1
|
Han M, Wang X, Su L, Pan S, Liu N, Li D, Liu L, Cui J, Zhao H, Yang F. Intestinal microbiome dysbiosis increases Mycobacteria pulmonary colonization in mice by regulating the Nos2-associated pathways. eLife 2024; 13:RP99282. [PMID: 39412514 PMCID: PMC11483126 DOI: 10.7554/elife.99282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Increasing researches reveal gut microbiota was associated with the development of tuberculosis (TB). How to prevent or reduce Mycobacterium tuberculosis colonization in the lungs is a key measure to prevent TB. However, the data on gut microbiota preventing Mycobacterium colonization in the lungs were scarce. Here, we established the clindamycin-inducing intestinal microbiome dysbiosis and fecal microbial transplantation models in mice to identify gut microbiota's effect on Mycobacterium's colonization in the mouse lungs and explore its potential mechanisms. The results showed that clindamycin treatment altered the diversity and composition of the intestinal bacterial and fungal microbiome, weakened the trans-kingdom network interactions between bacteria and fungi, and induced gut microbiome dysbiosis in the mice. Gut microbiota dysbiosis increases intestinal permeability and enhances the susceptibility of Mycobacterium colonization in the lungs of mice. The potential mechanisms were gut microbiota dysbiosis altered the lung transcriptome and increased Nos2 expression through the 'gut-lung axis'. Nos2 high expression disrupts the intracellular antimicrobial and anti-inflammatory environment by increasing the concentration of nitric oxide, decreasing the levels of reactive oxygen species and Defb1 in the cells, and promoting Mycobacteria colonization in the lungs of mice. The present study raises a potential strategy for reducing the risks of Mycobacteria infections and transmission by regulating the gut microbiome balance.
Collapse
Affiliation(s)
- MeiQing Han
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical UniversityXinxiangChina
| | - Xia Wang
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Lin Su
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical UniversityXinxiangChina
| | - Shiqi Pan
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical UniversityXinxiangChina
| | - Ningning Liu
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical UniversityXinxiangChina
| | - Duan Li
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical UniversityXinxiangChina
| | - Liang Liu
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical UniversityXinxiangChina
| | - JunWei Cui
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Huajie Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical UniversityXinxiangChina
| | - Fan Yang
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical UniversityXinxiangChina
| |
Collapse
|
2
|
Hill JH, Round JL. Intestinal fungal-host interactions in promoting and maintaining health. Cell Host Microbe 2024; 32:1668-1680. [PMID: 39389031 DOI: 10.1016/j.chom.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
The resident microbiota are a key component of a healthy organism. The vast majority of microbiome studies have focused on bacterial members, which constitute a significant portion of resident microbial biomass. Recent studies have demonstrated how the fungal component of the microbiota, or the mycobiome, influences mammalian biology despite its low abundance compared to other microbes. Fungi are known for their pathogenic potential, yet fungi are also prominent colonizers in healthy states, highlighting their duality. We summarize the characteristics that define the gut mycobiome across life, the factors that can impact its composition, and studies that identify mechanisms of how fungi confer health benefits. The goal of this review is to synthesize our knowledge regarding the composition and function of a healthy mycobiome with a view to inspiring future therapeutic advances.
Collapse
Affiliation(s)
- Jennifer H Hill
- University of Colorado Boulder, BioFrontiers Institute, Department of Molecular, Cellular & Developmental Biology, Boulder, CO 80303, USA.
| | - June L Round
- University of Utah, School of Medicine, Department of Pathology, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Aldebert D, Suarez B, Bettega F, Boucher E, Garnaud C, Cornet M. Easy-to-use imaging-cytometry assay to analyze chitin patterns in yeasts. J Mycol Med 2024; 34:101493. [PMID: 38945044 DOI: 10.1016/j.mycmed.2024.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND & AIM Pathogenic fungi are a major threat to public health, and fungal infections are becoming increasingly common and treatment resistant. Chitin, a component of the fungal cell wall, modifies host immunity and contributes to antifungal resistance. Moreover, chitin content is regulated by chitin synthases and chitinases. However, the specific roles and mechanisms remain unclear. In this study, we developed a cytometric imaging assay to quantify chitin content and identify the distribution of chitin in the yeast cell wall. METHODS The Candida albicans SC5314 and Nakaseomyces glabratus (ex. C. glabrata) ATCC2001 reference strains, as well as 106 clinical isolates, were used. Chitin content, distribution, and morphological parameters were analysed in 12 yeast species. Moreover, machine learning statistical software was used to evaluate the ability of the cytometric imaging assay to predict yeast species using the values obtained for these parameters. RESULTS Our imaging-cytometry assay was repeatable, reproducible, and sensitive to variations in chitin content in C. albicans mutants or after antifungal stimulation. The evaluated parameters classified the yeast species into the correct clade with an accuracy of 85 %. CONCLUSION Our findings demonstrate that this easy-to-use assay is an effective tool for the exploration of chitin content in yeast species.
Collapse
Affiliation(s)
- Delphine Aldebert
- Univ. Grenoble Alpes, CNRS, UMR 5525, CHU Grenoble Alpes, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
| | - Bastien Suarez
- Univ. Grenoble Alpes, CNRS, UMR 5525, CHU Grenoble Alpes, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - François Bettega
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Emilie Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, CHU Grenoble Alpes, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Cecile Garnaud
- Univ. Grenoble Alpes, CNRS, UMR 5525, CHU Grenoble Alpes, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Muriel Cornet
- Univ. Grenoble Alpes, CNRS, UMR 5525, CHU Grenoble Alpes, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
4
|
Elnagar RM. Cross interaction between bacterial and fungal microbiota and their relevance to human health and disease: mechanistic pathways and prospective therapy. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:309-320. [PMID: 39364131 PMCID: PMC11444862 DOI: 10.12938/bmfh.2024-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/27/2024] [Indexed: 10/05/2024]
Abstract
Diverse bacterial and fungal microbiota communities inhabit the human body, and their presence is essential for maintaining host homeostasis. The oral cavity, lung, gut, and vagina are just a few of the bodily cavities where these microorganisms communicate with one another, either directly or indirectly. The effects of this interaction can be either useful or detrimental to the host. When the healthy microbial diversity is disturbed, for instance, as a result of prolonged treatment with broad spectrum antibiotics, this allows the growth of specific microbes at the expense of others and alters their pathogenicity, causing a switch of commensal germs into pathogenic germs, which could promote tissue invasion and damage, as occurs in immunocompromised patients. Consequently, antimicrobials that specifically target pathogens may help in minimizing secondary issues that result from the disruption of useful bacterial/fungal interactions (BFIs). The interface between Candida albicans and Aspergillus fumigatus with bacteria at various body sites is emphasized in the majority of the medically important BFIs that have been reported thus far. This interface either supports or inhibits growth, or it enhances or blocks the generation of virulence factors. The aim of this review is to draw attention to the link between the bacterial and fungal microbiota and how they contribute to both normal homeostasis and disease development. Additionally, recent research that has studied microbiota as novel antimicrobials is summarized.
Collapse
Affiliation(s)
- Rasha Mokhtar Elnagar
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Liang Y, Jiang Z, Fu Y, Lu S, Miao Z, Shuai M, Liang X, Gou W, Zhang K, Shi RQ, Gao C, Shi MQ, Wang XH, Hu WS, Zheng JS. Cross-Sectional and Prospective Association of Serum 25-Hydroxyvitamin D with Gut Mycobiota during Pregnancy among Women with Gestational Diabetes. Mol Nutr Food Res 2024; 68:e2400022. [PMID: 38763911 DOI: 10.1002/mnfr.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/30/2024] [Indexed: 05/21/2024]
Abstract
SCOPE Little is known about the effect of blood vitamin D status on the gut mycobiota (i.e., fungi), a crucial component of the gut microbial ecosystem. The study aims to explore the association between 25-hydroxyvitamin D [25(OH)D] and gut mycobiota and to investigate the link between the identified mycobial features and blood glycemic traits. METHODS AND RESULTS The study examines the association between serum 25(OH)D levels and the gut mycobiota in the Westlake Precision Birth Cohort, which includes pregnant women with gestational diabetes mellitus (GDM). The study develops a genetic risk score (GRS) for 25(OH)D to validate the observational results. In both the prospective and cross-sectional analyses, the vitamin D is associated with gut mycobiota diversity. Specifically, the abundance of Saccharomyces is significantly lower in the vitamin D-sufficient group than in the vitamin D-deficient group. The GRS of 25(OH)D is inversely associated with the abundance of Saccharomyces. Moreover, the Saccharomyces is positively associated with blood glucose levels. CONCLUSION Blood vitamin D status is associated with the diversity and composition of gut mycobiota in women with GDM, which may provide new insights into the mechanistic understanding of the relationship between vitamin D levels and metabolic health.
Collapse
Affiliation(s)
- Yuhui Liang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Zengliang Jiang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yuanqing Fu
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Sha Lu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Zelei Miao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Menglei Shuai
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Xinxiu Liang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Wanglong Gou
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Ke Zhang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Rui-Qi Shi
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Chang Gao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Mei-Qi Shi
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Xu-Hong Wang
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Wen-Sheng Hu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| |
Collapse
|
6
|
Wu H, Li C, Wang Y, Zhang M, Wu D, Shao J, Wang T, Wang C. Transcriptomics Reveals Effect of Pulsatilla Decoction Butanol Extract in Alleviating Vulvovaginal Candidiasis by Inhibiting Neutrophil Chemotaxis and Activation via TLR4 Signaling. Pharmaceuticals (Basel) 2024; 17:594. [PMID: 38794163 PMCID: PMC11124330 DOI: 10.3390/ph17050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The Pulsatilla decoction is a well-known herbal remedy used in clinical settings for treating vulvovaginal candidiasis (VVC). However, the specific mechanism that makes it effective is still unclear. Recent studies have shown that in cases of VVC, neutrophils recruited to the vagina, influenced by heparan sulfate (HS), do not successfully engulf Candida albicans (C. albicans). Instead, they release many inflammatory factors that cause damage to the vaginal mucosa. This study aims to understand the molecular mechanism by which the n-butanol extract of Pulsatilla decoction (BEPD) treats VVC through transcriptomics. High-performance liquid chromatography was used to identify the primary active components of BEPD. A VVC mouse model was induced using an estrogen-dependent method and the mice were treated daily with BEPD (20 mg/kg, 40 mg/kg, and 80 mg/kg) for seven days. The vaginal lavage fluid of the mice was analyzed for various experimental indices, including fungal morphology, fungal burden, degree of neutrophil infiltration, and cytokines. Various assessments were then performed on mouse vaginal tissues, including pathological assessment, immunohistochemistry, immunofluorescence, Western blot (WB), quantitative real-time PCR, and transcriptome assays. Our results showed that BEPD reduced vaginal redness and swelling, decreased white discharge, inhibited C. albicans hyphae formation, reduced neutrophil infiltration and fungal burden, and attenuated vaginal tissue damage compared with the VVC model group. The high-dose BEPD group even restored the damaged vaginal tissue to normal levels. The medium- and high-dose groups of BEPD also significantly reduced the levels of IL-1β, IL-6, TNF-α, and LDH. Additionally, transcriptomic results showed that BEPD regulated several chemokine (CXCL1, CXCL3, and CXCL5) and S100 alarmin (S100A8 and S100A9) genes, suggesting that BEPD may treat VVC by affecting chemokine- and alarmin-mediated neutrophil chemotaxis. Finally, we verified that BEPD protects the vaginal mucosa of VVC mice by inhibiting neutrophil recruitment and chemotaxis in an animal model of VVC via the TLR4/MyD88/NF-κB pathway. This study provides further evidence to elucidate the mechanism of BEPD treatment of VVC.
