1
|
Wang Q, Wang J, Huang Z, Li Y, Li H, Huang P, Cai Y, Wang J, Liu X, Lin FC, Lu J. The endosomal-vacuolar transport system acts as a docking platform for the Pmk1 MAP kinase signaling pathway in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2025; 245:722-747. [PMID: 39494465 DOI: 10.1111/nph.20235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
In Magnaporthe oryzae, the Pmk1 MAP kinase signaling pathway regulates appressorium formation, plant penetration, effector secretion, and invasive growth. While the Mst11-Mst7-Pmk1 cascade was characterized two decades ago, knowledge of its signaling in the intracellular network remains limited. In this study, we demonstrate that the endosomal surface scaffolds Pmk1 MAPK signaling and Msb2 activates Ras2 on endosomes in M. oryzae. Protein colocalization demonstrated that Msb2, Ras2, Cap1, Mst50, Mst11, Mst7, and Pmk1 attach to late endosomal membranes. Damage to the endosome-vacuole transport system influences Pmk1 phosphorylation. When Msb2 senses a plant signal, it internalizes and activates Ras2 on endosome membrane surfaces, transmitting the signal to Pmk1 via Mst11 and Mst7. Signal-sensing and delivery proteins are ubiquitinated and sorted for degradation in late endosomes and vacuoles, terminating signaling. Plant penetration and lowered intracellular turgor are required for the transition from late endosomes to vacuoles in appressoria. Our findings uncover an effective mechanism that scaffolds and controls Pmk1 MAPK signaling through endosomal-vacuolar transport, offering new knowledge for the cytological and molecular mechanisms by which the Pmk1 MAPK pathway modulates development and pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Qing Wang
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhicheng Huang
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Li
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Li
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengyun Huang
- School of Medicine, Linyi University, Linyi, 276000, Shandong Province, China
| | - Yingying Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaohong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Lu
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Gao Y, Zhang S, Sheng S, Li H. A Colletotrichum fructicola dual specificity phosphatase CfMsg5 is regulated by the CfAp1 transcription factor during oxidative stress and promotes virulence on Camellia oleifera. Virulence 2024; 15:2413851. [PMID: 39423133 PMCID: PMC11492636 DOI: 10.1080/21505594.2024.2413851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Anthracnose, caused by Colletotrichum species, induces significant economic damages to crop plants annually, especially for Camellia oleifera. During infection, the counter-defence mechanisms of plant pathogens against ROS-mediated resistance, however, remain poorly understood. By employing Weighted Gene Co-expression Network Analysis (WGCNA), we identified ACTIVATOR PROTEIN-1 (AP-1), a bZIP transcription factor, as significant to infection. And deletion of CfAP1 inhibited aerial hyphae formation and growth under oxidative stress. Furthermore, RNA-seq analysis post H2O2 treatment revealed 33 significantly down-regulated genes in the AP-1 deficient strain, including A12032, a dual specificity phosphatase (DSP) homologous to MSG5 from Saccharomyces cerevisiae. This ΔCfmsg5 strain showed enhanced oxidative tolerance, reduced ROS scavenging, and negative regulation of the CWI MAPK cascade under oxygen stress, suggesting its involvement in oxidative signal transduction. Importantly, we provide evidence that CfMsg5 regulates growth, endoplasmic reticulum stress, and several unfolded protein response genes upregulated in ΔCfmsg5. Collectively, this study identified core components during C. fructicola infection and highlights a potential regulatory module involving CfAp1 and CfMsg5 in response to host ROS bursts. It provides new insights into fungal infection mechanisms and potential targets like CfAP1 and CfMSG5 for managing anthracnose diseases.
Collapse
Affiliation(s)
- Yalan Gao
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Shengpei Zhang
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Song Sheng
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Yuelushan Laboratory Non-wood Forests Variety Innovation Center, Changsha, China
| | - He Li
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Yuelushan Laboratory Non-wood Forests Variety Innovation Center, Changsha, China
| |
Collapse
|
3
|
Qiao Y, Peng J, Wu B, Wang M, He G, Peng Q, Gao Y, Liu Y, Yang S, Dai X. Transcriptome and metabolome analyses provide crucial insights into the adaptation of chieh-qua to Fusarium oxysporum infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1344155. [PMID: 39574453 PMCID: PMC11578706 DOI: 10.3389/fpls.2024.1344155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 09/11/2024] [Indexed: 11/24/2024]
Abstract
Introduction Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How) is a wax gourd variety that is generally susceptible to infection and damage by Fusarium oxysporum during its cultivation. Therefore, analyzing the adaption mechanism of chieh-qua to F. Oxysporum infection is of great significance for cultivating resistant varieties. Methods Through comparative transcriptome analysis, comparative metabolome analysis, integrated analysis of transcriptome and metabolome and between F. Oxysporum infected samples and control samples of susceptible lines. Results This study found that proteins such as NPR1, TGA and PR1 in plant hormone signal transduction pathway were up-regulated after infection, which may activate a series of plant secondary metabolic synthesis pathways. In addition, the expression of 27 genes in the flavonoid biosynthetic process in resistant lines after infection was significantly higher than that in susceptible lines, indicating that these genes may be involved in fungal resistance. This study also found that alternative splicing of genes may play an important role in responding to F. Oxysporum infection. For example, plant protein kinase genes such as EDR1, SRK2E and KIPK1 were not differentially expressed after F. Oxysporum infection, but the transcripts they produced differ at the transcription level. Finally, through comparative metabolome analysis, this study identified potentially functional substances such as oxalic acid that increased in content after F. Oxysporum infection. Through integrated analysis of transcriptome and metabolome, some differential expressed genes significantly related to differential metabolites were also identified. Discussion This study provides a basis for understanding and utilizing chieh-qua's infection mechanism of F. Oxysporum through analysis of the transcriptome and metabolome.
Collapse
Affiliation(s)
- Yanchun Qiao
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jiazhu Peng
- Vegetable Research Institute, Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Bei Wu
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Min Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guoping He
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Qingwu Peng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yin Gao
- South China Agricultural University, College of Horticulture, Guangzhou, China
| | - Yuping Liu
- Vegetable Research Institute, Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiuchun Dai
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Jiang Q, Wang T, Li Y, Bi Y, Zhang M, Wang X, Prusky DB. AaSlt2 Is Required for Vegetative Growth, Stress Adaption, Infection Structure Formation, and Virulence in Alternaria alternata. J Fungi (Basel) 2024; 10:774. [PMID: 39590693 PMCID: PMC11595810 DOI: 10.3390/jof10110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Slt2 is an important component of the Slt2-MAPK pathway and plays critical regulatory roles in growth, cell wall integrity, melanin biosynthesis, and pathogenicity of plant fungi. AaSlt2, an ortholog of the Saccharomyces cerevisiae Slt2 gene, was identified from A. alternata in this study, and its function was clarified by knockout of the gene. The ΔAaSlt2 strain of A. alternata was found to be defective in spore morphology, vegetative growth, and sporulation. Analysis of gene expression showed that expression of the AaSlt2 gene was significantly up-regulated during infection structure formation of A. alternata on hydrophobic and pear wax extract-coated surfaces. Further tests on onion epidermis confirmed that spore germination was reduced in the ΔAaSlt2 strain, together with decreased formation of appressorium and infection hyphae. Moreover, the ΔAaSlt2 strain was sensitive to cell wall inhibitors, and showed significantly reduced virulence on pear fruit. Furthermore, cell wall degradation enzyme (CWDE) activities, melanin accumulation, and toxin biosynthesis were significantly lower in the ΔAaSlt2 strain. Overall, the findings demonstrate the critical involvement of AaSlt2 in growth regulation, stress adaptation, infection structure formation, and virulence in A. alternata.
Collapse
Affiliation(s)
- Qianqian Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tiaolan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- College of Applied Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaojing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov B. Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| |
Collapse
|
5
|
Sunani SK, Koti PS, Sunitha NC, Choudhary M, Jeevan B, Anilkumar C, Raghu S, Gadratagi BG, Bag MK, Acharya LK, Ram D, Bashyal BM, Das Mohapatra S. Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense. PLANTA 2024; 260:92. [PMID: 39261328 DOI: 10.1007/s00425-024-04523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.
Collapse
Affiliation(s)
- Sunil Kumar Sunani
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
- ICAR-Indian Institute of Pulse Research (RS), Bhubaneswar, Odisha, India
| | - Prasanna S Koti
- University of Agricultural Sciences, GKVK, Bangalore, Karnataka, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
- ICAR-National Centre for Integrated Pest Management, New Delhi, India
| | - B Jeevan
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA.
| | - S Raghu
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Manas Kumar Bag
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Dama Ram
- Department of Plant Pathology, Agriculture University, Jodhpur, Rajasthan, India
| | | | | |
Collapse
|
6
|
Santos AS, Costa VAF, Freitas VAQ, Dos Anjos LRB, de Almeida Santos ES, Arantes TD, Costa CR, de Sene Amâncio Zara AL, do Rosário Rodrigues Silva M, Neves BJ. Drug to genome to drug: a computational large-scale chemogenomics screening for novel drug candidates against sporotrichosis. Braz J Microbiol 2024; 55:2655-2667. [PMID: 38888692 PMCID: PMC11405749 DOI: 10.1007/s42770-024-01406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Sporotrichosis is recognized as the predominant subcutaneous mycosis in South America, attributed to pathogenic species within the Sporothrix genus. Notably, in Brazil, Sporothrix brasiliensis emerges as the principal species, exhibiting significant sapronotic, zoonotic and enzootic epidemic potential. Consequently, the discovery of novel therapeutic agents for the treatment of sporotrichosis is imperative. The present study is dedicated to the repositioning of pharmaceuticals for sporotrichosis therapy. To achieve this goal, we designed a pipeline with the following steps: (a) compilation and preparation of Sporothrix genome data; (b) identification of orthologous proteins among the species; (c) identification of homologous proteins in publicly available drug-target databases; (d) selection of Sporothrix essential targets using validated genes from Saccharomyces cerevisiae; (e) molecular modeling studies; and (f) experimental validation of selected candidates. Based on this approach, we were able to prioritize eight drugs for in vitro experimental validation. Among the evaluated compounds, everolimus and bifonazole demonstrated minimum inhibitory concentration (MIC) values of 0.5 µg/mL and 4.0 µg/mL, respectively. Subsequently, molecular docking studies suggest that bifonazole and everolimus may target specific proteins within S. brasiliensis- namely, sterol 14-α-demethylase and serine/threonine-protein kinase TOR, respectively. These findings shed light on the potential binding affinities and binding modes of bifonazole and everolimus with their probable targets, providing a preliminary understanding of the antifungal mechanism of action of these compounds. In conclusion, our research advances the understanding of the therapeutic potential of bifonazole and everolimus, supporting their further investigation as antifungal agents for sporotrichosis in prospective hit-to-lead and preclinical investigations.
Collapse
Affiliation(s)
- Andressa Santana Santos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | - Laura Raniere Borges Dos Anjos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Thales Domingos Arantes
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Carolina Rodrigues Costa
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana Laura de Sene Amâncio Zara
- Postgraduate Program in Health Technology Assistance and Assessment (PPG-AAS), Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
7
|
Linghu SX, Zhang Y, Zuo JF, Mo MH, Li GH. AfSwi6 Regulates the Stress Response, Chlamydospore Production, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys flagrans. Microorganisms 2024; 12:1765. [PMID: 39338440 PMCID: PMC11433780 DOI: 10.3390/microorganisms12091765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Nematode-trapping (NT) fungi are a major resource for controlling parasitic nematodes. Arthrobotrys flagrans, as a typical NT fungus, can capture nematodes by producing three-dimensional nets. The APSES transcription factor Swi6 plays a vital role in fungal growth and the pathogenicity of pathogens. In this study, we characterized AfSwi6 via gene disruption using the homologous recombinant method and transcriptome sequencing. Knockout of the AfSwi6 gene caused defects in mycelial growth, trap formation and pathogenicity, chlamydospore production, and stress response. Moreover, the transcriptome data indicated that AfSwi6 was related to DNA repair, stress response, and plasma membrane fusion. The result showed that AfSwi6 has a significant effect on trap development and chlamydospore production in A. flagrans.
