1
|
Zhu X, Liu P, Fang F, Wang H, Alimi LO, Moosa BA, Khashab NM. An Organic Vapor-Responsive Actuator Based on a Novel Urea Macrocycle. Chemistry 2025; 31:e202403657. [PMID: 39584427 DOI: 10.1002/chem.202403657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The mechanical actuation of smart materials has garnered considerable attention in biological and medical research due to their ability to mimic biological processes at both molecular level, such as conformational changes in individual compounds, and at the macroscopic level, where polymeric substrates respond to external stimuli. In this study, we present a polymeric composite incorporating a novel urea macrocycle as a filler, forming a soft actuator that responds to various organic solvent vapors. The underlying actuation mechanism is attributed to crystalline phase transition of urea macrocycle, driven by the host-guest interactions with diverse guest molecules. This work provides valuable insights for advancing the design of supramolecular hosts in smart material applications.
Collapse
Affiliation(s)
- Xuanfu Zhu
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fang Fang
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Haochen Wang
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem A Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Jamróz P, Świeży A, Noworyta M, Starzak K, Środa P, Wielgus W, Szymaszek P, Tyszka-Czochara M, Ortyl J. Photocurable biomaterials labeled with luminescent sensors dedicated to bioprinting. J Biotechnol 2024; 395:122-140. [PMID: 39349123 DOI: 10.1016/j.jbiotec.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/20/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
In the present study, we focused on the development and characterization of formulations that function as biological inks. These inks were doped with coumarin derivatives to act as molecular luminescent sensors that allow the monitoring of the kinetics of in situ photopolymerization in 3D (DLP) printing and bioprinting using pneumatic extrusion techniques, making it possible to study the changes in the system in real time. The efficiency of the systems was tested on compositions containing monomers: poly(ethylene glycol) diacrylates and photoinitiators: 2,4,6-trimethylbenzoyldi-phenylphosphinate and lithium phenyl-2,4,6-trimethylbenzoylphosphinate. The selected formulations were spectroscopically characterized and examined for their photopolymerization kinetics and rheological properties. This is important because of the fact that spectroscopic characterization, examination of photopolymerization kinetics, and rheological properties provide valuable insights into the behaviour of photocurable resin dedicated for 3D printing processes. The next step involved printing tests on commercially available 3D printers. In turn, printing carried out as part of the work on commercially available 3D printers further verified the effectiveness of the formulations. Moreover the formulation components and the resulting 3D objects were tested for their antiproliferative effects on the selected Chinese hamster ovary cell line, CHO-K1.
Collapse
Affiliation(s)
- Paweł Jamróz
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Andrzej Świeży
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, Cracow 30-348, Poland
| | - Małgorzata Noworyta
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Katarzyna Starzak
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Patrycja Środa
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, Cracow 30-348, Poland
| | - Weronika Wielgus
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Patryk Szymaszek
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | | | - Joanna Ortyl
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, Cracow 30-348, Poland; Photo4Chem Ltd., Lea 114, Cracow 30-133, Poland.
| |
Collapse
|
3
|
Che S, Qu G, Wang G, Hao Y, Sun J, Ding J. A Review of the Biomimetic Structural Design of Sandwich Composite Materials. Polymers (Basel) 2024; 16:2925. [PMID: 39458754 PMCID: PMC11510969 DOI: 10.3390/polym16202925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Sandwich composites are widely used in engineering due to their excellent mechanical properties. Accordingly, the problem of interface bonding between their panels and core layers has always been a hot research topic. The emergence of biomimetic technology has enabled the integration of the structure and function of biological materials from living organisms or nature into the design of sandwich composites, greatly improving the interface bonding and overall performance of heterogeneous materials. In this paper, we review the most commonly used biomimetic structures and the fusion design of multi-biomimetic structures in the engineering field. They are analyzed with respect to their mechanical properties, and several biomimetic structures derived from abstraction in plants and animals are highlighted. Their structural advantages are further discussed specifically. Regarding the optimization of different interface combinations of multilayer composites, this paper explores the optimization of simulations and the contributions of molecular dynamics, machine learning, and other techniques used for optimization. Additionally, the latest molding methods for sandwich composites based on biomimetic structural design are introduced, and the materials applicable to different processes, as well as their advantages and disadvantages, are briefly analyzed. Our research results can help improve the mechanical properties of sandwich composites and promote the application of biomimetic structures in engineering.
Collapse
Affiliation(s)
- Shanlong Che
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264209, China (G.Q.)
| | - Guangliang Qu
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264209, China (G.Q.)
| | - Guochen Wang
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264209, China (G.Q.)
| | - Yunyan Hao
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264209, China (G.Q.)
| | - Jiao Sun
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
| | - Jin Ding
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264209, China (G.Q.)
| |
Collapse
|
4
|
Breish F, Hamm C, Andresen S. Nature's Load-Bearing Design Principles and Their Application in Engineering: A Review. Biomimetics (Basel) 2024; 9:545. [PMID: 39329566 PMCID: PMC11430629 DOI: 10.3390/biomimetics9090545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Biological structures optimized through natural selection provide valuable insights for engineering load-bearing components. This paper reviews six key strategies evolved in nature for efficient mechanical load handling: hierarchically structured composites, cellular structures, functional gradients, hard shell-soft core architectures, form follows function, and robust geometric shapes. The paper also discusses recent research that applies these strategies to engineering design, demonstrating their effectiveness in advancing technical solutions. The challenges of translating nature's designs into engineering applications are addressed, with a focus on how advancements in computational methods, particularly artificial intelligence, are accelerating this process. The need for further development in innovative material characterization techniques, efficient modeling approaches for heterogeneous media, multi-criteria structural optimization methods, and advanced manufacturing techniques capable of achieving enhanced control across multiple scales is underscored. By highlighting nature's holistic approach to designing functional components, this paper advocates for adopting a similarly comprehensive methodology in engineering practices to shape the next generation of load-bearing technical components.
Collapse
Affiliation(s)
- Firas Breish
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| | - Christian Hamm
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| | - Simone Andresen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| |
Collapse
|
5
|
Tan YL, Leow Y, Min Wong JH, Loh XJ, Goh R. Exploring Stimuli-Responsive Natural Processes for the Fabrication of High-Performance Materials. Biomacromolecules 2024; 25:5437-5453. [PMID: 39153005 DOI: 10.1021/acs.biomac.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Climate change and environmental pollution have underscored the urgency for more sustainable alternatives in synthetic polymer production. Nature's repertoire of biopolymers with excellent multifaceted properties alongside biodegradability could inspire next-generation innovative green polymer fabrication routes. Stimuli-induced processing, driven by changes in environmental factors, such as pH, ionic strength, and mechanical forces, plays a crucial role in natural polymeric self-assembly process. This perspective aims to close the gap in understanding biopolymer formation by highlighting the essential role of stimuli triggers in facilitating the bottom-up fabrication, allowing for the formation of intricate hierarchical structures. In particular, this perspective will delve into the stimuli-responsive processing of high-performance biopolymers produced by mussels, caddisflies, velvet worms, sharks, whelks, and squids, which are known for their robust mechanical properties, durability, and wet adhesion capabilities. Finally, we provide an overview of current advancements and challenges in understanding stimuli-induced natural formation pathways and their translation to biomimetic materials.
