed low toxicity (LD50 > 10,000 mg/kg), favorable bioavailability (F% = 51%), high metabolic stability (t1/2 > 24 h) and strong anti-MM potency. In summary, we discovered a novel CDK4/6 inhibitor bearing favorable drug-like properties and offered a great candidate for MM preclinical studies.
Collapse
Affiliation(s)
- Kai Yuan
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yasheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Jirabanditsakul C, Dakeng S, Kunacheewa C, U-Pratya Y, Owattanapanich W. Comparison of Clinical Characteristics and Genetic Aberrations of Plasma Cell Disorders in Thailand Population. Technol Cancer Res Treat 2022; 21:15330338221111228. [PMID: 35770320 PMCID: PMC9252016 DOI: 10.1177/15330338221111228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma is an incurable malignancy of plasma cells resulting from impaired terminal B cell development. Almost all patients with multiple myeloma eventually have a relapse. Many studies have demonstrated the importance of the various genomic mutations that characterize multiple myeloma as a complex heterogeneous disease. In recent years, next-generation sequencing has been used to identify the genomic mutation landscape and clonal heterogeneity of multiple myeloma. This is the first study, a prospective observational study, to identify somatic mutations in plasma cell disorders in the Thai population using targeted next-generation sequencing. Twenty-seven patients with plasma cell disorders were enrolled comprising 17 cases of newly diagnosed multiple myeloma, 5 cases of relapsed/refractory multiple myeloma, and 5 cases of other plasma cell disorders. The pathogenic mutations were found in 17 of 27 patients. Seventy percent of those who had a mutation (12/17 patients) habored a single mutation, whereas the others had more than one mutation. Fifteen pathogenic mutation genes were identified: ATM, BRAF, CYLD, DIS3, DNMT3A, FBXW7, FLT3, GNA13, IRF4, KMT2A, NRAS, SAMHD1, TENT5C, TP53, and TRAF3. Most have previously been reported to be involved in the RAS/MAPK pathway, the nuclear factor kappa B pathway, the DNA-repair pathway, the CRBN pathway, tumor suppressor gene mutation, or an epigenetic mutation. However, the current study also identified mutations that had not been reported to be related to myeloma: GNA13 and FBXW7. Therefore, a deep understanding of molecular genomics would inevitably improve the clinical management of plasma cell disorder patients, and the increased knowledge would ultimately result in better outcomes for the patients.
Collapse
Affiliation(s)
- Chutirat Jirabanditsakul
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sumana Dakeng
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chutima Kunacheewa
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yaowalak U-Pratya
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weerapat Owattanapanich
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Xue L, Jia T, Zhu Y, Zhao L, Mao J. Down-regulation of circ_0058058 suppresses proliferation, angiogenesis and metastasis in multiple myeloma through miR-338-3p/ATG14 pathway. J Orthop Surg Res 2021; 16:723. [PMID: 34930344 PMCID: PMC8686392 DOI: 10.1186/s13018-021-02867-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Multiple myeloma (MM) is one of the most frequently diagnosed hematological malignancy. Dysregulation of circular RNAs (circRNAs) has important impacts on MM process. Herein, this work aimed to investigate the role and mechanism of circ_0058058 in MM progression. Methods Levels of genes and proteins were detected by real-time reverse transcription PCR (RT-qPCR) and Western blot. CCK-8 assay, colony formation assay, EdU assay, flow cytometry, tube formation assay, transwell assay and Western blot were utilized to detect the proliferation, apoptosis, angiogenesis and metastasis of MM cells. The target relationship between miR-338-3p and circ_0058058 or ATG14 (autophagy related 14) was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. In vivo experiments were performed using Xenograft assay. Results Circ_0058058 was up-regulated in MM bone marrow aspirates and cells, knockdown of circ_0058058 reduced MM cell proliferation, angiogenesis and metastasis, but induced apoptosis in vitro. In a MM xenograft mouse model, circ_0058058 silencing reduced MM tumor growth and cell proliferation. Mechanistically, circ_0058058 acted as a sponge for miR-338-3p to up-regulate ATG14 expression, which was validated to be a target of miR-338-3p. Rescue assay showed that miR-338-3p inhibition reversed the antitumor effects of circ_0058058 knockdown on MM cell. Moreover, forced expression of miR-338-3p suppressed MM cell malignant phenotype, which was abolished by ATG14 up-regulation. Conclusion Circ_0058058 functions as a sponge for miR-338-3p to elevate ATG14 expression to promote MM cell proliferation, metastasis and angiogenesis, affording a potential therapeutic target for MM prevention.
Collapse
Affiliation(s)
- Lianguo Xue
- Department of Hematology, The First People's Hospital of Lianyungang, No. 182 Tongguan North Road, Haizhou District, Lianyungang City, 222002, Jiangsu Province, China
| | - Tao Jia
- Department of Hematology, The First People's Hospital of Lianyungang, No. 182 Tongguan North Road, Haizhou District, Lianyungang City, 222002, Jiangsu Province, China
| | - Yuanxin Zhu
- Department of Hematology, The First People's Hospital of Lianyungang, No. 182 Tongguan North Road, Haizhou District, Lianyungang City, 222002, Jiangsu Province, China
| | - Lidong Zhao
- Department of Hematology, The First People's Hospital of Lianyungang, No. 182 Tongguan North Road, Haizhou District, Lianyungang City, 222002, Jiangsu Province, China
| | - Jianping Mao
- Department of Hematology, The First People's Hospital of Lianyungang, No. 182 Tongguan North Road, Haizhou District, Lianyungang City, 222002, Jiangsu Province, China.