Collapse
Affiliation(s)
- Hui Wu
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
| | - Can Li
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
| | - Yemei Wang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Mengxiang Zhang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Daqiang Wu
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Jing Shao
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Tianming Wang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Changzhong Wang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
7
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
8
|
Cheng W, Li F, Gao Y, Yang R. Fungi and tumors: The role of fungi in tumorigenesis (Review). Int J Oncol 2024; 64:52. [PMID: 38551162 PMCID: PMC10997370 DOI: 10.3892/ijo.2024.5640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Fungi inhabit different anatomic sites in the human body. Advances in omics analyses of host‑microbiome interactions have tremendously improved our understanding of the effects of fungi on human health and diseases such as tumors. Due to the significant enrichment of specific fungi in patients with malignant tumors, the associations between fungi and human cancer have attracted an increasing attention in recent years. Indeed, cancer type‑specific fungal profiles have been found in different tumor tissues. Importantly, fungi also influence tumorigenesis through multiple factors, such as host immunity and bioactive metabolites. Microbiome interactions, host factors and fungal genetic and epigenetic factors could be involved in fungal enrichment in tumor tissues and/or in the conversion from a commensal fungus to a pathogenic fungus. Exploration of the interactions of fungi with the bacterial microbiome and the host may enable them to be a target for cancer diagnosis and treatment. In the present review, the associations between fungi and human cancer, cancer type‑specific fungal profiles and the mechanisms by which fungi cause tumorigenesis were discussed. In addition, possible factors that can lead to the enrichment of fungi in tumor tissues and/or the conversion of commensal fungi to pathogenic fungi, as well as potential therapeutic and preventive strategies for tumors based on intratumoral fungi were summarized.
Collapse
Affiliation(s)
- Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Fan Li
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
9
|
Kanj AN, Guiance IR, Kottom TJ, Schaefbauer KJ, Choudhury M, Limper AH, Skalski JH. The intestinal commensal fungus Wallemia mellicola enhances asthma in mice through Dectin-2. Med Mycol 2024; 62:myae004. [PMID: 38331424 PMCID: PMC10898867 DOI: 10.1093/mmy/myae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Overgrowth of the fungus Wallemia mellicola in the intestines of mice enhances the severity of asthma. Wallemia mellicola interacts with the immune system through Dectin-2 expressed on the surface of myeloid and intestinal epithelial cells. Using Dectin-2-deficient mice, we show that the interaction of W. mellicola with Dectin-2 is essential for the gut-lung pathways, enhancing the severity of asthma in mice with W. mellicola intestinal dysbiosis. These findings offer better insight into dysbiosis-associated inflammation and highlight the role pattern recognition receptors have in immune recognition of commensal fungi in the gut, leading to alterations in immune function in the lungs.
Collapse
Affiliation(s)
- Amjad N Kanj
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN USA
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN USA
| | - Irene Riestra Guiance
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN USA
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN USA
| | - Theodore J Kottom
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN USA
| | - Kyle J Schaefbauer
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN USA
| | - Malay Choudhury
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN USA
| | - Andrew H Limper
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN USA
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN USA
| | - Joseph H Skalski
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN USA
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
10
|
Wang X, Li S, Zhu M, Qiu Y, Hui Y, Li Y, Zhan Y, Wang Y, Ye F, Li Z. Pulmonary cryptococcosis complicated with pulmonary aspergillosis: a series of studies and a literature review. BMC Infect Dis 2024; 24:92. [PMID: 38229026 DOI: 10.1186/s12879-024-09014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND/OBJECTIVE With the development of society, pulmonary fungal diseases, represented by pulmonary aspergillosis and pulmonary cryptococcosis, have become increasingly common. However, there is a lack of clear understanding regarding coinfection by these two types of fungi in immunocompetent individuals. METHODS A retrospective study from 2014 to 2022 and a systematic literature review of original articles published in English were performed. Patients with pulmonary cryptococcosis complicated with pulmonary aspergillosis including 5 in the retrospective study and 6 in the systematic literature review. RESULT The diagnosis of concurrent pulmonary cryptococcosis and pulmonary aspergillosis in patients was confirmed through repeated biopsies or surgical resection. Pulmonary cryptococcosis is often diagnosed initially (6/11, 55%), while the diagnosis of pulmonary aspergillosis is established when the lesions become fixed or enlarged during treatment. Transbronchial lung biopsy (3/11, 27%), thoracoscopic lung biopsy (2/11, 18%), and percutaneous aspiration biopsy of the lung (1/11, 9%) were the main methods to confirm concurrent infection. Most patients were treated with voriconazole, resulting in a cure for the coinfection (6/11, 55%). CONCLUSION Pulmonary cryptococcosis complicated with pulmonary Aspergillus is an easily neglected mixed fungal infection. During the treatment of lesion enlargement in clinical cryptococcus, we need to watch out for Aspergillus infection.
Collapse
Affiliation(s)
- Xidong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Shaoqiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Mangui Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
- Shunde Hospital Affiliated to Guangzhou University of Chinese Medicine, FoShan, 528000, China
| | - Ye Qiu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Yilei Hui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Yongming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Yangqing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Yan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
11
|
Wang T, Lu Y, Wu J, Yu B. Composition and dynamics of intestinal fungi during the postnatal 2 months of very low birth weight infants. Eur J Pediatr 2024; 183:403-414. [PMID: 37906308 PMCID: PMC10857973 DOI: 10.1007/s00431-023-05257-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
It has been found that intestinal fungi play a role in the composition of the intestinal microecology and in the formation and development of the immunity during childhood. We investigated the gut fungi composition of preterm infants to analysis composition and dynamics of intestinal fungi during the postnatal 2 months of very low birth weight infants. We collected feces from 34 very low birth weight infants (VLBWI) and 28 preterm infants with birth weight >1500 g. We extracted total fungal DNA from feces and analyzed the composition of gut fungus through ITS sequencing. The fungal detectable rate in the experimental group peaked on day 3 (85.19%), then gradually decreased and started to show an increasing trend again by day 28. There were significant differences in the alpha diversity of intestinal fungus between VLBWI and controls, and the VLBWI had its own characteristics at different time points in richness and diversity. A total of 10 phylums and 342 genera were identified in all VLBWI samples. The dominant fungal phylum of the VLBWI group is Ascomycota (50.3%)and Basidiomycota (48.8%). The functional metabolic activity of the experimental group was lower than that of the control group. CONCLUSION The composition and abundance of VLBWI intestinal fungal showed several alterations during the first 2 months of life. The prediction of gut microbiota function suggests that intestinal metabolic function may be altered in VLBWI. WHAT IS KNOWN • A limited number of studies has been found that symbiont fungi may be able to calibrate host immunological responses, promote development of peripheral lymphoid organs, promote T cell responses, and even may be associated with the development of certain diseases, such as inflammatory bowel disease (IBD), NEC, and allergic diseases. However, previous studies on intestinal microecology have mainly focused on adults while neglecting the role of fungi in the gut of children due to the much lower abundance of intestinal fungi than bacteria, limitations of techniques for detecting fungi, the difficulty of obtaining samples, and the absence of largescale reference databases. WHAT IS NEW • In recent years, the discovery and development of fungal detection technologies such as 18s rDNA sequencing technology, Internal Transcribed Spacer(ITS), and DNA fingerprinting technology have further broadened the perspective on the impact of intestinal fungal exposure in early life.
Collapse
Affiliation(s)
- Ting Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yanbo Lu
- Pediatrics, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Junhua Wu
- Pediatrics, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China.
| | - Beirong Yu
- Pediatrics, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Pandey H, Jain D, Tang DWT, Wong SH, Lal D. Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intest Res 2024; 22:15-43. [PMID: 37935653 PMCID: PMC10850697 DOI: 10.5217/ir.2023.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 11/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease, which is thought to be an interplay between genetic, environment, microbiota, and immune-mediated factors. Dysbiosis in the gut microbial composition, caused by antibiotics and diet, is closely related to the initiation and progression of IBD. Differences in gut microbiota composition between IBD patients and healthy individuals have been found, with reduced biodiversity of commensal microbes and colonization of opportunistic microbes in IBD patients. Gut microbiota can, therefore, potentially be used for diagnosing and prognosticating IBD, and predicting its treatment response. Currently, there are no curative therapies for IBD. Microbiota-based interventions, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been recognized as promising therapeutic strategies. Clinical studies and studies done in animal models have provided sufficient evidence that microbiota-based interventions may improve inflammation, the remission rate, and microscopic aspects of IBD. Further studies are required to better understand the mechanisms of action of such interventions. This will help in enhancing their effectiveness and developing personalized therapies. The present review summarizes the relationship between gut microbiota and IBD immunopathogenesis. It also discusses the use of gut microbiota as a noninvasive biomarker and potential therapeutic option.
