1
|
Barta CL, Thoreson WB. Retinal inputs that drive optomotor responses of mice under mesopic conditions. IBRO Neurosci Rep 2024; 17:138-144. [PMID: 39170059 PMCID: PMC11338136 DOI: 10.1016/j.ibneur.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Optomotor responses are a popular way to assess sub-cortical visual responses in mice. We studied photoreceptor inputs into optomotor circuits using genetically-modified mice lacking the exocytotic calcium sensors synaptotagmin 1 (Syt1) and 7 (Syt7) in rods or cones. We also tested mice that in which cone transducin, GNAT2, had been eliminated. We studied spatial frequency sensitivity under mesopic conditions by varying the spatial frequency of a grating rotating at 12 deg/s and contrast sensitivity by varying luminance contrast of 0.2c/deg gratings. We found that eliminating Syt1 from rods reduced responses to a low spatial frequency grating (0.05c/deg) consistent with low resolution in this pathway. Conversely, eliminating the ability of cones to respond to light (by eliminating GNAT2) or transmit light responses (by selectively eliminating Syt1) showed weaker responses to a high spatial frequency grating (3c/deg). Eliminating Syt7 from the entire optomotor pathway in a global knockout had no significant effect on optomotor responses. We isolated the secondary rod pathway involving transmission of rod responses to cones via gap junctions by simultaneously eliminating Syt1 from rods and GNAT2 from cones. We found that the secondary rod pathway is sufficient to drive robust optomotor responses under mesopic conditions. Finally, eliminating Syt1 from both rods and cones almost completely abolished optomotor responses, but we detected weak responses to large, bright rotating gratings that are likely driven by input from intrinsically photosensitive retinal ganglion cells.
Collapse
Affiliation(s)
- CL Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - WB Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Fogg LG, Isari S, Barnes JE, Patel JS, Marshall NJ, Salzburger W, Cortesi F, de Busserolles F. Deep-sea fish reveal alternative pathway for vertebrate visual development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617579. [PMID: 39416096 PMCID: PMC11483065 DOI: 10.1101/2024.10.10.617579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Vertebrate vision is accomplished by two phenotypically distinct types of photoreceptors in the retina: the saturation-resistant cones for the detection of bright light and the highly sensitive rods for dim light conditions [1]. The current dogma is that, during development, all vertebrates initially feature a cone-dominated retina, and rods are added later [2, 3]. By studying the ontogeny of vision in three species of deep-sea fishes, we show that their larvae express cone-specific genes in photoreceptors with rod-like morphologies. Through development, these fishes either retain this rod-like cone retina (Maurolicus mucronatus) or switch to a retina with true rod photoreceptors with expression of rod-specific genes and transcription factors (Vinciguerria mabahiss and Benthosema pterotum). In contrast to the larvae of most marine fishes, which inhabit the bright upper layer of the open ocean, the larvae of deep-sea fishes occur deeper, exposing them to a dimmer light environment [4-7]. Spectral maxima predictions from molecular dynamics simulations and environmental light estimations suggest that using transmuted photoreceptors that combine the characteristics of both cones and rods maximises visual performance in these dimmer light conditions. Our findings provide molecular, morphological, and functional evidence for the evolution of an alternative developmental pathway for vertebrate vision.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Zoological Institute, Department of Environment Sciences, University of Basel, Basel, 4051, Switzerland
| | - Stamatina Isari
- Institute of Marine Research, Bergen, 5005, Norway
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jonathan E. Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environment Sciences, University of Basel, Basel, 4051, Switzerland
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
- The School of The Environment, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
3
|
Laswick Z, Wu X, Surendran A, Zhou Z, Ji X, Matrone GM, Leong WL, Rivnay J. Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway. Nat Commun 2024; 15:6309. [PMID: 39060249 PMCID: PMC11282299 DOI: 10.1038/s41467-024-50496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing demand for bio-interfaced human-machine interfaces propels the development of organic neuromorphic electronics with small form factors leveraging both ionic and electronic processes. Ion-based organic electrochemical transistors (OECTs) showing anti-ambipolarity (OFF-ON-OFF states) reduce the complexity and size of bio-realistic Hodgkin-Huxley(HH) spiking circuits and logic circuits. However, limited stable anti-ambipolar organic materials prevent the design of integrated, tunable, and multifunctional neuromorphic and logic-based systems. In this work, a general approach for tuning anti-ambipolar characteristics is presented through assembly of a p-n bilayer in a vertical OECT (vOECT) architecture. The vertical OECT design reduces device footprint, while the bilayer material tuning controls the anti-ambipolarity characteristics, allowing control of the device's on and off threshold voltages, and peak position, while reducing size thereby enabling tunable threshold spiking neurons and logic gates. Combining these components, a mimic of the retinal pathway reproducing the wavelength and light intensity encoding of horizontal cells to spiking retinal ganglion cells is demonstrated. This work enables further incorporation of conformable and adaptive OECT electronics into biointegrated devices featuring sensory coding through parallel processing for diverse artificial intelligence and computing applications.
Collapse
Affiliation(s)
- Zachary Laswick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Abhijith Surendran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Wang M, Shao Y, Gong Y, Liu B, Liu J, Luan R, Ma M, Li X. ASSOCIATION OF MACULAR STRUCTURE WITH MICROPERIMETRY SENSITIVITY FOLLOWING VITRECTOMY FOR PROLIFERATE DIABETIC RETINOPATHY. Retina 2024; 44:982-990. [PMID: 38767849 DOI: 10.1097/iae.0000000000004063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/21/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE To evaluate macular sensitivity using microperimetry in patients with proliferate diabetic retinopathy following vitrectomy and to investigate the relationship between the sensitivity and foveal microstructures with optical coherence tomography/angiography. METHODS Eighty-four eyes of 84 patients with proliferative diabetic retinopathy, who were indicated for vitrectomy, had no intraocular surgery history 3 months preoperatively, and were able to ensure fundus examination after the vitrectomy, were included. A logMAR best-corrected visual acuity, macular sensitivity of microperimetry, macular retinal thickness, and macular vessel perfusion using optical coherence tomography/angiography were examined at 1 week, 1 month, and 3 months postoperatively. RESULTS The logMAR best-corrected visual acuity and mean macular sensitivity of patients with proliferative diabetic retinopathy improved postoperatively (P < 0.05). There was a significant correlation between best-corrected visual acuity and mean sensitivity (P < 0.05). Postoperative mean macular sensitivity was significantly correlated with outer retinal thickness in the 0 to 6 mm macular area (P < 0.05) and also significantly correlated with deep capillary plexus perfusion (P < 0.05). Fixation stability and mean macular sensitivity did not show any correlation with glycated hemoglobin, triglyceride, serum total cholesterol, carbamide, and creatinine and duration of diabetes mellitus (P > 0.05). CONCLUSION Postoperative mean macular sensitivity was significantly correlated with outer retinal thickness and deep capillary plexus perfusion for patients with proliferative diabetic retinopathy. The authors found that the visual performance of patients can be evaluated by the outer retinal thickness and deep capillary plexus perfusion, so optical coherence tomography/angiography examination can be an important prognostic factor for visual performance in patients.Clinical Trial Registration: This trial is registered with the Chinese Clinical Trial Registry (http://www.chictr.org.cn; Registration No.: ChiCTR2100043399).