| |
Collapse
|
25
|
Zhang C, Xu X, Trotter TN, Gowda PS, Lu Y, Suto MJ, Javed A, Murphy-Ullrich JE, Li J, Yang Y. Runx2 deficiency in osteoblasts promotes myeloma resistance to bortezomib by increasing TSP-1-dependent TGF-β1 activation and suppressing immunity in bone marrow. Mol Cancer Ther 2021; 21:347-358. [PMID: 34907087 DOI: 10.1158/1535-7163.mct-21-0310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/25/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that thrives in the bone marrow (BM). The proteasome inhibitor bortezomib (BTZ) is one of the most effective front-line chemotherapeutic drugs for MM; however, 15-20% of high-risk patients do not respond to or become resistant to this drug and the mechanisms of chemoresistance remain unclear. We previously demonstrated that MM cells inhibit Runt-related transcription factor 2 (Runx2) in pre- and immature osteoblasts (OBs), and that this OB-Runx2 deficiency induces a cytokine-rich and immunosuppressive microenvironment in the BM. In the current study, we assessed the impact of OB-Runx2 deficiency on the outcome of BTZ treatment using OB-Runx2+/+ and OB-Runx2-/- mouse models of MM. In vitro and in vivo experiments revealed that OB-Runx2 deficiency induces MM cell resistance to BTZ via the upregulation of immunosuppressive myeloid-derived suppressor cells (MDSCs), downregulation of cytotoxic T cells, and activation of TGF-β1 in the BM. In MM tumor-bearing OB-Runx2-/- mice, treatment with SRI31277, an antagonist of thrombospondin-1 (TSP-1)-mediated TGF-β1 activation, reversed the BM immunosuppression and significantly reduced tumor burden. Furthermore, treatment with SRI31277 combined with BTZ alleviated MM cell resistance to BTZ-induced apoptosis caused by OB-Runx2 deficiency in co-cultured cells and produced a synergistic effect on tumor burden in OB-Runx2-/- mice. Depletion of MDSCs by 5-fluorouracil or gemcitabine similarly reversed the immunosuppressive effects and BTZ resistance induced by OB-Runx2 deficiency in tumor-bearing mice, indicating the importance of the immune environment for drug resistance and suggesting new strategies to overcome BTZ resistance in the treatment of MM.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Hematology, First Affiliated Hospital of Sun Yat-sen University
| | - Xiaoxuan Xu
- Department of Hematology, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology
| | | | | | - Yun Lu
- Radiology, University of Alabama at Birmingham
| | | | - Amjad Javed
- 3Comprehensive Cancer Center and the Center for Metabolic Bone Disease, University of Alabama at Birmingham
| | - Joanne E Murphy-Ullrich
- Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, University of Alabama at Birmingham
| | - Juan Li
- First Affiliated Hospital of Sun Yat-sen University
| | - Yang Yang
- Pathology, University of Alabama at Birmingham
| |
Collapse
|
26
|
Biomimetic 3D Environment Based on Microgels as a Model for the Generation of Drug Resistance in Multiple Myeloma. MATERIALS 2021; 14:ma14237121. [PMID: 34885273 PMCID: PMC8658353 DOI: 10.3390/ma14237121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
The development of three-dimensional environments to mimic the in vivo cellular response is a problem in the building of disease models. This study aimed to synthesize and validate three-dimensional support for culturing monoclonal plasma cells (mPCs) as a disease model for multiple myeloma. The three-dimensional environment is a biomimetic microgel formed by alginate microspheres and produced on a microfluidic device whose surface has been functionalized by a layer-by-layer process with components of the bone marrow’s extracellular matrix, which will interact with mPC. As a proof of concept, RPMI 8226 cell line cells were cultured in our 3D culture platform. We proved that hyaluronic acid significantly increased cell proliferation and corroborated its role in inducing resistance to dexamethasone. Despite collagen type I having no effect on proliferation, it generated significant resistance to dexamethasone. Additionally, it was evidenced that both biomolecules were unable to induce resistance to bortezomib. These results validate the functionalized microgels as a 3D culture system that emulates the interaction between tumoral cells and the bone marrow extracellular matrix. This 3D environment could be a valuable culture system to test antitumoral drugs efficiency in multiple myeloma.
Collapse
|
27
|
Vogelsberg A, Schürch CM, Fend F. [Multiple myeloma from the pathologist's perspective]. Radiologe 2021; 62:12-19. [PMID: 34661686 DOI: 10.1007/s00117-021-00926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is one of the most common hematological neoplasms and accounts for approximately 1% of human cancers. OBJECTIVES Description of current diagnostics and classification of MM and related plasma cell neoplasms from the pathology viewpoint. MATERIALS AND METHODS Current knowledge regarding pathology and genetics of MM is summarized and tissue-based diagnostics following international consensus classifications and the current S3 guideline are described. RESULTS MM and related neoplasms are composed of malignant plasma cells that secrete a monoclonal immunoglobulin, which is an important parameter of disease activity. MM shows a multistage development. Almost all cases are preceded by a clinically inapparent precursor lesion, monoclonal gammopathy of undetermined significance (MGUS), which can progress to smoldering myeloma with a higher tumor burden, but absence of organ damage. Systemic MM needs to be discerned from the localized forms, solitary osseous and primary extramedullary plasmacytoma. MM is genetically very heterogeneous and can be broadly subdivided into two cytogenetic groups, cases with primary IGH translocations and cases with hyperdiploidy. Intratumoral genetic heterogeneity is frequently pronounced and correlates with the size of focal lesions in imaging. CONCLUSIONS Diagnosis of plasma cell neoplasms is done according to the criteria of the International Myeloma Working Group (IWMG) and requires interdisciplinary evaluation of clinical, serological, pathological and radiological features. In addition to clinical parameters, molecular markers, especially cytogenetic aberrations, are of great prognostic relevance.
Collapse
Affiliation(s)
- Antonio Vogelsberg
- Institut für Pathologie und Neuropathologie und Comprehensive Cancer Center Tübingen-Stuttgart, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Christian M Schürch
- Institut für Pathologie und Neuropathologie und Comprehensive Cancer Center Tübingen-Stuttgart, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Falko Fend
- Institut für Pathologie und Neuropathologie und Comprehensive Cancer Center Tübingen-Stuttgart, Universitätsklinikum Tübingen, Tübingen, Deutschland. .,Institut für Pathologie und Neuropathologie und Referenzzentrum für Hämatopathologie, Universitätsklinikum Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Deutschland.
| |
Collapse
|
28
|
Pathogenesis and treatment of multiple myeloma bone disease. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:164-173. [PMID: 34611468 PMCID: PMC8477206 DOI: 10.1016/j.jdsr.2021.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023] Open
Abstract
Multiple myeloma (Plasma cell myeloma), a malignancy of the plasma cells, exhibits tumor expansion preferentially in the bone marrow and the development of bone-destructive lesions. Multiple myeloma is still an incurable disease with changes in the bone marrow microenvironment in favor of the survival and proliferation of multiple myeloma cells and bone destruction. In this review, we described the recent findings on the regulators involved in the development of myeloma bone diseases, and succinctly summarize currently available therapeutic options and the development of novel bone modifying agents for myeloma treatment.
Collapse
|
29
|
Khalife J, Sanchez JF, Pichiorri F. The Emerging Role of Extracellular Vesicle-Associated RNAs in the Multiple Myeloma Microenvironment. Front Oncol 2021; 11:689538. [PMID: 34235082 PMCID: PMC8255802 DOI: 10.3389/fonc.2021.689538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a cancer of terminally differentiated plasma cells (PCs) that develop at multiple sites within the bone marrow (BM). MM is treatable but rarely curable because of the frequent emergence of drug resistance and relapse. Increasing evidence indicates that the BM microenvironment plays a major role in supporting MM-PC survival and resistance to therapy. The BM microenvironment is a complex milieu containing hematopoietic cells, stromal cells, endothelial cells, immune cells, osteoclasts and osteoblasts, all contributing to the pathobiology of MM, including PC proliferation, escape from immune surveillance, angiogenesis and bone disease development. Small extracellular vesicles (EVs) are heterogenous lipid structures released by all cell types and mediate local and distal cellular communication. In MM, EVs are key mediators of the cross-talk between PCs and the surrounding microenvironment because of their ability to deliver bioactive cargo molecules such as lipids, mRNAs, non-coding regulatory RNA and proteins. Hence, MM-EVs highly contribute to establish a tumor-supportive BM niche that impacts MM pathogenesis and disease progression. In this review, we will first highlight the effects of RNA-containing, MM-derived EVs on the several cellular compartments within the BM microenvironment that play a role in the different aspects of MM pathology. We will also touch on the prospective use of MM-EV-associated non-coding RNAs as clinical biomarkers in the context of “liquid biopsy” in light of their importance as a promising tool in MM diagnosis, prognosis and prediction of drug resistance.