Collapse
Affiliation(s)
- Yee Lin Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| |
Collapse
|
6
|
Sun Z, Wang X, An H, Liang S, Li N. A review on intelligence of cellulose based materials. Carbohydr Polym 2024; 338:122219. [PMID: 38763716 DOI: 10.1016/j.carbpol.2024.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Cellulose based materials are widely used in various fields such as papermaking, packaging, composite materials, textiles and clothing due to their diverse types, environmental friendliness, natural degradation, high specific strength, and low cost. The intelligence of cellulose based materials will further expand their application fields. This article first gives an in-depth analyzation on the intelligent structural design of these materials according to the two major categories of isotropic and anisotropic, then lists the main preparation methods of cellulose based intelligent materials. Subsequently, this article systematically summarizes the recent intelligent response methods and characteristics of cellulose based materials, and extensively elaborates on the intelligent application of these materials. Finally, the prospects for the intelligence of cellulose based materials are discussed.
Collapse
Affiliation(s)
- Zhanying Sun
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China..
| | - Xin Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China..
| | - Haoran An
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China..
| | - Shuang Liang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China..
| | - Na Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China..
| |
Collapse
|
7
|
Wei J, Wang Z, Pan F, Yuan T, Fang Y, Gao C, Ping H, Wang Y, Zhao S, Fu Z. Biosustainable Multiscale Transparent Nanocomposite Films for Sensitive Pressure and Humidity Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37122-37130. [PMID: 38953852 DOI: 10.1021/acsami.4c09157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Light weight, thinness, transparency, flexibility, and insulation are the key indicators for flexible electronic device substrates. The common flexible substrates are usually polymer materials, but their recycling is an overwhelming challenge. Meanwhile, paper substrates are limited in practical applications because of their poor mechanical and thermal stability. However, natural biomaterials have excellent mechanical properties and versatility thanks to their organic-inorganic multiscale structures, which inspired us to design an organic-inorganic nanocomposite film. For this purpose, a bio-inspired multiscale film was developed using cellulose nanofibers with abundant hydrophilic functional groups to assist in dispersing hydroxyapatite nanowires. The thickness of the biosustainable film is only 40 μm, and it incorporates distinctive mechanical properties (strength: 52.8 MPa; toughness: 0.88 MJ m-3) and excellent optical properties (transmittance: 80.0%; haze: 71.2%). Consequently, this film is optimal as a substrate employed for flexible sensors, which can transmit capacitance and resistance signals through wireless Bluetooth, showing an ultrasensitive response to pressure and humidity (for example, responding to finger pressing with 5000% signal change and exhaled water vapor with 4000% signal change). Therefore, the comprehensive performance of the biomimetic multiscale organic-inorganic composite film confers a prominent prospect in flexible electronics devices, food packaging, and plastic substitution.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Zhikang Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Fei Pan
- Department of Chemistry, University of Basel, Basel 4058, Switzerland
| | - Tianyu Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Yuanlai Fang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Caiqin Gao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
8
|
Khalifa HO, Oreiby A, Abdelhamid MAA, Ki MR, Pack SP. Biomimetic Antifungal Materials: Countering the Challenge of Multidrug-Resistant Fungi. Biomimetics (Basel) 2024; 9:425. [PMID: 39056866 PMCID: PMC11274442 DOI: 10.3390/biomimetics9070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In light of rising public health threats like antifungal and antimicrobial resistance, alongside the slowdown in new antimicrobial development, biomimetics have shown promise as therapeutic agents. Multidrug-resistant fungi pose significant challenges as they quickly develop resistance, making traditional antifungals less effective. Developing new antifungals is also complicated by the need to target eukaryotic cells without harming the host. This review examines biomimetic antifungal materials that mimic natural biological mechanisms for targeted and efficient action. It covers a range of agents, including antifungal peptides, alginate-based antifungals, chitosan derivatives, nanoparticles, plant-derived polyphenols, and probiotic bacteria. These agents work through mechanisms such as disrupting cell membranes, generating reactive oxygen species, and inhibiting essential fungal processes. Despite their potential, challenges remain in terms of ensuring biocompatibility, optimizing delivery, and overcoming potential resistance. Production scalability and economic viability are also concerns. Future research should enhance the stability and efficacy of these materials, integrate multifunctional approaches, and develop sophisticated delivery systems. Interdisciplinary efforts are needed to understand interactions between these materials, fungal cells, and the host environment. Long-term health and environmental impacts, fungal resistance mechanisms, and standardized testing protocols require further study. In conclusion, while biomimetic antifungal materials represent a revolutionary approach to combating multidrug-resistant fungi, extensive research and development are needed to fully realize their potential.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Atef Oreiby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
9
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Vittori M. Structural diversity of crustacean exoskeletons and its implications for biomimetics. Interface Focus 2024; 14:20230075. [PMID: 38618234 PMCID: PMC11008965 DOI: 10.1098/rsfs.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
The crustacean cuticle is a biological composite material consisting of chitin-protein fibres in a mineralized matrix. Recent research has revealed a surprising range of fibre architectures and mineral compositions of crustacean skeletal structures adapted to various mechanical demands. It is becoming increasingly clear that the organic fibres in the cuticle may be organized in patterns differing from the standard twisted plywood model. Observed fibre architectures in protruding skeletal structures include longitudinal and circular parallel fibre arrays. Skeletal minerals often include calcium phosphates in addition to calcium carbonates. Furthermore, skeletal properties are affected by protein cross-linking, which replaces mineralization as a stiffening mechanism in some structures. Several common structural motifs, such as the stiffening of the outer skeletal layers, the incorporation of non-mineralized cuticle in exposed structures, and interchanging layers of parallel fibres and the twisted plywood structure, can be identified in skeletal elements with similar functions. These evolutionary solutions have the potential for biomimetic applications, particularly as manufacturing technologies advance. To make use of this potential, we need to understand the processes behind the formation of the crustacean exoskeleton and determine which features are truly adaptive and worth mimicking.
Collapse
Affiliation(s)
- Miloš Vittori
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Ede SR, Yu H, Sung CH, Kisailus D. Bio-Inspired Functional Materials for Environmental Applications. SMALL METHODS 2024; 8:e2301227. [PMID: 38133492 DOI: 10.1002/smtd.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 12/23/2023]
Abstract
With the global population expected to reach 9.7 billion by 2050, there is an urgent need for advanced materials that can address existing and developing environmental issues. Many current synthesis processes are environmentally unfriendly and often lack control over size, shape, and phase of resulting materials. Based on knowledge from biological synthesis and assembly processes, as well as their resulting functions (e.g., photosynthesis, self-healing, anti-fouling, etc.), researchers are now beginning to leverage these biological blueprints to advance bio-inspired pathways for functional materials for water treatment, air purification and sensing. The result has been the development of novel materials that demonstrate enhanced performance and address sustainability. Here, an overview of the progress and potential of bio-inspired methods toward functional materials for environmental applications is provided. The challenges and opportunities for this rapidly expanding field and aim to provide a valuable resource for researchers and engineers interested in developing sustainable and efficient processes and technologies is discussed.