Collapse
Affiliation(s)
| | | | | | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
8
|
Li F, Lu D, Meng F, Tian C. Transcription Factor CgSte12 Regulates Pathogenicity by Affecting Appressorium Structural Development in the Anthracnose-Causing Fungus Colletotrichum gloeosporioides. PHYTOPATHOLOGY 2024; 114:1832-1842. [PMID: 38748933 DOI: 10.1094/phyto-12-23-0484-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Colletotrichum gloeosporioides is the causal agent of poplar anthracnose, which induces major economic losses and adversely affects the ecosystem services of poplar forests. The appressorium serves as a penetration structure for many pathogenic fungi, including C. gloeosporioides. The production of mucilage and the formation of penetration pegs are critically important for the appressorium-mediated penetration of host tissues. We previously found that CgPmk1 is a key protein involved in appressorium formation, penetration, and pathogenicity. Although CgSte12, which is a transcription factor that functions downstream of CgPmk1, regulates the formation of penetration pegs, its role in C. gloeosporioides appressorium development and pathogenicity has not been elucidated. Here, we developed C. gloeosporioides CgSTE12 mutants and characterized the molecular and cellular functions of CgSTE12. The results showed that mycelial growth and morphology were not affected in the CgSTE12 knockout mutants, which produced normal melanized appressoria. However, these mutants had less mucilage secreted around the appressoria, impaired appressorial cone formation, and the inability to form penetration pores and pegs, which ultimately led to a significant loss of pathogenicity. Our comparative transcriptome analysis revealed that CgSte12 controls the expression of genes involved in appressorium development and function, including genes encoding cutinases, NADPH oxidase, spermine biosynthesis-related proteins, ceramide biosynthesis-related proteins, fatty acid metabolism-related proteins, and glycerophospholipid metabolism-related proteins. Overall, our findings indicate that CgSte12 is a critical regulator of appressorium development and affects C. gloeosporioides pathogenicity by modulating the structural integrity of appressoria.
Collapse
Affiliation(s)
- Fuhan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dongxiao Lu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Fanli Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Rij M, Kayacan Y, Bernardi B, Wendland J. Re-routing MAP kinase signaling for penetration peg formation in predator yeasts. PLoS Pathog 2024; 20:e1012503. [PMID: 39213444 PMCID: PMC11392346 DOI: 10.1371/journal.ppat.1012503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Saccharomycopsis yeasts are natural organic sulfur auxotrophs due to lack of genes required for the uptake and assimilation of sulfate/sulfite. Starvation for methionine induces a shift to a predatory, mycoparasitic life strategy that is unique amongst ascomycetous yeasts. Similar to fungal plant pathogens that separated from Saccharomycopsis more than 400 million years ago, a specialized infection structure called penetration peg is used for prey cell invasion. Penetration pegs are highly enriched with chitin. Here we demonstrate that an ancient and conserved MAP kinase signaling pathway regulates penetration peg formation and successful predation in the predator yeast S. schoenii. Deletion of the MAP kinase gene SsKIL1, a homolog of the Saccharomyces cerevisiae ScKSS1/ScFUS3 and the rice blast Magnaporthe oryzae MoPMK1 genes, as well as deletion of the transcription factor SsSTE12 generate non-pathogenic mutants that fail to form penetration pegs. Comparative global transcriptome analyses using RNAseq indicate loss of the SsKil1-SsSte12-dependent predation response in the mutant strains, while a methionine starvation response is still executed. Within the promoter sequences of genes upregulated during predation we identified a cis-regulatory element similar to the ScSte12 pheromone response element. Our results indicate that, re-routing MAP-kinase signaling by re-wiring Ste12 transcriptional control towards predation specific genes contributed to the parallel evolution of this predacious behaviour in predator yeasts. Consequently, we found that SsSTE12 is dispensable for mating.
Collapse
Affiliation(s)
- Mareike Rij
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Yeseren Kayacan
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Beatrice Bernardi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
10
|
Wang JY, Cai YY, Li L, Zhu XM, Shen ZF, Wang ZH, Liao J, Lu JP, Liu XH, Lin FC. Dihydroorotase MoPyr4 is required for development, pathogenicity, and autophagy in rice blast fungus. Cell Commun Signal 2024; 22:362. [PMID: 39010102 PMCID: PMC11247805 DOI: 10.1186/s12964-024-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ying Cai
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lin Li
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-Fang Shen
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
11
|
Wang S, Han L, Ren Y, Hu W, Xie X, Chen H, Tang M. The receptor kinase RiSho1 in Rhizophagus irregularis regulates arbuscule development and drought tolerance during arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2024; 242:2207-2222. [PMID: 38481316 DOI: 10.1111/nph.19677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/28/2024] [Indexed: 08/21/2024]
Abstract
In terrestrial ecosystems, most plant species can form beneficial associations with arbuscular mycorrhizal (AM) fungi. Arbuscular mycorrhizal fungi benefit plant nutrient acquisition and enhance plant tolerance to drought. The high osmolarity glycerol 1 mitogen-activated protein kinase (HOG1-MAPK) cascade genes have been characterized in Rhizophagus irregularis. However, the upstream receptor of the HOG1-MAPK cascade remains to be investigated. We identify the receptor kinase RiSho1 from R. irregularis, containing four transmembrane domains and one Src homology 3 (SH3) domain, corresponding to the homologue of Saccharomyces cerevisiae. Higher expression levels of RiSho1 were detected during the in planta phase in response to drought. RiSho1 protein was localized in the plasma membrane of yeast, and interacted with the HOG1-MAPK module RiPbs2 directly by protein-protein interaction. RiSho1 complemented the growth defect of the yeast mutant ∆sho1 under sorbitol conditions. Knock-down of RiSho1 led to the decreased expression of downstream HOG1-MAPK cascade (RiSte11, RiPbs2, RiHog1) and drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3), hampered arbuscule development and decreased plants antioxidation ability under drought stress. Our study reveals the role of RiSho1 in regulating arbuscule development and drought-resistant genes via the HOG1-MAPK cascade. These findings provide new perspectives on the mechanisms by which AM fungi respond to drought.
Collapse
Affiliation(s)
- Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lina Han
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
Ayhan DH, Abbondante S, Martínez-Soto D, Milo S, Rickelton K, Sohrab V, Kotera S, Arie T, Marshall ME, Rocha MC, Haridas S, Grigoriev IV, Shlezinger N, Pearlman E, Ma LJ. The differential virulence of Fusarium strains causing corneal infections and plant diseases is associated with accessory chromosome composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595639. [PMID: 38826335 PMCID: PMC11142239 DOI: 10.1101/2024.05.23.595639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Fusarium oxysporum is a cross-kingdom pathogen. While some strains cause disseminated fusariosis and blinding corneal infections in humans, others are responsible for devastating vascular wilt diseases in plants. To better understand the distinct adaptations of F. oxysporum to animal or plant hosts, we conducted a comparative phenotypic and genetic analysis of two strains: MRL8996 (isolated from a keratitis patient) and Fol4287 (isolated from a wilted tomato [Solanum lycopersicum]). In vivo infection of mouse corneas and tomato plants revealed that, while both strains cause symptoms in both hosts, MRL8996 caused more severe corneal ulceration and perforation in mice, whereas Fol4287 induced more pronounced wilting symptoms in tomato. In vitro assays using abiotic stress treatments revealed that the human pathogen MRL8996 was better adapted to elevated temperatures, whereas the plant pathogen Fol4287 was more tolerant of osmotic and cell wall stresses. Both strains displayed broad resistance to antifungal treatment, with MRL8996 exhibiting the paradoxical effect of increased tolerance to higher concentrations of the antifungal caspofungin. We identified a set of accessory chromosomes (ACs) and protein-encoding genes with distinct transposon profiles and functions, respectively, between MRL8996 and Fol4287. Interestingly, ACs from both genomes also encode proteins with shared functions, such as chromatin remodeling and post-translational protein modifications. Our phenotypic assays and comparative genomics analyses lay the foundation for future studies correlating genotype with phenotype and for developing targeted antifungals for agricultural and clinical uses.
Collapse
Affiliation(s)
- Dilay Hazal Ayhan
- Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Serena Abbondante
- Physiology and Biophysics and Ophthalmology, University of California, Irvine, USA University of Massachusetts Amherst, Amherst, MA, USA
| | - Domingo Martínez-Soto
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Shira Milo
- Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Katherine Rickelton
- Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Vista Sohrab
- Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shunsuke Kotera
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - Michaela Ellen Marshall
- Physiology and Biophysics and Ophthalmology, University of California, Irvine, USA University of Massachusetts Amherst, Amherst, MA, USA
| | - Marina Campos Rocha
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Neta Shlezinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eric Pearlman
- Physiology and Biophysics and Ophthalmology, University of California, Irvine, USA University of Massachusetts Amherst, Amherst, MA, USA
| | - Li-Jun Ma
- Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
13
|
Shen ZF, Li L, Wang JY, Liao J, Zhang YR, Zhu XM, Wang ZH, Lu JP, Liu XH, Lin FC. Csn5 inhibits autophagy by regulating the ubiquitination of Atg6 and Tor to mediate the pathogenicity of Magnaporthe oryzae. Cell Commun Signal 2024; 22:222. [PMID: 38594767 PMCID: PMC11003145 DOI: 10.1186/s12964-024-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.
Collapse
Affiliation(s)
- Zi-Fang Shen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing-Yi Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Ran Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Fan X, Gao X, Zang H, Liu Z, Jing X, Liu X, Guo S, Jiang H, Wu Y, Huang Z, Chen D, Guo R. Transcriptional dynamics and regulatory function of milRNAs in Ascosphaera apis invading Apis mellifera larvae. Front Microbiol 2024; 15:1355035. [PMID: 38650880 PMCID: PMC11033319 DOI: 10.3389/fmicb.2024.1355035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
In the present study, small RNA (sRNA) data from Ascosphaera apis were filtered from sRNA-seq datasets from the gut tissues of A. apis-infected Apis mellifera ligustica worker larvae, which were combined with the previously gained sRNA-seq data from A. apis spores to screen differentially expressed milRNAs (DEmilRNAs), followed by trend analysis and investigation of the DEmilRNAs in relation to significant trends. Additionally, the interactions between the DEmilRNAs and their target mRNAs were verified using a dual-luciferase reporter assay. In total, 974 A. apis milRNAs were identified. The first base of these milRNAs was biased toward U. The expression of six milRNAs was confirmed by stem-loop RT-PCR, and the sequences of milR-3245-y and milR-10285-y were validated using Sanger sequencing. These miRNAs grouped into four significant trends, with the target mRNAs of DEmilRNAs involving 42 GO terms and 120 KEGG pathways, such as the fungal-type cell wall and biosynthesis of secondary metabolites. Further investigation demonstrated that 299 DEmilRNAs (novel-m0011-3p, milR-10048-y, bantam-y, etc.) potentially targeted nine genes encoding secondary metabolite-associated enzymes, while 258 (milR-25-y, milR-14-y, milR-932-x, etc.) and 419 (milR-4561-y, milR-10125-y, let-7-x, etc.) DEmilRNAs putatively targeted virulence factor-encoded genes and nine genes involved in the MAPK signaling pathway, respectively. Additionally, the interaction between ADM-B and milR-6882-x, as well as between PKIA and milR-7009-x were verified. Together, these results not only offer a basis for clarifying the mechanisms underlying DEmilRNA-regulated pathogenesis of A. apis and a novel insight into the interaction between A. apis and honey bee larvae, but also provide candidate DEmilRNA-gene axis for further investigation.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuze Gao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Jiang
- Jilin Apicultural Research Institute, Jilin, China
| | - Ying Wu
- Jilin Apicultural Research Institute, Jilin, China
| | - Zhijian Huang
- Animal Husbandry Terminus of Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
15
|
Li W, Li S, Tang C, Klosterman SJ, Wang Y. Kss1 of Verticillium dahliae regulates virulence, microsclerotia formation, and nitrogen metabolism. Microbiol Res 2024; 281:127608. [PMID: 38241914 DOI: 10.1016/j.micres.2024.127608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Verticillium dahliae causes destructive vascular wilt diseases on more than 200 plant species, including economically important crops and ornamental trees worldwide. The melanized microsclerotia (MS) enable V. dahliae to survive for years in soil, thus the fungus is especially difficult to control once it has become established. Previously, we found that the mitogen activated protein kinase VdSte11 (MAPKKK) plays key roles in MS formation, penetration, and virulence in V. dahliae. In this study, two MAPK homologs of the yeast Ste7p and Kss1p were identified and characterized in V. dahliae. Deletion of VdSte7 or VdKss1 reuslted in severe defects in melaninized MS formation and virulence. Furthermore, phosphorylation assays demonstrated that VdSte11 and VdSte7 can phosphorylate VdKss1 in V. dahliae. Proteomic analysis revealed a significant change in sterol biosynthesis with a fold change of ≥ 1.2 after the deletion of VdKss1. In addition, phosphoproteomic analysis showed that VdKss1 was involved in the regulation of nitrogen metabolism. Finally, we identified VdRlm1 as a potentially downstream target of VdKss1, which is involved in regulating ammonium nitrogen utilization. This study sheds light on the network of regulatory proteins in V. dahliae that affect MS formation and nitrogen metabolism.