Collapse
Affiliation(s)
| | | | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
13
|
Wang Y, Li J, Wu J, Gu S, Hu H, Cai R, Wang M, Zou Y. Effects of a Postbiotic Saccharomyces and Lactobacillus Ferment Complex on the Scalp Microbiome of Chinese Women with Sensitive Scalp Syndrome. Clin Cosmet Investig Dermatol 2023; 16:2623-2635. [PMID: 37767337 PMCID: PMC10520257 DOI: 10.2147/ccid.s415787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023]
Abstract
Introduction Sensitive scalp is one of the most frequent complaints related to sensitive skin syndrome, characterized by unpleasant sensory reactions in the absence of visible signs of inflammation. In this study, the effects of topical application of postbiotic Himalaya-derived Saccharomyces and Lactobacillus ferment complex (SLFC) on the bacterial and fungal scalp microbiome at the taxonomic level and alleviation of sensitive skin syndrome were investigated. Methods Firstly, healthy female participants (aged 30-45) were classified into a healthy scalp group and a sensitive scalp group based on the questionnaire. Thereafter, topical application of SLFC on sensitive scalp as well as scalp microbiome was evaluated, with the difference in the distribution of microbial taxa between healthy and sensitive scalp communities was assessed using 16S rRNA and ITS1 sequencing analysis. In addition, the effect of SLFC on scalp microbiome at the species level for Cutibacterium acnes, Staphylococcus epidermidis, and Malassezia restricta was evaluated by the qPCR assessment. Results After treatment with SLFC for 28 days, the abundance of Staphylococcus, Lawsonella, and Fusarium in the sensitive scalp group was highly significantly increased (p < 0.001), while the abundance of Cutibacterium and Malassezia was highly significantly decreased (p < 0.001). Furthermore, the self-assessment questionnaire indicated a syndrome alleviation effect of 100% after 28 days with a twice-daily application of the SLFC. Discussion The obtained results would help to better understand the microbial community of the sensitive scalp and provide useful information on utilization of SLFC for maintaining a healthy scalp and modulating the scalp microbiome.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Shanghai Oriental Beauty Valley, Shanghai Institute of Technology, Shanghai, People’s Republic of China
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Jun Li
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Jianming Wu
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Shihong Gu
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Huishu Hu
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Rongjuan Cai
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Man Wang
- Department of Nutrition, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, People’s Republic of China
| | - Yue Zou
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Kathrani A, Theelen B, Bond R. Isolation of Malassezia yeasts from dogs with gastrointestinal disease undergoing duodenal endoscopy. J Small Anim Pract 2023. [PMID: 37681754 DOI: 10.1111/jsap.13649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2023] [Accepted: 06/08/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVES To culture Malassezia and other fungi from the duodenum of dogs with gastrointestinal signs undergoing routine endoscopic examination. MATERIALS AND METHODS Quantitative microbial culture was performed on duodenal juice aspirated from dogs with suspected enteropathy during routine upper gastrointestinal endoscopy; samples were cultured on Sabouraud's dextrose agar (30, 32 and 37°C) and modified Dixon agar (32°C) for 14 days. Isolates were identified phenotypically and by matrix-assisted laser desorption ionisation-time of flight, and internal transcribed spacer sequencing. Yeast presence was also evaluated by cytological and histopathological examination of smears and biopsy specimens. RESULTS Forty-five dogs were recruited with chronic inflammatory enteropathy (n=38), granulomatous colitis (n=2), gastric adenocarcinoma (n=2), duodenal small cell lymphoma (n=1) and idiopathic severe gastrointestinal haemorrhage (n=2). Fungi were cultured from 14 dogs: Malassezia pachydermatis was isolated from eight [chronic inflammatory enteropathy (n=7) (along with Candida albicans n=1); granulomatous colitis (n=1)] and Malassezia sympodialis from another (gastric adenocarcinoma). Five dogs with chronic inflammatory enteropathy yielded other yeasts (C. albicans, Candida glabrata, Kazachstania slooffiae, Kazachstania telluris, Pichia kudriavzevii [syn. C. krusei]). Yeasts were never observed in histopathological specimens. Fluorescent microscopical examination of cytological specimens showed yeast in only one case, from which K. slooffiae was subsequently isolated. CLINICAL SIGNIFICANCE Based on a literature search, this is the first report of isolation of M. pachydermatis, M. sympodialis, K. slooffiae and K. telluris from the canine duodenum. Further studies are needed to determine whether these are resident or transient fungi in the canine duodenum and whether their presence has a pathogenic effect on the host.
Collapse
Affiliation(s)
- A Kathrani
- Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, AL9 7TA, UK
| | - B Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R Bond
- Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, AL9 7TA, UK
| |
Collapse
|
15
|
Li F, Gao Y, Cheng W, Su X, Yang R. Gut fungal mycobiome: A significant factor of tumor occurrence and development. Cancer Lett 2023; 569:216302. [PMID: 37451425 DOI: 10.1016/j.canlet.2023.216302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A variety of bacteria, viruses, fungi, protists, archaea and protozoa coexists within the mammalian gastrointestinal (GI) tract such as that fungi are detectable in all intestinal and colon segments in almost all healthy adults. Although fungi can cause infectious diseases, they are also related to gut and systemic homeostasis. Importantly, through transformation of different forms such as from yeast to hyphae, interaction among gut microbiota such as fungal and bacterial interaction, host factors such as immune and host derived factors, and fungus genetic and epigenetic factors, fungi can be transformed from commensal into pathogenic lifestyles. Recent studies have shown that fungi play a significant role in the occurrence and development of tumors such as colorectal cancer. Indeed, evidences have shown that multiple species of different fungi exist in different tumors. Studies have also demonstrated that fungi are related to the occurrence and development of tumors, and also survival of patients. Here we summarize recent advances in the transformation of fungi from commensal into pathogenic lifestyles, and the effects of gut pathogenic fungi on the occurrence and development of tumors such as colorectal and pancreatic cancers.
Collapse
Affiliation(s)
- Fan Li
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
16
|
Sun M, Ju J, Xu H, Wang Y. Intestinal fungi and antifungal secretory immunoglobulin A in Crohn's disease. Front Immunol 2023; 14:1177504. [PMID: 37359518 PMCID: PMC10285161 DOI: 10.3389/fimmu.2023.1177504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The human gastrointestinal tract harbors trillions of commensal microorganisms. Emerging evidence points to a possible link between intestinal fungal dysbiosis and antifungal mucosal immunity in inflammatory bowel disease, especially in Crohn's disease (CD). As a protective factor for the gut mucosa, secretory immunoglobulin A (SIgA) prevents bacteria from invading the intestinal epithelium and maintains a healthy microbiota community. In recent years, the roles of antifungal SIgA antibodies in mucosal immunity, including the regulation of intestinal immunity binding to hyphae-associated virulence factors, are becoming increasingly recognized. Here we review the current knowledge on intestinal fungal dysbiosis and antifungal mucosal immunity in healthy individuals and in patients with CD, discuss the factors governing antifungal SIgA responses in the intestinal mucosa in the latter group, and highlight potential antifungal vaccines targeting SIgA to prevent CD.
Collapse
|
17
|
Si Z, Bai J, Wei L, Zhao H, Wang S, Liu B, Xu J, Fang H, Ling Z, Qiao J. Clinical Features and Skin Microbiome of Tinea Scrotum: An Observational Study of 113 Cases in China. Mycopathologia 2023:10.1007/s11046-023-00712-6. [PMID: 37072674 DOI: 10.1007/s11046-023-00712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/04/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND The scrotum is considered as an uncommon site for tinea, hence there is a lack of knowledge about the clinical characteristics, pathogenic agents and the skin microbiome changes of tinea scrotum. OBJECTIVE We sought to analyze the clinical features, pathogenic agents and skin microbiome of tinea scrotum. METHODS A two-center prospective observational study was carried out in outpatient dermatology clinics in Zhejiang, China, from September 2017 to September 2019. The diagnosis of tinea scrotum was confirmed by direct microscopy. Clinical and mycological data were collected. The composition of microbial communities of patients with tinea scrotum was analyzed and compared with healthy controls. RESULTS A total of 113 patients with tinea scrotum were included. Tinea scrotum was either presented with isolated lesions (9/113, 8.0%) or accompanied by tinea of other sites (104/113, 92.0%). Tinea cruris was detected in 101 cases (89.38%). Fungal culture was positive in 63 cases, among which Trichophyton rubrum was grown in 60 cases (95.2%) and Nannizzia gypsea was cultured in 3 cases (4.8%). The skin microbiome in scrotum lesions from 18 patients showed increased abundance of Trichophyton compared with 18 healthy individuals, while Malassezia was decreased. No significant difference in bacterial diversity was found. CONCLUSIONS Tinea scrotum was often companied by superficial fungal infections of other skin sites, with tinea cruris being the most common condition. Instead of N. gypsea, T. rubrum was the most frequently identified pathogen for tinea scrotum. In general, tinea scrotum exhibited changes in the fungal communities of the skin with increased Trichophyton and decreased Malassezia abundance.
Collapse
Affiliation(s)
- Zixiang Si
- Department of Dermatology, Beilun Branch of The First Affiliated Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Juan Bai
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
| | - Linwei Wei
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
| | - Honglei Zhao
- Department of Dermatology, Beilun Branch of The First Affiliated Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Songting Wang
- Department of Dermatology, Beilun Branch of The First Affiliated Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Bin Liu
- Department of Dermatology, Beilun Traditional Chinese Medicine Hospital, NingBo, China
| | - Jingjing Xu
- Department of Dermatology, Beilun Branch of The First Affiliated Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China.
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Institute of Microbe & Host Health, Linyi University, Linyi, China.
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China.
| |
Collapse
|
18
|
Krawczyk A, Salamon D, Kowalska-Duplaga K, Zapała B, Książek T, Drażniuk-Warchoł M, Gosiewski T. Changes in the gut mycobiome in pediatric patients in relation to the clinical activity of Crohn's disease. World J Gastroenterol 2023; 29:2172-2187. [PMID: 37122605 PMCID: PMC10130967 DOI: 10.3748/wjg.v29.i14.2172] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Numerous studies have shown that in Crohn’s disease (CD), the gut microbiota is of great importance in the induction and maintenance of inflammation in the gastrointestinal tract. Until recently, studies have focused almost exclusively on bacteria in the gut. Lately, more attention has been paid to the role of intestinal fungi.
