1
|
Ahn SH, Lee YJ, Lim DS, Cho W, Gwon HJ, Abd El-Aty AM, Jeong JH, Jung TW. Upadacitinib counteracts hepatic lipid deposition via the repression of JAK1/STAT3 signaling and AMPK/autophagy-mediated suppression of ER stress. Biochem Biophys Res Commun 2024; 735:150829. [PMID: 39406018 DOI: 10.1016/j.bbrc.2024.150829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Upadacitinib (UPA) has been utilized to treat conditions such as rheumatoid arthritis, psoriatic arthritis, atopic dermatitis, ulcerative colitis, Crohn's disease, ankylosing spondylitis, and axial spondyloarthritis by modulating inflammation via the JAK pathway. However, its impact on hepatic lipogenesis remains insufficiently studied. This research evaluated protein expression through Western blotting, lipid accumulation with oil red O staining, autophagosomes in hepatocytes via MDC staining, and hepatic apoptosis via cell viability and caspase 3 activity assays. This study aimed to explore the effects of UPA on hepatic lipogenesis and the underlying molecular mechanisms in in vitro models of hepatic steatosis. These findings demonstrated that UPA reduced lipid deposition, apoptosis, and ER stress in palmitate-treated hepatocytes. UPA treatment inhibited phosphorylated JAK1 and STAT3 while promoting the expression of phosphorylated AMPK and autophagy markers. AMPK siRNA negated the effects of UPA on lipogenic lipid deposition, apoptosis, JAK1/STAT3 phosphorylation, and ER stress. These results reveal that UPAmitigates ER stress through the JAK1/STAT3/AMPK pathway, thereby reducing lipid deposition and apoptosis in hyperlipidemic hepatocytes, supporting its potential as a therapeutic strategy for treating hepatic steatosis in obese individuals.
Collapse
Affiliation(s)
- Sung Ho Ahn
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Jik Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Vidyawan V, Puspita L, Juwono VB, Deline M, Pieknell K, Chang MY, Lee SH, Shim JW. Autophagy controls neuronal differentiation by regulating the WNT-DVL signaling pathway. Autophagy 2024:1-18. [PMID: 39385328 DOI: 10.1080/15548627.2024.2407707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Macroautophagy/autophagy dysregulation is associated with various neurological diseases, including Vici syndrome. We aimed to determine the role of autophagy in early brain development. We generated neurons from human embryonic stem cells and developed a Vici syndrome model by introducing a loss-of-function mutation in the EPG5 gene. Autophagy-related genes were upregulated at the neuronal progenitor cell stage. Inhibition of autolysosome formation with bafilomycin A1 treatment at the neuronal progenitor cell stage delayed neuronal differentiation. Notably, WNT (Wnt family member) signaling may be part of the underlying mechanism, which is negatively regulated by autophagy-mediated DVL2 (disheveled segment polarity protein 2) degradation. Disruption of autolysosome formation may lead to failure in the downregulation of WNT signaling, delaying neuronal differentiation. EPG5 mutations disturbed autolysosome formation, subsequently inducing defects in progenitor cell differentiation and cortical layer generation in organoids. Disrupted autophagy leads to smaller organoids, recapitulating Vici syndrome-associated microcephaly, and validating the disease relevance of our study.Abbreviations: BafA1: bafilomycin A1; co-IP: co-immunoprecipitation; DVL2: dishevelled segment polarity protein 2; EPG5: ectopic P-granules 5 autophagy tethering factor; gRNA, guide RNA; hESC: human embryonic stem cells; KO: knockout; mDA, midbrain dopamine; NIM: neural induction media; NPC: neuronal progenitor cell; qPCR: quantitative polymerase chain reaction; UPS: ubiquitin-proteasome system; WNT: Wnt family member; WT: wild type.
Collapse
Affiliation(s)
- Vincencius Vidyawan
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Lesly Puspita
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Magdalena Deline
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Kelvin Pieknell
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
- Department of Premedicine, College of Medicine, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| |
Collapse
|
3
|
Dai D, Chen C, Lu C, Guo Y, Li Q, Sun C. Apoptosis, autophagy, ferroptosis, and pyroptosis in cisplatin-induced ototoxicity and protective agents. Front Pharmacol 2024; 15:1430469. [PMID: 39380912 PMCID: PMC11459463 DOI: 10.3389/fphar.2024.1430469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Cisplatin is widely used to treat various solid tumors. However, its toxicity to normal tissues limits its clinical application, particularly due to its ototoxic effects, which can result in hearing loss in patients undergoing chemotherapy. While significant progress has been made in preclinical studies to elucidate the cellular and molecular mechanisms underlying cisplatin-induced ototoxicity (CIO), the precise mechanisms remain unclear. Moreover, the optimal protective agent for preventing or mitigating cisplatin-induced ototoxicity has yet to be identified. This review summarizes the current understanding of the roles of apoptosis, autophagy, ferroptosis, pyroptosis, and protective agents in cisplatin-induced ototoxicity. A deeper understanding of these cell death mechanisms in the inner ear, along with the protective agents, could facilitate the translation of these agents into clinical therapeutics, help identify new therapeutic targets, and provide novel strategies for cisplatin-based cancer treatment.
Collapse
Affiliation(s)
- Dingyuan Dai
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Chen
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Lu
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Guo
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Li
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chen Sun
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Khan A, Ling J, Li J. Is Autophagy a Friend or Foe in SARS-CoV-2 Infection? Viruses 2024; 16:1491. [PMID: 39339967 PMCID: PMC11437447 DOI: 10.3390/v16091491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As obligate parasites, viruses need to hijack resources from infected cells to complete their lifecycle. The interaction between the virus and host determines the viral infection process, including viral propagation and the disease's outcome. Understanding the interaction between the virus and host factors is a basis for unraveling the intricate biological processes in the infected cells and thereby developing more efficient and targeted antivirals. Among the various fundamental virus-host interactions, autophagy plays vital and also complicated roles by directly engaging in the viral lifecycle and functioning as an anti- and/or pro-viral factor. Autophagy thus becomes a promising target against virus infection. Since the COVID-19 pandemic, there has been an accumulation of studies aiming to investigate the roles of autophagy in SARS-CoV-2 infection by using different models and from distinct angles, providing valuable information for systematically and comprehensively dissecting the interplay between autophagy and SARS-CoV-2. In this review, we summarize the advancements in the studies of the interaction between SARS-CoV-2 and autophagy, as well as detailed molecular mechanisms. We also update the current knowledge on the pharmacological strategies used to suppress SARS-CoV-2 replication through remodeling autophagy. These extensive studies on SARS-CoV-2 and autophagy can advance our understanding of virus-autophagy interaction and provide insights into developing efficient antiviral therapeutics by regulating autophagy.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
| |
Collapse
|
5
|
Wang Y, Lyu L, Vu T, McCarty N. TRIM44 enhances autophagy via SQSTM1 oligomerization in response to oxidative stress. Sci Rep 2024; 14:18974. [PMID: 39152142 PMCID: PMC11329658 DOI: 10.1038/s41598-024-67832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/16/2024] [Indexed: 08/19/2024] Open
Abstract
The deubiquitinase tripartite motif containing 44 (TRIM44) plays a critical role in linking the proteotoxic stress response with autophagic degradation, which is significant in the context of cancer and neurological diseases. Although TRIM44 is recognized as a prognostic marker in various cancers, the complex molecular mechanisms through which it facilitates autophagic degradation, particularly under oxidative stress conditions, have not been fully explored. In this study, we demonstrate that TRIM44 significantly enhances autophagy in response to oxidative stress, reducing cytotoxicity in cancer cells treated with arsenic trioxide. Our research emphasizes the critical role of the posttranslational modification of sequestosome-1 (SQSTM1) and its importance in improving sequestration during autophagic degradation under oxidative stress. We found that TRIM44 notably promotes SQSTM1 oligomerization in both PB1 domain-dependent and oxidation-dependent manners. Furthermore, TRIM44 amplifies the interaction between protein kinase A and oligomerized SQSTM1, leading to enhanced phosphorylation of SQSTM1 at S349. This phosphorylation event activates NFE2L2, a key transcription factor in the oxidative stress response, highlighting the importance of TRIM44 in modulating SQSTM1-mediated autophagy. Our findings support that TRIM44 plays pivotal roles in regulating autophagic sensitivity to oxidative stress, with implications for cancer, aging, aging-associated diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuqin Wang
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA
| | - Lin Lyu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA
| | - Trung Vu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA
| | - Nami McCarty
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Hu H, Li H, Li R, Liu P, Liu H. Re-establishing immune tolerance in multiple sclerosis: focusing on novel mechanisms of mesenchymal stem cell regulation of Th17/Treg balance. J Transl Med 2024; 22:663. [PMID: 39010157 PMCID: PMC11251255 DOI: 10.1186/s12967-024-05450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.
Collapse
Affiliation(s)
- Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
7
|
He J, Feng L, Yang H, Gao S, Dong J, Lu G, Liu L, Zhang X, Zhong K, Guo S, Zha G, Han L, Li H, Wang Y. Sirtuin 5 alleviates apoptosis and autophagy stimulated by ammonium chloride in bovine mammary epithelial cells. Exp Ther Med 2024; 28:295. [PMID: 38827477 PMCID: PMC11140291 DOI: 10.3892/etm.2024.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/28/2024] [Indexed: 06/04/2024] Open
Abstract
Ammonia (NH3) is an irritating and harmful gas that affects cell apoptosis and autophagy. Sirtuin 5 (SIRT5) has multiple enzymatic activities and regulates NH3-induced autophagy in tumor cells. In order to determine whether SIRT5 regulates NH3-induced bovine mammary epithelial cell apoptosis and autophagy, cells with SIRT5 overexpression or knockdown were generated and in addition, bovine mammary epithelial cells were treated with SIRT5 inhibitors. The results showed that SIRT5 overexpression reduced the content of NH3 and glutamate in cells by inhibiting glutaminase activity in glutamine metabolism, and reduced the ratio of ADP/ATP. The results in the SIRT5 knockdown and inhibitor groups were comparable, including increased content of NH3 and glutamate in cells by activating glutaminase activity, and an elevated ratio of ADP/ATP. It was further confirmed that SIRT5 inhibited the apoptosis and autophagy of bovine mammary epithelial cells through reverse transcription-quantitative PCR, western blot, flow cytometry with Annexin V FITC/PI staining and transmission electron microscopy. In addition, it was also found that the addition of LY294002 or Rapamycin inhibited the PI3K/Akt or mTOR kinase signal, decreasing the apoptosis and autophagy activities of bovine mammary epithelial cells induced by SIRT5-inhibited NH3. In summary, the PI3K/Akt/mTOR signal involved in NH3-induced cell autophagy and apoptosis relies on the regulation of SIRT5. This study provides a new theory for the use of NH3 to regulate bovine mammary epithelial cell apoptosis and autophagy, and provides guidance for improving the health and production performance of dairy cows.