Collapse
Affiliation(s)
- Wenwen Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Sa Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chen Tang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Yonglin Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
16
|
Baudin M, Le Naour‐Vernet M, Gladieux P, Tharreau D, Lebrun M, Lambou K, Leys M, Fournier E, Césari S, Kroj T. Pyricularia oryzae: Lab star and field scourge. MOLECULAR PLANT PATHOLOGY 2024; 25:e13449. [PMID: 38619508 PMCID: PMC11018116 DOI: 10.1111/mpp.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Collapse
Affiliation(s)
- Maël Baudin
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Present address:
Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Le Naour‐Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- CIRAD, UMR PHIMMontpellierFrance
| | - Marc‐Henri Lebrun
- UMR 1290 BIOGER – Campus Agro Paris‐Saclay – INRAE‐AgroParisTechPalaiseauFrance
| | - Karine Lambou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Marie Leys
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
17
|
Zhang Y, Zhu M, Wang H, Yu G, Guo A, Ren W, Li B, Liu N. The Mitogen-Activated Protein Kinase Hog1 Regulates Fungal Development, Pathogenicity, and Stress Response in Botryosphaeria dothidea. PHYTOPATHOLOGY 2024; 114:725-731. [PMID: 37889135 DOI: 10.1094/phyto-07-23-0260-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The high-osmolarity glycerol mitogen-activated protein kinase (HOG-MAPK) pathway plays a central role in environmental stress adaptation in eukaryotes. However, the biological function of the HOG-MAPK pathway varies in different fungi. In this study, we investigated the HOG-MAPK pathway by inactivation of the core element Hog1 in Botryosphaeria dothidea, the causal agent of Botryosphaeria canker and apple ring rot. Targeted deletion of BdHOG1 resulted in the loss of conidiation ability and significant reduction of virulence. In addition, the ΔBdHog1 mutant exhibited hypersensitivity to osmotic stress but resistance to phenylpyrrole and dicarboximide fungicides. Comparative transcriptome analysis revealed that inactivation of BdHog1 influenced multiple metabolic pathways in B. dothidea. Taken together, our results suggest that BdHog1 plays a crucial role in development, virulence, and stress tolerance in B. dothidea, which provides a theoretical basis for the development of target-based fungicides.
Collapse
Affiliation(s)
- Yihan Zhang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Meiqi Zhu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongna Wang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guolei Yu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Anqi Guo
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Weichao Ren
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Baohua Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Na Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
18
|
Liang H, Li F, Huang Y, Yu Q, Huang Z, Zeng Q, Chen B, Meng J. FsCGBP, a Cutinase G-Box Binding Protein, Regulates the Growth, Development, and Virulence of Fusarium sacchari, the Pathogen of Sugarcane Pokkah Boeng Disease. J Fungi (Basel) 2024; 10:246. [PMID: 38667917 PMCID: PMC11051240 DOI: 10.3390/jof10040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Fusarium sacchari is a causal agent of sugarcane Pokkah boeng, an important fungal disease that causes a considerable reduction in yield and sugar content in susceptible varieties of sugarcane worldwide. Despite its importance, the fungal factors that regulate the virulence of this pathogen remain largely unknown. In our previous study, mapping of an insertional mutant defect in virulence resulted in the identification of a cutinase G-box binding protein gene, designated FsCGBP, that encodes a C2H2-type transcription factor (TF). FsCGBP was shown to localize in the nuclei, and the transcript level of FsCGBP was significantly upregulated during the infection process or in response to abiotic stresses. Deletion or silencing of FsCGBP resulted in a reduction in mycelial growth, conidial production, and virulence and a delay in conidial germination in the F. sacchari. Cutinase genes FsCUT2, FsCUT3, and FsCUT4 and the mitogen-activated protein kinase (MAPK) genes FsHOG1, FsMGV1, and FsGPMK1, which were significantly downregulated in ΔFsCGBP. Except for FsHOG1, all of these genes were found to be transcriptionally activated by FsCGBP using the yeast one-hybrid system in vitro. The deletion of individual cutinase genes did not result in any of the phenotypes exhibited in the ΔFsCGBP mutant, except for cutinase activity. However, disruption of the MAPK pathway upon deletion of FsMGV1 or FsGPMK1 resulted in phenotypes similar to those of the ΔFsCGBP mutant. The above results suggest that FsCGBP functions by regulating the MAPK pathway and cutinase genes, providing new insights into the mechanism of virulence regulation in F. sacchari.
Collapse
Affiliation(s)
- Haoming Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yundan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Quan Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhenxin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Quan Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiaorong Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
19
|
Gujjar RS, Kumar R, Goswami SK, Srivastava S, Kumar S. MAPK signaling pathway orchestrates and fine-tunes the pathogenicity of Colletotrichum falcatum. J Proteomics 2024; 292:105056. [PMID: 38043863 DOI: 10.1016/j.jprot.2023.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Colletotrichum falcatum is the causal organism of red rot, the most devastating disease of sugarcane. Mitogen-activated protein kinase (MAPK) signaling pathway plays pivotal role in coordinating the process of pathogenesis. We identified eighteen proteins implicated in MAPK signaling pathway in C. falcatum, through nanoLCMS/MS based proteomics approach. Twelve of these proteins were the part of core MAPK signaling pathway, whereas remaining proteins were indirectly implicated in MAPK signaling. Majority of these proteins had enhanced abundance in C. falcatum samples cultured with host sugarcane stalks. To validate the findings, core MAPK pathway genes (MAPKKK-NSY1, MAPK 17-MAPK17, MAPKKK 5-MAPKKK5, MAPK-HOG1B, MAPKKK-MCK1/STE11, MAPK-MST50/STE50, MAPKK-SEK1, MAPKK-MEK1/MST7/STE7, MAPKK-MKK2/STE7, MAPKKK-MST11/STE11, MAPK 5-MPK5, and MAPK-MPK-C) were analyzed by qPCR to confirm the real-time expression in C. falcatum samples cultured with host sugarcane stalks. The results of qPCR-based expression of genes were largely in agreement with the findings of proteomics. String association networks of MAPKK- MEK1/MST7/STE7, and MAPK- MPK-C revealed strong association with plenty of assorted proteins implicated in the process of pathogenesis/virulence. This is the novel and first large scale study of MAPK proteins in C. falcatum, responsible for red rot epidemics of sugarcane various countries. KEY MESSAGE: Our findings demonstrate the pivotal role of MAPK proteins in orchestrating the pathogenicity of Colletotrichum falcatum, responsible devastating red rot disease of sugarcane. SIGNIFICANCE: Our findings are novel and the first large scale study demonstrating the pivotal role of MAPK proteins in C. falcatum, responsible devastating red rot disease of sugarcane. The study will be useful for future researchers in terms of manipulating the fungal pathogenicity through genome editing.
Collapse
Affiliation(s)
- Ranjit Singh Gujjar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India.
| | - Rajeev Kumar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| | | | - Sangeeta Srivastava
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| | - Sanjeev Kumar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| |
Collapse
|
20
|
Chan PL, Kwan HS, Xie Y, Wong KH, Chang J. Transcriptome Analysis Reveals Mycelial and Fruiting Responses to Lithium Chloride in Coprinopsis cinerea. J Fungi (Basel) 2024; 10:140. [PMID: 38392812 PMCID: PMC10890143 DOI: 10.3390/jof10020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Lithium chloride (LiCl) has been used in signalling and molecular studies of animals, plants, and yeast. However, information on its roles in basidiomycetous fungi is still limited. In this study, we used RNA-Seq to study the effects of LiCl on Coprinopsis cinerea. LiCl enhanced mycelial growth and inhibited fruiting body formation in C. cinerea. RNA-Seq of the LiCl-treated C. cinerea resulted in a total of 14,128 genes. There were 1199 differentially expressed genes (DEGs) between the LiCl-treated samples and control samples in the mycelium stage (the first time point), and 1391 DEGs were detected when the control samples were forming hyphal knots while the treated samples were still in the mycelium (the second time point). Pathway enrichment analysis of the DEGs revealed a significant association between enhanced mycelium growth in the LiCl-treated C. cinerea and metabolic pathways. In addition, the DEGs involved in cellular process pathways, including "cell cycle-yeast" and "meiosis-yeast", were identified in suppressed C. cinerea fruiting body formation by LiCl under favourable environmental conditions. As LiCl can predominantly inhibit the activity of glycogen synthase kinase3 (GSK3), our findings suggest that LiCl affects the expression of genes involved in fruiting body initiation and cellular processes by inhibiting GSK3 activity which is essential for fruiting body formation.
Collapse
Affiliation(s)
- Po-Lam Chan
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hoi-Shan Kwan
- Food Research Centre, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yichun Xie
- Food Research Centre, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinhui Chang
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
21
|
Treindl AD, Stapley J, Croll D, Leuchtmann A. Two-speed genomes of Epichloe fungal pathogens show contrasting signatures of selection between species and across populations. Mol Ecol 2024; 33:e17242. [PMID: 38084851 DOI: 10.1111/mec.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Antagonistic selection between pathogens and their hosts can drive rapid evolutionary change and leave distinct molecular footprints of past and ongoing selection in the genomes of the interacting species. Despite an increasing availability of tools able to identify signatures of selection, the genetic mechanisms underlying coevolutionary interactions and the specific genes involved are still poorly understood, especially in heterogeneous natural environments. We searched the genomes of two species of Epichloe plant pathogen for evidence of recent selection. The Epichloe genus includes highly host-specific species that can sterilize their grass hosts. We performed selection scans using genome-wide SNP data from seven natural populations of two co-occurring Epichloe sibling species specialized on different hosts. We found evidence of recent (and ongoing) selective sweeps across the genome in both species. However, selective sweeps were more abundant in the species with a larger effective population size. Sweep regions often overlapped with highly polymorphic AT-rich regions supporting the role of these genome compartments in adaptive evolution. Although most loci under selection were specific to individual populations, we could also identify several candidate genes targeted by selection in sweep regions shared among populations. The genes encoded small secreted proteins typical of fungal effectors and cell wall-degrading enzymes. By investigating the genomic signatures of selection across multiple populations and species, this study contributes to our understanding of complex adaptive processes in natural plant pathogen systems.