Collapse
Affiliation(s)
- Sivasankara Rao Ede
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Haitao Yu
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Chao Hsuan Sung
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| |
Collapse
|
12
|
Yang Y, He H, Miao F, Yu M, Wu X, Liu Y, Fu J, Chen J, Ma L, Chen X, Peng X, You Z, Zhou C. 3D-printed PCL framework assembling ECM-inspired multi-layer mineralized GO-Col-HAp microscaffold for in situ mandibular bone regeneration. J Transl Med 2024; 22:224. [PMID: 38429799 PMCID: PMC10908055 DOI: 10.1186/s12967-024-05020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND In recent years, natural bone extracellular matrix (ECM)-inspired materials have found widespread application as scaffolds for bone tissue engineering. However, the challenge of creating scaffolds that mimic natural bone ECM's mechanical strength and hierarchical nano-micro-macro structures remains. The purposes of this study were to introduce an innovative bone ECM-inspired scaffold that integrates a 3D-printed framework with hydroxyapatite (HAp) mineralized graphene oxide-collagen (GO-Col) microscaffolds and find its application in the repair of mandibular bone defects. METHODS Initially, a 3D-printed polycaprolactone (PCL) scaffold was designed with cubic disks and square pores to mimic the macrostructure of bone ECM. Subsequently, we developed multi-layer mineralized GO-Col-HAp microscaffolds (MLM GCH) to simulate natural bone ECM's nano- and microstructural features. Systematic in vitro and in vivo experiments were introduced to evaluate the ECM-inspired structure of the scaffold and to explore its effect on cell proliferation and its ability to repair rat bone defects. RESULTS The resultant MLM GCH/PCL composite scaffolds exhibited robust mechanical strength and ample assembly space. Moreover, the ECM-inspired MLM GCH microscaffolds displayed favorable attributes such as water absorption and retention and demonstrated promising cell adsorption, proliferation, and osteogenic differentiation in vitro. The MLM GCH/PCL composite scaffolds exhibited successful bone regeneration within mandibular bone defects in vivo. CONCLUSIONS This study presents a well-conceived strategy for fabricating ECM-inspired scaffolds by integrating 3D-printed PCL frameworks with multilayer mineralized porous microscaffolds, enhancing cell proliferation, osteogenic differentiation, and bone regeneration. This construction approach holds the potential for extension to various other biomaterial types.
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Huan He
- Department of Plastic Surgery, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100038, China
| | - Fang Miao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mingwei Yu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Xixi Wu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Yuanhang Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Jie Fu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Junwei Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China.
| |
Collapse
|
13
|
Kushnazarova RA, Mirgorodskaya AB, Kuznetsov DM, Vasilieva EA, Amerhanova SK, Voloshina AD, Zakharova LY. Piperidinium surfactants functionalized with carbamate fragment: Aggregation, antimicrobial activity and cytotoxicity. Biochim Biophys Acta Gen Subj 2024; 1868:130562. [PMID: 38218459 DOI: 10.1016/j.bbagen.2024.130562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The biomimetic nature of supramolecular systems, the structural similarity of synthetic surfactants to biomolecules (lipids, proteins), provide them with high membranotropy, the ability to overcome biological barriers, and affinity towards biosubstances. Despite rather high toxicity cationic surfactants are of importance as antimicrobial agents, gene nanocarriers and mitochondria targeted ligands. To minimize this limitation, cationic amphiphilic matrix undergoes modification with various functional groups. In this work, new piperidinium cationic surfactants containing one or two carbamate fragments were prepared; their aggregation behavior was systematically studied by tensiometery, spectrophotometry and fluorimetry. The presence of a carbamate fragment leads to a 2-3-fold decrease in critical micelle concentration and to a significant increase in solubilization capacity compared to unsubstituted analogue. Evaluation of the antimicrobial effect showed that all compounds exhibit high bactericidal and fungicidal activity against a wide range of pathogenic microorganisms, including their resistant forms. Importantly, the introducing carbamate moiety allows of decreasing hemolytic activity of cationic surfactants. The data obtained make it possible to recommend carbamate piperidinium surfactants as effective biocompatible and biodegradable nanocontainers for hydrophobic probes with high antimicrobial effect and moderate hemolytic activity.
Collapse
Affiliation(s)
- Rushana A Kushnazarova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Alla B Mirgorodskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia.
| | - Denis M Kuznetsov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Elmira A Vasilieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Syumbelya K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| |
Collapse
|
14
|
Chen SM, Zhang ZB, Gao HL, Yu SH. Bottom-Up Film-to-Bulk Assembly Toward Bioinspired Bulk Structural Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313443. [PMID: 38414173 DOI: 10.1002/adma.202313443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Biological materials, although composed of meager minerals and biopolymers, often exhibit amazing mechanical properties far beyond their components due to hierarchically ordered structures. Understanding their structure-properties relationships and replicating them into artificial materials would boost the development of bulk structural nanocomposites. Layered microstructure widely exists in biological materials, serving as the fundamental structure in nanosheet-based nacres and nanofiber-based Bouligand tissues, and implying superior mechanical properties. High-efficient and scalable fabrication of bioinspired bulk structural nanocomposites with precise layered microstructure is therefore important yet remains difficult. Here, one straightforward bottom-up film-to-bulk assembly strategy is focused for fabricating bioinspired layered bulk structural nanocomposites. The bottom-up assembly strategy inherently offers a methodology for precise construction of bioinspired layered microstructure in bulk form, availability for fabrication of bioinspired bulk structural nanocomposites with large sizes and complex shapes, possibility for design of multiscale interfaces, feasibility for manipulation of diverse heterogeneities. Not limited to discussing what has been achieved by using the current bottom-up film-to-bulk assembly strategy, it is also envisioned how to promote such an assembly strategy to better benefit the development of bioinspired bulk structural nanocomposites. Compared to other assembly strategies, the highlighted strategy provides great opportunities for creating bioinspired bulk structural nanocomposites on demand.
Collapse
Affiliation(s)
- Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Bang Zhang
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
15
|
Liu B, Xu X. Study on impact resistance of bionic interlocking brick-mud structures. COMPOSITE STRUCTURES 2023; 318:117103. [DOI: 10.1016/j.compstruct.2023.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
16
|
Wei J, Pan F, Ping H, Yang K, Wang Y, Wang Q, Fu Z. Bioinspired Additive Manufacturing of Hierarchical Materials: From Biostructures to Functions. RESEARCH (WASHINGTON, D.C.) 2023; 6:0164. [PMID: 37303599 PMCID: PMC10254471 DOI: 10.34133/research.0164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Throughout billions of years, biological systems have evolved sophisticated, multiscale hierarchical structures to adapt to changing environments. Biomaterials are synthesized under mild conditions through a bottom-up self-assembly process, utilizing substances from the surrounding environment, and meanwhile are regulated by genes and proteins. Additive manufacturing, which mimics this natural process, provides a promising approach to developing new materials with advantageous properties similar to natural biological materials. This review presents an overview of natural biomaterials, emphasizing their chemical and structural compositions at various scales, from the nanoscale to the macroscale, and the key mechanisms underlying their properties. Additionally, this review describes the designs, preparations, and applications of bioinspired multifunctional materials produced through additive manufacturing at different scales, including nano, micro, micro-macro, and macro levels. The review highlights the potential of bioinspired additive manufacturing to develop new functional materials and insights into future directions and prospects in this field. By summarizing the characteristics of natural biomaterials and their synthetic counterparts, this review inspires the development of new materials that can be utilized in various applications.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Fei Pan
- Department of Chemistry,
University of Basel, Basel 4058, Switzerland
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Kun Yang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering,
Sichuan University, Chengdu 610065, P. R. China
| | - Qingyuan Wang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
17
|
Liu F, Yang H, Feng X. Research Progress in Preparation, Properties and Applications of Biomimetic Organic-Inorganic Composites with "Brick-and-Mortar" Structure. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114094. [PMID: 37297231 DOI: 10.3390/ma16114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Inspired by nature, materials scientists have been exploring and designing various biomimetic materials. Among them, composite materials with brick-and-mortar-like structure synthesized from organic and inorganic materials (BMOIs) have attracted increasing attention from scholars. These materials have the advantages of high strength, excellent flame retardancy, and good designability, which can meet the requirements of various fields for materials and have extremely high research value. Despite the increasing interest in and applications of this type of structural material, there is still a dearth of comprehensive reviews, leaving the scientific community with a limited understanding of its properties and applications. In this paper, we review the preparation, interface interaction, and research progress of BMOIs, and propose possible future development directions for this class of materials.