Collapse
Affiliation(s)
- Manqiao Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China; and
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yan Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China; and
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yi Gong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China; and
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Boshi Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China; and
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Juping Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China; and
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Rong Luan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China; and
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Mingming Ma
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China; and
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China; and
- Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
5
|
Suiwal S, Wartenberg P, Boehm U, Schmitz F, Schwarz K. A Novel Cre Recombinase Mouse Strain for Cell-Specific Deletion of Floxed Genes in Ribbon Synapse-Forming Retinal Neurons. Int J Mol Sci 2024; 25:1916. [PMID: 38339191 PMCID: PMC10856425 DOI: 10.3390/ijms25031916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
We generated a novel Cre mouse strain for cell-specific deletion of floxed genes in ribbon synapse-forming retinal neurons. Previous studies have shown that the RIBEYE promotor targets the expression of recombinant proteins such as fluorescently tagged RIBEYE to photoreceptors and retinal bipolar cells and generates fluorescent synaptic ribbons in situ in these neurons. Here, we used the same promotor to generate a novel transgenic mouse strain in which the RIBEYE promotor controls the expression of a Cre-ER(T2) recombinase (RIBEYE-Cre). To visualize Cre expression, the RIBEYE-Cre animals were crossed with ROSA26 tau-GFP (R26-τGFP) reporter mice. In the resulting RIBEYE-Cre/R26 τGFP animals, Cre-mediated removal of a transcriptional STOP cassette results in the expression of green fluorescent tau protein (tau-GFP) that binds to cellular microtubules. We detected robust tau-GFP expression in retinal bipolar cells. Surprisingly, we did not find fluorescent tau-GFP expression in mouse photoreceptors. The lack of tau-GFP reporter protein in these cells could be based on the previously reported absence of tau protein in mouse photoreceptors which could lead to the degradation of the recombinant tau protein. Consistent with this, we detected Cre and tau-GFP mRNA in mouse photoreceptor slices by RT-PCR. The transgenic RIBEYE-Cre mouse strain provides a new tool to study the deletion of floxed genes in ribbon synapse-forming neurons of the retina and will also allow for analyzing gene deletions that are lethal if globally deleted in neurons.
Collapse
Affiliation(s)
- Shweta Suiwal
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| | - Philipp Wartenberg
- Institute of Clinical and Experimental Pharmacology, Center for Molecular Signaling (PZMS) and Center for Gender-Specific Biology and Medicine (CGBM), Medical School, Saarland University, 66421 Homburg, Germany; (P.W.); (U.B.)
| | - Ulrich Boehm
- Institute of Clinical and Experimental Pharmacology, Center for Molecular Signaling (PZMS) and Center for Gender-Specific Biology and Medicine (CGBM), Medical School, Saarland University, 66421 Homburg, Germany; (P.W.); (U.B.)
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| | - Karin Schwarz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
6
|
Hahn J, Monavarfeshani A, Qiao M, Kao AH, Kölsch Y, Kumar A, Kunze VP, Rasys AM, Richardson R, Wekselblatt JB, Baier H, Lucas RJ, Li W, Meister M, Trachtenberg JT, Yan W, Peng YR, Sanes JR, Shekhar K. Evolution of neuronal cell classes and types in the vertebrate retina. Nature 2023; 624:415-424. [PMID: 38092908 PMCID: PMC10719112 DOI: 10.1038/s41586-023-06638-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 12/17/2023]
Abstract
The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.
Collapse
Affiliation(s)
- Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mu Qiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- LinkedIn, Mountain View, CA, USA
| | - Allison H Kao
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yvonne Kölsch
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Ayush Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ashley M Rasys
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Rose Richardson
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Joseph B Wekselblatt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Robert J Lucas
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute,Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Center for Computational Biology, Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA.
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D’Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557433. [PMID: 37771914 PMCID: PMC10525478 DOI: 10.1101/2023.09.12.557433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions1. Mammals have a specialized downstream circuit for rod signaling called the primary rod pathway, which comprises specific cell types and wiring patterns that are thought to be unique to this lineage2-6. Thus, it has been long assumed that the primary rod pathway evolved in mammals3,5-7. Here, we challenge this view by demonstrating that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA-sequencing, we identified two bipolar cell (BC) types in zebrafish that are related to mammalian rod BCs (RBCs) of the primary rod pathway. By combining electrophysiology, histology, and ultrastructural reconstruction of the zebrafish RBCs, we found that, like mammalian RBCs8, both zebrafish RBC types connect with all rods and red-cones in their dendritic territory, and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells post-synaptic to one RBC type is strikingly similar to that of mammalian RBCs. This suggests that the cell types and circuit design of the primary rod pathway may have emerged before the divergence of teleost fish and amniotes (mammals, bird, reptiles). The second RBC type in zebrafish, which forms separate pathways from the first RBC type, is either lost in mammals or emerged in fish to serve yet unknown roles.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
| | - Yvonne Kölsch
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Florence D D’Orazi
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sachihiro C. Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, 80802 Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Vision Science Center, University of Washington, Seattle, WA 98195, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joshua R Sanes
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology & Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
- BioRTC, Yobe State University, Damatsuru, Yobe 620101, Nigeria
| |
Collapse
|
8
|
Songco-Aguas A, Grimes WN, Rieke F. Rod-cone signal interference in the retina shapes perception in primates. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1230084. [PMID: 38983027 PMCID: PMC11182321 DOI: 10.3389/fopht.2023.1230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/14/2023] [Indexed: 07/11/2024]
Abstract
Linking the activity of neurons, circuits and synapses to human behavior is a fundamental goal of neuroscience. Meeting this goal is challenging, in part because behavior, particularly perception, often masks the complexity of the underlying neural circuits, and in part because of the significant behavioral differences between primates and animals like mice and flies in which genetic manipulations are relatively common. Here we relate circuit-level processing of rod and cone signals in the non-human primate retina to a known break in the normal seamlessness of human vision - a surprising inability to see high contrast flickering lights under specific conditions. We use electrophysiological recordings and perceptual experiments to identify key mechanisms that shape the retinal integration of rod- and cone-generated retinal signals. We then incorporate these mechanistic insights into a predicti\ve model that accurately captures the cancellation of rod- and cone-mediated responses and can explain the perceptual insensitivity to flicker.