Collapse
Affiliation(s)
- Artemis D Treindl
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jessica Stapley
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Adrian Leuchtmann
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Li X, Xu Y, Wei Z, Kuang J, She M, Wang Y, Jin Q. NnSnRK1-NnATG1-mediated autophagic cell death governs flower bud abortion in shaded lotus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:979-998. [PMID: 38102881 DOI: 10.1111/tpj.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Many plants can terminate their flowering process in response to unfavourable environments, but the mechanisms underlying this response are poorly understood. In this study, we observed that the lotus flower buds were susceptible to abortion under shaded conditions. The primary cause of abortion was excessive autophagic cell death (ACD) in flower buds. Blockade of autophagic flux in lotus flower buds consistently resulted in low levels of ACD and improved flowering ability under shaded conditions. Further evidence highlights the importance of the NnSnRK1-NnATG1 signalling axis in inducing ACD in lotus flower buds and culminating in their timely abortion. Under shaded conditions, elevated levels of NnSnRK1 activated NnATG1, which subsequently led to the formation of numerous autophagosome structures in lotus flower bud cells. Excessive autophagy levels led to the bulk degradation of cellular material, which triggered ACD and the abortion of flower buds. NnSnRK1 does not act directly on NnATG1. Other components, including TOR (target of rapamycin), PI3K (phosphatidylinositol 3-kinase) and three previously unidentified genes, appeared to be pivotal for the interaction between NnSnRK1 and NnATG1. This study reveals the role of autophagy in regulating the abortion of lotus flower buds, which could improve reproductive success and act as an energy-efficient measure in plants.
Collapse
Affiliation(s)
- Xiehongsheng Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zongyao Wei
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaying Kuang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzhao She
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Yu L, Yang Y, Qiu X, Xiong D, Tian C. The mitogen-activated protein kinase module CcSte11-CcSte7-CcPmk1 regulates pathogenicity via the transcription factor CcSte12 in Cytospora chrysosperma. STRESS BIOLOGY 2024; 4:4. [PMID: 38225467 PMCID: PMC10789715 DOI: 10.1007/s44154-023-00142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
The pathogen Cytospora chrysosperma is the causal agent of poplar canker disease and causes considerable economic losses in China. Mitogen-activated protein kinase (MAPK) cascades play a crucial role in mediating cellular responses and Pmk1-MAPKs are indispensable for pathogenic related processes in plant pathogenic fungi. In previous studies, we demonstrated that the CcPmk1 acts as a core regulator of fungal pathogenicity by modulating a small number of master downstream targets, such as CcSte12. In this study, we identified and characterized two upstream components of CcPmk1: MAPKKK CcSte11 and MAPKK CcSte7. Deletion of CcSte11 and CcSte7, resulted in slowed growth, loss of sporulation and virulence, similar to the defects observed in the CcPmk1 deletion mutant. In addition, CcSte11, CcSte7 and CcPmk1 interact with each other, and the upstream adaptor protein CcSte50 interact with CcSte11 and CcSte7. Moreover, we explored the global regulation network of CcSte12 by transcriptional analysis between CcSte12 deletion mutants and wild-type during the simulated infection process. Two hydrolase activity GO terms (GO:0004553 and GO:0016798) and starch and sucrose metabolism (mgr00500) KEGG pathway were significantly enriched in the down-regulated genes of CcSte12 deletion mutants. In addition, a subset of glycosyl hydrolase genes and putative effector genes were significantly down-regulated in the CcSte12 deletion mutant, which might be important for fungal pathogenicity. Especially, CcSte12 bound to the CcSp84 promoter region containing the TGAAACA motif. Moreover, comparison of CcSte12-regulated genes with CcPmk1-regulated genes revealed 116 overlapping regulated genes in both CcSte12 and CcPmk1, including some virulence-associated genes. Taken together, the protein complexes CcSte11-CcSte7-CcPmk1 receive signals transmitted by upstream CcSte50 and transmit signals to downstream CcSte12, which regulates hydrolase, effectors and other genes to promote virulence. Overall, these results indicate that the CcPmk1-MAPK signaling pathway of C. chrysosperma plays a key role in the pathogenicity.
Collapse
Affiliation(s)
- Lu Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Yuchen Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolin Qiu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China.
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| | - Chengming Tian
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China.
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
24
|
Tang J, Sui Z, Li R, Xu Y, Xiang L, Fu S, Wei J, Cai X, Wu M, Zhang J, Chen W, Wei Y, Li G, Yang L. The Gβ-like protein Bcgbl1 regulates development and pathogenicity of the gray mold Botrytis cinerea via modulating two MAP kinase signaling pathways. PLoS Pathog 2023; 19:e1011839. [PMID: 38048363 PMCID: PMC10721196 DOI: 10.1371/journal.ppat.1011839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/14/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
The fungal Gβ-like protein has been reported to be involved in a variety of biological processes, such as mycelial growth, differentiation, conidiation, stress responses and infection. However, molecular mechanisms of the Gβ-like protein in regulating fungal development and pathogenicity are largely unknown. Here, we show that the Gβ-like protein gene Bcgbl1 in the gray mold fungus Botrytis cinerea plays a pivotal role in development and pathogenicity by regulating the mitogen-activated protein (MAP) kinases signaling pathways. The Bcgbl1 deletion mutants were defective in mycelial growth, sclerotial formation, conidiation, macroconidial morphogenesis, plant adhesion, and formation of infection cushions and appressorium-like structures, resulting in a complete loss of pathogenicity. Bcgbl1 interacted with BcSte50, the adapter protein of the cascade of MAP kinase (MAPK). Bcgbl1 mutants had reduced phosphorylation levels of two MAPKs, namely Bmp1 and Bmp3, thereby reducing infection. However, deletion of Bcgbl1 did not affect the intracellular cAMP level, and exogenous cAMP could not restore the defects. Moreover, Bcgbl1 mutants exhibited defects in cell wall integrity and oxidative stress tolerance. Transcriptional profiling revealed that Bcgbl1 plays a global role in regulation of gene expression upon hydrophobic surface induction. We further uncovered that three target genes encoding the hydrophobic surface binding proteins (HsbAs) contributed to the adhesion and virulence of B. cinerea. Overall, these findings suggest that Bcgbl1 had multiple functions and provided new insights for deciphering the Bcgbl1-mediated network for regulating development and pathogenicity of B. cinerea.
Collapse
Affiliation(s)
- Jiejing Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhe Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ronghui Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuping Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lixuan Xiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiying Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuan Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- U.S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington, United States of America
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Giner-Llorca M, Locascio A, Del Real JA, Marcos JF, Manzanares P. Novel findings about the mode of action of the antifungal protein PeAfpA against Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2023; 107:6811-6829. [PMID: 37688596 PMCID: PMC10589166 DOI: 10.1007/s00253-023-12749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Antifungal proteins (AFPs) from filamentous fungi offer the potential to control fungal infections that threaten human health and food safety. AFPs exhibit broad antifungal spectra against harmful fungi, but limited knowledge of their killing mechanism hinders their potential applicability. PeAfpA from Penicillium expansum shows strong antifungal potency against plant and human fungal pathogens and stands above other AFPs for being active against the yeast Saccharomyces cerevisiae. We took advantage of this and used a model laboratory strain of S. cerevisiae to gain insight into the mode of action of PeAfpA by combining (i) transcriptional profiling, (ii) PeAfpA sensitivity analyses of deletion mutants available in the S. cerevisiae genomic deletion collection and (iii) cell biology studies using confocal microscopy. Results highlighted and confirmed the role of the yeast cell wall (CW) in the interaction with PeAfpA, which can be internalized through both energy-dependent and independent mechanisms. The combined results also suggest an active role of the CW integrity (CWI) pathway and the cAMP-PKA signalling in the PeAfpA killing mechanism. Besides, our studies revealed the involvement of phosphatidylinositol metabolism and the participation of ROX3, which codes for the subunit 19 of the RNA polymerase II mediator complex, in the yeast defence strategy. In conclusion, our study provides clues about both the killing mechanism of PeAfpA and the fungus defence strategies against the protein, suggesting also targets for the development of new antifungals. KEY POINTS: • PeAfpA is a cell-penetrating protein with inhibitory activity against S. cerevisiae. • The CW integrity (CWI) pathway is a key player in the PeAfpA killing mechanism. • Phosphatidylinositol metabolism and ROX3 are involved in the yeast defence strategy.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Antonella Locascio
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Javier Alonso Del Real
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
26
|
Wang Y, Li R, Wang D, Qian B, Bian Z, Wei J, Wei X, Xu JR. Regulation of symbiotic interactions and primitive lichen differentiation by UMP1 MAP kinase in Umbilicaria muhlenbergii. Nat Commun 2023; 14:6972. [PMID: 37914724 PMCID: PMC10620189 DOI: 10.1038/s41467-023-42675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Lichens are of great ecological importance but mechanisms regulating lichen symbiosis are not clear. Umbilicaria muhlenbergii is a lichen-forming fungus amenable to molecular manipulations and dimorphic. Here, we established conditions conducive to symbiotic interactions and lichen differentiation and showed the importance of UMP1 MAP kinase in lichen development. In the initial biofilm-like symbiotic complexes, algal cells were interwoven with pseudohyphae covered with extracellular matrix. After longer incubation, fungal-algal complexes further differentiated into primitive lichen thalli with a melanized cortex-like and pseudoparenchyma-like tissues containing photoactive algal cells. Mutants deleted of UMP1 were blocked in pseudohyphal growth and development of biofilm-like complexes and primitive lichens. Invasion of dividing mother cells that contributes to algal layer organization in lichens was not observed in the ump1 mutant. Overall, these results showed regulatory roles of UMP1 in symbiotic interactions and lichen development and suitability of U. muhlenbergii as a model for studying lichen symbiosis.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Rong Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Diwen Wang
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ben Qian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuyun Bian
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangchun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Rong Xu
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
27
|
Child HT, Deeks MJ, Rudd JJ, Bates S. Comparison of the impact of two key fungal signalling pathways on Zymoseptoria tritici infection reveals divergent contribution to invasive growth through distinct regulation of infection-associated genes. MOLECULAR PLANT PATHOLOGY 2023; 24:1220-1237. [PMID: 37306534 PMCID: PMC10502814 DOI: 10.1111/mpp.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
The lifecycle of Zymoseptoria tritici requires a carefully regulated asymptomatic phase within the wheat leaf following penetration of the mesophyll via stomata. Here we compare the roles in this process of two key fungal signalling pathways, mutants of which were identified through forward genetics due to their avirulence on wheat. Whole-genome resequencing of avirulent Z. tritici T-DNA transformants identified disruptive mutations in ZtBCK1 from the kinase cascade of the cell wall integrity (CWI) pathway, and the adenylate cyclase gene ZtCYR1. Targeted deletion of these genes abolished the pathogenicity of the fungus and led to similar in vitro phenotypes to those associated with disruption of putative downstream kinases, both supporting previous studies and confirming the importance of these pathways in virulence. RNA sequencing was used to investigate the effect of ZtBCK1 and ZtCYR1 deletion on gene expression in both the pathogen and host during infection. ZtBCK1 was found to be required for the adaptation to the host environment, controlling expression of infection-associated secreted proteins, including known virulence factors. Meanwhile, ZtCYR1 is implicated in controlling the switch to necrotrophy, regulating expression of effectors associated with this transition. This represents the first study to compare the influence of CWI and cAMP signalling on in planta transcription of a fungal plant pathogen, providing insights into their differential regulation of candidate effectors during invasive growth.