Collapse
Affiliation(s)
- Junhui He
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Luping Feng
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Hanlin Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Shikai Gao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Jinru Dong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Guangyang Lu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Luya Liu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Xinyi Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Shuang Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Guangming Zha
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Liqiang Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Heping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Yueying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
8
|
Duan YH, Wang HL, Liu MN, Xu TM, Zhang K. Reflections on the complex mechanisms of endometriosis from the perspective of ferroptosis. Pathol Res Pract 2024; 259:155353. [PMID: 38797129 DOI: 10.1016/j.prp.2024.155353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Ferroptosis is a novel type of iron-dependent programmed cell death characterised by intracellular iron overload, increased lipid peroxidation and abnormal accumulation of reactive oxygen species.It has been implicated in the progression of several diseases including cancer, ischaemia-reperfusion injury, neurodegenerative diseases and liver disease. The etiology of endometriosis (EMS) is still unclear and is associated with multiple factors, often accompanied by various forms of cell death and a complex microenvironment. In recent decades, the role of non-traditional forms of cell death, represented by ferroptosis, in endometriosis has come to the attention of researchers. This article reviews the transitional role of iron homeostasis in the development of ferroptosis, the characteristics and regulatory mechanisms of ferroptosis, and focuses on summarising the links between iron death and various pathogenic mechanisms of EMS, including oxidative stress, dysregulation of lipid metabolism, inflammation, autophagy and epithelial-mesenchymal transition. The possible applications of ferroptosis in the treatment of EMS, future research directions and current issues are discussed with the aim of providing new ideas for further understanding of EMS.
Collapse
Affiliation(s)
- Yu-Han Duan
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - He-Lin Wang
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Meng-Na Liu
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tian-Min Xu
- Obstetrics and Gynaecology, the Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Medical Research Center, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
9
|
Nájera CA, Soares-Silva M, Maeda FY, DaRocha WD, Meneghelli I, Mendes AC, Batista MF, Silva CV, da Silveira JF, Orikaza CM, Yoshida N, Silva VG, Teixeira SMR, Bartholomeu DC, Bahia D. Trypanosoma cruzi Vps34 colocalizes with Beclin1 and plays a role in parasite invasion of the host cell by modulating the expression of a sub-group of trans-sialidases. Microbes Infect 2024:105385. [PMID: 38950642 DOI: 10.1016/j.micinf.2024.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, can infect both phagocytic and non-phagocytic cells. T. cruzi gp82 and gp90 are cell surface proteins belonging to Group II trans-sialidases known to be involved in host cell binding and invasion. Phosphatidylinositol kinases (PIK) are lipid kinases that phosphorylate phospholipids in their substrates or in themselves, regulating important cellular functions such as metabolism, cell cycle and survival. Vps34, a class III PIK, regulates autophagy, trimeric G-protein signaling, and the mTOR (mammalian Target of Rapamycin) nutrient-sensing pathway. The mammalian autophagy gene Beclin1 interacts to Vps34 forming Beclin 1-Vps34 complexes involved in autophagy and protein sorting. In T. cruzi epimastigotes, (a non-infective replicative form), TcVps34 has been related to morphological and functional changes associated to vesicular trafficking, osmoregulation and receptor-mediated endocytosis. We aimed to characterize the role of TcVps34 during invasion of HeLa cells by metacyclic (MT) forms. MTs overexpressing TcVps34 showed lower invasion rates compared to controls, whilst exhibiting a significant decrease in gp82 expression in the parasite surface. In addition, we showed that T. cruzi Beclin (TcBeclin1) colocalizes with TcVps34 in epimastigotes, thus suggesting the formation of complexes that may play conserved cellular roles already described for other eukaryotes.
Collapse
Affiliation(s)
- Carlos Alcides Nájera
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mercedes Soares-Silva
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Y Maeda
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Wanderson Duarte DaRocha
- Laboratório de Genômica Funcional de Parasitos, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Isabela Meneghelli
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Clara Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Ferreira Batista
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Claudio Vieira Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cristina M Orikaza
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Viviane Grazielle Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Castanheira Bartholomeu
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diana Bahia
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Guo E, Yuan H, Li R, Yang J, Liu S, Liu A, Jiang X. Calcitriol ameliorates the progression of hepatic fibrosis through autophagy-related gene 16-like 1-mediated autophagy. Am J Med Sci 2024; 367:382-396. [PMID: 38431191 DOI: 10.1016/j.amjms.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/23/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Calcitriol has the potential to counteract fibrotic diseases beyond its classical action of maintaining calcium and bone metabolism; however, its functional mechanism remains unknown. Autophagy-related gene 16-like 1 (Atg16l1) is one of the genes related to autophagy and is involved in protecting against fibrotic diseases. The present study aimed to explore the contribution of autophagy to the inhibition of calcitriol-induced hepatic fibrosis, as well as its potential molecular mechanism. METHODS Carbon tetrachloride (Ccl4)-treated mice were established as hepatic fibrosis models and received calcitriol treatment for 6 weeks. Quantification of Sirius red staining and measurement of key fibrotic markers (collagen-1 and α-SMA) was performed to detect hepatic fibrosis. Chloroquine (CQ) treatment was used to observe autophagic flux, and 3-methyladenine (3-MA) was used to inhibit autophagy. Furthermore, the effects of calcitriol on transforming growth factor β1 (TGFβ1)-stimulated primary hepatic stellate cells (HSCs) were detected. Downregulation of Atg16l1 or vitamin D receptor (VDR) in LX-2 cells was used to explore the mechanism of action of calcitriol in fibrosis and autophagy. Additionally, the electrophoretic mobility shift assay (EMSA) was used to investigate the interactions between VDR and ATG16L1. RESULTS Calcitriol increased the expression of VDR and ATG16L1, enhanced autophagy and attenuated hepatic fibrosis. 3-MA treatment and VDR silencing abolished the protective effects of calcitriol against fibrosis. Calcitriol-induced anti-fibrosis effects were blocked by ATG16L1 suppression. Furthermore, VDR bound to the ATG16L1 promoter and downregulation of VDR decreased the expression of ATG16L1 in LX-2 cells. CONCLUSION Calcitriol mitigates hepatic fibrosis partly through ATG16L1-mediated autophagy.
Collapse
Affiliation(s)
- Enshuang Guo
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huixing Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Renlong Li
- Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Southern Medical University, Guangzhou 510515, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenpei Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiaojing Jiang
- Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
George MY, Dabour MS, Rashad E, Zordoky BN. Empagliflozin Alleviates Carfilzomib-Induced Cardiotoxicity in Mice by Modulating Oxidative Stress, Inflammatory Response, Endoplasmic Reticulum Stress, and Autophagy. Antioxidants (Basel) 2024; 13:671. [PMID: 38929110 PMCID: PMC11200801 DOI: 10.3390/antiox13060671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Carfilzomib is an irreversible proteasome inhibitor used for multiple myeloma patients. However, carfilzomib treatment is associated with cardiovascular complications. Empagliflozin, an Sodium Glucose Co-transporter 2 inhibitor (SGLT-2) inhibitor, is an oral antidiabetic drug with proven antioxidant and anti-inflammatory properties. The aim of the present study was to determine the cardioprotective effects of empagliflozin against carfilzomib-induced cardiotoxicity. C57BL/6 mice were randomly divided into four groups: control, empagliflozin, carfilzomib, and carfilzomib + empagliflozin. Empagliflozin prevented carfilzomib-induced cardiotoxicity by ameliorating histological alterations, CK-MB, and troponin-I. Moreover, it inhibited carfilzomib-induced oxidative damage and inflammation via its action on catalase activity, reduced glutathione levels and superoxide dismutase activity, and reduced nuclear factor-κB (p65) and cytokine levels. Mechanistically, empagliflozin abrogated endoplasmic reticulum stress induced by carfilzomib, as evidenced by the effect on the Glucose Regulated Protein-78 (GRP-78)/Activating Transcription Factor 6 (ATF6)/C/EBP homologous protein (CHOP) axis. Intriguingly, carfilzomib significantly induced autophagy, an effect that was further enhanced by empagliflozin, evidenced by increased LC3B and beclin-1 mRNA expression and reduced p62 expression. The effect of empagliflozin on apoptosis was confirmed by reduced expression of active caspase-3. Importantly, empagliflozin did not alter the cytotoxic effect of carfilzomib on human U266B1 multiple myeloma cells. our findings suggest that empagliflozin may provide a new therapeutic strategy to mitigate carfilzomib-induced cardiotoxicity in multiple myeloma patients.
Collapse
Affiliation(s)
- Mina Y. George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.S.D.); (B.N.Z.)
| | - Mohamed S. Dabour
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.S.D.); (B.N.Z.)
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Eman Rashad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.S.D.); (B.N.Z.)
| |
Collapse
|
12
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
13
|
Florance I, Cordani M, Pashootan P, Moosavi MA, Zarrabi A, Chandrasekaran N. The impact of nanomaterials on autophagy across health and disease conditions. Cell Mol Life Sci 2024; 81:184. [PMID: 38630152 PMCID: PMC11024050 DOI: 10.1007/s00018-024-05199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
14
|
Usta A, Yüksek V, Çetin S, Dede S. Lycopene prevents cell death in NRK-52E cells by inhibition of high glucose-activated DNA damage and apoptotic, autophagic, and necrotic pathways. J Biochem Mol Toxicol 2024; 38:e23678. [PMID: 38444079 DOI: 10.1002/jbt.23678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/13/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
This study aims to investigate the effects of lycopene on apoptotic, autophagic, and necrotic pathways, oxidative status, and DNA damage in diabetic nephropathy at the molecular level. The sample of the study includes seven groups: lycopene (L), high glucose (G), high glucose + lycopene (GL), and control (C) groups tested at 12 and 24 h. The expression levels of genes in oxidative, apoptotic, autophagic, and necrotic cell death pathways are determined by reverse transcription-quantitative polymerase chain reaction analysis. The comet assay method is used for the analysis of DNA damage. It is observed that adding lycopene to high glucose for protective purposes reduces the expression of genes related to apoptosis, autophagy, and necrosis, as well as the DNA damage index, compared to cells given high glucose alone. Lycopene can be a safe and effective alternative agent.