Collapse
Affiliation(s)
| | | | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Wang NK, Liu PK, Kong Y, Tseng YJ, Jenny LA, Nolan ND, Chen N, Wang HH, Hsu CW, Huang WC, Sparrow JR, Lin CS, Tsang SH. Spatiotemporal control of genome engineering in cone photoreceptors. Cell Biosci 2023; 13:119. [PMID: 37381060 PMCID: PMC10304375 DOI: 10.1186/s13578-023-01033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/15/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Cones are essential for color recognition, high resolution, and central vision; therefore cone death causes blindness. Understanding the pathophysiology of each cell type in the retina is key to developing therapies for retinal diseases. However, studying the biology of cone cells in the rod-dominant mammalian retina is particularly challenging. In this study, we used a bacterial artificial chromosome (BAC) recombineering method to knock in the "CreERT2" sequence into the Gnat2 and Arr3 genes, respectively and generated three novel inducible CreERT2 mice with different cone cell specificities. RESULTS These models (Gnat2CreERT2, Arr3T2ACreERT2, and Arr3P2ACreERT2) express temporally controllable Cre recombinase that achieves conditional alleles in cone photoreceptors. Cre-LoxP recombination can be induced as early as postnatal day (PD) two upon tamoxifen injection at varying efficiencies, ranging from 10 to 15% in Gnat2CreERT2, 40% in Arr3T2ACreERT2, and 100% in Arr3P2ACreERT2. Notably, knocking in the P2A-CreERT2 cassette does not affect cone cell morphology and functionality. Most cone-phototransduction enzymes, including Opsins, CNGA3, etc. are not altered except for a reduction in the Arr3 transcript. CONCLUSIONS The Arr3P2ACreERT2 mouse, an inducible cone-specific Cre driver, is a valuable line in studying cone cell biology, function, as well as its relationship with rod and other retinal cells. Moreover, the Cre activity can be induced by delivering tamoxifen intragastrically as early as PD2, which will be useful for studying retinal development or in rapid degenerative mouse models.
Collapse
Affiliation(s)
- Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Pei-Kang Liu
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yang Kong
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yun-Ju Tseng
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Laura A Jenny
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nicholas D Nolan
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Biomedical Engineering, The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Nelson Chen
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Hung-Hsi Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- College of Arts and Sciences, University of Miami, Coral Gables, FL, USA
| | - Chun Wei Hsu
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wan-Chun Huang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Janet R Sparrow
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stephen H Tsang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|
10
|
Hahn J, Monavarfeshani A, Qiao M, Kao A, Kölsch Y, Kumar A, Kunze VP, Rasys AM, Richardson R, Baier H, Lucas RJ, Li W, Meister M, Trachtenberg JT, Yan W, Peng YR, Sanes JR, Shekhar K. Evolution of neuronal cell classes and types in the vertebrate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536039. [PMID: 37066415 PMCID: PMC10104162 DOI: 10.1101/2023.04.07.536039] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs (Baden et al., 2020). One might expect that retinal cell types evolved to accommodate these varied needs, but this has not been systematically studied. Here, we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a teleost fish, a bird, a reptile and a lamprey. Molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells [RGCs] and Muller glia) is striking, with transcriptomic differences across species correlated with evolutionary distance. Major subclasses are also conserved, whereas variation among types within classes or subclasses is more pronounced. However, an integrative analysis revealed that numerous types are shared across species based on conserved gene expression programs that likely trace back to the common ancestor of jawed vertebrates. The degree of variation among types increases from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified mammalian orthologs of midget RGCs, which comprise >80% of RGCs in the human retina, subserve high-acuity vision, and were believed to be primate-specific (Berson, 2008); in contrast, the mouse orthologs comprise <2% of mouse RGCs. Projections both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.
Collapse
Affiliation(s)
- Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Mu Qiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Allison Kao
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Yvonne Kölsch
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ayush Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley M. Rasys
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Rose Richardson
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Robert J. Lucas
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joshua T. Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095 United States
| | - Joshua R. Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley CA 94720, USA
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Sladek AL, Thoreson WB. Using optogenetics to dissect rod inputs to OFF ganglion cells in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1146785. [PMID: 37426783 PMCID: PMC10327572 DOI: 10.3389/fopht.2023.1146785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Introduction Light responses of rod photoreceptor cells traverse the retina through three pathways. The primary pathway involves synapses from rods to ON-type rod bipolar cells with OFF signals reaching retinal ganglion cells (RGCs) via sign-inverting glycinergic synapses. Secondly, rod signals can enter cones through gap junctions. Finally, rods can synapse directly onto cone OFF bipolar cells. Methods To analyze these pathways, we obtained whole cell recordings from OFF-type α RGCs in mouse retinas while expressing channelrhodopsin-2 in rods and/or cones. Results Optogenetic stimulation of rods or cones evoked large fast currents in OFF RGCs. Blocking the primary rod pathway with L-AP4 and/or strychnine reduced rod-driven optogenetic currents in OFF RGCs by ~1/3. Blocking kainate receptors of OFF cone bipolar cells suppressed both rod- and cone-driven optogenetic currents in OFF RGCs. Inhibiting gap junctions between rods and cones with mecloflenamic acid or quinpirole reduced rod-driven responses in OFF RGCs. Eliminating the exocytotic Ca2+ sensor, synaptotagmin 1 (Syt1), from cones abolished cone-driven optogenetic responses in RGCs. Rod-driven currents were not significantly reduced after isolating the secondary pathway by eliminating Syt1 and synaptotagmin 7 (Syt7) to block synaptic release from rods. Eliminating Syt1 from both rods and cones abolished responses to optogenetic stimulation. In Cx36 KO retinas lacking rod-cone gap junctions, optogenetic activation of rods evoked small and slow responses in most OFF RGCs suggesting rod signals reached them through an indirect pathway. Two OFF cells showed faster responses consistent with more direct input from cone OFF bipolar cells. Discussion These data show that the secondary rod pathway supports robust inputs into OFF α RGCs and suggests the tertiary pathway recruits both direct and indirect inputs.