Collapse
Affiliation(s)
| | | | - Jason J. Rudd
- Department of Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
| | - Steven Bates
- Department of BiosciencesUniversity of ExeterExeterUK
| |
Collapse
|
28
|
Wang H, Huang R, Ren J, Tang L, Huang S, Chen X, Fan J, Li B, Wang Q, Hsiang T, Liu H, Li Q. The evolution of mini-chromosomes in the fungal genus Colletotrichum. mBio 2023; 14:e0062923. [PMID: 37283539 PMCID: PMC10470602 DOI: 10.1128/mbio.00629-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023] Open
Abstract
Anthracnose diseases caused by Colletotrichum species are among the most common fungal diseases. These symptoms typically manifest as dark, sunken lesions on leaves, stems, and fruit. In China, mango anthracnose seriously affects fruit yield and quality. Genome sequencing of several species shows the presence of mini-chromosomes. These are thought to contribute to virulence, but their formation and activity remain to be fully elucidated. Here, we assembled 17 Colletotrichum genomes (16 isolated from mango plus one from persimmon) through PacBio long-read sequencing. Half of the assembled scaffolds had telomeric repeats at both ends indicating full-length chromosomes. Based on comparative genomics analysis at interspecies and intraspecies levels, we identified extensive chromosomal rearrangements events. We analyzed mini-chromosomes of Colletotrichum spp. and found large variation among close relatives. In C. fructicola, homology between core chromosomes and mini-chromosomes suggested that some mini-chromosomes were generated by recombination of core chromosomes. In C. musae GZ23-3, we found 26 horizontally transferred genes arranged in clusters on mini-chromosomes. In C. asianum FJ11-1, several potential pathogenesis-related genes on mini-chromosomes were upregulated, especially in strains with highly pathogenic phenotypes. Mutants of these upregulated genes showed obvious defects in virulence. Our findings provide insights into the evolution and potential relationships to virulence associated with mini-chromosomes. IMPORTANCE Colletotrichum is a cosmopolitan fungal genus that seriously affects fruit yield and quality of many plant species. Mini-chromosomes have been found to be related to virulence in Colletotrichum. Further examination of mini-chromosomes can help us elucidate some pathogenic mechanisms of Colletotrichum. In this study, we generated novel assemblies of several Colletotrichum strains. Comparative genomic analyses within and between Colletotrichum species were conducted. We then identified mini-chromosomes in our sequenced strains systematically. The characteristics and generation of mini-chromosomes were investigated. Transcriptome analysis and gene knockout revealed pathogenesis-related genes located on mini-chromosomes of C. asianum FJ11-1. This study represents the most comprehensive investigation of chromosome evolution and potential pathogenicity of mini-chromosomes in the Colletotrichum genus.
Collapse
Affiliation(s)
- Haoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rong Huang
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, Guangxi, China
| | - Jingyi Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lihua Tang
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, Guangxi, China
| | - Suiping Huang
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, Guangxi, China
| | - Xiaolin Chen
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, Guangxi, China
| | - Jun Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bintao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qili Li
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, Guangxi, China
| |
Collapse
|
29
|
Shi D, Wang J, Cao Y, Zhang Z, Li X, Mbadianya JI, Chen C. Overexpression of FgPtp3 Is Involved in Fludioxonil Resistance in Fusarium graminearum by Inhibiting the Phosphorylation of FgHog1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12807-12818. [PMID: 37585613 DOI: 10.1021/acs.jafc.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Fusarium graminearum is the main causal agent of Fusarium head blight (FHB), a destructive disease in cereal crops worldwide. Resistance to fludioxonil has been reported in F. graminearum in the field, but its underlying mechanisms remain elusive. In this study, 152 fludioxonil-resistant (FR) mutants of F. graminearum were obtained by selection in vitro. The FR strains exhibited dramatically impaired fitness, but only 7 of the 13 analyzed strains possessed mutations in genes previously reported to underlie fludioxonil resistance. Comparison between the FR-132 strain and its parental strain PH-1 using whole genome sequencing revealed no mutations between them, but transcriptome analysis, after the strains were treated with 0.5 μg/mL fludioxonil, revealed 2778 differently expressed genes (DEGs) mapped to 96 KEGG pathways. Investigation of DEGs in the MAPK pathway showed that overexpression of the tyrosine protein phosphatase FgPtp3, but not FgPtp2, enhanced fludioxonil resistance. Further analysis found that FgPtp3 interacted directly with FgHog1 to regulate the phosphorylation of Hog1, and overexpressed FgPtp3 in PH-1 could significantly suppress the phosphorylation of FgHog1 and hinder signal transmission of the HOG-MAPK pathway. Overall, FgPtp3 plays a significant role in regulating fludioxonil resistance in F. graminearum.
Collapse
Affiliation(s)
- Dongya Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Cao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jane Ifunanya Mbadianya
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Chen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Xie M, Bai N, Yang X, Liu Y, Zhang KQ, Yang J. Fus3 regulates asexual development and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. iScience 2023; 26:107404. [PMID: 37609635 PMCID: PMC10440713 DOI: 10.1016/j.isci.2023.107404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/07/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) Fus3 is an essential regulator of cell differentiation and virulence in fungal pathogens of plants and animals. However, the function and regulatory mechanism of MAPK signaling in nematode-trapping (NT) fungi remain largely unknown. NT fungi can specialize in the formation of "traps", an important indicator of transition from a saprophytic to a predatory lifestyle. Here, we characterized an orthologous Fus3 in a typical NT fungus Arthrobotrys oligospora using multi-phenotypic analysis and multi-omics approaches. Our results showed that Fus3 plays an important role in asexual growth and development, conidiation, stress response, DNA damage, autophagy, and secondary metabolism. Importantly, Fus3 plays an indispensable role in hyphal fusion, trap morphogenesis, and nematode predation. Moreover, we constructed the regulatory networks of Fus3 by means of transcriptomic and yeast two-hybrid techniques. This study provides insights into the mechanism of MAPK signaling in asexual development and pathogenicity of NT fungi.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
- School of Resource, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, P.R. China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
31
|
Liu J, Wang C, Kong L, Yang Y, Cui X, Li K, Nian H. Rho2 involved in development, stress response and pathogenicity of Fusarium oxysporum. World J Microbiol Biotechnol 2023; 39:272. [PMID: 37548840 DOI: 10.1007/s11274-023-03720-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Rho GTPases regulate the activity of cell wall biosynthesis, actin assembly and polar cell secretion. However, the function of Rho GTPase in filamentous fungi is poorly understood. To understand the role of Rho2 GTPase in Fusarium oxysporum, which is one of root rot pathogens of Panax notoginseng, △rho2 mutant was constructed. Phenotypes of △rho2, including conidiation, germination of spores, stresses (osmotic-, cell membrane-, cell wall disturbing-, metal-, and high temperature-) tolerance and pathogenicity were analyzed. The results showed that the growth of △rho2 was destroyed under cell wall disturbing stress and high temperature stress, suggesting that Rho2 regulated the response of F. oxysporum to cell wall synthesis inhibitors and high temperature stress. Germination of spores and pathogenicity to P. notoginseng were reduced in △rho2 mutant. Western blot results showed that rho2 deletion increased the phosphorylation level of Mpk1. To identify genes regulated by Rho2, transcriptome sequencing was carried out. 2477 genes were identified as upregulated genes and 2177 genes were identified as downregulated genes after rho2 was deleted. These genes provide clues for further study of rho2 function.
Collapse
Affiliation(s)
- Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chengsong Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongjuan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
32
|
Shostak K, González-Peña Fundora D, Blackman C, Witte T, Sproule A, Overy D, Eranthodi A, Thakor N, Foroud NA, Subramaniam R. Epistatic Relationship between MGV1 and TRI6 in the Regulation of Biosynthetic Gene Clusters in Fusarium graminearum. J Fungi (Basel) 2023; 9:816. [PMID: 37623587 PMCID: PMC10455978 DOI: 10.3390/jof9080816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Genetic studies have shown that the MAP kinase MGV1 and the transcriptional regulator TRI6 regulate many of the same biosynthetic gene clusters (BGCs) in Fusarium graminearum. This study sought to investigate the relationship between MGV1 and TRI6 in the regulatory hierarchy. Transgenic F. graminearum strains constitutively expressing MGV1 and TRI6 were generated to address both independent and epistatic regulation of BGCs by MGV1 and TRI6. We performed a comparative transcriptome analysis between axenic cultures grown in nutrient-rich and secondary metabolite-inducing conditions. The results indicated that BGCs regulated independently by Mgv1 included genes of BGC52, whereas genes uniquely regulated by TRI6 included the gene cluster (BGC49) that produces gramillin. To understand the epistatic relationship between MGV1 and TRI6, CRISPR/Cas9 was used to insert a constitutive promoter to drive TRI6 expression in the Δmgv1 strain. The results indicate that BGCs that produce deoxynivalenol and fusaoctaxin are co-regulated, with TRI6 being partially regulated by MGV1. Overall, the findings from this study indicate that MGV1 provides an articulation point to differentially regulate various BGCs. Moreover, TRI6, embedded in one of the BGCs provides specificity to regulate the expression of the genes in the BGC.
Collapse
Affiliation(s)
- Kristina Shostak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
| | - Dianevys González-Peña Fundora
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (D.G.-P.F.); (A.E.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 4M4, Canada;
| | - Christopher Blackman
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
- Department of Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Tom Witte
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
| | - David Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
| | - Anas Eranthodi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (D.G.-P.F.); (A.E.)
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 4M4, Canada;
| | - Nora A. Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (D.G.-P.F.); (A.E.)
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
- Department of Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
33
|
Yan X, Zhang S, Yu Z, Sun L, Sohail MA, Ye Z, Zhou L, Qi X. The MAP Kinase PvMK1 Regulates Hyphal Development, Autophagy, and Pathogenesis in the Bayberry Twig Blight Fungus Pestalotiopsis versicolor. J Fungi (Basel) 2023; 9:606. [PMID: 37367542 DOI: 10.3390/jof9060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Bayberry twig blight caused by the ascomycete fungus Pestalotiopsis versicolor is a devastating disease threatening worldwide bayberry production. However, the molecular basis underlying the pathogenesis of P. versicolor is largely unknown. Here, we identified and functionally characterized the MAP kinase PvMk1 in P. versicolor through genetic and cellular biochemical approaches. Our analysis reveals a central role of PvMk1 in regulating P. versicolor virulence on bayberry. We demonstrate that PvMk1 is involved in hyphal development, conidiation, melanin biosynthesis, and cell wall stress responses. Notably, PvMk1 regulates P. versicolor autophagy and is essential for hyphal growth under nitrogen-depleting conditions. These findings suggest the multifaceted role of PvMk1 in regulating P. versicolor development and virulence. More remarkably, this evidence of virulence-involved cellular processes regulated by PvMk1 has paved a fundamental way for further understanding the impact of P. versicolor pathogenesis on bayberry.