AIM To study the gut mycobiome analysis of pediatric patients with CD (in different stages of disease activity) compared to healthy children.
METHODS Fecal samples were collected from patients: With active, newly diagnosed CD (n = 50); active but previously diagnosed and treated CD (n = 16); non-active CD and who were in clinical remission (n = 39) and from healthy volunteers (n = 40). Fungal DNA was isolated from the samples. Next, next generation sequencing (MiSeq, Illumina) was performed. The composition of mycobiota was correlated with clinical and blood parameters.
RESULTS Candida spp. were overrepresented in CD patients, while in the control group, the most abundant genus was Saccharomyces. In CD patients, the percentage of Malassezia was almost twice that of the control (P < 0.05). In active CD patients, we documented a higher abundance of Debaryomyces hansenii (D. hansenii) compared to the non-active CD and control (P < 0.05) groups. Moreover, statistically significant changes in the abundance of Mycosphaerella, Rhodotorula, and Microidium were observed. The analyses at the species level and linear discriminant analysis showed that in each group it was possible to distinguish a specific species characteristic of a given patient population. Moreover, we have documented statistically significant correlations between: D. hansenii and patient age (negative); C. zeylanoides and patient age (positive); C. dubliniensis and calprotectin (positive); C. sake and calprotectin (positive); and C. tropicalis and pediatric CD activity index (PCDAI) (positive).
CONCLUSION Mycobiome changes in CD patients, and the positive correlation of some species with calprotectin or PCDAI, give strong evidence that fungi may be of key importance in the development of CD.
Collapse
Affiliation(s)
- Agnieszka Krawczyk
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| | - Dominika Salamon
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| | - Kinga Kowalska-Duplaga
- Department of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Cracow 30-663, Poland
| | - Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Cracow 31-066, Poland
| | - Teofila Książek
- Department of Medical Genetics, Jagiellonian University Medical College, Cracow 30-663, Poland
| | - Marta Drażniuk-Warchoł
- Department of Pediatrics, Gastroenterology and Nutrition, University Children's Hospital, Cracow 30-663, Poland
| | - Tomasz Gosiewski
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| |
Collapse
|
19
|
Bao MY, Li M, Bu QR, Yang Y, Song H, Wang CZ, Wang TM, Li N. The effect of herbal medicine in innate immunity to Candida albicans. Front Immunol 2023; 14:1096383. [PMID: 37483621 PMCID: PMC10359817 DOI: 10.3389/fimmu.2023.1096383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 07/25/2023] Open
Abstract
Candida albicans (C. albicans) is an opportunistic pathogenic fungus that often causes mucosal and systemic infections. Several pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), have been implicated in the host recognition of C. albicans. These PRRs recognize the pathogen-associated molecular patterns (PAMPs) of C. albicans to activate innate immune cells, thereby rapidly inducing various inflammatory responses by activating intracellular signaling cascades. Herbal medicine and its active components deserve priority development due to their low toxicity and high antibacterial, antiviral and antifungal activities. This review discussed the activities of herbal compounds against C. albicans and their related mechanisms, especially their regulatory role on innate immune cells such as neutrophils, macrophages, and dendritic cells (DCs) implicated in C. albicans infections. Our work aims to find new therapeutic drugs and targets to prevent and treat diseases caused by C. albicans infection with the mechanisms by which this fungus interacts with the innate immune response.
Collapse
Affiliation(s)
- Meng-Yuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qing-Ru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chang-Zhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tian-Ming Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Ye S, Huang H, Han X, Luo W, Wu L, Ye Y, Gong Y, Zhao X, Huang W, Wang Y, Long X, Fu G, Liang G. Dectin-1 Acts as a Non-Classical Receptor of Ang II to Induce Cardiac Remodeling. Circ Res 2023; 132:707-722. [PMID: 36786193 DOI: 10.1161/circresaha.122.322259] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
BACKGROUND Cardiac remodeling in heart failure involves macrophage-mediated immune responses. Recent studies have shown that a PRR (pattern recognition receptor) called dectin-1, expressed on macrophages, mediates proinflammatory responses. Whether dectin-1 plays a role in pathological cardiac remodeling is unknown. Here, we identified a potential role of dectin-1 in this disease. METHODS To model aberrant cardiac remodeling, we utilized mouse models of chronic Ang II (angiotensin II) infusion. In this model, we assessed the potential role of dectin-1 through using D1KO (dectin-1 knockout) mice and bone marrow transplantation chimeric mice. We then used cellular and molecular assays to discover the underlying mechanisms of dectin-1 function. RESULTS We found that macrophage dectin-1 is elevated in mouse heart tissues following chronic Ang II administration. D1KO mice were significantly protected against Ang II-induced cardiac dysfunction, hypertrophy, fibrosis, inflammatory responses, and macrophage infiltration. Further bone marrow transplantation studies showed that dectin-1 deficiency in bone marrow-derived cells prevented Ang II-induced cardiac inflammation and dysfunction. Through detailed molecular studies, we show that Ang II binds directly to dectin-1, causing dectin-1 homodimerization and activating the downstream Syk (spleen tyrosine kinase)/NF-κB (nuclear factor kappa B) signaling pathway to induce expression of inflammatory and chemoattractant factors. Mutagenesis studies identified R184 in the C-type lectin domain to interact with Ang II. Blocking dectin-1 in macrophages suppresses Ang II-induced inflammatory mediators and subsequent intercellular cross talk with cardiomyocytes and fibroblasts. CONCLUSIONS Our study has discovered dectin-1 as a new nonclassical receptor of Ang II and a key player in cardiac remolding and dysfunction. These studies suggest that dectin-1 may be a new target for treating hypertension-related heart failure.
Collapse
Affiliation(s)
- Shiju Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (S.Y., X.H., W.L., X.Z., G.L.).,Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (S.Y., W.H.)
| | - He Huang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.)
| | - Xue Han
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (S.Y., X.H., W.L., X.Z., G.L.)
| | - Wu Luo
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (S.Y., X.H., W.L., X.Z., G.L.).,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (W.L., Y.W., X.L., G.L.)
| | - Lili Wu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.)
| | - Yang Ye
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.)
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.)
| | - Xia Zhao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (S.Y., X.H., W.L., X.Z., G.L.)
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (S.Y., W.H.)
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (W.L., Y.W., X.L., G.L.)
| | - Xiaohong Long
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (W.L., Y.W., X.L., G.L.)
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.)
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (S.Y., X.H., W.L., X.Z., G.L.).,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (W.L., Y.W., X.L., G.L.)
| |
Collapse
|
21
|
La Bella AA, Andersen MJ, Gervais NC, Molina JJ, Molesan A, Stuckey PV, Wensing L, Nobile CJ, Shapiro RS, Santiago-Tirado FH, Flores-Mireles AL. The catheterized bladder environment promotes Efg1- and Als1-dependent Candida albicans infection. SCIENCE ADVANCES 2023; 9:eade7689. [PMID: 36867691 PMCID: PMC9984171 DOI: 10.1126/sciadv.ade7689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Catheter-associated urinary tract infections (CAUTIs) account for 40% of hospital-acquired infections (HAIs). As 20 to 50% of hospitalized patients receive catheters, CAUTIs are one of the most common HAIs, resulting in increased morbidity, mortality, and health care costs. Candida albicans is the second most common CAUTI uropathogen, yet relative to its bacterial counterparts, little is known about how fungal CAUTIs are established. Here, we show that the catheterized bladder environment induces Efg1- and fibrinogen (Fg)-dependent biofilm formation that results in CAUTI. In addition, we identify the adhesin Als1 as the critical fungal factor for C. albicans Fg-urine biofilm formation. Furthermore, we show that in the catheterized bladder, a dynamic and open system, both filamentation and attachment are required, but each by themselves are not sufficient for infection. Our study unveils the mechanisms required for fungal CAUTI establishment, which may aid in the development of future therapies to prevent these infections.
Collapse
Affiliation(s)
- Alyssa Ann La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Nicholas C. Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Alex Molesan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
22
|
Wang B, Zhang W, Pan Q, Tao J, Li S, Jiang T, Zhao X. Hyaluronic Acid-Based CuS Nanoenzyme Biodegradable Microneedles for Treating Deep Cutaneous Fungal Infection without Drug Resistance. NANO LETTERS 2023; 23:1327-1336. [PMID: 36749122 DOI: 10.1021/acs.nanolett.2c04539] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Deep cutaneous fungal infection (DCFI) is difficult to be treated by the traditional topical application due to low drug transdermal efficiency, poor fungicidal effect, and easy to develop drug resistance. Here, we report a novel biodegradable microneedle patch (CuS/PAF-26 MN) for DCFI treatment. CuS/PAF-26 MN is composed of hyaluronic acid (HA) and sodium carboxymethylcellulose (CMC-Na), which can simultaneously deliver copper sulfide nanoenzyme (CuS NE) and antimicrobial peptide (PAF-26). CuS NE catalyzes hydrogen peroxide to produce reactive oxygen species (ROS), and PAF-26 directly destroys the cell membrane of fungi. The combination of ROS toxicity produced by CuS NE and the destruction of fungal membrane by PAF-26 shows strong antifungal activities without drug resistance. The antifungal effect of CuS/PAF-26 MN is significantly superior to that of traditional ointment, CuS MN or PAF-26 MN in a DCFI mouse model. Therefore, CuS/PAF-26 MN shows a promising application prospect for treating DCFI.
Collapse
Affiliation(s)
- Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenshang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qi Pan
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao 266042, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
23
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Wang H, Wu H, Li KD, Wang YY, Huang RG, Du YJ, Jin X, Zhang QR, Li XB, Li BZ. Intestinal fungi and systemic autoimmune diseases. Autoimmun Rev 2023; 22:103234. [PMID: 36423833 DOI: 10.1016/j.autrev.2022.103234] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Nearly 20 years of studies have shown that fungi and the human immune system (non-specific immunity and specific immunity) and bacterial--fungal interactions maintain a balance that can't lead to diseases. Fungi--microorganism that lives in human intestine--may play an important role in human health and disease. Population studies and animal models in some diseases have found the changes in the diversity and composition of fungi. The dysregulation of the fungi can disrupt the normal "running" of the immune system and bacteria, which triggers the development of inflammatory diseases. The latest studies of fungi in inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis and type 1 diabetes mellitus were summarized. This review considers how the healthy host protect against the potential harm of intestinal fungi through the immune system and how fungal dysregulation alters host immunity.