Collapse
Affiliation(s)
- Ayşe Usta
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| | - Veysel Yüksek
- Department of Medical Laboratory Technician, Ozalp Regional High School, Van Yuzuncu Yil University, Van, Turkey
| | - Sedat Çetin
- Department of Veterinary Medicine, Vocational School of Health Services, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Semiha Dede
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
15
|
Yan Z, Xing Z, Xue T, Zhao J, Li G, Xu L, Sun Q. Insulin-like growth factor-1 in myocardial ischemia-reperfusion injury: A review. Medicine (Baltimore) 2024; 103:e37279. [PMID: 38428899 PMCID: PMC10906579 DOI: 10.1097/md.0000000000037279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a severe damage inflicted on the ischemic myocardium when blood flow is restored, and it commonly occurs in a wide range of cardiovascular diseases. Presently, no effective clinical treatment exists for MIRI. Accumulating evidence indicates that insulin-like growth factor-1 (IGF-1) plays a role in the intricate chain of cardiovascular events, in addition to its well-recognized growth-promoting and metabolic effects. IGF-1, a member of the insulin family, exhibits a broad spectrum of protective effects against ischemia/reperfusion injury in various tissues, especially the myocardium. In particular, earlier research has demonstrated that IGF-1 reduces cellular oxidative stress, improves mitochondrial function, interacts with noncoding RNAs, and activates cardiac downstream protective genes and protective signaling channels. This review aimed to summarize the role of IGF-1 in MIRI and elucidate its related mechanisms of action. In addition, IGF-1-related interventions for MIRI, such as ischemic preconditioning and post-conditioning, were discussed. The purpose of this review was to provide evidence supporting the activation of IGF-1 in MIRI and advocate its use as a therapeutic target.
Collapse
Affiliation(s)
- Zhenrong Yan
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Ziyang Xing
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Tingyun Xue
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Jiaye Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Guangmei Li
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Liwenjing Xu
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Qiyu Sun
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| |
Collapse
|
16
|
Mathur A, Ritu, Chandra P, Das A. Autophagy: a necessary evil in cancer and inflammation. 3 Biotech 2024; 14:87. [PMID: 38390576 PMCID: PMC10879063 DOI: 10.1007/s13205-023-03864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/21/2023] [Indexed: 02/24/2024] Open
Abstract
Autophagy, a highly regulated cellular process, assumes a dual role in the context of cancer. On the one hand, it functions as a crucial homeostatic pathway, responsible for degrading malfunctioning molecules and organelles, thereby maintaining cellular health. On the other hand, its involvement in cancer development and regression is multifaceted, contingent upon a myriad of factors. This review meticulously examines the intricacies of autophagy, from its molecular machinery orchestrated by Autophagy-Related Genes (ATG) initially discovered in yeast to the various modes of autophagy operative within cells. Beyond its foundational role in cellular maintenance, autophagy reveals context-specific functions in processes like angiogenesis and inflammation. Our analysis delves into how autophagy-related factors directly impact inflammation, underscoring their profound implications for cancer dynamics. Additionally, we extend our inquiry to explore autophagy's associations with cardiovascular conditions, neurodegenerative disorders, and autoimmune diseases, illuminating the broader medical relevance of this process. Furthermore, this review elucidates how autophagy contributes to sustaining hallmark cancer features, including stem cell maintenance, proliferation, angiogenesis, metastasis, and metabolic reprogramming. Autophagy emerges as a pivotal process that necessitates careful consideration in cancer treatment strategies. To this end, we investigate innovative approaches, ranging from enzyme-based therapies to MTOR inhibitors, lysosomal blockers, and nanoparticle-enabled interventions, all aimed at optimizing cancer treatment outcomes by targeting autophagy pathways. In summary, this comprehensive review provides a nuanced perspective on the intricate and context-dependent role of autophagy in cancer biology. Our exploration not only deepens our understanding of this fundamental process but also highlights its potential as a therapeutic target. By unraveling the complex interplay between autophagy and cancer, we pave the way for more precise and effective cancer treatments, promising better outcomes for patients.
Collapse
Affiliation(s)
- Amit Mathur
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| |
Collapse
|
17
|
Liao D, Wei S, Hu J. Inhibition of miR-542-3p augments autophagy to promote diabetic corneal wound healing. EYE AND VISION (LONDON, ENGLAND) 2024; 11:3. [PMID: 38167306 PMCID: PMC10763460 DOI: 10.1186/s40662-023-00370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Autophagy has recently been shown to be critical for protecting peripheral nerve regeneration. This study explored the impact of miR-542-3p on diabetic corneal nerve regeneration and epithelial healing through the regulation of autophagy. METHODS A type 1 diabetes model was established in male mice through streptozotocin administration. Immunofluorescence staining of β-Tubulin III and sodium fluorescein staining were performed to observe corneal nerve fiber density and corneal epithelial healing, respectively. Western blotting, immunofluorescence and transmission electron microscopy were used to determine autophagy levels. Subconjunctival injection of RAPA and 3-MA altered autophagy levels; with them, we evaluated the role of autophagy in diabetic keratopathy. miRNA sequencing and bioinformatics analysis were performed to identify miRNA-mRNA networks with potential autophagy-regulating roles, and miR-542-3p was measured by quantitative real-time polymerase chain reaction (qRT-PCR). miR-542-3p antagomir was injected subconjunctivally to assess the role in diabetic corneal neuropathy. RESULTS Our data suggest that autophagy is suppressed in the diabetic corneal nerve and that activation of autophagy promotes diabetic corneal wound healing. We identified a potential autophagy-regulating miRNA-mRNA network in the diabetic trigeminal ganglion, in which miR-542-3p expression was significantly upregulated. Inhibition of miR-542-3p significantly enhanced the level of autophagy in trigeminal ganglion by upregulating ATG4D expression, thereby accelerating diabetic corneal nerve regeneration and epithelial healing. CONCLUSIONS Dysregulated autophagy is an important contributor to delayed diabetic corneal injury healing. Inhibiting miR-542-3p promotes diabetic corneal nerve regeneration and epithelial healing through autophagy activation by ATG4D.
Collapse
Affiliation(s)
- Danling Liao
- Department of Ophthalmology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350005, China
| | - Shijia Wei
- Department of Ophthalmology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350005, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350005, China.
| |
Collapse
|
18
|
Das R, Maity S, Das P, Kamal IM, Chakrabarti S, Chakrabarti O. CMT2A-linked MFN2 mutation, T206I promotes mitochondrial hyperfusion and predisposes cells towards mitophagy. Mitochondrion 2024; 74:101825. [PMID: 38092249 DOI: 10.1016/j.mito.2023.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Mutations in Mitofusin2 (MFN2) associated with the pathology of the debilitating neuropathy Charcot-Marie-Tooth type 2A (CMT2A) are known to alter mitochondrial morphology. Previously, such mutations have been shown to elicit two diametrically opposite phenotypes - while some mutations have been causally linked to enhanced mitochondrial fragmentation, others have been shown to induce hyperfusion. Our study identifies one such MFN2 mutant, T206I that causes mitochondrial hyperfusion. Cells expressing this MFN2 mutant have elongated and interconnected mitochondria. T206I-MFN2 mutation in the GTPase domain increases MFN2 stability and renders cells susceptible to stress. We show that cells expressing T206I-MFN2 have a higher predisposition towards mitophagy under conditions of serum starvation. We also detect increased DRP1 recruitment onto the outer mitochondrial membrane, though the total DRP1 protein level remains unchanged. Here we have characterized a lesser studied CMT2A-linked MFN2 mutant to show that its presence affects mitochondrial morphology and homeostasis.
Collapse
Affiliation(s)
- Rajdeep Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Palamou Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Izaz Monir Kamal
- Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| |
Collapse
|
19
|
Iserhard R, Pilar EFS, de Oliveira FH, Callegari-Jacques SM, Ferst P, Visioli F, Lopes AB, da Costa Lopez PL, Filippi-Chiela EC. Autophagy and nuclear morphometry are associated with histopathologic features in esophageal squamous cell carcinoma. J Mol Med (Berl) 2024; 102:39-52. [PMID: 37878028 DOI: 10.1007/s00109-023-02387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
Less than 15% of patients with esophageal squamous cell carcinoma (ESCC) survive 5 years after diagnosis. A better understanding of the biology of these tumors and the development of clinical biomarkers is needed. Autophagy is a physiological mechanism involved in the turnover of cellular components that plays a key role in cancer. This study evaluated the differential levels of three key regulators of autophagy (SQSTM1, MAP1LC3B, and BECN1) in patients with ESCC, associating autophagy with histopathologic features, including the grade of differentiation, mitotic rate, inflammation score, and the intensity of tumor-infiltrating lymphocytes. Nuclear morphometry of the tumor parenchyma was also assessed, associating it with autophagy and histopathology. All three markers significantly increased in patients with ESCC compared to the control group. Based on the mean expression of each protein in the control group, 57% of patients with ESCC had high levels of all three markers compared to control patients (14%). The most frequent profiles found in ESCC were BECNhigh/MAP1LC3high and BECNhigh/SQSTM1high. According to the TCGA database, we found that the main autophagy genes were upregulated in ESCC. Moreover, high levels of autophagy markers were associated with a poor prognosis. Considering nuclear morphometry, ESCC samples showed a significant reduction in nuclear area, which was strongly negatively correlated with autophagy. Finally, the percentage of normal nuclei was associated with tumor differentiation, while poorly differentiated tumors showed lower SQSTM1 levels. ESCC progression may involve increased autophagy and changes in nuclear structure, associated with clinically relevant histopathological features. KEY MESSAGES: Autophagy markers are co-increased in primary ESCC. Autophagy negatively correlates with nuclear morphometry in ESCC parenchyma. Autophagy and nuclear morphometry are associated with histopathological features. Autophagy is increased in ESCC-TCGA database and associated with poor prognosis.