Collapse
Affiliation(s)
- Xiujuan Yan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muhammad Aamir Sohail
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingjiang Qi
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Biotechnology Research Institute, Xianghu Laboratory, Hangzhou 310021, China
| |
Collapse
|
34
|
Abah F, Kuang Y, Biregeya J, Abubakar YS, Ye Z, Wang Z. Mitogen-Activated Protein Kinases SvPmk1 and SvMps1 Are Critical for Abiotic Stress Resistance, Development and Pathogenesis of Sclerotiophoma versabilis. J Fungi (Basel) 2023; 9:455. [PMID: 37108909 PMCID: PMC10142639 DOI: 10.3390/jof9040455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are evolutionarily conserved in eukaryotes and modulate responses to both internal and external stimuli. Pmk1 and Mps MAPK pathways regulate stress tolerance, vegetative growth and cell wall integrity in Saccharomyces cerevisiae and Pyricularia oryzae. Here, we deployed genetic and cell biology strategies to investigate the roles of the orthologs of Pmk1 and Mps1 in Sclerotiophoma versabilis (herein referred to as SvPmk1 and SvMps1, respectively). Our results showed that SvPmk1 and SvMps1 are involved in hyphal development, asexual reproduction and pathogenesis in S. versabilis. We found that ∆Svpmk1 and ∆Svmps1 mutants have significantly reduced vegetative growths on PDA supplemented with osmotic stress-inducing agents, compared to the wild type, with ∆Svpmps1 being hypersensitive to hydrogen peroxide. The two mutants failed to produce pycnidia and have reduced pathogenicity on Pseudostellaria heterophylla. Unlike SvPmk1, SvMps1 was found to be indispensable for the fungal cell wall integrity. Confocal microscopic analyses revealed that SvPmk1 and SvMps1 are ubiquitously expressed in the cytosol and nucleus. Taken together, we demonstrate here that SvPmk1 and SvMps1 play critical roles in the stress resistance, development and pathogenesis of S. versabilis.
Collapse
Affiliation(s)
- Felix Abah
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunbo Kuang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, College of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Jules Biregeya
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yakubu Saddeeq Abubakar
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zuyun Ye
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, College of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Zonghua Wang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
35
|
Navarro‐Velasco GY, Di Pietro A, López‐Berges MS. Constitutive activation of TORC1 signalling attenuates virulence in the cross-kingdom fungal pathogen Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2023; 24:289-301. [PMID: 36840362 PMCID: PMC10013769 DOI: 10.1111/mpp.13292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
The filamentous fungus Fusarium oxysporum causes vascular wilt disease in a wide range of plant species and opportunistic infections in humans. Previous work suggested that invasive growth in this pathogen is controlled by environmental cues such as pH and nutrient status. Here we investigated the role of Target Of Rapamycin Complex 1 (TORC1), a global regulator of eukaryotic cell growth and development. Inactivation of the negative regulator Tuberous Sclerosis Complex 2 (Tsc2), but not constitutive activation of the positive regulator Gtr1, in F. oxysporum resulted in inappropriate activation of TORC1 signalling under nutrient-limiting conditions. The tsc2Δ mutants showed reduced colony growth on minimal medium with different nitrogen sources and increased sensitivity to cell wall or high temperature stress. Furthermore, these mutants were impaired in invasive hyphal growth across cellophane membranes and exhibited a marked decrease in virulence, both on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, invasive hyphal growth in tsc2Δ strains was rescued by rapamycin-mediated inhibition of TORC1. Collectively, these results reveal a key role of TORC1 signalling in the development and pathogenicity of F. oxysporum and suggest new potential targets for controlling fungal infections.
Collapse
Affiliation(s)
- Gesabel Yaneth Navarro‐Velasco
- Departamento de GenéticaUniversidad de CórdobaCórdobaSpain
- Present address:
Centro de Investigación e Información de Medicamentos y Tóxicos, Facultad de MedicinaUniversidad de PanamáPanama CityPanama
| | | | | |
Collapse
|
36
|
Components of TOR and MAP kinase signaling control chemotropism and pathogenicity in the fungal pathogen Verticillium dahliae. Microbiol Res 2023; 271:127361. [PMID: 36921400 DOI: 10.1016/j.micres.2023.127361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Filamentous fungi can sense useful resources and hazards in their environment and direct growth of their hyphae accordingly. Chemotropism ensures access to nutrients, contact with other individuals (e.g., for mating), and interaction with hosts in the case of pathogens. Previous studies have revealed a complex chemotropic sensing landscape during host-pathogen interactions, but the underlying molecular machinery remains poorly characterized. Here we studied mechanisms controlling directed hyphal growth of the important plant-pathogenic fungus Verticillium dahliae towards different chemoattractants. We found that the homologs of the Rag GTPase Gtr1 and the GTPase-activating protein Tsc2, an activator and a repressor of the TOR kinase respectively, play important roles in hyphal chemotropism towards nutrients, plant-derived signals, and heterologous α-pheromone of Fusarium oxysporum. Furthermore, important roles of these regulators were identified in fungal development and pathogenicity. We also found that the mitogen-activated protein kinase (MAPK) Fus3 is required for chemotropism towards nutrients, while the G protein-coupled receptor (GPCR) Ste2 and the MAPK Slt2 control chemosensing of plant-derived signals and α-pheromone. Our study establishes V. dahliae as a suitable model system for the analysis of fungal chemotropism and discovers new components of chemotropic signaling during growth and host-pathogen interactions of V. dahliae.
Collapse
|
37
|
Farooq M, Nabi A, Khursheed S, Padder BA, Sofi TA, Masoodi KZ, Hamid S, Shah MD. Whole genome sequencing of Wilsonomyces carpophilus, an incitant of shot hole disease in stone fruits: insights into secreted proteins of a necrotrophic fungal repository. Mol Biol Rep 2023; 50:4061-4071. [PMID: 36877348 DOI: 10.1007/s11033-023-08243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/03/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Shot hole is one of the important fungal diseases in stone fruits viz., peach, plum, apricot and cherry caused by Wilsonomyces carpophilus and almond among nut crops. Fungicides significantly decrease the disease. Pathogenicity studies proved a wide host range of the pathogen infecting all stone fruits and almond among the nut crops, however, the mechanism underlying host-pathogen interaction is still unknown. Molecular detection of the pathogen using polymerase chain reaction (PCR) based simple sequence repeat (SSR) markers is also unknown due to the unavailability of the pathogen genome. METHODS AND RESULTS We examined the morphology, pathology and genomics of the Wilsonomyces carpophilus. Whole genome sequencing of the W. carpophilus was carried out by Illumina HiSeq and PacBio high throughput sequencing plate-forms through hybrid assembly. Constant selection pressure alters the molecular mechanism of the pathogen causing disease. The studies revealed that the necrotrophs are more lethal with a complex pathogenicity mechanism and little-understood effector repositories. The different isolates of necrotrophic fungus W. carpophilus causing shot hole in stone fruits namely peach, plum, apricot and cherry, and almonds among the nut crops showed a significant variation in their morphology, however, the probability value (p = 0.29) suggests in-significant difference in the pathogenicity. Here, we reported draft genome of W. carpophilus of size 29.9 Mb (Accession number: PRJNA791904). A total of 10,901 protein-coding genes were predicted, including heterokaryon incompatibility genes, cytochrome-p450 genes, kinases, sugar transporters among others. We found 2851 simple sequence repeats (SSRs), tRNAs, rRNAs and pseudogenes in the genome. The most prominent proteins showing necrotrophic lifestyle of the pathogen were hydrolases, polysaccharide-degrading enzymes, esterolytic, lipolytic, and proteolytic enzymes accounted for 225 released proteins. Among the 223 fungal species, top-hit species distribution revealed the majority of hits against the Pyrenochaeta species followed by Ascochyta rabiei and Alternaria alternata. CONCLUSION Draft genome of W. carpophilus is 29.9 Mb based on Illumina HiSeq and PacBio hybrid assembly. The necrotrophs are more lethal with a complex pathogenicity mechanism. A significant variation in morphology was observed in different pathogen isolates. A total of 10,901 protein-coding genes were predicted in the pathogen genome including heterokaryon incompatibility, cytochrome-p450 genes, kinases and sugar transporters. We found 2851 SSRs, tRNAs, rRNAs and pseudogenes, and prominent proteins showing necrotrophic lifestyle such as hydrolases, polysaccharide-degrading enzymes, esterolytic, lipolytic and proteolytic enzymes. The top-hit species distribution were against the Pyrenochaeta spp. followed by Ascochyta rabiei.
Collapse
Affiliation(s)
- Mahiya Farooq
- Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology, Faculty of Horticulture (FOH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu Kashmir, India
| | - Asha Nabi
- Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology, Faculty of Horticulture (FOH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu Kashmir, India
| | - Sehla Khursheed
- Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology, Faculty of Horticulture (FOH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu Kashmir, India
| | - Bilal A Padder
- Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology, Faculty of Horticulture (FOH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu Kashmir, India
| | - T A Sofi
- Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology, Faculty of Horticulture (FOH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu Kashmir, India
| | - Khalid Z Masoodi
- Division of Biotechnology, FOH, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu Kashmir, India
| | - Sumaira Hamid
- Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology, Faculty of Horticulture (FOH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu Kashmir, India
| | - Mehraj D Shah
- Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology, Faculty of Horticulture (FOH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu Kashmir, India.
| |
Collapse
|
38
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate a variety of cellular processes in eukaryotes. In fungal pathogens, conserved MAPK pathways control key virulence functions such as infection-related development, invasive hyphal growth, or cell wall remodeling. Recent findings suggest that ambient pH acts as a key regulator of MAPK-mediated pathogenicity, but the underlying molecular events are unknown. Here, we found that in the fungal pathogen Fusarium oxysporum, pH controls another infection-related process, hyphal chemotropism. Using the ratiometric pH sensor pHluorin we show that fluctuations in cytosolic pH (pHc) induce rapid reprogramming of the three conserved MAPKs in F. oxysporum, and that this response is conserved in the fungal model organism Saccharomyces cerevisiae. Screening of a subset of S. cerevisiae mutants identified the sphingolipid-regulated AGC kinase Ypk1/2 as a key upstream component of pHc-modulated MAPK responses. We further show that acidification of the cytosol in F. oxysporum leads to an increase of the long-chain base (LCB) sphingolipid dihydrosphingosine (dhSph) and that exogenous addition of dhSph activates Mpk1 phosphorylation and chemotropic growth. Our results reveal a pivotal role of pHc in the regulation of MAPK signaling and suggest new ways to target fungal growth and pathogenicity. IMPORTANCE Fungal phytopathogens cause devastating losses in global agriculture. All plant-infecting fungi use conserved MAPK signaling pathways to successfully locate, enter, and colonize their hosts. In addition, many pathogens also manipulate the pH of the host tissue to increase their virulence. Here, we establish a functional link between cytosolic pH (pHc) and MAPK signaling in the control of pathogenicity in the vascular wilt fungal pathogen Fusarium oxysporum. We demonstrate that fluctuations in pHc cause rapid reprogramming of MAPK phosphorylation, which directly impacts key processes required for infection, such as hyphal chemotropism and invasive growth. Targeting pHc homeostasis and MAPK signaling can thus open new ways to combat fungal infection.