Collapse
Affiliation(s)
- Feng Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
18
|
Hu Z. Biomimetic Design and Topology Optimization of Discontinuous Carbon Fiber-Reinforced Composite Lattice Structures. Biomimetics (Basel) 2023; 8:biomimetics8020148. [PMID: 37092400 PMCID: PMC10123712 DOI: 10.3390/biomimetics8020148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
The ever-increasing requirements for structural performance drive the research and development of lighter, stronger, tougher, and multifunctional composite materials, especially, the lattice structures, heterogeneities, or hybrid compositions have attracted great interest from the materials research community. If it is pushed to the extreme, these concepts can consist of highly controlled lattice structures subject to biomimetic material design and topology optimization (TO). However, the strong coupling among the composition and the topology of the porous microstructure hinders the conventional trial-and-error approaches. In this work, discontinuous carbon fiber-reinforced polymer matrix composite materials were adopted for structural design. A three-dimensional (3D) periodic lattice block inspired by cuttlefish bone combined with computer modeling-based topology optimization was proposed. Through computer modeling, complex 3D periodic lattice blocks with various porosities were topologically optimized and realized, and the mechanical properties of the topology-optimized lattice structures were characterized by computer modeling. The results of this work were compared with other similar designs and experiments to validate the effectiveness of the proposed method. The proposed approach provides a design tool for more affordable and higher-performance structural materials.
Collapse
Affiliation(s)
- Zhong Hu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
19
|
Zhao Y, Tian C, Liu Y, Liu Z, Li J, Wang Z, Han X. All-in-one bioactive properties of photothermal nanofibers for accelerating diabetic wound healing. Biomaterials 2023; 295:122029. [PMID: 36731368 DOI: 10.1016/j.biomaterials.2023.122029] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Diabetic wound healing has attracted widespread attention in biomedical engineering. However, the harsh hypoxic microenvironment (HME) comprising high glucose levels, local bleeding, and bacterial infection often leads to the formation of hyperplastic scars, increasing the clinical demand for wound dressings. Here, we report a comprehensive strategy using near-infrared NIR-assisted oxygen delivery combined with the bioactive nature of biopolymers for remodeling the HME. Black phosphorus (BP) nanosheets and hemoglobin (Hb) were self-assembled layerwise onto electrospun poly-l-lactide (PLLA) nanofibers using charged quaternized chitosan (QCS) and hyaluronic acid. BP converts NIR radiation into heat and stimulates Hb to release oxygen in situ. QCS is a hemostatic and broad-spectrum antibacterial material. Moderate BP-derived photothermal therapy can increase the sensitivity of bacteria to QCS. A series of composite wound dressings (coded as PQBH-n) with different numbers of layers were fabricated, and the in vivo diabetic wound healing potentials were tested. The molecular mechanism can be partly attributed to the cytokine-cytokine receptor interaction. Notably, this comprehensive strategy based on NIR-assisted oxygen delivery combined with the bioactive properties of biopolymers is not only applicable for fabricating multifunctional wound dressings but also has a great potential in expanding biomedical engineering fields.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Chuan Tian
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Department of Interventional Medical Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Shandong, 266000, Qingdao, China
| | - Yiming Liu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Li
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zijian Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan, 430071, China.
| | - Xinwei Han
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
20
|
Chen G, Lin T, Guo C, Richter L, Dai N. Bending Study of Six Biological Models for Design of High Strength and Tough Structures. Biomimetics (Basel) 2022; 7:176. [PMID: 36412704 PMCID: PMC9680280 DOI: 10.3390/biomimetics7040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022] Open
Abstract
High strength and tough structures are beneficial to increasing engineering components service span. Nonetheless, improving structure strength and, simultaneously, toughness is difficult, since these two properties are generally mutually exclusive. Biological organisms exhibit both excellent strength and toughness. Using bionic structures from these biological organisms can be solutions for improving these properties of engineering components. To effectively apply biological models to design biomimetic structures, this paper analyses strengthening and toughening mechanisms of six fundamentally biological models obtained from biological organisms. Numerical models of three-point bending test are established to predict crack propagation behaviors of the six biological models. Furthermore, the strength and toughness of six biomimetic composites are experimentally evaluated. It is identified that the helical model possesses the highest toughness and satisfying strength. This work provides more detailed evidence for engineers to designate bionic models to the design of biomimetic composites with high strength and toughness.
Collapse
Affiliation(s)
- Guangming Chen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tao Lin
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ce Guo
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Lutz Richter
- Large Space Structures GmbH, Hauptstr. 1e, D-85386 Eching, Germany
| | - Ning Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
21
|
Temporal changes in the physical and mechanical properties of beetle elytra during maturation. Acta Biomater 2022; 151:457-467. [PMID: 35933099 DOI: 10.1016/j.actbio.2022.07.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 12/30/2022]
Abstract
Changes in physical properties of Tenebrio molitor and Tribolium castaneum elytra (hardened forewings) were studied to understand how the development of microstructure and chemical interactions determine cuticle mechanical properties. Analysis of these properties supports a model in which cuticular material is continuously secreted from epidermal cells to produce an extracellular matrix so that the outermost layers mature first. It is hypothesized that enzymatic crosslinking and pigmentation reactions along with dehydration help to stabilize the protein-chitin network within the initial layers of cuticle shortly after eclosion. Mature layers are proposed to bear most of the mechanical loads. The frequency dependence of the storage modulus and the tan δ values decreased during the beginning of maturation, reaching constant values after 48 h post-eclosion. A decrease of tan δ indicates an increase in crosslinking of the material. The water content declined from 75% to 31%, with a significant portion lost from within the open spaces between the dorsal and ventral cuticular layers. Dehydration had a less significant influence than protein crosslinking on the mechanical properties of the elytron during maturation. When Tribolium cuticular protein TcCP30 expression was decreased by RNAi, the tan δ and frequency dependence of E' of the elytron did not change during maturation. This indicates that TcCP30 plays a role in the crosslinking process of the beetle's exoskeleton. This study was inspired by previous work on biomimetic multicomponent materials and helps inform future work on creating robust lightweight materials derived from natural sources. STATEMENT OF SIGNIFICANCE: Examination of changes in the physical properties of the elytra (hardened forewings) of two beetle species advanced understanding of how the molecular interactions influence the mechanical properties of the elytra. Physical characterization, including dynamic mechanical analysis, determined that the outer portion of the elytra matured first, while epidermal cells continued to secrete reactive components until the entire structure reached maturation. RNA interference was used to identify the role of a key protein in the elytra. Suppression of its expression reduced the formation of crosslinked polymeric components in the elytra. Identifying the molecular interactions in the matrix of proteins and polysaccharides in the elytra together with their hierarchical architecture provides important design concepts in the development of biomimetic materials.