Collapse
Affiliation(s)
- Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qian-Ru Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
25
|
The Impact of Corticosteroids on the Outcome of Fungal Disease: a Systematic Review and Meta-analysis. CURRENT FUNGAL INFECTION REPORTS 2023; 17:54-70. [PMID: 36852004 PMCID: PMC9947451 DOI: 10.1007/s12281-023-00456-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/25/2023]
Abstract
Purpose of Review Corticosteroids have a complex relationship with fungal disease - risk for many, benefit for others. This systematic review aims to address the effect of corticosteroids on mortality and visual outcome in different fungal diseases. Recent Findings Corticosteroids are a risk factor of aspergillosis for patients who have COVID-19, and they also led to a worse outcome. Similarity, corticosteroids are a risk factor for candidemia and mucormycosis. Some researchers reported that using topical corticosteroid in keratitis was associated with worse visual outcome if fungal keratitis. Some studies showed that corticosteroids are linked to a negative outcome for non-HIV patients with Pneumocystis jirovecii pneumonia (PCP), in contrast to those with HIV and PCP. Summary In 59 references, we found that corticosteroid therapy showed a worse clinical outcome in invasive aspergillosis (IA) (HR: 2.50, 95%CI: 1.89-3.31, p < 0.001) and chronic pulmonary aspergillosis (CPA) (HR: 2.74, 95%CI: 1.48-5.06, p = 0.001), PCP without HIV infection (OR: 1.29, 95%CI: 1.09-1.53, p = 0.003), invasive candidiasis and candidaemia (OR: 2.13, 95%CI: 1.85-2.46, p < 0.001), mucormycosis (OR: 4.19, 95%CI: 1.74-10.05, p = 0.001) and early in the course of fungal keratitis (OR: 2.99, 95%CI: 1.14-7.84, p = 0.026). There was equivocal outcome in cryptococcal meningoencephalitis in AIDS and primary coccidioidomycosis, while corticosteroid therapy showed a better outcome in PCP in HIV-infected patients (RR: 0.62, 95%CI: 0.46-0.83, p=0.001) and fungal keratitis patients after keratoplasty surgery (OR: 0.01, 95%CI: 0.00-0.41, p = 0.041) and probably in cryptococcal meningoencephalitis in non-immunocompromised patients. A sub-analysis in invasive aspergillosis and CPA showed that use of more than 2 mg/kg/day of prednisolone equivalents per day is a significant factor in increasing mortality (HR: 2.94, 95%CI: 2.13-4.05, p < 0.001). Corticosteroid therapy during invasive fungal disease was usually associated with a slightly or greatly increased mortality or worse visual outcome (in fungal keratitis), with two disease exceptions. Avoiding the addition of corticosteroids, or minimising dose and duration in those who require them, is likely to improve the outcome of most life- and vision-threatening fungal diseases. This review provides a cornerstone for further research in exploring the accuracy of suitable dose and duration of corticosteroids treatment in fungal diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s12281-023-00456-2.
Collapse
|
26
|
Role of Candida albicans in Oral Carcinogenesis. PATHOPHYSIOLOGY 2022; 29:650-662. [PMID: 36548207 PMCID: PMC9786125 DOI: 10.3390/pathophysiology29040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oral carcinogenesis is also dependent on the balance of the oral microbiota. Candida albicans is a member oral microbiota that acts as an opportunistic pathogen along with changes in the epithelium that can predispose to premalignancy and/or malignancy. This systematic review uses the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines to analyze the role of Candida albicans in the process of oral carcinogenesis. Eleven articles qualified inclusion criteria, matched keywords, and provided adequate information about the carcinogenesis parameters of Candida albicans in oral cancer. Candida albicans in oral carcinogenesis can be seen as significant virulent factors for patients with oral squamous cell carcinoma (OSCC) or potentially malignant disorder (OPMD) with normal adjacent mucosa. Candida albicans have a role in the process of oral carcinogenesis concerning morphological phenotype changes in cell structure and genotype and contribute to the formation of carcinogenic substances that can affect cell development towards malignancy.
Collapse
|
27
|
Ianiri G, LeibundGut-Landmann S, Dawson TL. Malassezia: A Commensal, Pathogen, and Mutualist of Human and Animal Skin. Annu Rev Microbiol 2022; 76:757-782. [PMID: 36075093 DOI: 10.1146/annurev-micro-040820-010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identified in the late nineteenth century as a single species residing on human skin, Malassezia is now recognized as a diverse genus comprising 18 species inhabiting not only skin but human gut, hospital environments, and even deep-sea sponges. All cultivated Malassezia species are lipid dependent, having lost genes for lipid synthesis and carbohydrate metabolism. The surging interest in Malassezia results from development of tools to improve sampling, culture, identification, and genetic engineering, which has led to findings implicating it in numerous skin diseases, Crohn disease, and pancreatic cancer. However, it has become clear that Malassezia plays a multifaceted role in human health, with mutualistic activity in atopic dermatitis and a preventive effect against other skin infections due to its potential to compete with skin pathogens such as Candida auris. Improved understanding of complex microbe-microbe and host-microbe interactions will be required to define Malassezia's role in human and animal health and disease so as to design targeted interventions.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental, and Food Sciences, University of Molise, Campobasso, Italy
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Faculty of Vetsuisse, and Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Thomas L Dawson
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; .,Department of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
28
|
Li T, Liu T, Zhao Z, Pan Y, Xu X, Zhang Y, Zhan S, Zhou S, Zhu W, Guo H, Yang R. Antifungal immunity mediated by C-type lectin receptors may be a novel target in immunotherapy for urothelial bladder cancer. Front Immunol 2022; 13:911325. [PMID: 36131933 PMCID: PMC9483128 DOI: 10.3389/fimmu.2022.911325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapies, such as immune-checkpoint blockade and adoptive T-cell therapy, offer novel treatment options with good efficacy for patients with urothelial bladder cancer. However, heterogeneity and therapeutic resistance have limited the use of immunotherapy. Further research into immune-regulatory mechanisms in bladder cancer is urgently required. Emerging evidence demonstrates that the commensal microbiota and its interactions with host immunity play pivotal roles in a variety of physiological and pathological processes, including in cancer. The gut microbiota has been identified as a potentially effective target of treatment that can be synergized with immunotherapy. The urothelial tract is also a key site for multiple microbes, although the immune-regulatory role of the urinary microbiome in the process of carcinogenesis of bladder cancer remains to be elucidated. We performed a comprehensive analysis of the expression and biological functions of C-type lectin receptors (CLRs), which have been recognized as innate pathogen-associated receptors for fungal microbiota, in bladder cancer. In line with previous research on fungal colonization of the urothelial tract, we found that CLRs, including Dectin-1, Dectin-2, Dectin-3, and macrophage-inducible Ca2+-dependent lectin receptor (Mincle), had a significant association with immune infiltration in bladder cancer. Multiple innate and adaptive pathways are positively correlated with the upregulation of CLRs. In addition, we found a significant correlation between the expression of CLRs and a range of immune-checkpoint proteins in bladder cancer. Based on previous studies and our findings, we hypothesize that the urinary mycobiome plays a key role in the pathogenesis of bladder cancer and call for more research on CLR-mediated anti-fungal immunity against bladder cancer as a novel target for immunotherapy in urothelial bladder cancer.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xinyan Xu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yulin Zhang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Shoubin Zhan
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengkai Zhou
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Zhu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Rong Yang, ; Hongqian Guo,
| | - Rong Yang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Rong Yang, ; Hongqian Guo,
| |
Collapse
|
29
|
Sachdeva G, Das A. Communication between immune system and mycobiota impacts health and disease. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9218050 DOI: 10.1007/s43538-022-00082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gunjan Sachdeva
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
30
|
Yadav M, Ali S, Shrode RL, Shahi SK, Jensen SN, Hoang J, Cassidy S, Olalde H, Guseva N, Paullus M, Cherwin C, Wang K, Cho T, Kamholz J, Mangalam AK. Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness. PLoS One 2022; 17:e0264556. [PMID: 35472144 PMCID: PMC9041819 DOI: 10.1371/journal.pone.0264556] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Trillions of microbes such as bacteria, fungi, and viruses exist in the healthy human gut microbiome. Although gut bacterial dysbiosis has been extensively studied in multiple sclerosis (MS), the significance of the fungal microbiome (mycobiome) is an understudied and neglected part of the intestinal microbiome in MS. The aim of this study was to characterize the gut mycobiome of patients with relapsing-remitting multiple sclerosis (RRMS), compare it to healthy controls, and examine its association with changes in the bacterial microbiome. We characterized and compared the mycobiome of 20 RRMS patients and 33 healthy controls (HC) using Internal Transcribed Spacer 2 (ITS2) and compared mycobiome interactions with the bacterial microbiome using 16S rRNA sequencing. Our results demonstrate an altered mycobiome in RRMS patients compared with HC. RRMS patients showed an increased abundance of Basidiomycota and decreased Ascomycota at the phylum level with an increased abundance of Candida and Epicoccum genera along with a decreased abundance of Saccharomyces compared to HC. We also observed an increased ITS2/16S ratio, altered fungal and bacterial associations, and altered fungal functional profiles in MS patients compared to HC. This study demonstrates that RRMS patients had a distinct mycobiome with associated changes in the bacterial microbiome compared to HC. There is an increased fungal to bacterial ratio as well as more diverse fungal-bacterial interactions in RRMS patients compared to HC. Our study is the first step towards future studies in delineating the mechanisms through which the fungal microbiome can influence MS disease.