Collapse
Affiliation(s)
- Ricardo Iserhard
- Graduate Program in Gastroenterology and Hepatology, Faculty of Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | - Paula Ferst
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Dentistry, School of Dental Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antonio Barros Lopes
- Graduate Program in Gastroenterology and Hepatology, Faculty of Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Luciana da Costa Lopez
- Graduate Program in Gastroenterology and Hepatology, Faculty of Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo Cremonese Filippi-Chiela
- Graduate Program in Gastroenterology and Hepatology, Faculty of Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
- Center for Biotechnology, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
- Department of Morphological Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
- Hospital de Clínicas de Porto Alegre - Experimental Research Center, Rua Ramiro Barcelos, Porto Alegre, RS, 2350, 90035-903, Brazil.
| |
Collapse
|
20
|
Danish F, Qureshi MA, Mirza T, Amin W, Sufiyan S, Naeem S, Arshad F, Mughal N. Investigating the Association between the Autophagy Markers LC3B, SQSTM1/p62, and DRAM and Autophagy-Related Genes in Glioma. Int J Mol Sci 2024; 25:572. [PMID: 38203743 PMCID: PMC10779014 DOI: 10.3390/ijms25010572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
High-grade gliomas are extremely fatal tumors, marked by severe hypoxia and therapeutic resistance. Autophagy is a cellular degradative process that can be activated by hypoxia, ultimately resulting in tumor advancement and chemo-resistance. Our study aimed to examine the link between autophagy markers' expression in low-grade gliomas (LGGs) and high-grade gliomas (HGGs). In 39 glioma cases, we assessed the protein expression of autophagy markers LC3B, SQSTM1/p62, and DRAM by immunohistochemistry (IHC) and the mRNA expression of the autophagy genes PTEN, PI3K, AKT, mTOR, ULK1, ULK2, UVRAG, Beclin 1, and VPS34 using RT-qPCR. LC3B, SQSTM1/p62, and DRAM expression were positive in 64.1%, 51.3%, and 28.2% of glioma cases, respectively. The expression of LC3B and SQSTM1/p62 was notably higher in HGGs compared to LGGs. VPS34 exhibited a significant differential expression, displaying increased fold change in HGGs compared to LGGs. Additionally, it exhibited robust positive associations with Beclin1 (rs = 0.768), UVRAG (rs = 0.802), and ULK2 (rs = 0.786) in HGGs. This underscores a potential association between autophagy and the progression of gliomas. We provide preliminary data for the functional analysis of autophagy using a cell culture model and to identify potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Farheen Danish
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi 75300, Pakistan; (F.D.); (F.A.)
| | - Muhammad Asif Qureshi
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi 75300, Pakistan; (F.D.); (F.A.)
| | - Talat Mirza
- Departments of Research & Molecular Medicine, Ziauddin University, Karachi 75600, Pakistan;
| | - Wajiha Amin
- Departments of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan; (W.A.); (S.S.); (S.N.)
| | - Sufiyan Sufiyan
- Departments of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan; (W.A.); (S.S.); (S.N.)
| | - Sana Naeem
- Departments of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan; (W.A.); (S.S.); (S.N.)
| | - Fatima Arshad
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi 75300, Pakistan; (F.D.); (F.A.)
| | - Nouman Mughal
- Departments of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan; (W.A.); (S.S.); (S.N.)
| |
Collapse
|
21
|
Chen T, Zhang M, Ding Z, Hu J, Yang J, He L, Jia J, Yang J, Yang J, Song X, Chen P, Zhai Z, Huang J, Wang Y, Qin H. The Drosophila NPY-like system protects against chronic stress-induced learning deficit by preventing the disruption of autophagic flux. Proc Natl Acad Sci U S A 2023; 120:e2307632120. [PMID: 38079543 PMCID: PMC10743384 DOI: 10.1073/pnas.2307632120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic stress may induce learning and memory deficits that are associated with a depression-like state in Drosophila melanogaster. The molecular and neural mechanisms underlying the etiology of chronic stress-induced learning deficit (CSLD) remain elusive. Here, we show that the autophagy-lysosomal pathway, a conserved cellular signaling mechanism, is associated with chronic stress in Drosophila, as indicated by time-series transcriptome profiling. Our findings demonstrate that chronic stress induces the disruption of autophagic flux, and chronic disruption of autophagic flux could lead to a learning deficit. Remarkably, preventing the disruption of autophagic flux by up-regulating the basal autophagy level is sufficient to protect against CSLD. Consistent with the essential role of the dopaminergic system in modulating susceptibility to CSLD, dopamine neuronal activity is also indispensable for chronic stress to induce the disruption of autophagic flux. By screening knockout mutants, we found that neuropeptide F, the Drosophila homolog of neuropeptide Y, is necessary for normal autophagic flux and promotes resilience to CSLD. Moreover, neuropeptide F signaling during chronic stress treatment promotes resilience to CSLD by preventing the disruption of autophagic flux. Importantly, neuropeptide F receptor activity in dopamine neurons also promotes resilience to CSLD. Together, our data elucidate a mechanism by which stress-induced excessive dopaminergic activity precipitates the disruption of autophagic flux, and chronic disruption of autophagic flux leads to CSLD, while inhibitory neuropeptide F signaling to dopamine neurons promotes resilience to CSLD by preventing the disruption of autophagic flux.
Collapse
Affiliation(s)
- Tianli Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Mengyu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Zhaowen Ding
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Jiao Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Jie Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Lei He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Jia Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Jingjing Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Junfei Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Xiaoxu Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Peng Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming650500, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha410081, Hunan, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha410082, Hunan, China
| | - Yirong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| | - Hongtao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha410082, China
| |
Collapse
|
22
|
Li J, Wang H. Autophagy-dependent ferroptosis in infectious disease. J Transl Int Med 2023; 11:355-362. [PMID: 38130644 PMCID: PMC10732494 DOI: 10.2478/jtim-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Autophagy is the initial defense response of the host against pathogens. Autophagy can be either non-selective or selective. It selectively targets the degradation of autophagic substrates through the sorting and transportation of autophagic receptor proteins. However, excessive autophagy activity will trigger cell death especially ferroptosis, which was characterized by the accumulation of lipid peroxide and free iron. Several certain types of selective autophagy degrade antioxidant systems and ferritin. Here, we summarized the latest researches of autophagy in infection and discuss the regulatory mechanisms and signaling pathways of autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Jiarou Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin150086, Heilongjiang Province, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin150086, Heilongjiang Province, China
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin150086, Heilongjiang Province, China
| |
Collapse
|
23
|
Bandyopadhyay A, Ghosh SK. Role of autophagy in stress and drug-responsive cell death in Entamoeba histolytica and its cross-talk with apoptosis-inducing factor. Mol Biochem Parasitol 2023; 256:111593. [PMID: 37708914 DOI: 10.1016/j.molbiopara.2023.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Cell death in unicellular protozoan parasite Entamoeba histolytica is not yet reported though it displays several features of autophagic cell death. Autophagic cell death was reported to take place in ancient protozoans under several stresses. Here we report the occurrence of autophagic cell death in the Entamoeba histolytica trophozoites under oxidative stress as well as by the treatment with metronidazole, the most-widely-used drug for amoebiasis treatment and was shown to generate oxidative stress in the trophozoites. The autophagic flux increases during nutrient deprivation and metronidazole treatment and decreases upon oxidative stress. During oxidative stress the autophagy leads to nucleophagy that is ultimately destined to be digested within the lysosomal chamber. The formation of nucleophagosome depends on the apoptosis-inducing factor (AIF) that translocates to the nucleus from cytoplasm upon oxidative stress. It was experimentally proved that ATG8 (Autophagy-related protein 8) binds with the AIF in the nucleus of the trophozoites and helps in ATG8 recruitment and autophagy initiation overall suggesting that oxidative stress-driven AIF translocation to nucleus results in binding with ATG8 and initiates nucleophagy leading to cell death.
Collapse
Affiliation(s)
| | - Sudip Kumar Ghosh
- Department of Biotechnology, IIT Kharagpur, West Bengal 721302, India.
| |
Collapse
|
24
|
McCormick JJ, Meade RD, King KE, Notley SR, Akerman AP, Sigal RJ, Kenny GP. Brief ambient cooling preserves autophagy in peripheral blood mononuclear cells from older adults during 9 h of heat exposure. J Appl Physiol (1985) 2023; 135:969-976. [PMID: 37707866 DOI: 10.1152/japplphysiol.00537.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023] Open
Abstract
Heat waves can cause dangerous elevations in body temperature that can compromise cellular function and increase the risk of heat stroke and major cardiovascular events. Visiting a cooling center or other air-conditioned location is commonly recommended by health agencies to protect heat-vulnerable older persons but the associated cellular effects remain underexplored. We evaluated cellular stress responses in peripheral blood mononuclear cells (PBMC) from 19 older adults [71 (SD 2) yr; 9 females] before and after a 9-h heat exposure [40.3°C and 9.3% relative humidity (RH)], with participants moved to a cool room (∼23°C) for hours 5 and 6 (cooling group). Responses were compared with 17 older adults [72 (4) yr; 7 females] who remained in the heat for the entire 9 h (control group). Changes in proteins associated with autophagy, apoptotic signaling, acute inflammation, and the heat shock response (HSR) were assessed via Western blot. Although both groups experienced similar elevations in physiological strain before the cooling center intervention, brief cooling resulted in stark albeit transient reductions in core temperature and heart rate. At end-exposure, autophagy proteins LC3-II and p62 were elevated 1.9-fold [95% CI: 1.2, 2.8] and 2.3-fold [1.4, 3.8], respectively, in the control group relative to cooling group. This was paired with a 2.8-fold [1.6, 4.7] greater rise in apoptotic protein cleaved-caspase-3 in the control group compared with the cooling group. Our findings indicate that 2 h of ambient cooling midway through a 9-h simulated heat wave may preserve autophagy and mitigate heat-induced cellular stress in older adults.NEW & NOTEWORTHY Heat waves can lead to dangerous elevations in body temperature, increasing the risk of life-threatening health conditions. Visiting a cooling center or other air-conditioned location is commonly recommended to protect heat-vulnerable older persons, although the effects on the cellular stress response remain unknown. We found that 2 h of ambient cooling midway through a 9 h simulated heat wave preserves autophagy, a vital cellular survival mechanism, and mitigates accompanying pathways of cellular stress in older adults.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
26
|
Chen K, Garcia Padilla C, Kiselyov K, Kozai TDY. Cell-specific alterations in autophagy-lysosomal activity near the chronically implanted microelectrodes. Biomaterials 2023; 302:122316. [PMID: 37738741 PMCID: PMC10897938 DOI: 10.1016/j.biomaterials.2023.122316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/24/2023]
Abstract
Intracortical microelectrodes that can record and stimulate brain activity have become a valuable technique for basic science research and clinical applications. However, long-term implantation of these microelectrodes can lead to progressive neurodegeneration in the surrounding microenvironment, characterized by elevation in disease-associated markers. Dysregulation of autophagy-lysosomal degradation, a major intracellular waste removal process, is considered a key factor in the onset and progression of neurodegenerative diseases. It is plausible that similar dysfunctions in autophagy-lysosomal degradation contribute to tissue degeneration following implantation-induced focal brain injury, ultimately impacting recording performance. To understand how the focal, persistent brain injury caused by long-term microelectrode implantation impairs autophagy-lysosomal pathway, we employed two-photon microscopy and immunohistology. This investigation focused on the spatiotemporal characterization of autophagy-lysosomal activity near the chronically implanted microelectrode. We observed an aberrant accumulation of immature autophagy vesicles near the microelectrode over the chronic implantation period. Additionally, we found deficits in autophagy-lysosomal clearance proximal to the chronic implant, which was associated with an accumulation of autophagy cargo and a reduction in lysosomal protease level during the chronic period. Furthermore, our evidence demonstrates reactive astrocytes have myelin-containing lysosomes near the microelectrode, suggesting its role of myelin engulfment during acute implantation period. Together, this study sheds light on the process of brain tissue degeneration caused by long-term microelectrode implantation, with a specific focus on impaired intracellular waste degradation.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Camila Garcia Padilla
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Limthongkul J, Akkarasereenon K, Yodweerapong T, Songthammawat P, Tong-Ngam P, Tubsuwan A, Kunkaew N, Kanjanasirirat P, Khumpanied T, Wannalo W, Ubol S, Borwornpinyo S, Ploypradith P, Ponpuak M. Novel Potent Autophagy Inhibitor Ka-003 Inhibits Dengue Virus Replication. Viruses 2023; 15:2012. [PMID: 37896789 PMCID: PMC10611120 DOI: 10.3390/v15102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Every year, dengue virus (DENV) affects millions of people. Currently, there are no approved drugs for the treatment of DENV infection. Autophagy is a conserved degradation process that was shown to be induced by DENV infection and required for optimal DENV replication. The modulation of autophagy is, therefore, considered an attractive target to treat DENV infection. This study carried out a high-content image screen analysis using Crispr-Cas9 GFP-LC3 knocked-in HeLa cells of a compound library synthesized from or inspired by natural products and their biocongener precursors to discover novel autophagy inhibitors. The screen identified Ka-003 as the most effective compound for decreasing the number of autophagic vacuoles inside cells upon autophagy induction. Ka-003 could inhibit autophagy in a dose-dependent manner at low micromolar concentrations. More importantly, Ka-003 demonstrated the concentration-dependent inhibition of DENV production in Crispr-Cas9 GFP-LC3 knocked-in THP-1 monocytes. The core structure of Ka-003, which is a methyl cyclohexene derivative, resembles those found in mulberry plants, and could be synthetically prepared in a bioinspired fashion. Taken together, data indicate that Ka-003 hampered autophagy and limited DENV replication. The low cytotoxicity of Ka-003 suggests its therapeutic potential, which warrants further studies for the lead optimization of the compound for dengue treatment.