Collapse
|
22
|
Alimi LO, Fang F, Moosa B, Ding Y, Khashab NM. Vapor‐Triggered Mechanical Actuation in Polymer Composite Films Based on Crystalline Organic Cages. Angew Chem Int Ed Engl 2022; 61:e202212596. [DOI: 10.1002/anie.202212596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lukman O. Alimi
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Fang Fang
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yanjun Ding
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
23
|
Alimi LO, Fang F, Moosa B, Ding Y, Khashab NM. Vapor‐Triggered Mechanical Actuation in Polymer Composite Films Based on Crystalline Organic Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukman O. Alimi
- KAUST: King Abdullah University of Science and Technology Chemistry SAUDI ARABIA
| | - Fang Fang
- KAUST: King Abdullah University of Science and Technology Chemistry SAUDI ARABIA
| | - Basem Moosa
- KAUST: King Abdullah University of Science and Technology Chemistry SAUDI ARABIA
| | - Yanjun Ding
- KAUST: King Abdullah University of Science and Technology chemistry SAUDI ARABIA
| | - Niveen M. Khashab
- King Abdullah University of Science and Technology KAUST 4700 King Abdullah University 23955 Thuwal SAUDI ARABIA
| |
Collapse
|
24
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
25
|
Huang W, Montroni D, Wang T, Murata S, Arakaki A, Nemoto M, Kisailus D. Nanoarchitected Tough Biological Composites from Assembled Chitinous Scaffolds. Acc Chem Res 2022; 55:1360-1371. [PMID: 35467343 DOI: 10.1021/acs.accounts.2c00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ConspectusOver hundreds of millions of years, organisms have derived specific sets of traits in response to common selection pressures that serve as guideposts for optimal biological designs. A prime example is the evolution of toughened structures in disparate lineages within plants, invertebrates, and vertebrates. Extremely tough structures can function much like armor, battering rams, or reinforcements that enhance the ability of organisms to win competitions, find mates, acquire food, escape predation, and withstand high winds or turbulent flow. From an engineering perspective, biological solutions are intriguing because they must work in a multifunctional context. An organism rarely can be optimally designed for only one function or one environmental condition. Some of these natural systems have developed well-orchestrated strategies, exemplified in the biological tissues of numerous animal and plant species, to synthesize and construct materials from a limited selection of available starting materials. The resulting structures display multiscale architectures with incredible fidelity and often exhibit properties that are similar, and frequently superior, to mechanical properties exhibited by many engineered materials. These biological systems have accomplished this feat through the demonstrated ability to tune size, morphology, crystallinity, phase, and orientation of minerals under benign processing conditions (i.e., near-neutral pH, room temperature, etc.) by establishing controlled synthesis and hierarchical 3D assembly of nano- to microscaled building blocks. These systems utilize organic-inorganic interactions and carefully controlled microenvironments that enable kinetic control during the synthesis of inorganic structures. This controlled synthesis and assembly requires orchestration of mineral transport and nucleation. The underlying organic framework, often consisting of polysaccharides and polypeptides, in these composites is critical in the spatial and temporal regulation of these processes. In fact, the organic framework is used not only to provide transport networks for mineral precursors to nucleation sites but also to precisely guide the formation and phase development of minerals and significantly improve the mechanical performance of otherwise brittle materials.Over the past 15 years, we have focused on a few of these extreme performing organisms, (Wang , Adv. Funct. Mater. 2013, 23, 2908; Weaver , Science 2012, 336, 1275; Huang , Nat. Mater. 2020, 19, 1236; Rivera , Nature 2020, 586, 543) investigating not only their ultrastructural features and mechanical properties but in some cases, how these assembled structures are mineralized. In specific instances, comparative analyses of multiscale structures have pinpointed which design principles have arisen convergently; when more than one evolutionary path arrives at the same solution, we have a good indication that it is the best solution. This is required for survival under extreme conditions. Indeed, we have found that there are specific architectural features that provide an advantage toward survival by enabling the ability to feed effectively or to survive against predatory attacks. In this Account, we describe 3 specific design features, nanorods, helicoids, and nanoparticles, as well as the interfaces in fiber-reinforced biological composites. We not only highlight their roles in the specific organisms but also describe how controlled syntheses and hierarchical assembly using organic (i.e., often chitinous) scaffolds lead to these integrated macroscale structures. Beyond this, we provide insight into multifunctionality: how nature leverages these existing structures to potentially add an additional dimension toward their utility and describe their translation to biomimetic materials used for engineering applications.
Collapse
Affiliation(s)
- Wei Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Devis Montroni
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Taifeng Wang
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Satoshi Murata
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Michiko Nemoto
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
26
|
Dutour Sikirić M. Special Issue: Biomimetic Organic–Inorganic Composites. MATERIALS 2022; 15:ma15093074. [PMID: 35591411 PMCID: PMC9103210 DOI: 10.3390/ma15093074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Maja Dutour Sikirić
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Le Ferrand H, Arrieta AF. Magnetically driven in-plane modulation of the 3D orientation of vertical ferromagnetic flakes. SOFT MATTER 2022; 18:1054-1063. [PMID: 35022646 DOI: 10.1039/d1sm01423d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
External magnetic fields are known to attract and orient magnetically responsive colloidal particles. In the case of 2D microplatelets, rotating magnetic fields are typically used to orient them parallel to each other in a brick-and-mortar fashion. Thanks to this microstructure, the resulting composites achieve enhanced mechanical and functional properties. However, parts with complex geometries require their microstructure to be specifically tuned and controlled locally in 3D. Although the tunability of the microstructure along the vertical direction has already been demonstrated using magnetic orientation combined with sequential or continuous casting, controlling the particle orientation in the horizontal plane in a fast and effective fashion remains challenging. Here, we propose to use rotating magnetic arrays to control the in-plane orientation of ferromagnetic nickel flakes distributed in curable polymeric matrices. We experimentally studied the orientation of the flakes in response to magnets rotating at various frequencies and precessing angles. Then, we used COMSOL to model the magnetic field from rotating magnetic arrays and predicted the resulting in-plane orientations. To validate the approach, we created composites with locally oriented flakes. This work could initiate reverse-engineering methods to design the microstructure in composite materials with intricate geometrical shapes for structural or functional applications.
Collapse
Affiliation(s)
- Hortense Le Ferrand
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Andres F Arrieta
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Wu C, Zhu P, Liu Y, Du L, Wang P. Field-Effect Sensors Using Biomaterials for Chemical Sensing. SENSORS 2021; 21:s21237874. [PMID: 34883883 PMCID: PMC8659547 DOI: 10.3390/s21237874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022]
Abstract
After millions of years of evolution, biological chemical sensing systems (i.e., olfactory and taste systems) have become very powerful natural systems which show extreme high performances in detecting and discriminating various chemical substances. Creating field-effect sensors using biomaterials that are able to detect specific target chemical substances with high sensitivity would have broad applications in many areas, ranging from biomedicine and environments to the food industry, but this has proved extremely challenging. Over decades of intense research, field-effect sensors using biomaterials for chemical sensing have achieved significant progress and have shown promising prospects and potential applications. This review will summarize the most recent advances in the development of field-effect sensors using biomaterials for chemical sensing with an emphasis on those using functional biomaterials as sensing elements such as olfactory and taste cells and receptors. Firstly, unique principles and approaches for the development of these field-effect sensors using biomaterials will be introduced. Then, the major types of field-effect sensors using biomaterials will be presented, which includes field-effect transistor (FET), light-addressable potentiometric sensor (LAPS), and capacitive electrolyte–insulator–semiconductor (EIS) sensors. Finally, the current limitations, main challenges and future trends of field-effect sensors using biomaterials for chemical sensing will be proposed and discussed.