Collapse
Affiliation(s)
- Meeta Yadav
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- University of Iowa College of Dentistry, Iowa City, IA, United States of America
| | - Soham Ali
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Rachel L. Shrode
- Informatics Graduate Program, University of Iowa, Iowa City, IA, United States of America
| | - Shailesh K. Shahi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Samantha N. Jensen
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Jemmie Hoang
- College of Nursing University of Iowa, Iowa City, IA, United States of America
| | - Samuel Cassidy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Heena Olalde
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Natalya Guseva
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Mishelle Paullus
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Catherine Cherwin
- College of Nursing University of Iowa, Iowa City, IA, United States of America
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States of America
| | - Tracey Cho
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - John Kamholz
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Ashutosh K. Mangalam
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Informatics Graduate Program, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States of America
- Iowa City VA Health System, Iowa City, IA, United States of America
| |
Collapse
|
31
|
Chen L, Wang J. Gut microbiota and inflammatory bowel disease. WIREs Mech Dis 2022; 14:e1540. [PMID: 35266651 DOI: 10.1002/wsbm.1540] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Gut microbiota refers to the complex aggregation of microbes in gut, including bacteria, archaea, fungi, and viruses, and they exert marked influence on the host's health. Perturbations in the gut microbiota have been closely linked to initiation and progression of IBD, which has become a disease with accelerating incidence worldwide, but it remains to be thoroughly investigated how microbial involvement might contribute to IBD. In this review, we discuss the current research findings concerning alterations in the gut microbiota, trans-kingdom interaction between the members of the gut microbiota, their interactions with the immune system of host, their potential role in the IBD pathogenesis, and the relationship between gut microbiota and IBD. We hope to provide a better understanding of the causes of IBD and shed light on the development of microbiome-based therapeutic approaches, which might be a promising strategy to alleviate, manage, and eventually cure IBD. This article is categorized under: Infectious Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| |
Collapse
|
32
|
Yang Q, Ouyang J, Pi D, Feng L, Yang J. Malassezia in Inflammatory Bowel Disease: Accomplice of Evoking Tumorigenesis. Front Immunol 2022; 13:846469. [PMID: 35309351 PMCID: PMC8931276 DOI: 10.3389/fimmu.2022.846469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that patients with inflammatory bowel disease (IBD) have a significantly higher risk of developing different cancers, while the exact mechanism involved is not yet fully understood. Malassezia is a lipid-dependent opportunistic yeast, which colonizes on mammalian skin and internal organs. Also, dysbiosis in fungal communities accompanied by high level of Malassezia are fairly common in inflammatory diseases such as IBD and various cancers. In cancer patients, higher levels of Malassezia are associated with worse prognosis. Once it is ablated in tumor-bearing mice, their prognostic conditions will be improved. Moreover, Malassezia manifests multiple proinflammatory biological properties, such as destruction of epithelial barrier, enrichment of inflammatory factors, and degradation of extracellular matrix (ECM), all of which have been reported to contribute to tumor initiation and malignant progression. Based on these facts, we hypothesize that high levels of Malassezia together with mycobiome dysbiosis in patients with IBD, would aggravate the microecological imbalance, worsen the inflammatory response, and further promote tumorigenesis and deterioration. Herein, we will discuss the detrimental properties of Malassezia and explore the key role of this fungus in the correlation between IBD and cancer, in order to take early surveillance and intervention to minimize the cancer risk in individuals with IBD.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Feng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
- *Correspondence: Li Feng, ; Jiadan Yang,
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Feng, ; Jiadan Yang,
| |
Collapse
|
33
|
Leonardi I, Gao IH, Lin WY, Allen M, Li XV, Fiers WD, De Celie MB, Putzel GG, Yantiss RK, Johncilla M, Colak D, Iliev ID. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 2022; 185:831-846.e14. [PMID: 35176228 PMCID: PMC8897247 DOI: 10.1016/j.cell.2022.01.017] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.
Collapse
Affiliation(s)
- Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Iris H. Gao
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Woan-Yu Lin
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Megan Allen
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York City, NY, USA
| | - Xin V. Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - William D. Fiers
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Meghan Bialt De Celie
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G. Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Rhonda K. Yantiss
- MJ Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Melanie Johncilla
- MJ Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York City, NY, USA.,Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medical College, Cornell University, New York City, NY, USA
| | - Iliyan D. Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
34
|
Underhill DM, Braun J. Fungal microbiome in inflammatory bowel disease: a critical assessment. J Clin Invest 2022; 132:155786. [PMID: 35229726 PMCID: PMC8884899 DOI: 10.1172/jci155786] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is at the center of inflammatory bowel disease (IBD) pathogenesis and disease activity. While this has mainly been studied in the context of the bacterial microbiome, recent advances have provided tools for the study of host genetics and metagenomics of host-fungal interaction. Through these tools, strong evidence has emerged linking certain fungal taxa, such as Candida and Malassezia, with cellular and molecular pathways of IBD disease biology. Mouse models and human fecal microbial transplant also suggest that some disease-participatory bacteria and fungi may act not via the host directly, but via their fungal-bacterial ecologic interactions. We hope that these insights, and the study design and multi-omics strategies used to develop them, will facilitate the inclusion of the fungal community in basic and translational IBD research.
Collapse
Affiliation(s)
- David M Underhill
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute.,Division of Gastroenterology, Department of Medicine, and.,Research Division of Immunology, Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jonathan Braun
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute.,Division of Gastroenterology, Department of Medicine, and.,Research Division of Immunology, Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
35
|
Reynoso-García J, Narganes-Storde Y, Santiago-Rodriguez TM, Toranzos GA. Mycobiome-Host Coevolution? The Mycobiome of Ancestral Human Populations Seems to Be Different and Less Diverse Than Those of Extant Native and Urban-Industrialized Populations. Microorganisms 2022; 10:microorganisms10020459. [PMID: 35208912 PMCID: PMC8877467 DOI: 10.3390/microorganisms10020459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Few data exist on the human gut mycobiome in relation to lifestyle, ethnicity, and dietary habits. To understand the effect of these factors on the structure of the human gut mycobiome, we analyzed sequences belonging to two extinct pre-Columbian cultures inhabiting Puerto Rico (the Huecoid and Saladoid) and compared them to coprolite samples found in Mexico and Ötzi, the Iceman’s large intestine. Stool mycobiome samples from extant populations in Peru and urban cultures from the United States were also included. The ancient Puerto Rican cultures exhibited a lower fungal diversity in comparison to the extant populations. Dissimilarity distances showed that the Huecoid gut mycobiome resembled that from ancient Mexico. Fungal genera including Aspergillus spp., Penicillium spp., Rasamsonia spp., Byssochlamys spp., Talaromyces spp., Blastomyces spp., Monascus spp., and Penicilliopsis spp. were differentially abundant in the ancient and extant populations. Despite cultural differences, certain fungal taxa were present in all samples. These results suggest that culture and diet may impact the gut mycobiome and emphasize that modern lifestyles could be associated with the alteration of gut mycobiome diversity. The present study presents data on ancient and extant human gut mycobiomes in terms of lifestyle, ethnicity, and diet in the Americas.
Collapse
Affiliation(s)
- Jelissa Reynoso-García
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, San Juan 00931, Puerto Rico;
- Correspondence:
| | - Yvonne Narganes-Storde
- Center for Archaeological Research, Río Piedras Campus, University of Puerto Rico, San Juan 00931, Puerto Rico;
| | | | - Gary A. Toranzos
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, San Juan 00931, Puerto Rico;
| |
Collapse
|
36
|
Yu D, Xie L, Chen W, Qin J, Zhang J, Lei M, Wang Y, Tang H, Xue S, Liang X, Miao Z, Xiao C, Shang M, Lu J, Di H, Fu Y. Dynamics of the Gut Bacteria and Fungi Accompanying Low-Carbohydrate Diet-Induced Weight Loss in Overweight and Obese Adults. Front Nutr 2022; 9:846378. [PMID: 35223965 PMCID: PMC8873986 DOI: 10.3389/fnut.2022.846378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/14/2022] [Indexed: 12/31/2022] Open
Abstract
Background Low-carbohydrate (e.g., Atkins) dietary pattern is one of the most effective diets for weight loss, but little is known about the characteristics of the gut microbiota accompanying low-carbohydrate diets-induced weight loss. This study aims to profile dynamics of gut bacteria and fungi accompanying modified Atkins diets-induced weight loss among overweight and obese adults. Methods Overweight and obese adults were screened to follow a modified Atkins diet plan (30% of energy from protein, 40% from carbohydrate and 30% from fat). We longitudinally profiled dynamics of gut bacteria and fungi based on 16S rRNA and ITS rRNA gene sequencing data, respectively. Results A total of 65 participants followed the modified Atkins diets for 20–231 days, with 61 and 27 participants achieving a weight loss of at least 5 and 10%, respectively. Most of the participants who achieved 10% weight loss also experienced improvements on metabolic health. The diversity of gut bacteria and fungi increased after a weight loss of 5% and kept stable thereafter. Bacteria genera including Lachnoclostridium and Ruminococcus 2 from Firmicutes phylum were depleted, while Parabacteroides and Bacteroides from Bacteroidetes phylum were enriched after weight loss. The inter-kingdom analysis found an intensive covariation between gut fungi and bacteria, involving more than half of the weight loss-associated bacteria. Conclusions This study confirmed the modulation of bacterial and fungal composition during weight loss with the low-carbohydrate diets and showed previously unknown links between intestinal bacteria and fungi accompanying the weight loss.
Collapse
Affiliation(s)
- Dan Yu
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Libin Xie
- School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Wei Chen
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Qin
- The Biobank, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Orthopedic Clinical Research Center, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingjing Zhang
- Clinical Biochemistry Lab, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Lei
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue Wang
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongge Tang
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sujuan Xue
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinxiu Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Congmei Xiao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Meishuang Shang
- The Biobank, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Orthopedic Clinical Research Center, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Lu
- Clinical Biochemistry Lab, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hailing Di
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Hailing Di
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Yuanqing Fu
| |
Collapse
|
37
|
Xu F, Mu J, Teng Y, Zhang X, Sundaram K, Sriwastva MK, Kumar A, Lei C, Zhang L, Liu QM, Yan J, McClain CJ, Merchant ML, Zhang HG. Restoring Oat Nanoparticles Mediated Brain Memory Function of Mice Fed Alcohol by Sorting Inflammatory Dectin-1 Complex Into Microglial Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105385. [PMID: 34897972 PMCID: PMC8858573 DOI: 10.1002/smll.202105385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Indexed: 05/23/2023]
Abstract
Microglia modulate pro-inflammatory and neurotoxic activities. Edible plant-derived factors improve brain function. Current knowledge of the molecular interactions between edible plant-derived factors and the microglial cell is limited. Here an alcohol-induced chronic brain inflammation model is used to identify that the microglial cell is the novel target of oat nanoparticles (oatN). Oral administration of oatN inhibits brain inflammation and improves brain memory function of mice that are fed alcohol. Mechanistically, ethanol activates dectin-1 mediated inflammatory pathway. OatN is taken up by microglial cells via β-glucan mediated binding to microglial hippocalcin (HPCA) whereas oatN digalactosyldiacylglycerol (DGDG) prevents assess of oatN β-glucan to dectin-1. Subsequently endocytosed β-glucan/HPCA is recruited in an endosomal recycling compartment (ERC) via interaction with Rab11a. This complex then sequesters the dectin-1 in the ERC in an oatN β-glucan dependent manner and alters the location of dectin-1 from Golgi to early endosomes and lysosomes and increases exportation of dectin-1 into exosomes in an Rab11a dependent manner. Collectively, these cascading actions lead to preventing the activation of the alcoholic induced brain inflammation signing pathway(s). This coordinated assembling of the HPCA/Rab11a/dectin-1 complex by oral administration of oatN may contribute to the prevention of brain inflammation.