Collapse
Affiliation(s)
- Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand (S.U.)
| | - Kornkamon Akkarasereenon
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand (P.P.)
| | - Tanpitcha Yodweerapong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand (S.U.)
| | - Poramate Songthammawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand (P.P.)
| | - Pirut Tong-Ngam
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand (A.T.)
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand (A.T.)
| | - Nawapol Kunkaew
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Warawuth Wannalo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand (S.U.)
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Poonsakdi Ploypradith
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand (P.P.)
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand (S.U.)
| |
Collapse
|
28
|
Hsieh DJY, Tsai BCK, Barik P, Shibu MA, Kuo CH, Kuo WW, Lin PY, Shih CY, Lin SZ, Ho TJ, Huang CY. Human adipose-derived stem cells preconditioned with a novel herbal formulation Jing Shi attenuate doxorubicin-induced cardiac damage. Aging (Albany NY) 2023; 15:9167-9181. [PMID: 37708248 PMCID: PMC10522400 DOI: 10.18632/aging.205026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Pathological cardiac hypertrophy is a considerable contributor to global disease burden. Chinese herbal medicine (CHM) has been used to treat cardiovascular diseases since antiquity. Enhancing stem cell-mediated recovery through CHM represents a promising approach for protection against doxorubicin (Dox)-induced cardiac hypertrophy. Herein, we investigated whether human adipose-derived stem cells (hADSCs) preconditioned with novel herbal formulation Jing Si (JS) improved protective ability of stem cells against doxorubicin-induced cardiac damage. The effect of JS on hADSC viability and migration capacity was determined via MTT and migration assays, respectively. Co-culture of hADSC or JS-preconditioned hADSCs with H9c2 cells was analyzed with immunoblot, flow cytometry, TUNEL staining, LC3B staining, F-actin staining, and MitoSOX staining. The in vivo study was performed M-mode echocardiography after the treatment of JS and JS-preconditioned hADSCs by using Sprague Dawley (SD) rats. Our results indicated that JS at doses below 100 μg/mL had less cytotoxicity in hADSC and JS-preconditioned hADSCs exhibited better migration. Our results also revealed that DOX enhanced apoptosis, cardiac hypertrophy, and mitochondrial reactive oxygen species in DOX-challenged H9c2 cells, while H9c2 cells co-cultured with JS-preconditioned hADSCs alleviated these effects. It also enhanced the expression of autophagy marker LC3B, mTOR and CHIP in DOX-challenged H9c2 cells after co-culture with JS-preconditioned hADSCs. In Dox-challenged rats, the ejection fraction and fractional shortening improved in DOX-challenged SD rats exposed to JS-preconditioned hADSCs. Taken together, our data indicate that JS-preconditioned stem cells exhibit a cardioprotective capacity both in vitro and in vivo, highlighting the value of this therapeutic approach for regenerative therapy.
Collapse
Affiliation(s)
- Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Parthasarathi Barik
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, USA
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | | | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan
| |
Collapse
|
29
|
Wang X, Zhang M, Mao C, Zhang C, Ma W, Tang J, Xiang D, Qi X. Icariin alleviates ferroptosis-related atherosclerosis by promoting autophagy in xo-LDL-induced vascular endothelial cell injury and atherosclerotic mice. Phytother Res 2023; 37:3951-3963. [PMID: 37344941 DOI: 10.1002/ptr.7854] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 06/23/2023]
Abstract
Vascular endothelial cells (VECs) are located between the blood plasma and the vascular tissue, and the ferroptosis (iron-dependent programmed cell death) of VECs can lead to a range of cardiovascular diseases. Icariin is the main active ingredient of Epimedium brevicornum Maxim., which can improve endothelial cell dysfunction. In the present study, the protective effects of icariin on oxidised low-density lipoprotein (ox-LDL)-treated VECs and high-fat diet-fed Apolipoprotein E-deficient mice were investigated. Inflammatory fibrosis in tissues and inflammatory factors in serum and cell supernatants were detected, and mitochondrial membrane potential and the expression levels of ferroptosis-associated proteins were also detected. The results revealed that icariin reduced the endothelial atherosclerotic plaque area and collagen fibres in aortic sinus tissue, and increased the viability and mitochondrial membrane potential, whereas it reduced the reactive oxygen species levels of VECs. The nucleation of transcription factor EB (TFEB) and subsequent autophagy were negatively associated with ferroptosis in endothelial cells, and the more prominent the autophagy, the lower the levels of ferroptosis. Furthermore, by co-treating the cells with icariin and the two autophagy inhibitors, Bafilomycin A1 (blocking autophagosome and lysosome fusion) and 3-methyladenine (blocking autophagosome formation), respectively, the promoting effects of icariin on autophagy were found to be mediated through the process of autophagosome-lysosome fusion. In in vivo experiments, icariin reduced ferroptosis, alleviated atherosclerotic lesions and increased the rate of TFEB nucleation. Additionally, it was found that ARG304, THR308 and GLN311 were the optimal binding sites for the interaction between icariin and TFEB. Taken together, these results suggest that the fusion of autophagosomes and lysosomes promoted by icarrin enhances autophagy and thus reduces ferroptosis. Therefore, icariin may be a potential candidate for the prevention of ferroptosis of VECs and, thus, for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xindong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng Zhang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenhan Mao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengbo Zhang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenqi Ma
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiahui Tang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongyang Xiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoxia Qi
- Science and Technology Department, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
30
|
Minoretti P, García Martín Á, Gómez Serrano M, Santiago Sáez A, Liaño Riera M, Emanuele E. Evaluating the Serum Levels of Beclin-1 and Mammalian/Mechanistic Target of Rapamycin (mTOR) in Three Different Professional Categories. Cureus 2023; 15:e45335. [PMID: 37849603 PMCID: PMC10577503 DOI: 10.7759/cureus.45335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The possible associations between occupational factors and autophagy - a catabolic process that is evolutionarily conserved and serves as a vital cornerstone in maintaining cellular balance - remain largely unexplored. OBJECTIVES We assessed serum levels of beclin-1, a principal effector of autophagy, and the mammalian/mechanistic target of rapamycin (mTOR), a protein recognized for its part in suppressing autophagy, within a group of healthy individuals hailing from three different professional fields, each characterized by its unique working conditions. METHODS A total of 60 men were recruited from three distinct occupational categories: airline pilots, construction laborers, and fitness trainers. Each group consisted of 20 subjects who were selected during routine occupational health appointments. Serum levels of beclin-1 and mTOR were measured using commercially available immunoassays and compared among the three categories. RESULTS Fitness instructors had the highest concentration of beclin-1 (3.1 ± 0.9 ng/mL). Construction workers followed with a mean of 2.4 ± 0.4 ng/mL, while airline pilots had the lowest levels at 1.9 ± 0.5 ng/mL (one-way analysis of variance, P < 0.001). In terms of mTOR levels, construction workers had the highest concentration (5.9 ± 1.9 ng/mL), followed by airline pilots (4.4 ± 1.7 ng/mL). Fitness instructors, on the other hand, had the lowest mTOR levels (3.5 ± 1.2 ng/mL; one-way analysis of variance, P < 0.001). CONCLUSIONS Serum levels of autophagy biomarkers can vary among healthy individuals based on their professional roles. Considering the crucial function autophagy serves in both health and disease, further investigations are crucial to deepen our comprehension of the potential implications of autophagy in the field of occupational medicine.
Collapse
Affiliation(s)
| | - Ángel García Martín
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Manuel Gómez Serrano
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Andrés Santiago Sáez
- Legal Medicine, Hospital Clinico San Carlos, Madrid, ESP
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Miryam Liaño Riera
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | | |
Collapse
|
31
|
Liu SQ, Yang YP, Hussain N, Jian YQ, Li B, Qiu YX, Yu HH, Wang HZ, Wang W. Dibenzocyclooctadiene lignans from the family Schisandraceae: A review of phytochemistry, structure-activity relationship, and hepatoprotective effects. Pharmacol Res 2023; 195:106872. [PMID: 37516152 DOI: 10.1016/j.phrs.2023.106872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Liver injury is a common pathological process characterized by massive degeneration and abnormal death of liver cells. With increase in dead cells and necrosis, liver injury eventually leads to nonalcoholic fatty liver disease (NAFLD), hepatic fibrosis, and even hepatocellular carcinoma (HCC). Consequently, it is necessary to treat liver injury and to prevent its progression. The drug Bicylol is widely employed in China to treat chronic hepatitis B virus (HBV) and has therapeutic potential for liver injury. It is the derivative of dibenzocyclooctadiene lignans extracted from Schisandra chinensis (SC). The Schisandraceae family is a rich source of dibenzocyclooctadiene lignans, which possesses potential liver protective activity. This study aimed to comprehensively summarize the phytochemistry, structure-activity relationship and molecular mechanisms underlying the liver protective activities of dibenzocyclooctadiene lignans from the Schisandraceae family. Here, we had discussed the analysis of absorption or permeation properties of 358 compounds based on Lipinski's rule of five. So far, 358 dibenzocyclooctadiene lignans have been reported, with 37 of them exhibited hepatoprotective effects. The molecular mechanism of the active compounds mainly involves antioxidative stress, anti-inflammation and autophagy through Kelch-like ECH-associating protein 1/nuclear factor erythroid 2 related factor 2/antioxidant response element (Keap1/Nrf2/ARE), nuclear factor kappa B (NF-кB), and transforming growth factor β (TGF-β)/Smad 2/3 signaling pathways. This review is expected to provide scientific ideas for future research related to developing and utilizing the dibenzocyclooctadiene lignans from Schisandraceae family.