Collapse
Affiliation(s)
- Jihane Khalife
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, United States.,Department of Hematologic Malignancies Translational Science, City of Hope, Duarte, CA, United States
| | - James F Sanchez
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, United States
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, United States.,Department of Hematologic Malignancies Translational Science, City of Hope, Duarte, CA, United States
| |
Collapse
|
30
|
Tierney C, Bazou D, Majumder MM, Anttila P, Silvennoinen R, Heckman CA, Dowling P, O'Gorman P. Next generation proteomics with drug sensitivity screening identifies sub-clones informing therapeutic and drug development strategies for multiple myeloma patients. Sci Rep 2021; 11:12866. [PMID: 34145309 PMCID: PMC8213739 DOI: 10.1038/s41598-021-90149-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
With the introduction of novel therapeutic agents, survival in Multiple Myeloma (MM) has increased in recent years. However, drug-resistant clones inevitably arise and lead to disease progression and death. The current International Myeloma Working Group response criteria are broad and make it difficult to clearly designate resistant and responsive patients thereby hampering proteo-genomic analysis for informative biomarkers for sensitivity. In this proof-of-concept study we addressed these challenges by combining an ex-vivo drug sensitivity testing platform with state-of-the-art proteomics analysis. 35 CD138-purified MM samples were taken from patients with newly diagnosed or relapsed MM and exposed to therapeutic agents from five therapeutic drug classes including Bortezomib, Quizinostat, Lenalidomide, Navitoclax and PF-04691502. Comparative proteomic analysis using liquid chromatography-mass spectrometry objectively determined the most and least sensitive patient groups. Using this approach several proteins of biological significance were identified in each drug class. In three of the five classes focal adhesion-related proteins predicted low sensitivity, suggesting that targeting this pathway could modulate cell adhesion mediated drug resistance. Using Receiver Operating Characteristic curve analysis, strong predictive power for the specificity and sensitivity of these potential biomarkers was identified. This approach has the potential to yield predictive theranostic protein panels that can inform therapeutic decision making.
Collapse
Affiliation(s)
- Ciara Tierney
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Despina Bazou
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Muntasir M Majumder
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pekka Anttila
- Department of Hematology, Helsinki University Hospital and Comprehensive Cancer Center, Helsinki, Finland
| | - Raija Silvennoinen
- Department of Hematology, Helsinki University Hospital and Comprehensive Cancer Center, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Paul Dowling
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Peter O'Gorman
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland.
| |
Collapse
|
31
|
Realization of Osteolysis, Angiogenesis, Immunosuppression, and Drug Resistance by Extracellular Vesicles: Roles of RNAs and Proteins in Their Cargoes and of Ectonucleotidases of the Immunosuppressive Adenosinergic Noncanonical Pathway in the Bone Marrow Niche of Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13122969. [PMID: 34199285 PMCID: PMC8231946 DOI: 10.3390/cancers13122969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a disease that extensively involves bone, and angiogenesis and immunosuppression are important processes in the development of MM. Proteasome inhibitors and immunomodulatory drugs remarkably improve the survival of MM patients. However, MM is still an incurable disease that rapidly becomes resistant to these drugs. There is robust evidence that extracellular vesicles (EVs) contribute to cancer metastasis. Osteoclasts, in addition to immunosuppressive cells in the bone marrow (BM), are key players in osteolysis and immunosuppression. BM stromal cells and MM cells secrete EVs through which they communicate with each other: EVs, in fact, contain proteins, small RNAs, and long non-coding RNAs that mediate this communication and contribute to angiogenesis, osteolysis, and cancer dissemination and drug resistance. Ectoenzymes are expressed in myeloma cells, osteoclasts, and stromal cells and produce immunosuppressive adenosine. Recently, an antibody targeting CD38, an ectoenzyme, has been shown to improve the survival of patients with MM. Thus, understanding the properties of EV and ectoenzymes will help elucidate key processes of MM development. Abstract Angiogenesis and immunosuppression promote multiple myeloma (MM) development, and osteolysis is a primary feature of MM. Although immunomodulatory drugs and proteasome inhibitors (PIs) markedly improve the survival of patients with MM, this disease remains incurable. In the bone marrow niche, a chain of ectoenzymes, including CD38, produce immunosuppressive adenosine, inhibiting T cell proliferation as well as immunosuppressive cells. Therefore, anti-CD38 antibodies targeting myeloma cells have the potential to restore T cell responses to myeloma cells. Meanwhile extracellular vesicles (EVs) containing microRNAs, proteins such as cytokines and chemokines, long noncoding RNAs, and PIWI-interacting RNAs have been shown to act as communication tools in myeloma cell/microenvironment interactions. Via EVs, mesenchymal stem cells allow myeloma cell dissemination and confer PI resistance, whereas myeloma cells promote angiogenesis, myeloid-derived suppressor cell proliferation, and osteoclast differentiation and inhibit osteoblast differentiation. In this review, to understand key processes of MM development involving communication between myeloma cells and other cells in the tumor microenvironment, EV cargo and the non-canonical adenosinergic pathway are introduced, and ectoenzymes and EVs are discussed as potential druggable targets for the treatment of MM patients.