Collapse
Affiliation(s)
- Fangyi Xu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiangcheng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Department of ICU, the Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Mukesh K Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Qiaohong M Liu
- Peak Neuromonitoring Associates-Kentucky, Louisville, KY, 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, 40202, USA
| | - Huang-Ge Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA
| |
Collapse
|
38
|
Herman A, Herman AP. Could Candida Overgrowth Be Involved in the Pathophysiology of Autism? J Clin Med 2022; 11:442. [PMID: 35054136 PMCID: PMC8778531 DOI: 10.3390/jcm11020442] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of this review is to summarize the current acquiredknowledge of Candida overgrowth in the intestine as a possible etiology of autism spectrum disorder (ASD). The influence of Candida sp. on the immune system, brain, and behavior of children with ASD isdescribed. The benefits of interventions such as a carbohydrates-exclusion diet, probiotic supplementation, antifungal agents, fecal microbiota transplantation (FMT), and microbiota transfer therapy (MTT) will be also discussed. Our literature query showed that the results of most studies do not fully support the hypothesis that Candida overgrowth is correlated with gastrointestinal (GI) problems and contributes to autism behavioral symptoms occurrence. On the one hand, it was reported that the modulation of microbiota composition in the gut may decrease Candida overgrowth, help reduce GI problems and autism symptoms. On the other hand, studies on humans suggesting the beneficial effects of a sugar-free diet, probiotic supplementation, FMT and MTT treatment in ASD are limited and inconclusive. Due to the increasing prevalence of ASD, studies on the etiology of this disorder are extremely needed and valuable. However, to elucidate the possible involvement of Candida in the pathophysiology of ASD, more reliable and well-designed research is certainly required.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, Bitwy Warszawskiej 20 18, 19 Street, 02-366 Warsaw, Poland
| | - Andrzej Przemysław Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland;
| |
Collapse
|
39
|
Wang S, Wang R, Song Y, Wan Z, Chen W, Li H, Li R. FOCUS THEME ISSUE: CONCISE COMMUNICATION Dysbiosis of nail microbiome in patients with psoriasis. Exp Dermatol 2022; 31:800-806. [PMID: 35028964 DOI: 10.1111/exd.14528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Shifts in skin microbiome are considered to be involved in the pathogenesis of psoriasis. However, data on the microbial dysbiosis of nail psoriasis is scarce. In this study, we aim to investigate and characterize the nail bacterial and fungal microbiome in patients with psoriasis. Nail samples were collected prospectively from 36 subjects with nail psoriasis, 24 psoriatic subjects without nail involvement, and 32 healthy controls. Amplicon sequencing was performed to evaluate the bacterial and fungal community compositions. Significant alterations in the bacterial microbiome were found in the nail samples of psoriatic patients. The unaffected nails in psoriatic patients were associated with higher bacterial diversity, and a higher relative abundance of Enhydrobacter, whereas nail psoriasis was correlated with a decreased relative abundance of Anaerococcus. Shifts in fungal community composition was reflected by a higher proportion of Malassezia in the unaffected nails of psoriatic patients and an increased proportion of Candida in psoriatic nails. Shifts in the nail microbiome in psoriasis suggest a potential role of microbes in the development of nail psoriasis. Future researches focusing on these microorganisms may help to explain the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ruojun Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Zhe Wan
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Wei Chen
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Hang Li
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
40
|
Shankar J. Food Habit Associated Mycobiota Composition and Their Impact on Human Health. Front Nutr 2021; 8:773577. [PMID: 34881282 PMCID: PMC8645600 DOI: 10.3389/fnut.2021.773577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Mycobiota is not only associated with healthy homeostasis in the human gut but also helps to adapt to the environment. Food habits, alcohol consumption, intake of probiotics, and contaminated food with a mycotoxin, often lead to the alteration in the mycobiota composition. Impaired immunity of the host may affect fungal symbiosis leading to mycosis. The human gut adapts to the commensalism fungi belonging to the phylum Ascomycota and Basidiomycota. Diet habits such as plant-or animal-based, phytoestrogens enriched plant products, fat-rich diets also influence the colonization of certain fungal species in the mammalian gut. Food habits or mycotoxin-contaminated food or fungal peptides have an impact on bacterial-fungal interaction and human health. The mycobiota population such as Fusarium, Humicola, Aspergillus, and Candida are altered due to alcohol intake in alcoholic liver disease. The role of associated gut mycobiota due to irregular bowel habits or lifestyle change has been observed in inflammatory bowel disease. In this review, it has been observed that Saccharomyces, Aspergillus, Fusarium, Cladosporium, Candida, and Malassezia were the common genus in the human mycobiota. Therefore, this study focused on how diet habits and alcohol intake, among others., influence mycobiota composition that may affect the human immune system or overall health.
Collapse
Affiliation(s)
- Jata Shankar
- Genomics Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
41
|
The human fungal pathogen Malassezia and its role in cancer. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Abstract
Inflammatory bowel disease (IBD) is a life-threatening and chronic inflammatory disease of gastrointestinal tissue, with complex pathogenesis. Current research on IBD has mainly focused on bacteria; however, the role of fungi in IBD is largely unknown due to the incomplete annotation of fungi in current genomic databases. With the development of molecular techniques, the gut mycobiome has been found to have great diversity. In addition, increasing evidence has shown intestinal mycobiome plays an important role in the physiological and pathological processes of IBD. In this review, we will systemically introduce the recent knowledge about multi-dimensional fungal dysbiosis associated with IBD, the interactions between fungus and bacteria, the role of fungi in inflammation in IBD, and highlight recent advances in the potential therapeutic role of fungus in IBD, which may hold the keys to develop new predictive, therapeutic or prognostic approaches in IBD.
Collapse
Affiliation(s)
- Sui Wang
- Laboratory of Translational Gastroenterology, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Rong Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
43
|
Ji X, Yang H, Liu W, Ma Y, Wu J, Zong X, Yuan P, Chen X, Yang C, Li X, Lin H, Xue W, Dai J. Multifunctional Parachute-like Nanomotors for Enhanced Skin Penetration and Synergistic Antifungal Therapy. ACS NANO 2021; 15:14218-14228. [PMID: 34435494 DOI: 10.1021/acsnano.1c01379] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fungal infections in skin are extremely stubborn and seriously threaten human health. In the process of antifungal treatment, it is a huge challenge that the stratum corneum of the skin and fungal biofilms form the drug transport barrier. Herein, a near-infrared (NIR) laser-propelled parachute-like nanomotor loaded with miconazole nitrate (PNM-MN) is fabricated to enhance transdermal drug delivery for synergistic antifungal therapy. Due to asymmetrically spatial distribution, PNM can generate a thermal gradient under NIR laser irradiation, thereby forming effective self-thermophoretic propulsion. The self-propulsion and photothermal effect of PNM play a major role in promoting fungal uptake and biofilm adhesion. Moreover, under laser irradiation, PNM-MN can obliterate plankton Candida albicans and mature biofilms by combining pharmacological therapy and photothermal therapy. More importantly, the drug effectively penetrated the skin to reach the infected site using the nanomotor with NIR laser irradiation. Moreover, PNM-MN with a NIR laser can eradicate fungal infections caused by C. albicans and facilitate the abscess ablation, showing a therapeutic effect in vivo better than that of PNM with a NIR laser or free MN groups, with negligible histological toxicity. Taken together, NIR laser-propelled PNM-MN, as an antifungal nanoagent, provides a promising strategy for transdermal delivery and antifungal therapy.
Collapse
Affiliation(s)
- Xin Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Haiyuan Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wen Liu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yandong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jinpei Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaoqing Zong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Pengfei Yuan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xinjie Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Caiqi Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaodi Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
44
|
Wang S, Song Y, Wan Z, Chen W, Wang R, Li R. Characterisation of the nail microbiome in psoriatic and nonpsoriatic patients with onychomycosis. Mycoses 2021; 65:35-44. [PMID: 34549836 DOI: 10.1111/myc.13372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Onychomycosis (OM) is the most common infectious nail disease, and it occurs frequently in patients with psoriasis. Microbial community shifts have been suggested to play a role in psoriasis and fungal infection occurrence. OBJECTIVES To investigate and compare nail microbial community compositions in psoriatic and nonpsoriatic patients with OM. METHODS Toenail samples were collected from nonpsoriatic patients with OM, psoriatic patients with nail psoriasis (NP) and OM, patients with only NP and healthy controls. Bacterial and fungal community compositions were analysed by amplicon sequencing of the V3-V4 regions of the 16S rDNA gene and the ITS1 region, respectively. RESULTS Psoriatic OM patients had higher bacterial and fungal alpha diversities. Taxonomic analysis revealed a significantly lower relative abundance of Trichophyton rubrum (32.88% vs 82.18%, p < .001) and an increased trend of the abundance of Candida in psoriatic patients with OM than in nonpsoriatic patients. Nonpsoriatic patients with OM had a higher abundance of Staphylococcus than healthy controls (59.66% vs 45.76%, p < .05). Trichophyton, Alternaria and Malassezia could accurately differentiate psoriatic and nonpsoriatic patients with OM, with an area under the curve (AUC) of 0.86. The severity of OM was positively correlated with the relative abundance of Trichophyton rubrum. Further, Trichophyton was positively correlated with Staphylococcus and negatively correlated with Corynebacterium, Anaerococcus, Malassezia and Alternaria. CONCLUSIONS The nail microbiome in psoriatic patients with OM has distinct bacterial and fungal signatures, suggesting that different dysbiosis is associated with the pathogenesis of OM in psoriatic and nonpsoriatic patients.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Zhe Wan
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Wei Chen
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ruojun Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
45
|
Roe K. How major fungal infections can initiate severe autoimmune diseases. Microb Pathog 2021; 161:105200. [PMID: 34537272 DOI: 10.1016/j.micpath.2021.105200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Several autoimmune diseases have long been linked to viral and bacterial infections. In contrast, the possibility of fungal infections causing autoimmune diseases has received almost no attention. However, major fungal infections can cause severe autoimmune diseases, by decreasing TREG cells and increasing production of interleukin-23, CD4 TH17 T-cells, interleukin-17 and other cytokines, including interleukin-22. Several factors can cause fungal infections, including antibiotic usage. Bacterial and fungal populations compete in mammalian oropharyngeal, respiratory, gastrointestinal, and genitourinary tracts. Antibiotic usage decreases bacteria and thereby favors fungal populations over bacterial populations. This leads to an explanatory hypothesis for the pathogenesis of severe autoimmune diseases by major fungal infections. The increase in fungal populations in individuals susceptible to major fungal infections can also explain the higher incidence of autoimmune diseases. CD4 TH17 T-cells and certain interleukins can be one path of pathogenesis between major fungal infections and increased incidences of major autoimmune diseases, including type 1 diabetes, multiple sclerosis, and various types of arthritis.