Collapse
Affiliation(s)
- Shi-Qi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yu-Pei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Nusrat Hussain
- Department of Chemistry, University of Baltistan Skardu, Skardu 16100, Pakistan
| | - Yu-Qing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yi-Xing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hui-Zhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
32
|
Donlon TA, Morris BJ, Chen R, Lim E, Morgen EK, Fortney K, Shah N, Masaki KH, Willcox BJ. Proteomic basis of mortality resilience mediated by FOXO3 longevity genotype. GeroScience 2023; 45:2303-2324. [PMID: 36881352 PMCID: PMC10651822 DOI: 10.1007/s11357-023-00740-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
FOXO3 is a ubiquitous transcription factor expressed in response to cellular stress caused by nutrient deprivation, inflammatory cytokines, reactive oxygen species, radiation, hypoxia, and other factors. We showed previously that the association of inherited FOXO3 variants with longevity was the result of partial protection against mortality risk posed by aging-related life-long stressors, particularly cardiometabolic disease. We then referred to the longevity-associated genotypes as conferring "mortality resilience." Serum proteins whose levels change with aging and are associated with mortality risk may be considered as "stress proteins." They may serve as indirect measures of life-long stress. Our aims were to (1) identify stress proteins that increase with aging and are associated with an increased risk of mortality, and (2) to determine if FOXO3 longevity/resilience genotype dampens the expected increase in mortality risk they pose. A total of 4500 serum protein aptamers were quantified using the Somalogic SomaScan proteomics platform in the current study of 975 men aged 71-83 years. Stress proteins associated with mortality were identified. We then used age-adjusted multivariable Cox models to investigate the interaction of stress protein with FOXO3 longevity-associated rs12212067 genotypes. For all the analyses, the p values were corrected for multiple comparisons by false discovery rate. This led to the identification of 44 stress proteins influencing the association of FOXO3 genotype with reduced mortality. Biological pathways were identified for these proteins. Our results suggest that the FOXO3 resilience genotype functions by reducing mortality in pathways related to innate immunity, bone morphogenetic protein signaling, leukocyte migration, and growth factor response.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian J Morris
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA.
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | - Randi Chen
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
| | - Eunjung Lim
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eric K Morgen
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kristen Fortney
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Naisha Shah
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kamal H Masaki
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
33
|
Manganelli V, Misasi R, Riitano G, Capozzi A, Mattei V, Caglar TR, Ialongo D, Madia VN, Messore A, Costi R, Di Santo R, Sorice M, Garofalo T. Role of a Novel Heparanase Inhibitor on the Balance between Apoptosis and Autophagy in U87 Human Glioblastoma Cells. Cells 2023; 12:1891. [PMID: 37508554 PMCID: PMC10378526 DOI: 10.3390/cells12141891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Heparanase (HPSE) is an endo-β-glucuronidase that cleaves heparan sulfate side chains, leading to the disassembly of the extracellular matrix, facilitating cell invasion and metastasis dissemination. In this research, we investigated the role of a new HPSE inhibitor, RDS 3337, in the regulation of the autophagic process and the balance between apoptosis and autophagy in U87 glioblastoma cells. METHODS After treatment with RDS 3337, cell lysates were analyzed for autophagy and apoptosis-related proteins by Western blot. RESULTS We observed, firstly, that LC3II expression increased in U87 cells incubated with RDS 3337, together with a significant increase of p62/SQSTM1 levels, indicating that RDS 3337 could act through the inhibition of autophagic-lysosomal flux of LC3-II, thereby leading to accumulation of lipidated LC3-II form. Conversely, the suppression of autophagic flux could activate apoptosis mechanisms, as revealed by the activation of caspase 3, the increased level of cleaved Parp1, and DNA fragmentation. CONCLUSIONS These findings support the notion that HPSE promotes autophagy, providing evidence that RDS 3337 blocks autophagic flux. It indicates a role for HPSE inhibitors in the balance between apoptosis and autophagy in U87 human glioblastoma cells, suggesting a potential role for this new class of compounds in the control of tumor growth progression.
Collapse
Affiliation(s)
- Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy
| | - Tuba Rana Caglar
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| |
Collapse
|
34
|
Karagedik MI, Yuksel U, Kartal B, Ceylan AF, Ogden M, Bakar B. Evaluation of the effectiveness of oxytocin and enalapril in the prevention of epidural fibrosis developed after laminectomy in rats. Injury 2023:110793. [PMID: 37211471 DOI: 10.1016/j.injury.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Except for methylprednisolone, there is no current low-cost and low-side-effect drug/barrier method to prevent epidural fibrosis after spine surgery. However, the use of methylprednisolone has led to substantial controversy because of its serious side effects on wound healing. This study aimed to evaluate the effects of enalapril and oxytocin on preventing the development of epidural fibrosis in a rat laminectomy model. MATERIALS Under sedation anesthesia, T9, T10, and T11 laminectomy was performed on 24 Wistar Albino male rats. The animals were then separated into four groups; Sham group (only laminectomy was performed; n = 6), MP group (laminectomy was performed and 10 mg/kg/day methylprednisolone was administered intraperitoneally (ip) for 14 days; n = 6), ELP group (laminectomy was performed and 0.75 mg/kg/day enalapril was administered ip for 14 days; n = 6), OXT group (laminectomy was performed and 160 µg/kg/day oxytocin was administered ip for 14 days; n = 6). Four weeks after the laminectomy, all the rats were euthanised, and the spines were removed for histopathological, immunohistochemical, and biochemical examinations. RESULTS Histopathological examinations revealed that the degree of epidural fibrosis (X2=14.316, p = 0.003), collagen density (X2=16.050, p = 0.001), and fibroblast density (X2=17.500, p = 0.001) was higher in the Sham group and lower in the MP, ELP, and OXT groups. Immunohistochemical examinations showed that collagen type 1 immunoreactivity was higher in the Sham group and lower in the MP, ELP, and OXT groups (F = 54.950, p < 0.001). The highest level of α-smooth muscle actin immunoreactivity was seen in the Sham and OXT groups, and the lowest was in the MP and ELP groups (F = 33.357, p < 0.001). Biochemical analysis revealed that tissue levels of TNF-α, TGF-β, IL-6, CTGF, caspase-3, p-AMPK, pmTOR, and mTOR/pmTOR were higher in the Sham group and lower in MP, ELP, and OXT groups (p < 0.05). The GSH/GSSG levels were lower in the Sham group and higher in the other three groups (X2=21.600, p < 0.001). CONCLUSION The study results showed that enalapril and oxytocin, which are known to have anti-inflammatory, antioxidant, anti-apoptotic, and autophagy-related regenerative properties, could reduce the development of epidural fibrosis after laminectomy in rats.
Collapse
Affiliation(s)
| | - Ulas Yuksel
- Kirikkale University, Faculty of Medicine, Department of Neurosurgery, Kirikkale, Turkey
| | - Bahar Kartal
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Histology and Embriology, Ankara, Turkey
| | - Asli Fahriye Ceylan
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| | - Mustafa Ogden
- Kirikkale University, Faculty of Medicine, Department of Neurosurgery, Kirikkale, Turkey
| | - Bulent Bakar
- Kirikkale University, Faculty of Medicine, Department of Neurosurgery, Kirikkale, Turkey.
| |
Collapse
|
35
|
Aryal S, Bonanno K, Song B, Mani DR, Keshishian H, Carr SA, Sheng M, Dejanovic B. Deep proteomics identifies shared molecular pathway alterations in synapses of patients with schizophrenia and bipolar disorder and mouse model. Cell Rep 2023; 42:112497. [PMID: 37171958 DOI: 10.1016/j.celrep.2023.112497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/10/2023] [Accepted: 04/26/2023] [Indexed: 05/14/2023] Open
Abstract
Synaptic dysfunction is implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BP). We use quantitative mass spectrometry to carry out deep, unbiased proteomic profiling of synapses purified from the dorsolateral prefrontal cortex of 35 cases of SCZ, 35 cases of BP, and 35 controls. Compared with controls, SCZ and BP synapses show substantial and similar proteomic alterations. Network analyses reveal upregulation of proteins associated with autophagy and certain vesicle transport pathways and downregulation of proteins related to synaptic, mitochondrial, and ribosomal function in the synapses of individuals with SCZ or BP. Some of the same pathways are similarly dysregulated in the synaptic proteome of mutant mice deficient in Akap11, a recently discovered shared risk gene for SCZ and BP. Our work provides biological insights into molecular dysfunction at the synapse in SCZ and BP and serves as a resource for understanding the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Sameer Aryal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin Bonanno
- The Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bryan Song
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hasmik Keshishian
- The Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- The Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Borislav Dejanovic
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Kirat D, Alahwany AM, Arisha AH, Abdelkhalek A, Miyasho T. Role of Macroautophagy in Mammalian Male Reproductive Physiology. Cells 2023; 12:cells12091322. [PMID: 37174722 PMCID: PMC10177121 DOI: 10.3390/cells12091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Physiologically, autophagy is an evolutionarily conserved and self-degradative process in cells. Autophagy carries out normal physiological roles throughout mammalian life. Accumulating evidence shows autophagy as a mechanism for cellular growth, development, differentiation, survival, and homeostasis. In male reproductive systems, normal spermatogenesis and steroidogenesis need a balance between degradation and energy supply to preserve cellular metabolic homeostasis. The main process of autophagy includes the formation and maturation of the phagophore, autophagosome, and autolysosome. Autophagy is controlled by a group of autophagy-related genes that form the core machinery of autophagy. Three types of autophagy mechanisms have been discovered in mammalian cells: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy is classified as non-selective or selective. Non-selective macroautophagy randomly engulfs the cytoplasmic components in autophagosomes that are degraded by lysosomal enzymes. While selective macroautophagy precisely identifies and degrades a specific element, current findings have shown the novel functional roles of autophagy in male reproduction. It has been recognized that dysfunction in the autophagy process can be associated with male infertility. Overall, this review provides an overview of the cellular and molecular basics of autophagy and summarizes the latest findings on the key role of autophagy in mammalian male reproductive physiology.