Collapse
Affiliation(s)
- Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Ping Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence:
| |
Collapse
|
29
|
Xiao N, Felhofer M, Antreich SJ, Huss JC, Mayer K, Singh A, Bock P, Gierlinger N. Twist and lock: nutshell structures for high strength and energy absorption. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210399. [PMID: 34430046 PMCID: PMC8355673 DOI: 10.1098/rsos.210399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Nutshells achieve remarkable properties by optimizing structure and chemistry at different hierarchical levels. Probing nutshells from the cellular down to the nano- and molecular level by microchemical and nanomechanical imaging techniques reveals insights into nature's packing concepts. In walnut and pistachio shells, carbohydrate and lignin polymers assemble to form thick-walled puzzle cells, which interlock three-dimensionally and show high tissue strength. Pistachio additionally achieves high-energy absorption by numerous lobes interconnected via ball-joint-like structures. By contrast, the three times more lignified walnut shells show brittle LEGO-brick failure, often along the numerous pit channels. In both species, cell walls (CWs) show distinct lamellar structures. These lamellae involve a helicoidal arrangement of cellulose macrofibrils as a recurring motif. Between the two nutshell species, these lamellae show differences in thickness and pitch angle, which can explain the different mechanical properties on the nanolevel. Our in-depth study of the two nutshell tissues highlights the role of cell form and their interlocking as well as plant CW composition and structure for mechanical protection. Understanding these plant shell concepts might inspire biomimetic material developments as well as using walnut and pistachio shell waste as sustainable raw material in future applications.
Collapse
Affiliation(s)
- Nannan Xiao
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Martin Felhofer
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Sebastian J. Antreich
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Jessica C. Huss
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Konrad Mayer
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Adya Singh
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Peter Bock
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Notburga Gierlinger
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| |
Collapse
|
30
|
Abstract
The natural world provides many examples of multiphase transport and reaction processes that have been optimized by evolution. These phenomena take place at multiple length and time scales and typically include gas-liquid-solid interfaces and capillary phenomena in porous media1,2. Many biological and living systems have evolved to optimize fluidic transport. However, living things are exceptionally complex and very difficult to replicate3-5, and human-made microfluidic devices (which are typically planar and enclosed) are highly limited for multiphase process engineering6-8. Here we introduce the concept of cellular fluidics: a platform of unit-cell-based, three-dimensional structures-enabled by emerging 3D printing methods9,10-for the deterministic control of multiphase flow, transport and reaction processes. We show that flow in these structures can be 'programmed' through architected design of cell type, size and relative density. We demonstrate gas-liquid transport processes such as transpiration and absorption, using evaporative cooling and CO2 capture as examples. We design and demonstrate preferential liquid and gas transport pathways in three-dimensional cellular fluidic devices with capillary-driven and actively pumped liquid flow, and present examples of selective metallization of pre-programmed patterns. Our results show that the design and fabrication of architected cellular materials, coupled with analytical and numerical predictions of steady-state and dynamic behaviour of multiphase interfaces, provide deterministic control of fluidic transport in three dimensions. Cellular fluidics may transform the design space for spatial and temporal control of multiphase transport and reaction processes.
Collapse
|
31
|
Parvulescu MJS, Martin KL, Mogilevsky P, Patel TA, Street DP, Gupta MK, Hung CS, Dickerson MB. Biomorphic Ceramics: Synthesis and Characterization of Preceramic Polymer-Modified Melanin. ACS Biomater Sci Eng 2021; 7:3103-3113. [PMID: 34100582 DOI: 10.1021/acsbiomaterials.1c00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent efforts have demonstrated that the morphology of ceramics can be manipulated to control both their deformation mechanism and mechanical performance. However, precise control of the ceramic nanostructure is still difficult to achieve. Biotemplating, leading to biomorphic materials, provides a facile route to manipulate the nanostructure of the resulting materials, and the use of melanin as a coating provides a new route to biotemplated materials. Melanin is underutilized for structural materials partly due to the cost of procuring it from natural sources and the inability to control the shape and sizes of melanin particles. Taking a combined synthetic biology and chemical synthesis approach, we report the melanization of Escherichia coli and its subsequent silanization and functionalization with preceramic polymers to make novel biomorphic silicon-based ceramic materials. Graft-to and graft-from reactions were used to append preceramic polymers to the melanin, followed by pyrolysis under argon. Samples were analyzed by FTIR, XRD, XPS, and TEM and found to retain the shape and size of the original cells with high fidelity. The homogeneity of coverage and yield of the resulting ceramic materials depended on the type of grafting reaction. This work provides a promising proof-of-concept that bacterial-templated ceramics can be readily made and opens a host of possibilities for further studies and applications.
Collapse
Affiliation(s)
- Maria J S Parvulescu
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright- Patterson Air Force Base 45433, Ohio, United States.,UES Inc., 4401 Dayton-Xenia Rd, Dayton 45432, Ohio, United States
| | - Kara L Martin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright- Patterson Air Force Base 45433, Ohio, United States.,UES Inc., 4401 Dayton-Xenia Rd, Dayton 45432, Ohio, United States
| | - Pavel Mogilevsky
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright- Patterson Air Force Base 45433, Ohio, United States.,UES Inc., 4401 Dayton-Xenia Rd, Dayton 45432, Ohio, United States
| | - Tulsi A Patel
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright- Patterson Air Force Base 45433, Ohio, United States.,National Research Council Research Associate Program, National Academies of Science, 500 Fifth Street, NW, Washington, D.C. 20001, United States
| | - Dayton P Street
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright- Patterson Air Force Base 45433, Ohio, United States.,National Research Council Research Associate Program, National Academies of Science, 500 Fifth Street, NW, Washington, D.C. 20001, United States
| | - Maneesh K Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright- Patterson Air Force Base 45433, Ohio, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright- Patterson Air Force Base 45433, Ohio, United States
| | - Matthew B Dickerson
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright- Patterson Air Force Base 45433, Ohio, United States
| |
Collapse
|
32
|
Li S, Liu P, Lin W, Tian J, Miao C, Zhang X, Zhang R, Peng J, Zhang H, Gu P, Zhang Z, Wang Z, Luo T. Optimized Hierarchical Structure and Chemical Gradients Promote the Biomechanical Functions of the Spike of Mantis Shrimps. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17380-17391. [PMID: 33822600 DOI: 10.1021/acsami.1c02867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The tail spike of the mantis shrimp is the appendage for counteracting the enemy from behind. Here, we investigate the correlations between the chemical compositions, the microstructures, and the mechanical properties of the spike. We find that the spike is a hollow beam with a varying cross section along the length. The cross section comprises four different layers with distinct features of microstructures and chemical compositions. The local mechanical properties of these layers correlate well with the microstructures and chemical compositions, a combination of which effectively restricts the crack propagation while maximizing the release of strain energy during deformation. Finite element analysis and mechanics modeling demonstrate that the optimized structure of the spike confines the mechanical damage in the region near the tip and prevents catastrophic breakage at the base. Furthermore, we use a 3D printing technique to fabricate multiple hollow cylindrical samples consisting of biomimetic microstructures of the spike and confirm that the combination of the Bouligand structure with radially oriented parallel sheets greatly improves the toughness and strength during compression tests. The multiscale design strategy of the spike revealed here is expected to be of great interest for the development of novel bioinspired materials.