Collapse
Affiliation(s)
- Asia L. Sladek
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, United States
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
12
|
Rodgers J, Hughes S, Lindner M, Allen AE, Ebrahimi AS, Storchi R, Peirson SN, Lucas RJ, Hankins MW. Functional integrity of visual coding following advanced photoreceptor degeneration. Curr Biol 2023; 33:474-486.e5. [PMID: 36630957 DOI: 10.1016/j.cub.2022.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/01/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023]
Abstract
Photoreceptor degeneration sufficient to produce severe visual loss often spares the inner retina. This raises hope for vision restoration treatments using optogenetics or electrical stimulation, which generate a replacement light input signal in surviving neurons. The success of these approaches is dependent on the capacity of surviving circuits of the visual system to generate and propagate an appropriate visual code in the face of neuroanatomical remodeling. To determine whether retinally degenerate animals possess this capacity, we generated a transgenic mouse model expressing the optogenetic actuator ReaChR in ON bipolar cells (second-order neurons in the visual projection). After crossing this with the rd1 model of photoreceptor degeneration, we compared ReaChR-derived responses with photoreceptor-driven responses in wild-type (WT) mice at the level of retinal ganglion cells and the visual thalamus. The ReaChR-driven responses in rd1 animals showed low photosensitivity, but in other respects generated a visual code that was very similar to the WT. ReaChR rd1 responses had high trial-to-trial reproducibility and showed sensitivity normalization to code contrast across background intensities. At the single unit level, ReaChR-derived responses exhibited broadly similar variations in response polarity, contrast sensitivity, and temporal frequency tuning as the WT. Units from the WT and ReaChR rd1 mice clustered together when subjected to unsupervised community detection based on stimulus-response properties. Our data reveal an impressive ability for surviving circuitry to recreate a rich visual code following advanced retinal degeneration and are promising for regenerative medicine in the central nervous system.
Collapse
Affiliation(s)
- Jessica Rodgers
- Faculty of Biology, Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstr. 1-2, Marburg 35037, Germany
| | - Annette E Allen
- Faculty of Biology, Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Aghileh S Ebrahimi
- Faculty of Biology, Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Faculty of Biology, Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robert J Lucas
- Faculty of Biology, Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK.
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
13
|
Allen AE. Circadian Regulation of the Rod Contribution to Mesopic Vision in Mice. J Neurosci 2022; 42:8795-8806. [PMID: 36216501 PMCID: PMC9698662 DOI: 10.1523/jneurosci.0486-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
At intermediate (mesopic) light levels, rods and cones are both active and can contribute to vision. This presents a challenge to the retina because the visual responses originating with rods and cones are distinct, yet their visual responses must be seamlessly combined. The current study aimed to establish how the circadian clock regulates rod and/or cone vision in these conditions, given the strong time-of-day change in the reliance on each photoreceptor. Visual responses were recorded in the retina and visual thalamus of anaesthetized male mice at distinct circadian time points, and the method of receptor silent substitution was used to selectively stimulate different photoreceptor types. With stimuli designed to only activate rods, responses in the mesopic range were highly rhythmic and peaked in amplitude in the subjective night. This rhythm was abolished following intravitreal injection of the gap junction blocker meclofenamic acid, consistent with a circadian variation in the strength of electrical coupling of photoreceptors. In contrast, responses to stimuli designed to only activate cones were arrhythmic within the mesopic to photopic range when adapted to the background irradiance. The outcome was that combined rod-plus-cone responses showed a stable contrast-response relationship across mesopic-photopic backgrounds in the circadian day, whereas at night, responses were significantly amplified at lower light levels. These data support the idea that the circadian clock is a key regulator of vision, in this case defining the relative amplitude of rod/cone vision across the mesopic transition according to time of day.SIGNIFICANCE STATEMENT Although the importance of circadian clocks in regulating vision has been long recognized, less is known about how the clock shapes vision in conditions where both rods and cones are active (mesopic conditions). Here, the novel approach of receptor silent substitution has been applied to trace rod and cone visual responses in mice across the circadian cycle and has identified pronounced rhythms in rod, but not cone, vision. This has the effect of boosting responses in dimmer backgrounds at night at the cost of impaired contrast-response stability across the mesopic to photopic range. Thus, the circadian clock drives anticipatory changes in the relative contribution of rods versus cones to vision, which match the prevailing visual environment.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
14
|
Zhang C, Hellevik A, Takeuchi S, Wong RO. Hierarchical partner selection shapes rod-cone pathway specificity in the inner retina. iScience 2022; 25:105032. [PMID: 36117987 PMCID: PMC9474917 DOI: 10.1016/j.isci.2022.105032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Neurons form stereotyped microcircuits that underlie specific functions. In the vertebrate retina, the primary rod and cone pathways that convey dim and bright light signals, respectively, exhibit distinct wiring patterns. Rod and cone pathways are thought to be assembled separately during development. However, using correlative fluorescence imaging and serial electron microscopy, we show here that cross-pathway interactions are involved to achieve pathway-specific connectivity within the inner retina. We found that A17 amacrine cells, a rod pathway-specific cellular component, heavily bias their synaptogenesis with rod bipolar cells (RBCs) but increase their connectivity with cone bipolar cells (CBCs) when RBCs are largely ablated. This cross-pathway synaptic plasticity occurs during synaptogenesis and is triggered even on partial loss of RBCs. Thus, A17 cells adopt a hierarchical approach in selecting postsynaptic partners from functionally distinct pathways (RBC>CBC), in which contact and/or synaptogenesis with preferred partners (RBCs) influences connectivity with less-preferred partners (CBCs).
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ayana Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Rachel O. Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Divergent outer retinal circuits drive image and non-image visual behaviors. Cell Rep 2022; 39:111003. [PMID: 35767957 PMCID: PMC9400924 DOI: 10.1016/j.celrep.2022.111003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
Image- and non-image-forming vision are essential for animal behavior. Here we use genetically modified mouse lines to examine retinal circuits driving image- and non-image-functions. We describe the outer retinal circuits underlying the pupillary light response (PLR) and circadian photoentrainment, two non-image-forming behaviors. Rods and cones signal light increments and decrements through the ON and OFF pathways, respectively. We find that the OFF pathway drives image-forming vision but cannot drive circadian photoentrainment or the PLR. Cone light responses drive image formation but fail to drive the PLR. At photopic levels, rods use the primary and secondary rod pathways to drive the PLR, whereas at the scotopic and mesopic levels, rods use the primary pathway to drive the PLR, and the secondary pathway is insufficient. Circuit dynamics allow rod ON pathways to drive two non-image-forming behaviors across a wide range of light intensities, whereas the OFF pathway is potentially restricted to image formation.