Collapse
Affiliation(s)
- Doaa Kirat
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohamed Alahwany
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
37
|
Zuo H, Chen C, Sa Y. Therapeutic potential of autophagy in immunity and inflammation: current and future perspectives. Pharmacol Rep 2023; 75:499-510. [PMID: 37119445 PMCID: PMC10148586 DOI: 10.1007/s43440-023-00486-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/01/2023]
Abstract
Autophagy is recognized as a lysosomal degradation pathway important for cellular and organismal homeostasis. Accumulating evidence has demonstrated that autophagy is a paradoxical mechanism that regulates homeostasis and prevents stress under physiological and pathological conditions. Nevertheless, how autophagy is implicated in immune responses remains unclear. It is well established that autophagy bridges innate and adaptive immunity, while autophagic dysfunction is closely related to infection, inflammation, neurodegeneration, and tumorigenesis. Therefore, autophagy has attracted great attention from fundamental and translational fields due to its crucial role in inflammation and immunity. Inflammation is involved in the development and progression of various human diseases, and as a result, autophagy might be a potential target to prevent and treat inflammatory diseases. Nevertheless, insufficient autophagy might cause cell death, perpetrate inflammation, and trigger hereditary unsteadiness. Hence, targeting autophagy is a promising disease prevention and treatment strategy. To accomplish this safely, we should thoroughly understand the basic aspects of how autophagy works. Herein, we systematically summarized the correlation between autophagy and inflammation and its implication for human diseases.
Collapse
Affiliation(s)
- Hui Zuo
- Department of Pharmacology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan Province, China.
- Department of Pharmaceutical Science, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan Province, China.
| | - Cheng Chen
- Department of Pharmacology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan Province, China
| | - Yalian Sa
- Institute of Clinical and Basic Medical Sciences (Yunnan Provincial Key Laboratory of Clinical Virology), The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China.
| |
Collapse
|
38
|
Tapia D, Cavieres VA, Burgos PV, Cancino J. Impact of interorganelle coordination between the conventional early secretory pathway and autophagy in cellular homeostasis and stress response. Front Cell Dev Biol 2023; 11:1069256. [PMID: 37152281 PMCID: PMC10160633 DOI: 10.3389/fcell.2023.1069256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The conventional early secretory pathway and autophagy are two essential interconnected cellular processes that are crucial for maintaining cellular homeostasis. The conventional secretory pathway is an anabolic cellular process synthesizing and delivering proteins to distinct locations, including different organelles, the plasma membrane, and the extracellular media. On the other hand, autophagy is a catabolic cellular process that engulfs damaged organelles and aberrant cytosolic constituents into the double autophagosome membrane. After fusion with the lysosome and autolysosome formation, this process triggers digestion and recycling. A growing list of evidence indicates that these anabolic and catabolic processes are mutually regulated. While knowledge about the molecular actors involved in the coordination and functional cooperation between these two processes has increased over time, the mechanisms are still poorly understood. This review article summarized and discussed the most relevant evidence about the key molecular players implicated in the interorganelle crosstalk between the early secretory pathway and autophagy under normal and stressful conditions.
Collapse
Affiliation(s)
- Diego Tapia
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Jorge Cancino
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
39
|
Du YX, Mamun AA, Lyu AP, Zhang HJ. Natural Compounds Targeting the Autophagy Pathway in the Treatment of Colorectal Cancer. Int J Mol Sci 2023; 24:7310. [PMID: 37108476 PMCID: PMC10138367 DOI: 10.3390/ijms24087310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which misfolded proteins or damaged organelles are delivered in a double-membrane vacuolar vesicle and finally degraded by lysosomes. The risk of colorectal cancer (CRC) is high, and there is growing evidence that autophagy plays a critical role in regulating the initiation and metastasis of CRC; however, whether autophagy promotes or suppresses tumor progression is still controversial. Many natural compounds have been reported to exert anticancer effects or enhance current clinical therapies by modulating autophagy. Here, we discuss recent advancements in the molecular mechanisms of autophagy in regulating CRC. We also highlight the research on natural compounds that are particularly promising autophagy modulators for CRC treatment with clinical evidence. Overall, this review illustrates the importance of autophagy in CRC and provides perspectives for these natural autophagy regulators as new therapeutic candidates for CRC drug development.
Collapse
Affiliation(s)
| | | | - Ai-Ping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| |
Collapse
|
40
|
Coradduzza D, Congiargiu A, Chen Z, Cruciani S, Zinellu A, Carru C, Medici S. Humanin and Its Pathophysiological Roles in Aging: A Systematic Review. BIOLOGY 2023; 12:558. [PMID: 37106758 PMCID: PMC10135985 DOI: 10.3390/biology12040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Senescence is a cellular aging process in all multicellular organisms. It is characterized by a decline in cellular functions and proliferation, resulting in increased cellular damage and death. These conditions play an essential role in aging and significantly contribute to the development of age-related complications. Humanin is a mitochondrial-derived peptide (MDP), encoded by mitochondrial DNA, playing a cytoprotective role to preserve mitochondrial function and cell viability under stressful and senescence conditions. For these reasons, humanin can be exploited in strategies aiming to counteract several processes involved in aging, including cardiovascular disease, neurodegeneration, and cancer. Relevance of these conditions to aging and disease: Senescence appears to be involved in the decay in organ and tissue function, it has also been related to the development of age-related diseases, such as cardiovascular conditions, cancer, and diabetes. In particular, senescent cells produce inflammatory cytokines and other pro-inflammatory molecules that can participate to the development of such diseases. Humanin, on the other hand, seems to contrast the development of such conditions, and it is also known to play a role in these diseases by promoting the death of damaged or malfunctioning cells and contributing to the inflammation often associated with them. Both senescence and humanin-related mechanisms are complex processes that have not been fully clarified yet. Further research is needed to thoroughly understand the role of such processes in aging and disease and identify potential interventions to target them in order to prevent or treat age-related conditions. OBJECTIVES This systematic review aims to assess the potential mechanisms underlying the link connecting senescence, humanin, aging, and disease.
Collapse
Affiliation(s)
| | | | - Zhichao Chen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
41
|
Zhang J, Zhang T, Wang Y, Yao L, Yao J. Gα13-Mediated Signaling Cascade Is Related to the Tau Pathology Caused by Anesthesia and Surgery in 5XFAD Transgenic Mice. J Alzheimers Dis 2023; 93:545-560. [PMID: 37038813 DOI: 10.3233/jad-221039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
BACKGROUND Our previous studies indicated that anesthesia and surgery could aggravate cognitive impairment of 5XFAD transgenic (Tg) mice, and this aggravation was associated with tau hyperphosphorylation. We previously identified that GNA13 (the gene encoding Gα13) was a hub gene with tau hyperphosphorylation. OBJECTIVE This study aims to further investigate the mechanism that whether the Gα13-mediated signaling pathway acts as an instigator to regulate cofilin activation and autophagy impairment in this process. METHODS 5XFAD Tg mice and their littermate (LM) mice were randomly allocated into four groups: LM Control group, LM Anesthesia/Surgery group, AD Control group, and AD Anesthesia/Surgery group. For mice in the Anesthesia/Surgery groups, abdominal surgery was performed under 1.4% isoflurane anesthesia followed by sustaining anesthetic inhalation for up to 2 h. RESULTS Compared with the AD Control group, protein levels of Gα13, ROCK2, LPAR5, and p-tau/tau46 ratio were increased, while p-cofilin/cofilin protein expression ratio was decreased in the AD Anesthesia/Surgery group. However, the differences in these protein levels were not significant among LM groups. CONCLUSION This study demonstrated that anesthesia and surgery might exacerbate p-tau accumulation in 5XFAD Tg mice but not in LM mice. And this might be closely related to cofilin activation via Gα13-mediated signaling cascade.
Collapse
Affiliation(s)
- Junyao Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinuo Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangfang Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Chua BA, Lennan CJ, Sunshine MJ, Dreifke D, Chawla A, Bennett EJ, Signer RAJ. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell 2023; 30:460-472.e6. [PMID: 36948186 PMCID: PMC10164413 DOI: 10.1016/j.stem.2023.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
Hematopoietic stem cells (HSCs) regenerate blood cells throughout life. To preserve their fitness, HSCs are particularly dependent on maintaining protein homeostasis (proteostasis). However, how HSCs purge misfolded proteins is unknown. Here, we show that in contrast to most cells that primarily utilize the proteasome to degrade misfolded proteins, HSCs preferentially traffic misfolded proteins to aggresomes in a Bag3-dependent manner and depend on aggrephagy, a selective form of autophagy, to maintain proteostasis in vivo. When autophagy is disabled, HSCs compensate by increasing proteasome activity, but proteostasis is ultimately disrupted as protein aggregates accumulate and HSC function is impaired. Bag3-deficiency blunts aggresome formation in HSCs, resulting in protein aggregate accumulation, myeloid-biased differentiation, and diminished self-renewal activity. Furthermore, HSC aging is associated with a severe loss of aggresomes and reduced autophagic flux. Protein degradation pathways are thus specifically configured in young adult HSCs to preserve proteostasis and fitness but become dysregulated during aging.
Collapse
Affiliation(s)
- Bernadette A Chua
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Connor J Lennan
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mary Jean Sunshine
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Daniela Dreifke
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ashu Chawla
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Khandia R, Pandey MK, Rzhepakovsky IV, Khan AA, Alexiou A. Synonymous Codon Variant Analysis for Autophagic Genes Dysregulated in Neurodegeneration. Mol Neurobiol 2023; 60:2252-2267. [PMID: 36637744 DOI: 10.1007/s12035-022-03081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative disorders are often a culmination of the accumulation of abnormally folded proteins and defective organelles. Autophagy is a process of removing these defective proteins, organelles, and harmful substances from the body, and it works to maintain homeostasis. If autophagic removal of defective proteins has interfered, it affects neuronal health. Some of the autophagic genes are specifically found to be associated with neurodegenerative phenotypes. Non-functional, mutated, or gene copies having silent mutations, often termed synonymous variants, might explain this. However, these synonymous variant which codes for exactly similar proteins have different translation rates, stability, and gene expression profiling. Hence, it would be interesting to study the pattern of synonymous variant usage. In the study, synonymous variant usage in various transcripts of autophagic genes ATG5, ATG7, ATG8A, ATG16, and ATG17/FIP200 reported to cause neurodegeneration (if dysregulated) is studied. These genes were analyzed for their synonymous variant usage; nucleotide composition; any possible nucleotide skew in a gene; physical properties of autophagic protein including GRAVY and AROMA; hydropathicity; instability index; and frequency of acidic, basic, neutral amino acids; and gene expression level. The study will help understand various evolutionary forces acting on these genes and the possible augmentation of a gene if showing unusual behavior.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, India.
| | - Megha Katare Pandey
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, 462020, India
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med, Wien, Austria
| |
Collapse
|
44
|
Su W, Xie Z, Bai X, Li Z, Liu X. The Absence of Gasdermin D Reduces Nuclear Autophagy in a Cecal Ligation and Puncture-Induced Sepsis-Associated Encephalopathy Mouse Model. Brain Sci 2023; 13:brainsci13030478. [PMID: 36979288 PMCID: PMC10046561 DOI: 10.3390/brainsci13030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, which is a life-threatening condition resulting from a dysregulated host response to infection. Pyroptosis, a pro-inflammatory mode of lytic cell death mediated by GSDMD (Gasdermin D), is involved in the pathogenesis of SAE. While autophagy has been extensively studied in SAE, the role of nuclear autophagy is not yet well understood. In this study, we aimed to investigate the involvement of pyroptosis and neural nuclear autophagy in the pathogenesis of SAE. We analyzed a CLP (cecal ligation and puncture)-induced SAE model in wild-type and GSDMD−/− mice to gain insights into the underlying mechanisms. Here, we show that in sepsis, neural nuclear autophagy is extremely activated, and nuclear LaminB decreases and is accompanied by an increase in the ratio of LC3BII/I. These effects can be reversed in GSDMD−/− mice. The behavioral outcomes of septic wild-type mice are impaired by the evidence from the novel object recognition test (NORT) and open field test (OFT), but are improved in septic GSDMD−/− mice. In conclusion, our study demonstrates the activation of neural nuclear autophagy in SAE. The absence of GSDMD inhibits nuclear autophagy and improves the behavioral outcomes of SAE.