Collapse
|
32
|
Rögnvaldsson S, Love TJ, Thorsteinsdottir S, Reed ER, Óskarsson JÞ, Pétursdóttir Í, Sigurðardóttir GÁ, Viðarsson B, Önundarson PT, Agnarsson BA, Sigurðardóttir M, Þorsteinsdóttir I, Ólafsson Í, Þórðardóttir ÁR, Eyþórsson E, Jónsson Á, Björnsson AS, Gunnarsson GÞ, Pálsson R, Indriðason ÓS, Gíslason GK, Ólafsson A, Hákonardóttir GK, Brinkhuis M, Halldórsdóttir SL, Ásgeirsdóttir TL, Steingrímsdóttir H, Danielsen R, Dröfn Wessman I, Kampanis P, Hultcrantz M, Durie BGM, Harding S, Landgren O, Kristinsson SY. Iceland screens, treats, or prevents multiple myeloma (iStopMM): a population-based screening study for monoclonal gammopathy of undetermined significance and randomized controlled trial of follow-up strategies. Blood Cancer J 2021; 11:94. [PMID: 34001889 PMCID: PMC8128921 DOI: 10.1038/s41408-021-00480-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) precedes multiple myeloma (MM). Population-based screening for MGUS could identify candidates for early treatment in MM. Here we describe the Iceland Screens, Treats, or Prevents Multiple Myeloma study (iStopMM), the first population-based screening study for MGUS including a randomized trial of follow-up strategies. Icelandic residents born before 1976 were offered participation. Blood samples are collected alongside blood sampling in the Icelandic healthcare system. Participants with MGUS are randomized to three study arms. Arm 1 is not contacted, arm 2 follows current guidelines, and arm 3 follows a more intensive strategy. Participants who progress are offered early treatment. Samples are collected longitudinally from arms 2 and 3 for the study biobank. All participants repeatedly answer questionnaires on various exposures and outcomes including quality of life and psychiatric health. National registries on health are cross-linked to all participants. Of the 148,704 individuals in the target population, 80 759 (54.3%) provided informed consent for participation. With a very high participation rate, the data from the iStopMM study will answer important questions on MGUS, including potentials harms and benefits of screening. The study can lead to a paradigm shift in MM therapy towards screening and early therapy.
Collapse
Affiliation(s)
| | | | - Sigrun Thorsteinsdottir
- Faculty of Medicine, Univeristy of Iceland, Reykjavík, Iceland
- Dept of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Elín Ruth Reed
- Faculty of Medicine, Univeristy of Iceland, Reykjavík, Iceland
| | | | | | | | | | - Páll Torfi Önundarson
- Faculty of Medicine, Univeristy of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Bjarni A Agnarsson
- Faculty of Medicine, Univeristy of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | | | | | | | | | | | | | | | - Gunnar Þór Gunnarsson
- Faculty of Medicine, Univeristy of Iceland, Reykjavík, Iceland
- Akureyri Hospital, Akureyri, Iceland
| | - Runólfur Pálsson
- Faculty of Medicine, Univeristy of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Ólafur Skúli Indriðason
- Faculty of Medicine, Univeristy of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | | | - Andri Ólafsson
- Faculty of Medicine, Univeristy of Iceland, Reykjavík, Iceland
| | | | - Manje Brinkhuis
- Faculty of Medicine, Univeristy of Iceland, Reykjavík, Iceland
| | | | | | | | | | | | | | | | - Brian G M Durie
- Cedar-Sinai Samual Oschin Cancer Center, Los Angeles, CA, USA
| | | | - Ola Landgren
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Sigurður Yngvi Kristinsson
- Faculty of Medicine, Univeristy of Iceland, Reykjavík, Iceland.
- Landspítali University Hospital, Reykjavík, Iceland.
| |
Collapse
|
33
|
Pires O, Oliveira AA, Morais J, Regadas MJ. Multiple myeloma: when radiography suggests diagnosis. BMJ Case Rep 2021; 14:e241990. [PMID: 33832941 PMCID: PMC8039272 DOI: 10.1136/bcr-2021-241990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Olga Pires
- Internal Medicine, Hospital de Braga, Braga, Portugal
| | | | - Joana Morais
- Internal Medicine, Hospital de Braga, Braga, Portugal
| | | |
Collapse
|
34
|
Sewastianik T, Straubhaar JR, Zhao JJ, Samur MK, Adler K, Tanton HE, Shanmugam V, Nadeem O, Dennis PS, Pillai V, Wang J, Jiang M, Lin J, Huang Y, Brooks D, Bouxsein M, Dorfman DM, Pinkus GS, Robbiani DF, Ghobrial IM, Budnik B, Jarolim P, Munshi NC, Anderson KC, Carrasco RD. miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood 2021; 137:1905-1919. [PMID: 33751108 PMCID: PMC8033455 DOI: 10.1182/blood.2020009088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Chromosome 13q deletion [del(13q)], harboring the miR-15a/16-1 cluster, is one of the most common genetic alterations in mature B-cell malignancies, which originate from germinal center (GC) and post-GC B cells. Moreover, miR-15a/16 expression is frequently reduced in lymphoma and multiple myeloma (MM) cells without del(13q), suggesting important tumor-suppressor activity. However, the role of miR-15a/16-1 in B-cell activation and initiation of mature B-cell neoplasms remains to be determined. We show that conditional deletion of the miR-15a/16-1 cluster in murine GC B cells induces moderate but widespread molecular and functional changes including an increased number of GC B cells, percentage of dark zone B cells, and maturation into plasma cells. With time, this leads to development of mature B-cell neoplasms resembling human extramedullary plasmacytoma (EP) as well as follicular and diffuse large B-cell lymphomas. The indolent nature and lack of bone marrow involvement of EP in our murine model resembles human primary EP rather than MM that has progressed to extramedullary disease. We corroborate human primary EP having low levels of miR-15a/16 expression, with del(13q) being the most common genetic loss. Additionally, we show that, although the mutational profile of human EP is similar to MM, there are some exceptions such as the low frequency of hyperdiploidy in EP, which could account for different disease presentation. Taken together, our studies highlight the significant role of the miR-15a/16-1 cluster in the regulation of the GC reaction and its fundamental context-dependent tumor-suppression function in plasma cell and B-cell malignancies.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosome Disorders/pathology
- Chromosomes, Human, Pair 13/genetics
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice, Inbred C57BL
- MicroRNAs/genetics
- Multigene Family
- Multiple Myeloma/genetics
- Multiple Myeloma/pathology
- Neoplasms, Plasma Cell/genetics
- Neoplasms, Plasma Cell/pathology
- Plasma Cells/metabolism
- Plasma Cells/pathology
- Plasmacytoma/genetics
- Plasmacytoma/pathology
- Mice
Collapse
Affiliation(s)
- Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | - Mehmet K Samur
- Department of Medical Oncology and
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Keith Adler
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Helen E Tanton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Vignesh Shanmugam
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Peter S Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Vinodh Pillai
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Jianli Wang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Meng Jiang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Daniel Brooks
- Center for Advanced Orthopedic Studies, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Mary Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - David M Dorfman
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Geraldine S Pinkus
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY
| | | | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, FAS Division of Science, Harvard University, Cambridge, MA; and
| | - Petr Jarolim
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Nikhil C Munshi
- Department of Medical Oncology and
- Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Kenneth C Anderson
- Department of Medical Oncology and
- Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Roshandel E, Noorazar L, Farhadihosseinabadi B, Mehdizadeh M, Kazemi MH, Parkhideh S. PI3 kinase signaling pathway in hematopoietic cancers: A glance in miRNA's role. J Clin Lab Anal 2021; 35:e23725. [PMID: 33675064 PMCID: PMC8059748 DOI: 10.1002/jcla.23725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic cancers are among the most common malignancies worldwide, which are divided into different types depending on the origin of tumor cells. In recent years, the pivotal role of different signaling pathways in the onset and progression of these cancer types has been well established. One of these pathways, whose role in blood malignancies has been well-defined, is PI3K/mTOR/AKT axis. The signaling pathway involves in a wide variety of important biological events in cells. It is clear that dysregulation of mediators involved in PI3 kinase signaling takes a pivotal role in cancer development. Considering the undeniable role of miRNAs, as one of the well-known families of non-coding RNAs, in gene regulation, we aimed to review the role of miRNAs in regulation of PI3 kinase signaling effectors in hematopoietic cancers.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Leila Noorazar
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Hossein Kazemi
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
36
|
Downregulation of ITGA6 confers to the invasion of multiple myeloma and promotes progression to plasma cell leukaemia. Br J Cancer 2021; 124:1843-1853. [PMID: 33785876 DOI: 10.1038/s41416-021-01362-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/08/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Secondary plasma cell leukaemia (sPCL) is an aggressive form of multiple myeloma (MM), but the mechanism underlying MM progresses into PCL remains unknown. METHODS Gene expression profiling of MM patients and PCL patients was analysed to identify the molecular differences between the two diseases. Cox survival regression and Kaplan-Meier analysis were performed to illustrate the impact of integrin subunit alpha 6 (ITGA6) on prognosis of MM. Invasion assays were performed to assess whether ITGA6 regulated the progression of MM to PCL. RESULTS Gene expression profiling analyses showed that cell metastasis pathways were enriched in PCL and ITGA6 was differentially expressed between PCL and MM. ITGA6 expression was an independent prognostic factor for event-free survival (EFS) and overall survival (OS) of MM patients. Moreover, the stratification ability of the International Staging System (ISS) of MM was improved when including ITGA6 expression. Functional studies uncovered that increased ITGA6 reduced the myeloma cell invasion. Additionally, low expression of ITGA6 resulted from epigenetic downregulating of its anti-sense non-coding RNA, ITGA6-AS1. CONCLUSION Our data reveal that ITGA6 gradually decreases during plasma cell dyscrasias progression and low expression of ITGA6 contributes to myeloma metastasis. Moreover, ITGA6 abundance might help develop MM prognostic stratification.
Collapse
|
37
|
IDO2 rs10109853 polymorphism affects the susceptibility to multiple myeloma. Clin Exp Med 2021; 21:323-329. [PMID: 33709342 DOI: 10.1007/s10238-020-00681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) of the IDO1 and IDO2 genes have been associated with some diseases. Here, we investigated the association of IDO1 and IDO2 SNPs with the susceptibility to multiple myeloma (MM) and their relationships with MM clinical features. We obtained genomic DNA from 100 patients with MM and 149 healthy race-matched controls and determined IDO1 promoter - 1849G/T (rs3824259) and IDO2 R248W (rs10109853) genotypes by using the polymerase chain reaction-restriction fragment length polymorphism method. The patients with MM had a significantly higher frequency of the IDO2 R248W RR genotype (high-activity type) (59.0% vs. 43.6%, odds ratio = 1.86, 95% confidence interval = 1.11-3.11, P = 0.017) compared with those in healthy controls. Patients with the IDO2 R248W RR genotype (high-activity type) were significantly younger and had a significantly lower frequency of International Staging System (ISS) stage III condition than those with the RW and WW genotypes (median 63 years vs. 69 years, P = 0.025; 15 [25.4%] vs. 50 [48.8%]). In addition, the IDO2 R248W RR genotype was significantly associated with a higher level of hemoglobin at diagnosis (mean ± standard deviation, 10.7 ± 2.36 vs. 9.27 ± 2.40 g/dL; P = 0.0032). Neither polymorphism significantly affected overall survival. Our study indicates that IDO2 R248W may be associated with the susceptibility to MM and severity of anemia.
Collapse
|
38
|
Metabolic Effects of Recurrent Genetic Aberrations in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13030396. [PMID: 33494394 PMCID: PMC7865460 DOI: 10.3390/cancers13030396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene activation and malignant transformation exerts energetic, biosynthetic and redox demands on cancer cells due to increased proliferation, cell growth and tumor microenvironment adaptation. As such, altered metabolism is a hallmark of cancer, which is characterized by the reprogramming of multiple metabolic pathways. Multiple myeloma (MM) is a genetically heterogeneous disease that arises from terminally differentiated B cells. MM is characterized by reciprocal chromosomal translocations that often involve the immunoglobulin loci and a restricted set of partner loci, and complex chromosomal rearrangements that are associated with disease progression. Recurrent chromosomal aberrations in MM result in the aberrant expression of MYC, cyclin D1, FGFR3/MMSET and MAF/MAFB. In recent years, the intricate mechanisms that drive cancer cell metabolism and the many metabolic functions of the aforementioned MM-associated oncogenes have been investigated. Here, we discuss the metabolic consequences of recurrent chromosomal translocations in MM and provide a framework for the identification of metabolic changes that characterize MM cells.
Collapse
|
39
|
The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers (Basel) 2021; 13:cancers13020217. [PMID: 33435306 PMCID: PMC7827690 DOI: 10.3390/cancers13020217] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a hematologic malignancy caused by aberrant plasma cell proliferation in the bone marrow (BM) and constitutes the second most common hematological disease after non-Hodgkin lymphoma. The disease progression is drastically regulated by the immunosuppressive tumor microenvironment (TME) generated by soluble factors and different cells that naturally reside in the BM. This microenvironment does not remain unchanged and alterations favor cancer dissemination. Despite therapeutic advances over the past 15 years, MM remains incurable and therefore understanding the elements that control the TME in MM would allow better-targeted therapies to cure this disease. In this review, we discuss the main events and changes that occur in the BM milieu during MM development. Abstract Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and occasionally extramedullary disease, is drastically affected by the tumor microenvironment (TME). Soluble factors and direct cell–cell interactions regulate MM plasma cell trafficking and homing to the BM niche. Mesenchymal stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells present in the BM create a unique milieu that favors MM plasma cell immune evasion and promotes disease progression. Moreover, TME is implicated in malignant cell protection against anti-tumor therapy. This review describes the main cellular and non-cellular components located in the BM, which condition the immunosuppressive environment and lead the MM establishment and progression.