Collapse
|
46
|
Shiao SL, Kershaw KM, Limon JJ, You S, Yoon J, Ko EY, Guarnerio J, Potdar AA, McGovern DPB, Bose S, Dar TB, Noe P, Lee J, Kubota Y, Maymi VI, Davis MJ, Henson RM, Choi RY, Yang W, Tang J, Gargus M, Prince AD, Zumsteg ZS, Underhill DM. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer Cell 2021; 39:1202-1213.e6. [PMID: 34329585 PMCID: PMC8830498 DOI: 10.1016/j.ccell.2021.07.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/28/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Abstract
Studies suggest that the efficacy of cancer chemotherapy and immunotherapy is influenced by intestinal bacteria. However, the influence of the microbiome on radiation therapy is not as well understood, and the microbiome comprises more than bacteria. Here, we find that intestinal fungi regulate antitumor immune responses following radiation in mouse models of breast cancer and melanoma and that fungi and bacteria have opposite influences on these responses. Antibiotic-mediated depletion or gnotobiotic exclusion of fungi enhances responsiveness to radiation, whereas antibiotic-mediated depletion of bacteria reduces responsiveness and is associated with overgrowth of commensal fungi. Further, elevated intratumoral expression of Dectin-1, a primary innate sensor of fungi, is negatively associated with survival in patients with breast cancer and is required for the effects of commensal fungi in mouse models of radiation therapy.
Collapse
Affiliation(s)
- Stephen L Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Kathleen M Kershaw
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jose J Limon
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Junhee Yoon
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Emily Y Ko
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Jlenia Guarnerio
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Alka A Potdar
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shikha Bose
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tahir B Dar
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Paul Noe
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Jung Lee
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Yuzu Kubota
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Viviana I Maymi
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Madison J Davis
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Regina M Henson
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Rachel Y Choi
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Wensha Yang
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Jie Tang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew Gargus
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander D Prince
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zachary S Zumsteg
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - David M Underhill
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
47
|
Last A, Maurer M, S. Mosig A, S. Gresnigt M, Hube B. In vitro infection models to study fungal-host interactions. FEMS Microbiol Rev 2021; 45:fuab005. [PMID: 33524102 PMCID: PMC8498566 DOI: 10.1093/femsre/fuab005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections (mycoses) affect over a billion people per year. Approximately, two million of these infections are life-threatening, especially for patients with a compromised immune system. Fungi of the genera Aspergillus, Candida, Histoplasma and Cryptococcus are opportunistic pathogens that contribute to a substantial number of mycoses. To optimize the diagnosis and treatment of mycoses, we need to understand the complex fungal-host interplay during pathogenesis, the fungal attributes causing virulence and how the host resists infection via immunological defenses. In vitro models can be used to mimic fungal infections of various tissues and organs and the corresponding immune responses at near-physiological conditions. Furthermore, models can include fungal interactions with the host-microbiota to mimic the in vivo situation on skin and mucosal surfaces. This article reviews currently used in vitro models of fungal infections ranging from cell monolayers to microfluidic 3D organ-on-chip (OOC) platforms. We also discuss how OOC models can expand the toolbox for investigating interactions of fungi and their human hosts in the future.
Collapse
Affiliation(s)
- Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michelle Maurer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 24, 07743, Jena, Germany
| |
Collapse
|
48
|
Wang Y, Fu Y, He Y, Kulyar MFEA, Iqbal M, Li K, Liu J. Longitudinal Characterization of the Gut Bacterial and Fungal Communities in Yaks. J Fungi (Basel) 2021; 7:jof7070559. [PMID: 34356938 PMCID: PMC8304987 DOI: 10.3390/jof7070559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Development phases are important in maturing immune systems, intestinal functions, and metabolism for the construction, structure, and diversity of microbiome in the intestine during the entire life. Characterizing the gut microbiota colonization and succession based on age-dependent effects might be crucial if a microbiota-based therapeutic or disease prevention strategy is adopted. The purpose of this study was to reveal the dynamic distribution of intestinal bacterial and fungal communities across all development stages in yaks. Dynamic changes (a substantial difference) in the structure and composition ratio of the microbial community were observed in yaks that matched the natural aging process from juvenile to natural aging. This study included a significant shift in the abundance and proportion of bacterial phyla (Planctomycetes, Firmicutes, Bacteroidetes, Spirochaetes, Tenericutes, Proteobacteria, and Cyanobacteria) and fungal phyla (Chytridiomycota, Mortierellomycota, Neocallimastigomycota, Ascomycota, and Basidiomycota) across all development stages in yaks. As yaks grew older, variation reduced, and diversity increased as compared to young yaks. In addition, the intestine was colonized by a succession of microbiomes that coalesced into a more mature adult, including Ruminococcaceae_UCG-005, Romboutsia, Prevotellaceae_UCG-004, Blautia, Clostridium_sensu_stricto_1, Ruminococcus_1, Ruminiclostridium_5, Rikenellaceae_RC9_gut_group, Alloprevotella, Acetitomaculum, Lachnospiraceae_NK3A20_group, Bacteroides, Treponema_2, Olsenella, Escherichia-Shigella, Candidatus_Saccharimonas, and fungal communities Mortierella, Lomentospora, Orpinomyces, and Saccharomyces. In addition, microorganisms that threaten health, such as Escherichia-Shigella, Mortierella, Lomentospora and Hydrogenoanaerobacterium, Corynebacterium_1, Trichosporon, and Coprinellus, were enriched in young and old yaks, respectively, although all yaks were healthy. The significant shifts in microflora composition and structure might reflect adaptation of gut microbiome, which is associated with physicochemical conditions changes and substrate availability in the gut across all development periods of yaks.
Collapse
Affiliation(s)
- Yaping Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.H.); (M.F.-e.-A.K.); (M.I.)
| | - Yuhang Fu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.H.); (M.F.-e.-A.K.); (M.I.)
| | - Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.H.); (M.F.-e.-A.K.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.H.); (M.F.-e.-A.K.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.H.); (M.F.-e.-A.K.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (K.L.); (J.L.)
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (K.L.); (J.L.)
| |
Collapse
|
49
|
Zhou Y, Cheng L, Lei YL, Ren B, Zhou X. The Interactions Between Candida albicans and Mucosal Immunity. Front Microbiol 2021; 12:652725. [PMID: 34234752 PMCID: PMC8255368 DOI: 10.3389/fmicb.2021.652725] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Mucosa protects the body against external pathogen invasion. However, pathogen colonies on the mucosa can invade the mucosa when the immunosurveillance is compromised, causing mucosal infection and subsequent diseases. Therefore, it is necessary to timely and effectively monitor and control pathogenic microorganisms through mucosal immunity. Candida albicans is the most prevalent fungi on the mucosa. The C. albicans colonies proliferate and increase their virulence, causing severe infectious diseases and even death, especially in immunocompromised patients. The normal host mucosal immune defense inhibits pathogenic C. albicans through stepwise processes, such as pathogen recognition, cytokine production, and immune cell phagocytosis. Herein, the current advances in the interactions between C. albicans and host mucosal immune defenses have been summarized to improve understanding on the immune mechanisms against fungal infections.
Collapse
Affiliation(s)
- Yujie Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yu L. Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Di Cosola M, Cazzolla AP, Charitos IA, Ballini A, Inchingolo F, Santacroce L. Candida albicans and Oral Carcinogenesis. A Brief Review. J Fungi (Basel) 2021; 7:jof7060476. [PMID: 34204731 PMCID: PMC8231483 DOI: 10.3390/jof7060476] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Current medical knowledge and research on patients’ management are still evolving, and several protocols on minimizing risk of infection by Candida spp. among the population have developed. The aim of this work is to review the epidemiological and biomolecular characteristics and the various histopathological carcinogenesis hypothesis mechanisms that can occur during Candida albicans infections. Current evidence from the literature on the role of C. albicans during potentially malignant oral disorders and oral cancer has been sought. Thus, these biomolecular processes can give or contribute to benign lesions, also in precancerous or cancerous situations. Alongside this, the physiological microorganism oral flora (microbiota) can play a crucial role in maintaining oral health during those infections and therefore avoid carcinogenesis.
Collapse
Affiliation(s)
- Michele Di Cosola
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, 71122 Foggia, Italy; (M.D.C.); (A.P.C.)
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, 71122 Foggia, Italy; (M.D.C.); (A.P.C.)
| | - Ioannis Alexandros Charitos
- Department of Emergency and Urgency, National Poisoning Centre, Riuniti University Hospital of Foggia, 71122 Foggia, Italy
- Correspondence: (I.A.C.); (A.B.)
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario Ernesto Quagliariello, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro” School of Medicine, 70124 Bari, Italy; (F.I.); (L.S.)
- Correspondence: (I.A.C.); (A.B.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro” School of Medicine, 70124 Bari, Italy; (F.I.); (L.S.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro” School of Medicine, 70124 Bari, Italy; (F.I.); (L.S.)
| |
Collapse
|