Collapse
Affiliation(s)
- Wei Su
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenxing Xie
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.L.); (X.L.); Tel.: +86-139-8629-7138 (Z.L.); +86-180-7140-1480 (X.L.)
| | - Xinghua Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.L.); (X.L.); Tel.: +86-139-8629-7138 (Z.L.); +86-180-7140-1480 (X.L.)
| |
Collapse
|
45
|
Kumar A, Girisa S, Alqahtani MS, Abbas M, Hegde M, Sethi G, Kunnumakkara AB. Targeting Autophagy Using Long Non-Coding RNAs (LncRNAs): New Landscapes in the Arena of Cancer Therapeutics. Cells 2023; 12:cells12050810. [PMID: 36899946 PMCID: PMC10000689 DOI: 10.3390/cells12050810] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/04/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer has become a global health hazard accounting for 10 million deaths in the year 2020. Although different treatment approaches have increased patient overall survival, treatment for advanced stages still suffers from poor clinical outcomes. The ever-increasing prevalence of cancer has led to a reanalysis of cellular and molecular events in the hope to identify and develop a cure for this multigenic disease. Autophagy, an evolutionary conserved catabolic process, eliminates protein aggregates and damaged organelles to maintain cellular homeostasis. Accumulating evidence has implicated the deregulation of autophagic pathways to be associated with various hallmarks of cancer. Autophagy exhibits both tumor-promoting and suppressive effects based on the tumor stage and grades. Majorly, it maintains the cancer microenvironment homeostasis by promoting viability and nutrient recycling under hypoxic and nutrient-deprived conditions. Recent investigations have discovered long non-coding RNAs (lncRNAs) as master regulators of autophagic gene expression. lncRNAs, by sequestering autophagy-related microRNAs, have been known to modulate various hallmarks of cancer, such as survival, proliferation, EMT, migration, invasion, angiogenesis, and metastasis. This review delineates the mechanistic role of various lncRNAs involved in modulating autophagy and their related proteins in different cancers.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.); Tel.: +91-789-600-5326 (G.S.); +91-361-258-2231 (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.); Tel.: +91-789-600-5326 (G.S.); +91-361-258-2231 (A.B.K.)
| |
Collapse
|
46
|
Mirza FJ, Zahid S, Holsinger RMD. Neuroprotective Effects of Carnosic Acid: Insight into Its Mechanisms of Action. Molecules 2023; 28:molecules28052306. [PMID: 36903551 PMCID: PMC10005014 DOI: 10.3390/molecules28052306] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Carnosic acid is a diterpenoid abundantly present in plants belonging to the genus Rosmarinus and Salvia of the family Lamiaceae, accounting for their application in traditional medicine. The diverse biological properties of carnosic acid that include antioxidant, anti-inflammatory, and anticarcinogenic activities have instigated studies on its mechanistic role, providing further insights into its potential as a therapeutic agent. Accumulating evidence has established the relevance of carnosic acid as a neuroprotective agent exhibiting therapeutic efficacy in combatting neuronal-injury-induced disorders. The physiological importance of carnosic acid in the mitigation of neurodegenerative disorders is just beginning to be understood. This review summarizes the current data on the mode of action through which carnosic acid exerts its neuroprotective role that may serve to strategize novel therapeutic approaches for these debilitating neurodegenerative disorders.
Collapse
Affiliation(s)
- Fatima Javed Mirza
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
47
|
Feng H, Liu X, Zhou C, Gu Q, Li Y, Chen J, Teng J, Zheng P. CCDC115 inhibits autophagy-mediated degradation of YAP to promote cell proliferation. FEBS Lett 2023; 597:618-630. [PMID: 36650560 DOI: 10.1002/1873-3468.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
Autophagy and Hippo signalling pathways both play important roles in cell homeostasis and are often involved in tumourigenesis. However, the crosstalk between these two signal pathways in response to stress conditions, such as nutrient deficiency, is incompletely understood. Here, we show that vesicular localised coiled-coil domain containing 115 (CCDC115) inhibits autophagy as well as Hippo signalling pathway under starvation. Moreover, we show that CCDC115 interacts with the HOPS complex. This interaction competes with STX17, thus inhibiting the fusion of autophagosomes with lysosomes. Hence, CCDC115 inhibits the autophagic degradation of yes-associated protein (YAP), thereby promoting cell proliferation in nutrient-restricted situation.
Collapse
Affiliation(s)
- Hui Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Department of Biotechnology, Beijing Polytechnic, China
| | - Xiao Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chenqian Zhou
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Qiuchen Gu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- School of Life Sciences, Beijing Normal University, China
| | - Ye Li
- Department of Biotechnology, Beijing Polytechnic, China
| | - Jianguo Chen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Junlin Teng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Pengli Zheng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
48
|
Kim B, Gwak J, Kim M, Yang S, Hwang S, Shin S, Kim JH, Son J, Jeong SM. Suppression of fatty acid oxidation supports pancreatic cancer growth and survival under hypoxic conditions through autophagy induction. Cancer Gene Ther 2023:10.1038/s41417-023-00598-y. [PMID: 36807391 DOI: 10.1038/s41417-023-00598-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023]
Abstract
Hypoxia, one of the key features of solid tumors, induces autophagy, which acts as an important adaptive mechanism for tumor progression under hypoxic environment. Cellular metabolic reprogramming has been correlated with hypoxia, but the molecular connection to the induction of autophagy remains obscure. Here, we show that suppression of fatty acid oxidation (FAO) by hypoxia induces autophagy in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for their growth and survival. Reduced cellular acetyl-CoA levels caused by FAO inhibition decreases LC3 acetylation, resulting in autophagosome formation. Importantly, PDAC cells are significantly dependent on this metabolic reprogramming, as improving FAO leads to a reduction in hypoxia-induced autophagy and an increase in cell death after chemotherapy. Thus, our study supports that suppression of FAO is an important metabolic response to hypoxia and indicates that targeting this pathway in PDAC may be an effective therapeutic approach.
Collapse
Affiliation(s)
- Byungjoo Kim
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jihye Gwak
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Minjoong Kim
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seungyeon Yang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sunsook Hwang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seungmin Shin
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Ji Hye Kim
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jaekyoung Son
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Seung Min Jeong
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
49
|
Belmonte-Fernández A, Herrero-Ruíz J, Galindo-Moreno M, Limón-Mortés MC, Mora-Santos M, Sáez C, Japón MÁ, Tortolero M, Romero F. Cisplatin-induced cell death increases the degradation of the MRE11-RAD50-NBS1 complex through the autophagy/lysosomal pathway. Cell Death Differ 2023; 30:488-499. [PMID: 36477079 PMCID: PMC9950126 DOI: 10.1038/s41418-022-01100-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin and other platinum-based anticancer agents are among the most widely used chemotherapy drugs in the treatment of different types of cancer. However, it is common to find patients who respond well to treatment at first but later relapse due to the appearance of resistance to cisplatin. Among the mechanisms responsible for this phenomenon is the increase in DNA damage repair. Here, we elucidate the effect of cisplatin on the MRN (MRE11-RAD50-NBS1) DNA damage sensor complex. We found that the tumor suppressor FBXW7 is a key factor in controlling the turnover of the MRN complex by inducing its degradation through lysosomes. Inhibition of lysosomal enzymes allowed the detection of the association of FBXW7-dependent ubiquitylated MRN with LC3 and the autophagy adaptor p62/SQSTM1 and the localization of MRN in lysosomes. Furthermore, cisplatin-induced cell death increased MRN degradation, suggesting that this complex is one of the targets that favor cell death. These findings open the possibility of using the induction of the degradation of the MRN complex after genotoxic damage as a potential therapeutic strategy to eliminate tumor cells.
Collapse
Affiliation(s)
| | - Joaquín Herrero-Ruíz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - María Galindo-Moreno
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - M Cristina Limón-Mortés
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - Mar Mora-Santos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, E-41013, Spain
| | - Miguel Á Japón
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, E-41013, Spain
| | - Maria Tortolero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain.
| |
Collapse
|
50
|
Li B, Li W, Zheng M, Wang Y, Diao Y, Mou X, Liu J. Corilagin alleviates intestinal ischemia/reperfusion injury by relieving oxidative stress and apoptosis via AMPK/Sirt1-autophagy pathway. Exp Biol Med (Maywood) 2023; 248:317-326. [PMID: 36680375 PMCID: PMC10159520 DOI: 10.1177/15353702221147560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a common pathological process with high clinical morbidity and mortality. Autophagy plays an important role in the pathological development of II/R. Corilagin (CA) is a natural ellagitannin with various pharmacological effects such as autophagy regulation, antioxidant, and antiapoptosis. However, whether CA alleviates II/R injury is still unclear. In this study, we had found that CA significantly attenuated II/R induced intestinal tissue pathological damage, oxidative stress, and cell apoptosis in rats. Further studies showed that CA significantly promoted AMPK phosphorylation and sirt1 expression, and thus activated autophagy by upregulating protein expression of autophagy-related proteins Beclin1 and LC3II and promoting SQSTM1/P62 degradation both in vivo and in vitro. Inhibition of AMPK phosphorylation by its inhibitor compound C(CC) significantly abolished CA-mediated autophagy activation and the relievable effects on oxidative stress and apoptosis in vitro, suggesting the excellent protective activity of CA against II/R injury via AMPK/Sirt1-autophagy pathway. These findings confirmed the potent effects of CA against II/R injury, and provided novel insights into the mechanisms of the compound as a potential candidate for the treatment of II/R.
Collapse
Affiliation(s)
- Bin Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China
| | - Wenlian Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Meiling Zheng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China
| | - Xiaojuan Mou
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China
| |
Collapse
|