Collapse
|
16
|
Jin N, Tian LM, Fahrenfort I, Zhang Z, Postma F, Paul DL, Massey SC, Ribelayga CP. Genetic elimination of rod/cone coupling reveals the contribution of the secondary rod pathway to the retinal output. SCIENCE ADVANCES 2022; 8:eabm4491. [PMID: 35363529 PMCID: PMC10938630 DOI: 10.1126/sciadv.abm4491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
In the retina, signals originating from rod and cone photoreceptors can reach retinal ganglion cells (RGCs)-the output neurons-through different pathways. However, little is known about the exact sensitivities and operating ranges of these pathways. Previously, we created rod- or cone-specific Cx36 knockout (KO) mouse lines. Both lines are deficient in rod/cone electrical coupling and therefore provide a way to selectively remove the secondary rod pathway. We measured the threshold of the primary rod pathway in RGCs of wild-type mice. Under pharmacological blockade of the primary rod pathway, the threshold was elevated. This secondary component was removed in the Cx36 KOs to unmask the threshold of the third rod pathway, still below cone threshold. In turn, the cone threshold was estimated by several independent methods. Our work defines the functionality of the secondary rod pathway and describes an additive contribution of the different pathways to the retinal output.
Collapse
Affiliation(s)
- Nange Jin
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Lian-Ming Tian
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Iris Fahrenfort
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Zhijing Zhang
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Friso Postma
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, USA
| | - David L. Paul
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, USA
| | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
- Elizabeth Morford Distinguished Chair in Ophthalmology and Research Director, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Christophe P. Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
- Bernice Weingarten Chair in Ophthalmology, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| |
Collapse
|
17
|
Li W, Joseph Raj AN, Tjahjadi T, Zhuang Z. Fusion of ANNs as decoder of retinal spike trains for scene reconstruction. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Surgical Safety Checklist: Polychromatic or Achromatic Design. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1374:11-16. [PMID: 34970728 DOI: 10.1007/5584_2021_699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The Surgical Safety Checklist (SSC) has been created based on the recommendations of the WHO and obligatorily introduced worldwide. SSC is used to increase the patient's safety and reduce complications while in the hospital, especially in the perioperative period. The original SSC template was of a multicolor polychromatic design. However, an achromatic black-and-white or gray-gray design on plain printer paper appears often used in clinical practice. This review aims to assess the level of SSC use in the polychromatic versus achromatic versions and the pros and cons of using either in practice. We used the Google browser for the identification and collection of SSC graphic images available as of June 2021 using the following search commands: "surgical safety checklist WHO" or "surgical safety checklist" or "SSC WHO." The commands were repeated in 103 languages representing the five continents with the back answers provided in 41 languages. The successive top 10 thematically relevant images or fewer if not available in the cases of some foreign languages were considered for analysis, providing a mean of 5 ±2 images per language. The numbers of achromatic and polychromatic two-color or multicolor images were calculated. The number of images corresponding to the respective color designs ranged as follows: 0-6 (27.6%), 0-9 (41.6%), and 0-6 (27.6%) We conclude that polychromatic imaging of SSC documents predominates in practical use. The polychromatic SSC design catches the doctor's eye, which likely increases the effectiveness of completing the document.
Collapse
|
19
|
Zheng Y, Jia S, Yu Z, Liu JK, Huang T. Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks. PATTERNS (NEW YORK, N.Y.) 2021; 2:100350. [PMID: 34693375 PMCID: PMC8515013 DOI: 10.1016/j.patter.2021.100350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022]
Abstract
Traditional models of retinal system identification analyze the neural response to artificial stimuli using models consisting of predefined components. The model design is limited to prior knowledge, and the artificial stimuli are too simple to be compared with stimuli processed by the retina. To fill in this gap with an explainable model that reveals how a population of neurons work together to encode the larger field of natural scenes, here we used a deep-learning model for identifying the computational elements of the retinal circuit that contribute to learning the dynamics of natural scenes. Experimental results verify that the recurrent connection plays a key role in encoding complex dynamic visual scenes while learning biological computational underpinnings of the retinal circuit. In addition, the proposed models reveal both the shapes and the locations of the spatiotemporal receptive fields of ganglion cells.
Collapse
Affiliation(s)
- Yajing Zheng
- Department of Computer Science and Technology, National Engineering Laboratory for Video Technology, Peking University, Beijing 100871, China
| | - Shanshan Jia
- Department of Computer Science and Technology, National Engineering Laboratory for Video Technology, Peking University, Beijing 100871, China
| | - Zhaofei Yu
- Department of Computer Science and Technology, National Engineering Laboratory for Video Technology, Peking University, Beijing 100871, China
- Institute for Artificial Intelligence, Peking University, Beijing 100871, China
| | - Jian K. Liu
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| | - Tiejun Huang
- Department of Computer Science and Technology, National Engineering Laboratory for Video Technology, Peking University, Beijing 100871, China
- Institute for Artificial Intelligence, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Andreazzoli M, Barravecchia I, De Cesari C, Angeloni D, Demontis GC. Inducible Pluripotent Stem Cells to Model and Treat Inherited Degenerative Diseases of the Outer Retina: 3D-Organoids Limitations and Bioengineering Solutions. Cells 2021; 10:cells10092489. [PMID: 34572137 PMCID: PMC8471616 DOI: 10.3390/cells10092489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.
Collapse
Affiliation(s)
| | - Ivana Barravecchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | | | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | - Gian Carlo Demontis
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (M.A.); (G.C.D.)
| |
Collapse
|
21
|
Zhi Z, Xiang J, Fu Q, Pei X, Zhou D, Cao Y, Xie L, Zhang S, Chen S, Qu J, Zhou X. The Role of Retinal Connexins Cx36 and Horizontal Cell Coupling in Emmetropization in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34283211 PMCID: PMC8300059 DOI: 10.1167/iovs.62.9.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to determine whether retinal gap junctions (GJs) via connexin 36 (Cx36, mediating coupling of many retinal cell types) and horizontal cell (HC-HC) coupling, are involved in emmetropization. Methods Guinea pigs (3 weeks old) were monocularly form deprived (FD) or raised without FD (in normal visual [NV] environment) for 2 days or 4 weeks; alternatively, they wore a -4 D lens (hyperopic defocus [HD]) or 0 D lens for 2 days or 1 week. FD and NV eyes received daily subconjunctival injections of a nonspecific GJ-uncoupling agent, 18-β-Glycyrrhetinic Acid (18-β-GA). The amounts of total Cx36 and of phosphorylated Cx36 (P-Cx36; activated state that increases cell-cell coupling), in the inner and outer plexiform layers (IPLs and OPLs), were evaluated by quantitative immunofluorescence (IF), and HC-HC coupling was evaluated by cut-loading with neurobiotin. Results FD per se (excluding effect of light-attenuation) increased HC-HC coupling in OPL, whereas HD did not affect it. HD for 2 days or 1 week had no significant effect on retinal content of Cx36 or P-Cx36. FD for 4 weeks decreased the total amounts of Cx36 and P-Cx36, and the P-Cx36/Cx36 ratio, in the IPL. Subconjunctival 18-β-GA induced myopia in NV eyes and increased the myopic shifts in FD eyes, while reducing the amounts of Cx36 and P-Cx36 in both the IPL and OPL. Conclusions These results suggest that cell-cell coupling via GJs containing Cx36 (particularly those in the IPL) plays a role in emmetropization and form deprivation myopia (FDM) in mammals. Although both FD and 18-β-GA induced myopia, they had opposite effects on HC-HC coupling. These findings suggest that HC-HC coupling in the OPL might not play a significant role in emmetropization and myopia development.