Collapse
|
39
|
Dual Transcriptome Analysis Reveals That ChATG8 Is Required for Fungal Development, Melanization and Pathogenicity during the Interaction between Colletotrichum higginsianum and Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24054376. [PMID: 36901806 PMCID: PMC10002072 DOI: 10.3390/ijms24054376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Anthracnose disease of cruciferous plants caused by Colletotrichum higginsianum is a serious fungal disease that affects cruciferous crops such as Chinese cabbage, Chinese flowering cabbage, broccoli, mustard plant, as well as the model plant Arabidopsis thaliana. Dual transcriptome analysis is commonly used to identify the potential mechanisms of interaction between host and pathogen. In order to identify differentially expressed genes (DEGs) in both the pathogen and host, the conidia of wild-type (ChWT) and Chatg8 mutant (Chatg8Δ) strains were inoculated onto leaves of A. thaliana, and the infected leaves of A. thaliana at 8, 22, 40, and 60 h post-inoculation (hpi) were subjected to dual RNA-seq analysis. The results showed that comparison of gene expression between the 'ChWT' and 'Chatg8Δ' samples detected 900 DEGs (306 upregulated and 594 down-regulated) at 8 hpi, 692 DEGs (283 upregulated and 409 down-regulated) at 22 hpi, 496 DEGs (220 upregulated and 276 down-regulated) at 40 hpi, and 3159 DEGs (1544 upregulated and 1615 down-regulated) at 60 hpi. GO and KEGG analyses found that the DEGs were mainly involved in fungal development, biosynthesis of secondary metabolites, plant-fungal interactions, and phytohormone signaling. The regulatory network of key genes annotated in the Pathogen-Host Interactions database (PHI-base) and Plant Resistance Genes database (PRGdb), as well as a number of key genes highly correlated with the 8, 22, 40, and 60 hpi, were identified during the infection. Among the key genes, the most significant enrichment was in the gene encoding the trihydroxynaphthalene reductase (THR1) in the melanin biosynthesis pathway. Both Chatg8Δ and Chthr1Δ strains showed varying degrees of reduction of melanin in appressoria and colonies. The pathogenicity of the Chthr1Δ strain was lost. In addition, six DEGs from C. higginsianum and six DEGs from A. thaliana were selected for real-time quantitative PCR (RT-qPCR) to confirm the RNA-seq results. The information gathered from this study enriches the resources available for research into the role of the gene ChATG8 during the infection of A. thaliana by C. higginsianum, such as potential links between melanin biosynthesis and autophagy, and the response of A. thaliana to different fungal strains, thereby providing a theoretical basis for the breeding of cruciferous green leaf vegetable cultivars with resistance to anthracnose disease.
Collapse
|
40
|
Schalamun M, Beier S, Hinterdobler W, Wanko N, Schinnerl J, Brecker L, Engl DE, Schmoll M. MAPkinases regulate secondary metabolism, sexual development and light dependent cellulase regulation in Trichoderma reesei. Sci Rep 2023; 13:1912. [PMID: 36732590 PMCID: PMC9894936 DOI: 10.1038/s41598-023-28938-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The filamentous fungus Trichoderma reesei is a prolific producer of plant cell wall degrading enzymes, which are regulated in response to diverse environmental signals for optimal adaptation, but also produces a wide array of secondary metabolites. Available carbon source and light are the strongest cues currently known to impact secreted enzyme levels and an interplay with regulation of secondary metabolism became increasingly obvious in recent years. While cellulase regulation is already known to be modulated by different mitogen activated protein kinase (MAPK) pathways, the relevance of the light signal, which is transmitted by this pathway in other fungi as well, is still unknown in T. reesei as are interconnections to secondary metabolism and chemical communication under mating conditions. Here we show that MAPkinases differentially influence cellulase regulation in light and darkness and that the Hog1 homologue TMK3, but not TMK1 or TMK2 are required for the chemotropic response to glucose in T. reesei. Additionally, MAPkinases regulate production of specific secondary metabolites including trichodimerol and bisorbibutenolid, a bioactive compound with cytostatic effect on cancer cells and deterrent effect on larvae, under conditions facilitating mating, which reflects a defect in chemical communication. Strains lacking either of the MAPkinases become female sterile, indicating the conservation of the role of MAPkinases in sexual fertility also in T. reesei. In summary, our findings substantiate the previously detected interconnection of cellulase regulation with regulation of secondary metabolism as well as the involvement of MAPkinases in light dependent gene regulation of cellulase and secondary metabolite genes in fungi.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Sabrina Beier
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
- MyPilz GmbH, Wienerbergstrasse 55/13-15, 1120, Vienna, Austria
| | - Nicole Wanko
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Dorothea Elisa Engl
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria.
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
41
|
Yu L, Wen D, Yang Y, Qiu X, Xiong D, Tian C. Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Pathogenicity, Stress Responses, and Development in Cytospora chrysosperma. PHYTOPATHOLOGY 2023; 113:239-251. [PMID: 36191174 DOI: 10.1094/phyto-04-22-0126-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction pathways that mediate cellular responses to various biotic and abiotic signals in plant-pathogenic fungi. Generally, there are three MAPKs in filamentous pathogenic fungi: Pmk1/Fus3/Kss1, Hog1, and Stl2. Our previous studies have shown that CcPmk1 is a core regulator of fungal pathogenicity in Cytospora chrysosperma, the causal agent of canker disease in a wide range of woody plants. Here, we identified and functionally characterized the other two MAPK genes (CcHog1 and CcSlt2) and then compared the transcriptional differences among these three MAPKs in C. chrysosperma. We found that the MAPKs shared convergent and distinct roles in fungal development, stress responses, and virulence. For example, CcHog1, CcSlt2, and CcPmk1 were all involved in conidiation and response to stresses, including hyperosmotic pressure, cell wall inhibition agents, and H2O2, but only CcPmk1 and CcSlt2 were required for hyphal growth and fungal pathogenicity. Transcriptomic analysis showed that numerous hyperosmosis- and cell wall-related genes significantly reduced their expression levels in ΔCcHog1 and ΔCcSlt2, respectively. Interestingly, RNA- and ribosome-related processes were significantly enriched in the upregulated genes of ΔCcSlt2, whereas they were significantly enriched in the downregulated genes of ΔCcPmk1. Moreover, two secondary metabolite gene clusters were significantly downregulated in ΔCcPmk1, ΔCcSlt2, and/or ΔCcHog1. Importantly, some virulence-associated genes were significantly downregulated in ΔCcPmk1 and/or ΔCcSlt2, such as candidate effector genes. Collectively, these results suggest that the similar and distinct phenotypes of each MAPK deletion mutant may result from the transcriptional regulation of a series of common or specific downstream genes, which provides a better understanding of the regulation network of MAPKs in C. chrysosperma.
Collapse
Affiliation(s)
- Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dasen Wen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yuchen Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolin Qiu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
42
|
Qian H, Sun L, Wu M, Zhao W, Liu M, Liang S, Zhu X, Li L, Su Z, Lu J, Lin F, Liu X. The COPII subunit MoSec24B is involved in development, pathogenicity and autophagy in the rice blast fungus. FRONTIERS IN PLANT SCIENCE 2023; 13:1074107. [PMID: 36699840 PMCID: PMC9868959 DOI: 10.3389/fpls.2022.1074107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The endoplasmic reticulum (ER) acts as the starting point of the secretory pathway, where approximately one-third of the proteins are correctly folded and modified, loaded into vesicles, and transported to the Golgi for further processing and modification. In this process, COPII vesicles are responsible for transporting cargo proteins from the ER to the Golgi. Here, we identified the inner shell subunit of COPII vesicles (MoSec24B) and explored the importance of MoSec24B in the rice blast fungus. The targeted disruption of MoSec24B led to decreased growth, reduced conidiation, restricted glycogen and lipids utilization, sensitivity to the cell wall and hypertonic stress, the failure of septin-mediated repolarization of appressorium, impaired appressorium turgor pressure, and decreased ability to infect, which resulted in reduced pathogenicity to the host plant. Furthermore, MoSec24B functions in the three mitogen-activated protein kinase (MAPK) signaling pathways by acting with MoMst50. Deletion of MoSec24B caused reduced lipidation of MoAtg8, accelerated degradation of exogenously introduced GFP-MoAtg8, and increased lipidation of MoAtg8 upon treatment with a late inhibitor of autophagy (BafA1), suggesting that MoSec24B regulates the fusion of late autophagosomes with vacuoles. Together, these results suggest that MoSec24B exerts a significant role in fungal development, the pathogenesis of filamentous fungi and autophagy.
Collapse
Affiliation(s)
- Hui Qian
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lixiao Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Minghua Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenhui Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenzhu Su
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Bahri BA, Parvathaneni RK, Spratling WT, Saxena H, Sapkota S, Raymer PL, Martinez-Espinoza AD. Whole genome sequencing of Clarireedia aff. paspali reveals potential pathogenesis factors in Clarireedia species, causal agents of dollar spot in turfgrass. Front Genet 2023; 13:1033437. [PMID: 36685867 PMCID: PMC9849252 DOI: 10.3389/fgene.2022.1033437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Dollar spot is one of the most damaging diseases in turfgrass, reducing its quality and playability. Two species, Clarireedia monteithiana and C. jacksonii (formerly Sclerotinia homoeocarpa) have been reported so far in the United States To study the Clarireedia genome, two isolates H2 and H3, sampled from seashore paspalum in Hawaii in 2019 were sequenced via Illumina paired-end sequencing by synthesis technology and PacBio SMRT sequencing. Both isolates were identified as C. aff. paspali, a novel species in the United States Using short and long reads, C. aff. paspali H3 contained 193 contigs with 48.6 Mbp and presented the most completed assembly and annotation among Clarireedia species. Out of the 13,428 protein models from AUGUSTUS, 349 cytoplasmic effectors and 13 apoplastic effectors were identified by EffectorP. To further decipher Clarireedia pathogenicity, C. aff. paspali genomes (H2 and H3), as well as available C. jacksonii (LWC-10 and HRI11), C. monteithiana (DRR09 and RB-19) genomes were screened for fifty-four pathogenesis determinants, previously identified in S. sclerotiorum. Seventeen orthologs of pathogenicity genes have been identified in Clarireedia species involved in oxalic acid production (pac1, nox1), mitogen-activated protein kinase cascade (pka1, smk3, ste12), appressorium formation (caf1, pks13, ams2, rgb1, rhs1) and glycolytic pathway (gpd). Within these genes, 366 species-specific SNPs were recorded between Clarireedia species; twenty-eight were non-synonymous and non-conservative. The predicted protein structure of six of these genes showed superimposition of the models among Clarireedia spp. The genomic variations revealed here could potentially lead to differences in pathogenesis and other physiological functions among Clarireedia species.
Collapse
Affiliation(s)
- Bochra Amina Bahri
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,*Correspondence: Bochra Amina Bahri,
| | - Rajiv Krishna Parvathaneni
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | | | - Harshita Saxena
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | - Suraj Sapkota
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States
| | - Paul L. Raymer
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | | |
Collapse
|
44
|
Liang Z, Liu K, Jiang C, Yang A, Yan J, Han X, Zhang C, Cong P, Zhang L. Insertion of a TRIM-like sequence in MdFLS2-1 promoter is associated with its allele-specific expression in response to Alternaria alternata in apple. FRONTIERS IN PLANT SCIENCE 2022; 13:1090621. [PMID: 36643297 PMCID: PMC9834810 DOI: 10.3389/fpls.2022.1090621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Alternaria blotch disease, caused by Alternaria alternata apple pathotype (AAAP), is one of the major fungal diseases in apple. Early field observations revealed, the anther-derived homozygote Hanfu line (HFTH1) was highly susceptible to AAAP, whereas Hanfu (HF) exhibited resistance to AAAP. To understand the molecular mechanisms underlying the difference in sensitivity of HF and HFTH1 to AAAP, we performed allele-specific expression (ASE) analysis and comparative transcriptomic analysis before and after AAAP inoculation. We reported an important immune gene, namely, MdFLS2, which displayed strong ASE in HF with much lower expression levels of HFTH1-derived alleles. Transient overexpression of the dominant allele of MdFLS2-1 from HF in GL-3 apple leaves could enhance resistance to AAAP and induce expression of genes related to salicylic acid pathway. In addition, MdFLS2-1 was identified with an insertion of an 85-bp terminal-repeat retrotransposon in miniature (TRIM) element-like sequence in the upstream region of the nonreference allele. In contrast, only one terminal direct repeat (TDR) from TRIM-like sequence was present in the upstream region of the HFTH1-derived allele MdFLS2-2. Furthermore, the results of luciferase and β-glucuronidase reporter assays demonstrated that the intact TRIM-like sequence has enhancer activity. This suggested that insertion of the TRIM-like sequence regulates the expression level of the allele of MdFLS2, in turn, affecting the sensitivity of HF and HFTH1 to AAAP.