Collapse
|
40
|
Russignan A, Dal Collo G, Bagnato A, Tamassia N, Bugatti M, Belleri M, Lorenzi L, Borsi E, Bazzoni R, Gottardi M, Terragna C, Vermi W, Giacomini A, Presta M, Cassatella MA, Krampera M, Tecchio C. Targeting the Endothelin-1 Receptors Curtails Tumor Growth and Angiogenesis in Multiple Myeloma. Front Oncol 2021; 10:600025. [PMID: 33489901 PMCID: PMC7820698 DOI: 10.3389/fonc.2020.600025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
The endothelin-1 (ET-1) receptors were recently found to mediate pro-survival functions in multiple myeloma (MM) cells in response to autocrine ET-1. This study investigated the effectiveness of macitentan, a dual ET-1 receptor antagonist, in MM treatment, and the mechanisms underlying its activities. Macitentan affected significantly MM cell (RPMI-8226, U266, KMS-12-PE) survival and pro-angiogenic cytokine release by down-modulating ET-1-activated MAPK/ERK and HIF-1α pathways, respectively. HIF-1α silencing abrogated the ET-1 mediated induction of genes encoding for pro-angiogenic cytokines such as VEGF-A, IL-8, Adrenomedullin, and ET-1 itself. Upon exposure to macitentan, MM cells cultured in the presence of the hypoxia-mimetic agent CoCl2, exogenous ET-1, or CoCl2 plus ET-1, down-regulated HIF-1α and the transcription and release of downstream pro-angiogenic cytokines. Consistently, macitentan limited significantly the basal pro-angiogenic activity of RPMI-8226 cells in chorioallantoic membrane assay. In xenograft mouse models, established by injecting NOG mice either via intra-caudal vein with U266 or subcutaneously with RPMI-8226 cells, macitentan reduced effectively the number of MM cells infiltrating bone marrow, and the size and microvascular density of subcutaneous MM tumors. ET-1 receptors targeting by macitentan represents an effective anti-proliferative and anti-angiogenic therapeutic approach in preclinical settings of MM.
Collapse
Affiliation(s)
- Anna Russignan
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mirella Belleri
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enrica Borsi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. and A. Seràgnoli", Bologna University, Bologna, Italy
| | - Riccardo Bazzoni
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | | | - Carolina Terragna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. and A. Seràgnoli", Bologna University, Bologna, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Mauro Krampera
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
41
|
Santoleri F, Lasala R, Ranucci E, Rocchi M, Pulini S, Morelli AM, Spadano A, Costantini A. Adherence to and effectiveness of lenalidomide after 1 year of treatment in a real world setting. J Oncol Pharm Pract 2020; 28:24-30. [PMID: 33349148 DOI: 10.1177/1078155220980807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In combination with dexamethasone, lenalidomide is prescribed in the oral treatment of Multiple Myeloma for patients who have received at least one previous therapy. OBJECTIVE The objective of this study is to evaluate medication adherence to lenalidomide of Multiple Myeloma patients, as well as Progression Free Survival and Overall Survival one year from the beginning of the treatment. SETTING The study was carried out in Pescara Hospital, in Italy. All Multiple Myeloma patients who began lenalidomide therapy between January 1, 2012 and June 30, 2016 were included in our study. METHODS Adherence to treatment was calculated by using the ratio between the Received Daily Dose and the Prescribed Daily Dose. Effectiveness in real world has been evaluated as Progression Free Survival and Overall Survival one year from the beginning of the treatment.Main outcomes measure: We assessed medication adherence and effectiveness of lenalidomide in the treatment of Multiple Myeloma. RESULTS Adherence to the overall mean treatment was 0.73 ± 0.15, relative to 81 patients evaluated in our study. 32% of patients achieved an adherence equal to or greater than 80%. Real-life effectiveness in terms of Progression Free Survival and Overall Survival showed values of 53.75% and 88%, respectively, one year from the beginning of treatment. CONCLUSION The analysis of adherence in Multiple Myeloma patients treated with lenalidomide one year from the beginning of therapy reveal a concerning lack of adherence. Moreover, the lack of correlation of the levels of adherence with patient-related variables shows that, in the case of Multiple Myeloma, adherence is not related to personal, social and environmental characteristics that may determine each patient's correct treatment implementation, but is directly influenced by disease evolution.
Collapse
Affiliation(s)
| | - Ruggero Lasala
- Hospital pharmacy, Pescara General Hospital, Pescara, Italy
| | - Elena Ranucci
- Hospital pharmacy, Pescara General Hospital, Pescara, Italy
| | - Marco Rocchi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Stefano Pulini
- Department of Haematology, Pescara General Hospital, Pescara, Italy
| | | | - Antonio Spadano
- Department of Haematology, Pescara General Hospital, Pescara, Italy
| | | |
Collapse
|
42
|
Changing paradigms in diagnosis and treatment of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). Leukemia 2020; 34:3111-3125. [PMID: 33046818 DOI: 10.1038/s41375-020-01051-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/18/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is a highly heterogenous disease that exists along a continuous disease spectrum starting with premalignant conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) that inevitably precede MM. Over the past two decades, significant progress has been made in the genetic characterization and risk stratification of precursor plasma cell disorders. Indeed, the clinical introduction of highly effective and well-tolerated drugs begs the question: would earlier therapeutic intervention with novel therapies in MGUS and SMM patients alter natural history, providing a potential curative option? In this review, we discuss the epidemiology of MGUS and SMM and current models for risk stratification that predict MGUS and SMM progression to MM. We further discuss genetic heterogeneity and clonal evolution in MM and the interplay between tumor cells and the bone marrow (BM) microenvironment. Finally, we provide an overview of the current recommendations for the management of MGUS and SMM and discuss the open controversies in the field in light of promising results from early intervention clinical trials.
Collapse
|
43
|
Li Z, Kumar S, Jin DY, Calin GA, Chng WJ, Siu KL, Poon MW, Chim CS. Epigenetic silencing of long non-coding RNA BM742401 in multiple myeloma: impact on prognosis and myeloma dissemination. Cancer Cell Int 2020; 20:403. [PMID: 32855620 PMCID: PMC7446116 DOI: 10.1186/s12935-020-01504-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) BM742401 is a tumor suppressor in gastric cancer and chronic lymphocytic leukemia. As the promoter and coding region of BM742401 are fully embedded in a CpG island, we hypothesized that BM742401 is a tumor suppressor lncRNA epigenetically silenced by promoter DNA methylation in multiple myeloma. Methods Methylation-specific PCR and quantitative bisulfite pyrosequencing were performed to detect the methylation of BM742401 in normal plasma cells, myeloma cell lines and primary myeloma samples. The expression of BM742401 was measured by qRT-PCR. The function of BM742401 in multiple myeloma cells was analyzed by lentivirus transduction followed by migration assay. Results BM742401 methylation was detected in 10 (66.7%) myeloma cell lines but not normal plasma cells, and inversely correlated with expression of BM742401. In primary samples, BM742401 methylation was detected in 3 (12.5%) monoclonal gammopathy of undetermined significance, 9 (15.8%) myeloma at diagnosis and 8 (17.0%) myeloma at relapse/progression. Moreover, BM742401 methylation at diagnosis was associated with inferior overall survival (median OS: 25 vs. 39 months; P = 0.0496). In myeloma cell line JJN-3, stable overexpression of BM742401 by lentivirus transduction resulted in reduced cell migration (P = 0.0001) but not impacting cell death or proliferation. Conclusions This is the first report of tumor-specific methylation-mediated silencing of BM742401 in myeloma, which is likely an early event in myelomagenesis with adverse impact on overall survival. Moreover, BM742401 is a tumor suppressor lncRNA by inhibiting myeloma cell migration, hence implicated in myeloma plasma cell homing, metastasis and disease progression.