Collapse
Affiliation(s)
- Shan Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Pan Liu
- Department of Engineering Mechanics, School of Civil Engineering, and State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Weiqin Lin
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Jie Tian
- Experimental Center of Engineering and Materials Sciences, University of Science and Technology of China, Hefei 230052, China
| | - Chunguang Miao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Xiao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Ruogu Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Jinlan Peng
- Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230052, China
| | - Hong Zhang
- Hefei Institutes of Physical Science, Hefei Institute of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, China
| | - Ping Gu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Zuoqi Zhang
- Department of Engineering Mechanics, School of Civil Engineering, and State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Zhengzhi Wang
- Department of Engineering Mechanics, School of Civil Engineering, and State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| |
Collapse
|
33
|
Ingrole A, Aguirre TG, Fuller L, Donahue SW. Bioinspired energy absorbing material designs using additive manufacturing. J Mech Behav Biomed Mater 2021; 119:104518. [PMID: 33882409 DOI: 10.1016/j.jmbbm.2021.104518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/28/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Nature provides many biological materials and structures with exceptional energy absorption capabilities. Few, relatively simple molecular building blocks (e.g., calcium carbonate), which have unremarkable intrinsic mechanical properties individually, are used to produce biopolymer-bioceramic composites with unique hierarchical architectures, thus producing biomaterial-architectures with extraordinary mechanical properties. Several biomaterials have inspired the design and manufacture of novel material architectures to address various engineering problems requiring high energy absorption capabilities. For example, the microarchitecture of seashell nacre has inspired multi-material 3D printed architectures that outperform the energy absorption capabilities of monolithic materials. Using the hierarchical architectural features of biological materials, iterative design approaches using simulation and experimentation are advancing the field of bioinspired material design. However, bioinspired architectures are still challenging to manufacture because of the size scale and architectural hierarchical complexity. Notwithstanding, additive manufacturing technologies are advancing rapidly, continually providing researchers improved abilities to fabricate sophisticated bioinspired, hierarchical designs using multiple materials. This review describes the use of additive manufacturing for producing innovative synthetic materials specifically for energy absorption applications inspired by nacre, conch shell, shrimp shell, horns, hooves, and beetle wings. Potential applications include athletic prosthetics, protective head gear, and automobile crush zones.
Collapse
Affiliation(s)
- Aniket Ingrole
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Trevor G Aguirre
- Manufacturing Science Division, Energy Science and Technology Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luca Fuller
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Seth W Donahue
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
34
|
Mitomo H, Ijiro K. Controlled Nanostructures Fabricated by the Self-Assembly of Gold Nanoparticles via Simple Surface Modifications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideyuki Mitomo
- Research Institute for Electronic Science (RIES), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science (RIES), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
35
|
Bioinspired material architectures from bighorn sheep horncore velar bone for impact loading applications. Sci Rep 2020; 10:18916. [PMID: 33144662 PMCID: PMC7642289 DOI: 10.1038/s41598-020-76021-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/19/2020] [Indexed: 11/12/2022] Open
Abstract
Rocky Mountain bighorn sheep rams (Ovis canadensis canadensis) routinely conduct intraspecific combat where high energy cranial impacts are experienced. Previous studies have estimated cranial impact forces to be up to 3400 N during ramming, and prior finite element modeling studies showed the bony horncore stores 3 × more strain energy than the horn during impact. In the current study, the architecture of the porous bone within the horncore was quantified, mimicked, analyzed by finite element modeling, fabricated via additive manufacturing, and mechanically tested to determine the suitability of the novel bioinspired material architecture for use in running shoe midsoles. The iterative biomimicking design approach was able to tailor the mechanical behavior of the porous bone mimics. The approach produced 3D printed mimics that performed similarly to ethylene–vinyl acetate shoe materials in quasi-static loading. Furthermore, a quadratic relationship was discovered between impact force and stiffness in the porous bone mimics, which indicates a range of stiffness values that prevents impact force from becoming excessively high. These findings have implications for the design of novel bioinspired material architectures for minimizing impact force.
Collapse
|
36
|
Huang W, Shishehbor M, Guarín-Zapata N, Kirchhofer ND, Li J, Cruz L, Wang T, Bhowmick S, Stauffer D, Manimunda P, Bozhilov KN, Caldwell R, Zavattieri P, Kisailus D. A natural impact-resistant bicontinuous composite nanoparticle coating. NATURE MATERIALS 2020; 19:1236-1243. [PMID: 32807923 DOI: 10.1038/s41563-020-0768-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Nature utilizes the available resources to construct lightweight, strong and tough materials under constrained environmental conditions. The impact surface of the fast-striking dactyl club from the mantis shrimp is an example of one such composite material; the shrimp has evolved the capability to localize damage and avoid catastrophic failure from high-speed collisions during its feeding activities. Here we report that the dactyl club of mantis shrimps contains an impact-resistant coating composed of densely packed (about 88 per cent by volume) ~65-nm bicontinuous nanoparticles of hydroxyapatite integrated within an organic matrix. These mesocrystalline hydroxyapatite nanoparticles are assembled from small, highly aligned nanocrystals. Under impacts of high strain rates (around 104 s-1), particles rotate and translate, whereas the nanocrystalline networks fracture at low-angle grain boundaries, form dislocations and undergo amorphization. The interpenetrating organic network provides additional toughening, as well as substantial damping, with a loss coefficient of around 0.02. An unusual combination of stiffness and damping is therefore achieved, outperforming many engineered materials.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA
| | - Mehdi Shishehbor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA
| | | | | | - Jason Li
- Oxford Instruments Asylum Research, Goleta, CA, USA
| | - Luz Cruz
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | - Taifeng Wang
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | | | | | | | - Krassimir N Bozhilov
- Central Facility for Advanced Microscopy and Microanalysis, University of California, Riverside, CA, USA
| | - Roy Caldwell
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Pablo Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA
| | - David Kisailus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
- Materials Science and Engineering Program, University of California, Riverside, CA, USA.
| |
Collapse
|
37
|
Chen PY. Diabolical ironclad beetles inspire tougher joints for engineering applications. Nature 2020; 586:502-504. [DOI: 10.1038/d41586-020-02840-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Wang L, Urbas AM, Li Q. Nature-Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Self-Assembly to DNA Mesophase and Nanocolloids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1801335. [PMID: 30160812 DOI: 10.1002/adma.201801335] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Indexed: 05/22/2023]
Abstract
Liquid crystals (LCs) are omnipresent in living matter, whose chirality is an elegant and distinct feature in certain plant tissues, the cuticles of crabs, beetles, arthropods, and beyond. Taking inspiration from nature, researchers have recently devoted extensive efforts toward developing chiral liquid crystalline materials with self-organized nanostructures and exploring their potential applications in diverse fields ranging from dynamic photonics to energy and safety issues. In this review, an account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided. First, an overview on the significance of chiral liquid crystalline architectures in various living systems is given. Then, the recent significant progress in different chiral liquid crystalline systems including thermotropic LCs (cholesteric LCs, cubic blue phases, achiral bent-core LCs, etc.) and lyotropic LCs (DNA LCs, nanocellulose LCs, and graphene oxide LCs) is showcased. The review concludes with a perspective on the future scope, opportunities, and challenges in these truly advanced functional soft materials and their promising applications.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Augustine M Urbas
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA
| | - Quan Li
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
39
|
Patek SN. The Power of Mantis Shrimp Strikes: Interdisciplinary Impacts of an Extreme Cascade of Energy Release. Integr Comp Biol 2020; 59:1573-1585. [PMID: 31304967 DOI: 10.1093/icb/icz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the course of a single raptorial strike by a mantis shrimp (Stomatopoda), the stages of energy release span six to seven orders of magnitude of duration. To achieve their mechanical feats of striking at the outer limits of speeds, accelerations, and impacts among organisms, they use a mechanism that exemplifies a cascade of energy release-beginning with a slow and forceful, spring-loading muscle contraction that lasts for hundreds of milliseconds and ending with implosions of cavitation bubbles that occur in nanoseconds. Mantis shrimp use an elastic mechanism built of exoskeleton and controlled with a latching mechanism. Inspired by both their mechanical capabilities and evolutionary diversity, research on mantis shrimp strikes has provided interdisciplinary and fundamental insights to the fields of elastic mechanisms, fluid dynamics, evolutionary dynamics, contest dynamics, the physics of fast, small systems, and the rapidly-expanding field of bioinspired materials science. Even with these myriad connections, numerous discoveries await, especially in the arena of energy flow through materials actuating and controlling fast, impact fracture resistant systems.