Collapse
Affiliation(s)
- Zhina Zhi
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jing Xiang
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qian Fu
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiaomeng Pei
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Dengke Zhou
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Liqin Xie
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Sen Zhang
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Si Chen
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| |
Collapse
|
22
|
Temporal Contrast Sensitivity Increases despite Photoreceptor Degeneration in a Mouse Model of Retinitis Pigmentosa. eNeuro 2021; 8:ENEURO.0020-21.2021. [PMID: 33509952 PMCID: PMC8059883 DOI: 10.1523/eneuro.0020-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
The detection of temporal variations in amplitude of light intensity, or temporal contrast sensitivity (TCS), depends on the kinetics of rod photoresponse recovery. Uncharacteristically fast rod recovery kinetics are facets of both human patients and transgenic animal models with a P23H rhodopsin mutation, a prevalent cause of retinitis pigmentosa (RP). Here, we show that mice with this mutation (RhoP23H/+) exhibit an age-dependent and illumination-dependent enhancement in TCS compared with controls. At retinal illumination levels producing ≥1000 R*/rod/s or more, postnatal day 30 (P30) RhoP23H/+ mice exhibit a 1.2-fold to 2-fold increase in retinal and optomotor TCS relative to controls in response to flicker frequencies of 3, 6, and 12 Hz despite significant photoreceptor degeneration and loss of flash electroretinogram (ERG) b-wave amplitude. Surprisingly, the TCS of RhoP23H/+ mice further increases as degeneration advances. Enhanced TCS is also observed in a second model (rhodopsin heterozygous mice, Rho+/-) with fast rod recovery kinetics and no apparent retinal degeneration. In both mouse models, enhanced TCS is explained quantitatively by a comprehensive model that includes photoresponse recovery kinetics, density and collecting area of degenerating rods. Measurement of TCS may be a non-invasive early diagnostic tool indicative of rod dysfunction in some forms of retinal degenerative disease.
Collapse
|
23
|
Glycinergic Inhibition Targets Specific Off Cone Bipolar Cells in Primate Retina. eNeuro 2021; 8:ENEURO.0432-20.2020. [PMID: 33188005 PMCID: PMC7920536 DOI: 10.1523/eneuro.0432-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Adapting between scotopic and photopic illumination involves switching the routing of retinal signals between rod and cone-dominated circuits. In the daytime, cone signals pass through parallel On and Off cone bipolar cells (CBCs), that are sensitive to increments and decrements in luminance, respectively. At night, rod signals are routed into these cone-pathways via a key glycinergic interneuron, the AII amacrine cell (AII-AC). AII-ACs also provide On-pathway-driven crossover inhibition to Off-CBCs under photopic conditions. In primates, it is not known whether all Off-bipolar cell types receive functional inputs from AII-ACs. Here, we show that select Off-CBC types receive significantly higher levels of On-pathway-driven glycinergic input than others. The rise and decay kinetics of the glycinergic events are consistent with involvement of the α1 glycine receptor (GlyR) subunit, a result supported by a higher level of GLRA1 transcript in these cells. The Off-bipolar types that receive glycinergic input have sustained physiological properties and include the flat midget bipolar (FMB) cells, which provide excitatory input to the Off-midget ganglion cells (GCs; parvocellular pathway). Our results suggest that only a subset of Off-bipolar cells have the requisite receptors to respond to AII-AC input. Taken together with results in mouse retina, our findings suggest a conserved motif whereby signal output from AII-ACs is preferentially routed into sustained Off-bipolar signaling pathways.
Collapse
|
24
|
Abstract
A retina completely devoid of topographic variations would be homogenous, encoding any given feature uniformly across the visual field. In a naive view, such homogeneity would appear advantageous. However, it is now clear that retinal topographic variations exist across mammalian species in a variety of forms and patterns. We briefly review some of the more established topographic variations in retinas of different mammalian species and focus on the recent discovery that cells belonging to a single neuronal subtype may exhibit distinct topographic variations in distribution, morphology, and even function. We concentrate on the mouse retina-originally viewed as homogenous-in which genetic labeling of distinct neuronal subtypes and other advanced techniques have revealed unexpected anatomical and physiological topographic variations. Notably, different subtypes reveal different patterns of nonuniformity, which may even be opposite or orthogonal to one another. These topographic variations in the encoding of visual space should be considered when studying visual processing in the retina and beyond.
Collapse
Affiliation(s)
- Alina Sophie Heukamp
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| | - Rebekah Anne Warwick
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| | - Michal Rivlin-Etzion
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| |
Collapse
|
25
|
Geng KW, Du R, Wei N, Li CL, Wang Y, Sun W, Chen T, Wei DY, Yu Y, He T, Luo WJ, Wang RR, Chen ZF, Chen J. Image-Forming Visual Basis of Empathy for Pain in Mice. Neurosci Bull 2020; 36:1563-1569. [PMID: 32562164 DOI: 10.1007/s12264-020-00528-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kai-Wen Geng
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China.,Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-Yu Wei
- Center of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Wen-Jun Luo
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China. .,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China.
| |
Collapse
|
26
|
Soto F, Hsiang JC, Rajagopal R, Piggott K, Harocopos GJ, Couch SM, Custer P, Morgan JL, Kerschensteiner D. Efficient Coding by Midget and Parasol Ganglion Cells in the Human Retina. Neuron 2020; 107:656-666.e5. [PMID: 32533915 DOI: 10.1016/j.neuron.2020.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023]
Abstract
In humans, midget and parasol ganglion cells account for most of the input from the eyes to the brain. Yet, how they encode visual information is unknown. Here, we perform large-scale multi-electrode array recordings from retinas of treatment-naive patients who underwent enucleation surgery for choroidal malignant melanomas. We identify robust differences in the function of midget and parasol ganglion cells, consistent asymmetries between their ON and OFF types (that signal light increments and decrements, respectively) and divergence in the function of human versus non-human primate retinas. Our computational analyses reveal that the receptive fields of human midget and parasol ganglion cells divide naturalistic movies into adjacent spatiotemporal frequency domains with equal stimulus power, while the asymmetric response functions of their ON and OFF types simultaneously maximize stimulus coverage and information transmission and minimize metabolic cost. Thus, midget and parasol ganglion cells in the human retina efficiently encode our visual environment.