Collapse
Affiliation(s)
- Zhenhai Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN USA
| | - Dong-Yan Jin
- School of Biomedical Sciences, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Kam-Leung Siu
- School of Biomedical Sciences, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Ming-Wai Poon
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| |
Collapse
|
44
|
Wang H, Huang W, Gao H, Liu TT. NY-ESO-1 Protein Vaccine Combining Alum, CpG ODN, and HH2 Complex Adjuvant Induces Protective and Therapeutic Anti-Tumor Responses in Murine Multiple Myeloma. Onco Targets Ther 2020; 13:8069-8077. [PMID: 32884292 PMCID: PMC7431605 DOI: 10.2147/ott.s255713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background NY-ESO-1 is an ideal target for multiple myeloma immunotherapy. Alum, CpG ODN and HH2 complex is a safe and effective adjuvant for cancer vaccine. Methods We constructed NY-ESO-1 protein vaccine combined with alum, CpG ODN, and HH2 complex adjuvant to immunize the BALB/c mice inoculated with NS-1 murine multiple myeloma cells. Then, we determined the immunogenicity and anti-tumor effects in prophylactic and therapeutic models by analyzing the NY-ESO-1 antibody titer, evaluating IL4/INF-γ expression, and assessing cytotoxic T lymphocytes activities. The side-effects of vaccines were also evaluated. Results The group of NY-ESO-1 protein vaccine combining alum, CpG ODN, and HH2 complex adjuvant is more capable of stimulating both humoral and cellular tumor-specific immune responses to prolong the survival of the mice and inhibit tumor growth in prophylactic and therapeutic immunotherapy. The marked side-effects were not detected in immunized mice. Discussion The results suggest that alum, CpG ODN, and HH2 complex as a novel immune adjuvant combined cancer vaccine could improve the immunity efficiency in a murine multiple myeloma model.
Collapse
Affiliation(s)
- Hao Wang
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Wei Huang
- Department of Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hua Gao
- Department of Hematology, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610041, People's Republic of China
| | - Ting Ting Liu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China.,Department of Hematology, West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
45
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|
46
|
Peng Y, Li F, Zhang P, Wang X, Shen Y, Feng Y, Jia Y, Zhang R, Hu J, He A. IGF-1 promotes multiple myeloma progression through PI3K/Akt-mediated epithelial-mesenchymal transition. Life Sci 2020; 249:117503. [PMID: 32142767 DOI: 10.1016/j.lfs.2020.117503] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/23/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022]
Abstract
AIMS To investigate the role and mechanism of insulin-like growth factor 1(IGF-1)-mediated EMT on multiple myeloma (MM) growth and metastasis. MATERIALS AND METHODS The expression data from GEO datasets were utilized to explore the expression levels of IGF-1 and epithelial-mesenchymal transition (EMT) markers in MM. Western blotting and flow cytometry analysis were performed to detect the protein levels of EMT markers as well as key components of the PI3K/Akt pathway. Cell proliferation ability was assessed using colony formation assay and EdU incorporation assays. Transwell migration and invasion assays were performed to assess cell metastasis properties. Vimentin was knocked down by using electro-transfection with small interfering RNA (siRNA) to detect the effect of IGF-1-mediated EMT on MM cell growth and metastasis. KEY FINDINGS First of all, the analysis of GEO database revealed that IGF-1 was excessively expressed and closely correlated with the expression of the EMT markers in MM patients. Furthermore, we demonstrated that IGF-1 enhanced the acquisition of mesenchymal features in a time-dependent manner. Additionally, in vitro studies revealed that IGF-1-mediated mesenchymal phenotype promoted MM migration, invasion and colony formation. Finally, the mechanism study showed PI3K/Akt signaling pathway was involved in the IGF-1-induced EMT in MM cells. SIGNIFICANCE IGF-1-induced mesenchymal phenotype contributed to MM progression via the PI3K/Akt pathway regulation.
Collapse
Affiliation(s)
- Yue Peng
- Xi'an Jiaotong University Health Science Center, Xi'An City, Shaanxi Province, China
| | - Fangmei Li
- Xi'an Jiaotong University Health Science Center, Xi'An City, Shaanxi Province, China
| | - Peihua Zhang
- Xi'an Jiaotong University Health Science Center, Xi'An City, Shaanxi Province, China
| | - Xiaman Wang
- Xi'an Jiaotong University Health Science Center, Xi'An City, Shaanxi Province, China
| | - Ying Shen
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An City, Shaanxi Province, China
| | - Yuandong Feng
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An City, Shaanxi Province, China
| | - Yachun Jia
- Xi'an Jiaotong University Health Science Center, Xi'An City, Shaanxi Province, China
| | - Ru Zhang
- Xi'an Jiaotong University Health Science Center, Xi'An City, Shaanxi Province, China
| | - Jinsong Hu
- Xi'an Jiaotong University Health Science Center, Xi'An City, Shaanxi Province, China.
| | - Aili He
- Xi'an Jiaotong University Health Science Center, Xi'An City, Shaanxi Province, China.
| |
Collapse
|
47
|
MicroRNAs-Based Nano-Strategies as New Therapeutic Approach in Multiple Myeloma to Overcome Disease Progression and Drug Resistance. Int J Mol Sci 2020; 21:ijms21093084. [PMID: 32349317 PMCID: PMC7247691 DOI: 10.3390/ijms21093084] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs, or miRs) are single-strand short non-coding RNAs with a pivotal role in the regulation of physiological- or disease-associated cellular processes. They bind to target miRs modulating gene expression at post-transcriptional levels. Here, we present an overview of miRs deregulation in the pathogenesis of multiple myeloma (MM), and discuss the potential use of miRs/nanocarriers association in clinic. Since miRs can act as oncogenes or tumor suppressors, strategies based on their inhibition and/or replacement represent the new opportunities in cancer therapy. The miRs delivery systems include liposomes, polymers, and exosomes that increase their physical stability and prevent nuclease degradation. Phase I/II clinical trials support the importance of miRs as an innovative therapeutic approach in nanomedicine to prevent cancer progression and drug resistance. Results in clinical practice are promising.