Collapse
Affiliation(s)
- S N Patek
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
40
|
Fu J, Wang Z, Liang XH, Oh SW, St Iago-McRae E, Zhang T. DNA-Scaffolded Proximity Assembly and Confinement of Multienzyme Reactions. Top Curr Chem (Cham) 2020; 378:38. [PMID: 32248317 PMCID: PMC7127875 DOI: 10.1007/s41061-020-0299-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
Cellular functions rely on a series of organized and regulated multienzyme cascade reactions. The catalytic efficiencies of these cascades depend on the precise spatial organization of the constituent enzymes, which is optimized to facilitate substrate transport and regulate activities. Mimicry of this organization in a non-living, artificial system would be very useful in a broad range of applications—with impacts on both the scientific community and society at large. Self-assembled DNA nanostructures are promising applications to organize biomolecular components into prescribed, multidimensional patterns. In this review, we focus on recent progress in the field of DNA-scaffolded assembly and confinement of multienzyme reactions. DNA self-assembly is exploited to build spatially organized multienzyme cascades with control over their relative distance, substrate diffusion paths, compartmentalization and activity actuation. The combination of addressable DNA assembly and multienzyme cascades can deliver breakthroughs toward the engineering of novel synthetic and biomimetic reactors.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA. .,Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA.
| | - Zhicheng Wang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA.,Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Xiao Hua Liang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Sung Won Oh
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Ezry St Iago-McRae
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Ting Zhang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA
| |
Collapse
|
41
|
Song X, Wang JP, Song Y, Qi T, Liang Li G. Bioinspired Healable Mechanochromic Function from Fluorescent Polyurethane Composite Film. ChemistryOpen 2020; 9:272-276. [PMID: 32140381 PMCID: PMC7050239 DOI: 10.1002/open.201900295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Camouflage and wound healing are two vital functions for cephalopods to survive from dangerous ocean risks. Inspired by these dual functions, herein, we report a new type of healable mechanochromic (HMC) material. The bifunctional HMC material consists of two tightly bonded layers. One layer is composed of polyvinyl alcohol (PVA) and titanium dioxide (TiO2) for shielding. Another layer contains supramolecular hydrogen bonding polymers and fluorochromes for healing. The as‐synthesized HMC material exhibits a tunable and reversible mechanochromic function due to the strain‐induced surface structure of composite film. The mechanochromic function can be further restored after damage because of the incorporated healable polyurethane. The healing efficiency of the damaged HMC materials can even reach 98 % at 60 °C for 6 h. The bioinspired HMC material is expected to have potential applications in the information encryption and flexible displays.
Collapse
Affiliation(s)
- Xiaoke Song
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun-Peng Wang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Song
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tao Qi
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guo Liang Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
42
|
Growth of Nacre Biocrystals by Self-Assembly of Aragonite Nanoparticles with Novel Subhedral Morphology. CRYSTALS 2019. [DOI: 10.3390/cryst10010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nacre has long served as a research model in the field of biomineralization and biomimetic materials. It is widely accepted that its basic components, aragonite biocrystals, namely, tablets, are formed by the nanoparticle-attachment pathway. However, the details of the nanoparticle morphology and arrangement in the tablets are still a matter of debate. Here, using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), we observed the nanostructure of the growing tablets at different growth stages and found that: (1) the first detectable tablet looked like a rod; (2) tablets consisted of subhedral nanoparticles (i.e., partly bounded by crystal facets and partly by irregular non-crystal facets) that were made of aragonite single crystals with a width of 160–180 nm; and (3) these nanoparticles were ordered in orientation but disordered in position, resulting in unique subhedral and jigsaw-like patterns from the top and side views, respectively. In short, we directly observed the growth of nacre biocrystals by the self-assembly of aragonite nanoparticles with a novel subhedral morphology.
Collapse
|
43
|
Huang W, Restrepo D, Jung JY, Su FY, Liu Z, Ritchie RO, McKittrick J, Zavattieri P, Kisailus D. Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901561. [PMID: 31268207 DOI: 10.1002/adma.201901561] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - David Restrepo
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Jae-Young Jung
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
| | - Frances Y Su
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
| | - Zengqian Liu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Fatigue and Fracture Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joanna McKittrick
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093, USA
| | - Pablo Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - David Kisailus
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
- Materials Science and Engineering Program, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
44
|
Chen R, Liu J, Yang C, Weitz DA, He H, Li D, Chen D, Liu K, Bai H. Transparent Impact-Resistant Composite Films with Bioinspired Hierarchical Structure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23616-23622. [PMID: 31252479 DOI: 10.1021/acsami.9b06500] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inspired by the helicoidally organized microstructure of stomatopods' smasher dactyl club, a type of impact-resistant composite film reinforced with periodic helicoidal nanofibers is designed and fabricated, which reproduces the structural complexity of the natural material. To periodically align nanofibers in a helicoidal structure, an electrospinning system is developed to better control the alignment of electrospun nanofibers. When the nanofiber scaffold is embedded in an epoxy matrix, the presence of a hierarchical structure allows the composite films to achieve properties well beyond their constituents. The composite film exhibits excellent optical transparency and mechanical properties, such as enhanced tensile strength, ductility, and defect tolerance. With elegant design mimicking nature's hierarchical structure at multilength scales, the composite films could effectively release the impact energy and greatly increase the impact resistance, suggesting that the transparent composite films are promising protective layers suitable for various applications.
Collapse
Affiliation(s)
- Ran Chen
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , 11 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | | | | | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , 11 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Haonan He
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Renmin Road 5625 , Changchun 130022 , China
| | | | | | - Kai Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Renmin Road 5625 , Changchun 130022 , China
| | | |
Collapse
|
45
|
Porter MM, Niksiar P. Multidimensional mechanics: Performance mapping of natural biological systems using permutated radar charts. PLoS One 2018; 13:e0204309. [PMID: 30265707 PMCID: PMC6161877 DOI: 10.1371/journal.pone.0204309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/05/2018] [Indexed: 11/27/2022] Open
Abstract
Comparing the functional performance of biological systems often requires comparing multiple mechanical properties. Such analyses, however, are commonly presented using orthogonal plots that compare N ≤ 3 properties. Here, we develop a multidimensional visualization strategy using permutated radar charts (radial, multi-axis plots) to compare the relative performance distributions of mechanical systems on a single graphic across N ≥ 3 properties. Leveraging the fact that radar charts plot data in the form of closed polygonal profiles, we use shape descriptors for quantitative comparisons. We identify mechanical property-function correlations distinctive to rigid, flexible, and damage-tolerant biological materials in the form of structural ties, beams, shells, and foams. We also show that the microstructures of dentin, bone, tendon, skin, and cartilage dictate their tensile performance, exhibiting a trade-off between stiffness and extensibility. Lastly, we compare the feeding versus singing performance of Darwin’s finches to demonstrate the potential of radar charts for multidimensional comparisons beyond mechanics of materials.
Collapse
Affiliation(s)
- Michael M. Porter
- Department of Mechanical Engineering, Clemson University, Clemson, SC, Untied States of America
- * E-mail:
| | - Pooya Niksiar
- Department of Mechanical Engineering, Clemson University, Clemson, SC, Untied States of America
| |
Collapse
|