Collapse
Affiliation(s)
- Florentina Soto
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jen-Chun Hsiang
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rithwick Rajagopal
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kisha Piggott
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - George J Harocopos
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven M Couch
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Philip Custer
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Josh L Morgan
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
27
|
Park SJH, Lieberman EE, Ke JB, Rho N, Ghorbani P, Rahmani P, Jun NY, Lee HL, Kim IJ, Briggman KL, Demb JB, Singer JH. Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision. eLife 2020; 9:e56077. [PMID: 32412412 PMCID: PMC7228767 DOI: 10.7554/elife.56077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Night vision in mammals depends fundamentally on rod photoreceptors and the well-studied rod bipolar (RB) cell pathway. The central neuron in this pathway, the AII amacrine cell (AC), exhibits a spatially tuned receptive field, composed of an excitatory center and an inhibitory surround, that propagates to ganglion cells, the retina's projection neurons. The circuitry underlying the surround of the AII, however, remains unresolved. Here, we combined structural, functional and optogenetic analyses of the mouse retina to discover that surround inhibition of the AII depends primarily on a single interneuron type, the NOS-1 AC: a multistratified, axon-bearing GABAergic cell, with dendrites in both ON and OFF synaptic layers, but with a pure ON (depolarizing) response to light. Our study demonstrates generally that novel neural circuits can be identified from targeted connectomic analyses and specifically that the NOS-1 AC mediates long-range inhibition during night vision and is a major element of the RB pathway.
Collapse
Affiliation(s)
- Silvia JH Park
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Evan E Lieberman
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Jiang-Bin Ke
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Nao Rho
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Padideh Ghorbani
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Pouyan Rahmani
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Na Young Jun
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Hae-Lim Lee
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
| | - In-Jung Kim
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Joshua H Singer
- Department of Biology, University of MarylandCollege ParkUnited States
| |
Collapse
|
28
|
Reconstruction of natural visual scenes from neural spikes with deep neural networks. Neural Netw 2020; 125:19-30. [DOI: 10.1016/j.neunet.2020.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
|
29
|
Jimenez NT, Lines JW, Kueppers RB, Kofuji P, Wei H, Rankila A, Coyle JT, Miller RF, McLoon LK. Electroretinographic Abnormalities and Sex Differences Detected with Mesopic Adaptation in a Mouse Model of Schizophrenia: A and B Wave Analysis. Invest Ophthalmol Vis Sci 2020; 61:16. [PMID: 32053730 PMCID: PMC7326504 DOI: 10.1167/iovs.61.2.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/02/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose Mesopic flash electroretinography (fERG) as a tool to identify N-methyl-d-aspartate receptor (NMDAR) hypofunction in subjects with schizophrenia shows great potential. We report the first fERG study in a genetic mouse model of schizophrenia characterized by NMDAR hypofunction from gene silencing of serine racemase (SR) expression (SR-/-), an established risk gene for schizophrenia. We analyzed fERG parameters under various background light adaptations to determine the most significant variables to allow for early identification of people at risk for schizophrenia, prior to onset of psychosis. SR is a risk gene for schizophrenia, and negative and cognitive symptoms antedate the onset of psychosis that is required for diagnosis. Methods The scotopic, photopic, and mesopic fERGs were analyzed in male and female mice in both SR-/- and wild-type (WT) mice and also analyzed for sex differences. Amplitude and implicit time of the a- and b-wave components, b-/a-wave ratio, and Fourier transform analysis were analyzed. Results Mesopic a- and b-wave implicit times were significantly delayed, and b-wave amplitudes, b/a ratios, and Fourier transform were significantly decreased in the male SR-/- mice compared to WT, but not in female SR-/- mice. No significant differences were observed in photopic or scotopic fERGs between genotype. Conclusions The fERG prognostic capability may be improved by examination of background light adaptation, a larger array of light intensities, considering sex as a variable, and performing Fourier transform analyses of all waveforms. This should improve the ability to differentiate between controls and subjects with schizophrenia characterized by NMDAR hypofunction.
Collapse
Affiliation(s)
- Nathalia Torres Jimenez
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Justin W. Lines
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Rachel B. Kueppers
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Paulo Kofuji
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Henry Wei
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Amy Rankila
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Joseph T. Coyle
- Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts, United States
| | - Robert F. Miller
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Linda K. McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
30
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
31
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
32
|
Quinn PM, Wijnholds J. Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes (Basel) 2019; 10:E987. [PMID: 31795518 PMCID: PMC6947654 DOI: 10.3390/genes10120987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog (CRB)-based gene augmentation.
Collapse
Affiliation(s)
- Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
33
|
Rod Photoreceptors Signal Fast Changes in Daylight Levels Using a Cx36-Independent Retinal Pathway in Mouse. J Neurosci 2019; 40:796-810. [PMID: 31776212 DOI: 10.1523/jneurosci.0455-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Temporal contrast detected by rod photoreceptors is channeled into multiple retinal rod pathways that ultimately connect to cone photoreceptor pathways via Cx36 gap junctions or via chemical synapses. However, we do not yet understand how the different rod pathways contribute to the perception of temporal contrast (changes in luminance with time) at mesopic light levels, where both rods and cones actively respond to light. Here, we use a forced-choice, operant behavior assay to investigate rod-driven, temporal contrast sensitivity (TCS) in mice of either sex. Transgenic mice with desensitized cones (GNAT2 cpfl3 line) were used to identify rod contributions to TCS in mesopic lights. We found that at low mesopic lights (400 photons/s/μm2 at the retina), control and GNAT2 cpfl3 mice had similar TCS. Surprisingly, at upper mesopic lights (8000 photons/s/μm2), GNAT2 cpfl3 mice exhibited a relative reduction in TCS to low (<12 Hz) while maintaining normal TCS to high (12-36 Hz) temporal frequencies. The rod-driven responses to high temporal frequencies developed gradually over time (>30 min). Furthermore, the TCS of GNAT2 cpfl3 and GNAT2 cpfl3 ::Cx36-/- mice matched closely, indicating that transmission of high-frequency signals (1) does not require the rod-cone Cx36 gap junctions as has been proposed in the past; and (2) a Cx36-independent rod pathway(s) (e.g., direct rod to OFF cone bipolar cell synapses and/or glycinergic synapses from AII amacrine cells to OFF ganglion cells) is sufficient for fast, mesopic rod-driven vision. These findings extend our understanding of the link between visual circuits and perception in mouse.SIGNIFICANCE STATEMENT The contributions of specific retinal pathways to visual perception are not well understood. We found that the temporal processing properties of rod-driven vision in mice change significantly with light level. In dim lights, rods relay relatively slow temporal variations. However, in daylight conditions, rod pathways exhibit high sensitivity to fast but not to slow temporal variations, whereas cone-driven responses supplement the loss in rod-driven sensitivity to slow temporal variations. Our findings highlight the dynamic interplay of rod- and cone-driven vision as light levels rise from night to daytime levels. Furthermore, the fast, rod-driven signals do not require the rod-to-cone Cx36 gap junctions as proposed in the past, but rather, can be relayed by alternative Cx36-independent rod pathways.