Collapse
|
48
|
Xu X, Zhang C, Trotter TN, Gowda PS, Lu Y, Ponnazhagan S, Javed A, Li J, Yang Y. Runx2 Deficiency in Osteoblasts Promotes Myeloma Progression by Altering the Bone Microenvironment at New Bone Sites. Cancer Res 2020; 80:1036-1048. [PMID: 31911552 PMCID: PMC7056521 DOI: 10.1158/0008-5472.can-19-0284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/18/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
Multiple myeloma is a plasma cell malignancy that thrives in the bone marrow (BM), with frequent progression to new local and distant bone sites. Our previous studies demonstrated that multiple myeloma cells at primary sites secrete soluble factors and suppress osteoblastogenesis via the inhibition of Runt-related transcription factor 2 (Runx2) in pre- and immature osteoblasts (OB) in new bone sites, prior to the arrival of metastatic tumor cells. However, it is unknown whether OB-Runx2 suppression in new bone sites feeds back to promote multiple myeloma dissemination to and progression in these areas. Hence, we developed a syngeneic mouse model of multiple myeloma in which Runx2 is specifically deleted in the immature OBs of C57BL6/KaLwRij mice (OB-Runx2-/- mice) to study the effect of OB-Runx2 deficiency on multiple myeloma progression in new bone sites. In vivo studies with this model demonstrated that OB-Runx2 deficiency attracts multiple myeloma cells and promotes multiple myeloma tumor growth in bone. Mechanistic studies further revealed that OB-Runx2 deficiency induces an immunosuppressive microenvironment in BM that is marked by an increase in the concentration and activation of myeloid-derived suppressor cells (MDSC) and the suppression and exhaustion of cytotoxic CD8+ T cells. In contrast, MDSC depletion by either gemcitabine or 5-fluorouracil treatment in OB-Runx2-/- mice prevented these effects and inhibited multiple myeloma tumor growth in BM. These novel discoveries demonstrate that OB-Runx2 deficiency in new bone sites promotes multiple myeloma dissemination and progression by increasing metastatic cytokines and MDSCs in BM and inhibiting BM immunity. Importantly, MDSC depletion can block multiple myeloma progression promoted by OB-Runx2 deficiency.Significance: This study demonstrates that Runx2 deficiency in immature osteoblasts at distant bone sites attracts myeloma cells and allows myeloma progression in new bone sites via OB-secreted metastatic cytokines and MDSC-mediated suppression of bone marrow immunity.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Department of Hematology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chao Zhang
- Department of Hematology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pramod S Gowda
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Selvarangan Ponnazhagan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amjad Javed
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Juan Li
- Department of Hematology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
49
|
Pinto V, Bergantim R, Caires HR, Seca H, Guimarães JE, Vasconcelos MH. Multiple Myeloma: Available Therapies and Causes of Drug Resistance. Cancers (Basel) 2020; 12:E407. [PMID: 32050631 PMCID: PMC7072128 DOI: 10.3390/cancers12020407] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is the second most common blood cancer. Treatments for MM include corticosteroids, alkylating agents, anthracyclines, proteasome inhibitors, immunomodulatory drugs, histone deacetylase inhibitors and monoclonal antibodies. Survival outcomes have improved substantially due to the introduction of many of these drugs allied with their rational use. Nonetheless, MM patients successively relapse after one or more treatment regimens or become refractory, mostly due to drug resistance. This review focuses on the main drugs used in MM treatment and on causes of drug resistance, including cytogenetic, genetic and epigenetic alterations, abnormal drug transport and metabolism, dysregulation of apoptosis, autophagy activation and other intracellular signaling pathways, the presence of cancer stem cells, and the tumor microenvironment. Furthermore, we highlight the areas that need to be further clarified in an attempt to identify novel therapeutic targets to counteract drug resistance in MM patients.
Collapse
Affiliation(s)
- Vanessa Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FCTUC–Faculty of Science and Technology of the University of Coimbra, 3030-790 Coimbra, Portugal
| | - Rui Bergantim
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Clinical Hematology, Hospital São João, 4200-319 Porto, Portugal
- Clinical Hematology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hugo R. Caires
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Hugo Seca
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - José E. Guimarães
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Clinical Hematology, Hospital São João, 4200-319 Porto, Portugal
- Clinical Hematology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - M. Helena Vasconcelos
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
50
|
Kasamatsu T, Awata M, Ishihara R, Murakami Y, Gotoh N, Matsumoto M, Sawamura M, Yokohama A, Handa H, Tsukamoto N, Saitoh T, Murakami H. PDCD1 and PDCD1LG1 polymorphisms affect the susceptibility to multiple myeloma. Clin Exp Med 2020; 20:51-62. [PMID: 31620907 DOI: 10.1007/s10238-019-00585-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) of the programmed cell death protein-1 (PDCD1), programmed cell death protein-1 ligand-1 (PDCD1LG1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA4) genes are implicated in the pathogenesis of some cancers. We investigated the role of PDCD1, PDCD1LG1, and CTLA4 SNPs in MM pathogenesis and the susceptibility to and clinical features of multiple myeloma (MM). We obtained genomic DNA from 124 patients with MM and 211 healthy controls and detected PDCD1 (rs36084323, rs41386349, and rs2227982), PDCD1LG1 (rs2297136 and rs4143815), and CTLA4 (rs733618, rs11571316, rs231775, and rs3087243) genotypes using the polymerase chain reaction-restriction fragment length polymorphism method or the TaqMan allelic discrimination real-time PCR method. The patients with MM had a significantly higher frequency of the PDCD1 GCC/GCC haplotype (rs36084323/rs41386349/rs2227982) compared with the healthy controls. PDCD1 rs2227982 CC genotype was associated significantly with a higher frequency of bone lesions. Patients with PDCD1LG1 rs2297136 TT and TC types (high-expression types) showed lower albumin level than those with CC genotype. In addition, the PDCD1LG1 rs4143815 CC and CG types (high-expression types) were associated significantly with higher frequency of patients who were treated with thalidomide and/or bortezomib. However, there was no statistical significance between CTLA4 polymorphisms and clinical variables of patients with MM. There were no significant differences between all the polymorphisms and OS. Our study indicates that the PDCD1 haplotype is associated with a susceptibility to MM. The PDCD1 rs2227982 and PDCD1LG1 rs2297136 affect the clinical features of multiple myeloma patients.
Collapse
Affiliation(s)
- Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8514, Japan.
| | - Maaya Awata
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8514, Japan
| | - Rei Ishihara
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8514, Japan
| | - Yuki Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8514, Japan
| | - Nanami Gotoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8514, Japan
| | - Morio Matsumoto
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, 383 Shirai, Shibukawa, Gunma, 377-0280, Japan
| | - Morio Sawamura
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, 383 Shirai, Shibukawa, Gunma, 377-0280, Japan
| | - Akihiko Yokohama
- Blood Transfusion Service, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-0034, Japan
| | - Norifumi Tsukamoto
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takayuki Saitoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8514, Japan
| | - Hirokazu Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8514, Japan
- Gunma University of Health and Welfare, 191-1 Kawamagari-cho, Maebashi, Gunma, 371-0823, Japan
| |
Collapse
|