Collapse
Affiliation(s)
- Zhaolin Liang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Kai Liu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Chunyang Jiang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - An Yang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Jiadi Yan
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Xiaolei Han
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Caixia Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Peihua Cong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Liyi Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| |
Collapse
|
45
|
Genome-Wide Analysis of AGC Kinases Reveals that MoFpk1 Is Required for Development, Lipid Metabolism, and Autophagy in Hyperosmotic Stress of the Rice Blast Fungus Magnaporthe oryzae. mBio 2022; 13:e0227922. [PMID: 36259725 PMCID: PMC9765699 DOI: 10.1128/mbio.02279-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During eukaryotic evolution, the TOR-AGC kinase signaling module is involved in the coordinated regulation of cell growth and survival. However, the AGC kinases in plant-pathogenic fungi remain poorly understood. In this study, we have identified 20 members of the AGC family of protein kinases. Evolutionary and biological studies have revealed that AGC kinases are highly conserved and involved in the growth (8 genes), conidiation (13 genes), conidial germination (9 genes), appressorium formation (9 genes), and pathogenicity (5 genes) of Magnaporthe oryzae, in which a subfamily protein of the AGC kinases, MoFpk1, the activator of flippase, specifically exhibited diverse roles. Two kinase sites were screened and found to be critical for MoFpk1: 230K and 326D. Moreover, MoFpk1 is involved in cell wall integrity through the negative regulation of MoMps1 phosphorylation. The deletion of MoFpk1 resulted in defective phosphatidylacetamide (PE) and phosphatidylserine (PS) turnover and a series of lipid metabolism disorders. Under hyperosmotic stress, since the ΔMofpk1 mutant is unable to maintain membrane asymmetry, MoYpk1 phosphorylation and MoTor activity were downregulated, thus enhancing autophagy. Our results provide insights into the evolutionary and biological relationships of AGC kinases and new insight into plasma membrane (PM) homeostasis, i.e., responses to membrane stress and autophagy through lipid asymmetry maintenance. IMPORTANCE Our identification and analysis of evolutionary and biological relationships provide us with an unprecedented high-resolution view of the flexible and conserved roles of the AGC family in the topmost fungal pathogens that infect rice, wheat, barley, and millet. Guided by these insights, an AGC member, MoFpk1, was found to be indispensable for M. oryzae development. Our study defined a novel mechanism of plasma membrane homeostasis, i.e., adaptation to stress through the asymmetric distribution of phospholipids. Furthermore, defects in the asymmetric distribution of phospholipids in the membrane enhanced autophagy under hyperosmotic stress. This study provides a new mechanism for the internal linkage between lipid metabolism and autophagy, which may help new fungicide target development for controlling this devastating disease.
Collapse
|
46
|
Mapuranga J, Chang J, Yang W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1102908. [PMID: 36589137 PMCID: PMC9800938 DOI: 10.3389/fpls.2022.1102908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Wheat powdery mildew caused by a biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a widespread airborne disease which continues to threaten global wheat production. One of the most chemical-free and cost-effective approaches for the management of wheat powdery mildew is the exploitation of resistant cultivars. Accumulating evidence has reported that more than 100 powdery mildew resistance genes or alleles mapping to 63 different loci (Pm1-Pm68) have been identified from common wheat and its wild relatives, and only a few of them have been cloned so far. However, continuous emergence of new pathogen races with novel degrees of virulence renders wheat resistance genes ineffective. An essential breeding strategy for achieving more durable resistance is the pyramiding of resistance genes into a single genotype. The genetics of host-pathogen interactions integrated with temperature conditions and the interaction between resistance genes and their corresponding pathogen a virulence genes or other resistance genes within the wheat genome determine the expression of resistance genes. Considerable progress has been made in revealing Bgt pathogenesis mechanisms, identification of resistance genes and breeding of wheat powdery mildew resistant cultivars. A detailed understanding of the molecular interactions between wheat and Bgt will facilitate the development of novel and effective approaches for controlling powdery mildew. This review gives a succinct overview of the molecular basis of interactions between wheat and Bgt, and wheat defense mechanisms against Bgt infection. It will also unleash the unsung roles of epigenetic processes, autophagy and silicon in wheat resistance to Bgt.
Collapse
|
47
|
Gong C, Xu D, Sun D, Kang J, Wang W, Xu JR, Zhang X. FgSnt1 of the Set3 HDAC complex plays a key role in mediating the regulation of histone acetylation by the cAMP-PKA pathway in Fusarium graminearum. PLoS Genet 2022; 18:e1010510. [PMID: 36477146 PMCID: PMC9728937 DOI: 10.1371/journal.pgen.1010510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
The cAMP-PKA pathway is critical for regulating growth, differentiation, and pathogenesis in fungal pathogens. In Fusarium graminearum, mutants deleted of PKR regulatory-subunit of PKA had severe defects but often produced spontaneous suppressors. In this study eleven pkr suppressors were found to have mutations in FgSNT1, a component of the Set3C histone deacetylase (HDAC) complex, that result in the truncation of its C-terminal region. Targeted deletion of the C-terminal 98 aa (CT98) in FgSNT1 suppressed the defects of pkr in growth and H4 acetylation. CT98 truncation also increased the interaction of FgSnt1 with Hdf1, a major HDAC in the Set3 complex. The pkr mutant had no detectable expression of the Cpk1 catalytic subunit and PKA activities, which was not suppressed by mutations in FgSNT1. Cpk1 directly interacted with the N-terminal region of FgSnt1 and phosphorylated it at S443, a conserved PKA-phosphorylation site. CT98 of FgSnt1 carrying the S443D mutation interacted with its own N-terminal region. Expression of FgSNT1S443D rescued the defects of pkr in growth and H4 acetylation. Therefore, phosphorylation at S443 and suppressor mutations may relieve self-inhibitory binding of FgSnt1 and increase its interaction with Hdf1 and H4 acetylation, indicating a key role of FgSnt1 in crosstalk between cAMP signaling and Set3 complex.
Collapse
Affiliation(s)
- Chen Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Daiying Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Daiyuan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiangang Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (J-RX); (XZ)
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- * E-mail: (J-RX); (XZ)
| |
Collapse
|
48
|
Figueiredo J, Santos RB, Guerra-Guimarães L, Leclercq CC, Renaut J, Malhó R, Figueiredo A. An in-planta comparative study of Plasmopara viticola proteome reveals different infection strategies towards susceptible and Rpv3-mediated resistance hosts. Sci Rep 2022; 12:20794. [PMID: 36456634 PMCID: PMC9715676 DOI: 10.1038/s41598-022-25164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Plasmopara viticola, an obligate biotrophic oomycete, is the causal agent of one of the most harmful grapevine diseases, downy mildew. Within this pathosystem, much information is gathered on the host, as characterization of pathogenicity and infection strategy of a biotrophic pathogen is quite challenging. Molecular insights into P. viticola development and pathogenicity are just beginning to be uncovered, mainly by transcriptomic studies. Plasmopara viticola proteome and secretome were only predicted based on transcriptome data. In this study, we have identified the in-planta proteome of P. viticola during infection of a susceptible ('Trincadeira') and a Rpv3-mediated resistance ('Regent') grapevine cultivar. Four hundred and twenty P. viticola proteins were identified on a label-free mass spectrometry-based approach of the apoplastic fluid of grapevine leaves. Overall, our study suggests that, in the compatible interaction, P. viticola manipulates salicylic-acid pathway and isoprenoid biosynthesis to enhance plant colonization. Furthermore, during the incompatible interaction, development-associated proteins increased while oxidoreductases protect P. viticola from ROS-associated plant defence mechanism. Up to our knowledge this is the first in-planta proteome characterization of this biotrophic pathogen, thus this study will open new insights into our understanding of this pathogen colonization strategy of both susceptible and Rpv3-mediated resistance grapevine genotypes.
Collapse
Affiliation(s)
- Joana Figueiredo
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal.
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal.
| | - Rita B Santos
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Leonor Guerra-Guimarães
- CIFC - Centro de Investigação das Ferrugens Do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisboa, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food & Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisboa, Portugal
| | - Céline C Leclercq
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4362, Esch-Sur-Alzette, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4362, Esch-Sur-Alzette, Luxembourg
| | - Rui Malhó
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| |
Collapse
|
49
|
Palos-Fernández R, Turrà D, Pietro AD. The Gal4-Type Transcription Factor Pro1 Integrates Inputs from Two Different MAPK Cascades to Regulate Development in the Fungal Pathogen Fusarium oxysporum. J Fungi (Basel) 2022; 8:jof8121242. [PMID: 36547575 PMCID: PMC9781702 DOI: 10.3390/jof8121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways control fundamental aspects of growth and development in fungi. In the soil-inhabiting ascomycete Fusarium oxysporum, which causes vascular wilt disease in more than a hundred crops, the MAPKs Fmk1 and Mpk1 regulate an array of developmental and virulence-related processes. The downstream components mediating these disparate functions are largely unknown. Here we find that the GATA-type transcription factor Pro1 integrates signals from both MAPK pathways to control a subset of functions, including quorum sensing, hyphal fusion and chemotropism. By contrast, Pro1 is dispensable for other downstream processes such as invasive hyphal growth and virulence, or response to cell wall stress. We further show that regulation of Pro1 activity by these upstream pathways occurs at least in part at the level of transcription. Besides the MAPK pathways, upstream regulators of Pro1 transcription also include the Velvet regulatory complex, the signaling protein Soft (Fso1) and the transcription factor Ste12 which was previously shown to act downstream of Fmk1. Collectively, our results reveal a role of Pro1 in integrating the outputs from different signaling pathways of F. oxysporum thereby mediating key developmental decisions in this important fungal pathogen.
Collapse
Affiliation(s)
| | - David Turrà
- Center for Studies on Bioinspired Agro-Enviromental Technology, Department of Agriculture, Università di Napoli Federico II, 80055 Portici, Italy
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, 14014 Córdoba, Spain
- Correspondence: ; Tel.: +34-957-218-981
| |
Collapse
|
50
|
Fu T, Park HH, Kim KS. Role of the cAMP signaling pathway in the dissemination and development on pepper fruit anthracnose disease caused by Colletotrichum scovillei. Front Cell Infect Microbiol 2022; 12:1003195. [PMID: 36262188 PMCID: PMC9574036 DOI: 10.3389/fcimb.2022.1003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The ascomycete fungus Colletotrichum scovillei causes severe anthracnose disease on the fruit of sweet pepper and chili pepper (Capsicum annuum L.) worldwide. Understanding the biology of C. scovillei would improve the management of fruit anthracnose diseases. The cyclic adenosine monophosphate (cAMP) signaling pathway regulates diverse cellular and physiological processes in several foliar fungal pathogens. We investigated the roles of the cAMP signaling pathway in C. scovillei using pharmaceutical and genetic approaches. Exogenous cAMP was found to increase conidiation, appressorium formation, and anthracnose disease development in C. scovillei. CsAc1, CsCap1, and CsPdeH, which regulate the intracellular cAMP level, were deleted by homology-dependent gene replacement. Expectedly, the intracellular cAMP level was significantly decreased in ΔCsac1 and ΔCscap1 but increased in ΔCspdeh. All three deletion mutants exhibited serious defects in multiple fungal developments and pathogenicity, suggesting regulation of the intracellular cAMP level is important for C. scovillei. Notably, exogenous cAMP recovered the defect of ΔCsac1 in appressorium development, but not penetration, which was further recovered by adding CaCl2. This result suggests that CsAc1 is associated with both the cAMP and Ca2+ signaling pathways in C. scovillei. ΔCscap1 produced morphologically abnormal conidia with reduced tolerance to thermal stress. ΔCspdeh was completely defective in conidiation in C. scovillei, unlike other foliar pathogens. Taken together, these results demonstrate the importance of cAMP signaling in anthracnose disease caused by C. scovillei.
Collapse
|