Collapse
|
34
|
Thoreson WB, Dacey DM. Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiol Rev 2019; 99:1527-1573. [PMID: 31140374 PMCID: PMC6689740 DOI: 10.1152/physrev.00027.2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/13/2023] Open
Abstract
Synaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum. We review studies concerning the circuit mechanisms mediating opponent interactions in a range of species, from tetrachromatic fish with diverse color opponent cell types to common dichromatic mammals where cone opponency is restricted to a subset of specialized circuits. Distinct among mammals, primates have reinvented trichromatic color vision using novel strategies to incorporate evolution of an additional photopigment gene into the foveal structure and circuitry that supports high-resolution vision. Color vision is absent at scotopic light levels when only rods are active, but rods interact with cone signals to influence color perception at mesopic light levels. Recent evidence suggests melanopsin-mediated signals, which have been identified as a substrate for setting circadian rhythms, may also influence color perception. We consider circuits that may mediate these interactions. While cone opponency is a relatively simple neural computation, it has been implemented in vertebrates by diverse neural mechanisms that are not yet fully understood.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| | - Dennis M Dacey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| |
Collapse
|
35
|
Rod Photoresponse Kinetics Limit Temporal Contrast Sensitivity in Mesopic Vision. J Neurosci 2019; 39:3041-3056. [PMID: 30737308 DOI: 10.1523/jneurosci.1404-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
The mammalian visual system operates over an extended range of ambient light levels by switching between rod and cone photoreceptors. Rod-driven vision is sluggish, highly sensitive, and operates in dim or scotopic lights, whereas cone-driven vision is brisk, less sensitive, and operates in bright or photopic lights. At intermediate or mesopic lights, vision transitions seamlessly from rod-driven to cone-driven, despite the profound differences in rod and cone response dynamics. The neural mechanisms underlying such a smooth handoff are not understood. Using an operant behavior assay, electrophysiological recordings, and mathematical modeling we examined the neural underpinnings of the mesopic visual transition in mice of either sex. We found that rods, but not cones, drive visual sensitivity to temporal light variations over much of the mesopic range. Surprisingly, speeding up rod photoresponse recovery kinetics in transgenic mice improved visual sensitivity to slow temporal variations, in the range where perceptual sensitivity is governed by Weber's law of sensation. In contrast, physiological processes acting downstream from phototransduction limit sensitivity to high frequencies and temporal resolution. We traced the paradoxical control of visual temporal sensitivity to rod photoresponses themselves. A scenario emerges where perceptual sensitivity is limited by: (1) the kinetics of neural processes acting downstream from phototransduction in scotopic lights, (2) rod response kinetics in mesopic lights, and (3) cone response kinetics as light levels rise into the photopic range.SIGNIFICANCE STATEMENT Our ability to detect flickering lights is constrained by the dynamics of the slowest step in the visual pathway. Cone photoresponse kinetics limit visual temporal sensitivity in bright (photopic) lights, whereas mechanisms in the inner retina limit sensitivity in dim (scotopic) lights. The neural mechanisms underlying the transition between scotopic and photopic vision in mesopic lights, when both rods are cones are active, are unknown. This study provides a missing link in this mechanism by establishing that rod photoresponse kinetics limit temporal sensitivity during the mesopic transition. Surprisingly, this range is where Weber's Law of Sensation governs temporal contrast sensitivity in mouse. Our results will help guide future studies of complex and dynamic interactions between rod-cone signals in the mesopic retina.
Collapse
|
36
|
Barrionuevo PA, McAnany JJ, Zele AJ, Cao D. Non-linearities in the Rod and Cone Photoreceptor Inputs to the Afferent Pupil Light Response. Front Neurol 2018; 9:1140. [PMID: 30622511 PMCID: PMC6308191 DOI: 10.3389/fneur.2018.01140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
Purpose: To assess the nature and extent of non-linear processes in pupil responses using rod- and cone-isolating visual beat stimuli. Methods: A four-primary photostimulating method based on the principle of silent substitution was implemented to generate rod or cone isolating and combined sinusoidal stimuli at a single component frequency (1, 4, 5, 8, or 9 Hz) or a 1 Hz beat frequency (frequency pairs: 4 + 5, 8 + 9 Hz). The component frequencies were chosen to minimize the melanopsin photoresponse of intrinsically photosensitive retinal ganglion cells (ipRGCs) such that the pupil response was primarily driven by outer retinal photoreceptor inputs. Full-field (Ganzfeld) pupil responses and electroretinograms (ERGs) were recorded to the same stimuli at two mesopic light levels (−0.9 and 0 log cd/m2). Fourier analysis was used to derive the amplitudes and phases of the pupil and ERG responses. Results: For the beat frequency condition, when modulation was restricted to the same photoreceptor type at the higher mesopic level (0 log cd/m2), there was a pronounced pupil response to the 1 Hz beat frequency with the 4 + 5 Hz frequency pair and rare beat responses for the 8 + 9 Hz frequency pair. At the lower mesopic level there were few and inconsistent beat responses. When one component modulated the rod excitation and the other component modulated the cone excitation, responses to the beat frequency were rare and lower than the 1 Hz component frequency condition responses. These results were confirmed by ERG recordings. Conclusions: There is non-linearity in both the pupil response and electroretinogram to rod and cone inputs at mesopic light levels. The presence of a beat response for modulation components restricted to a single photoreceptor type, but not for components with cross-photoreceptor types, indicates that the location of a non-linear process in the pupil pathway occurs at a retinal site earlier than where the rod and cone signals are combined, that is, at the photoreceptor level.
Collapse
Affiliation(s)
- Pablo Alejandro Barrionuevo
- Instituto de Investigación en Luz, Ambiente y Visión, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - J Jason McAnany
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrew J Zele
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|