1
|
Li XM, Jenke H, Strauss S, Wang Y, Bhatia N, Kierzkowski D, Lymbouridou R, Huijser P, Smith RS, Runions A, Tsiantis M. Age-associated growth control modifies leaf proximodistal symmetry and enabled leaf shape diversification. Curr Biol 2024; 34:4547-4558.e9. [PMID: 39216485 DOI: 10.1016/j.cub.2024.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Biological shape diversity is often manifested in modulation of organ symmetry and modification of the patterned elaboration of repeated shape elements.1,2,3,4,5 Whether and how these two aspects of shape determination are coordinately regulated is unclear.5,6,7 Plant leaves provide an attractive system to investigate this problem, because they often show asymmetries along the proximodistal (PD) axis of their blades, along which they can also produce repeated marginal outgrowths such as serrations or leaflets.1 One aspect of leaf shape diversity is heteroblasty, where the leaf form in a single genotype is modified with progressive plant age.8,9,10,11 In Arabidopsis thaliana, a plant with simple leaves, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9) controls heteroblasty by activating CyclinD3 expression, thereby sustaining proliferative growth and retarding differentiation in adult leaves.12,13 However, the precise significance of SPL9 action for leaf symmetry and marginal patterning is unknown. By combining genetics, quantitative shape analyses, and time-lapse imaging, we show that PD symmetry of the leaf blade in A. thaliana decreases in response to an age-dependent SPL9 expression gradient, and that SPL9 action coordinately regulates the distribution and shape of marginal serrations and overall leaf form. Using comparative analyses, we demonstrate that heteroblastic growth reprogramming in Cardamine hirsuta, a complex-leafed relative of A. thaliana, also involves prolonging the duration of cell proliferation and delaying differentiation. We further provide evidence that SPL9 enables species-specific action of homeobox genes that promote leaf complexity. In conclusion, we identified an age-dependent layer of organ PD growth regulation that modulates leaf symmetry and has enabled leaf shape diversification.
Collapse
Affiliation(s)
- Xin-Min Li
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Hannah Jenke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Yi Wang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
2
|
Guerra S, Castiello U, Bonato B, Dadda M. Handedness in Animals and Plants. BIOLOGY 2024; 13:502. [PMID: 39015821 PMCID: PMC7616222 DOI: 10.3390/biology13070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Structural and functional asymmetries are traceable in every form of life, and some lateralities are homologous. Functionally speaking, the division of labour between the two halves of the brain is a basic characteristic of the nervous system that arose even before the appearance of vertebrates. The most well-known expression of this specialisation in humans is hand dominance, also known as handedness. Even if hand/limb/paw dominance is far more commonly associated with the presence of a nervous system, it is also observed in its own form in aneural organisms, such as plants. To date, little is known regarding the possible functional significance of this dominance in plants, and many questions remain open (among them, whether it reflects a generalised behavioural asymmetry). Here, we propose a comparative approach to the study of handedness, including plants, by taking advantage of the experimental models and paradigms already used to study laterality in humans and various animal species. By taking this approach, we aim to enrich our knowledge of the concept of handedness across natural kingdoms.
Collapse
Affiliation(s)
- Silvia Guerra
- Department of General Psychology (DPG), University of Padova, 35131 Padova, Italy; (U.C.); (B.B.); (M.D.)
| | | | | | | |
Collapse
|
3
|
Wang J, Tu Z, Wang M, Zhang Y, Hu Q, Li H. Genome-wide identification of GROWTH-REGULATING FACTORs in Liriodendron chinense and functional characterization of LcGRF2 in leaf size regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108204. [PMID: 38043251 DOI: 10.1016/j.plaphy.2023.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
GROWTH-REGULATING FACTORs (GRFs) play a pivotal role in the regulation of leaf size in plants and have been widely reported in plants. However, their specific functions in leaf size regulation in Liriodendron chinense remains unclear. Therefore, in this study, we identified GRF genes on a genome-wide scale in L. chinense to characterize the roles of LcGRFs in regulating leaf size. A total of nine LcGRF genes were identified, and these genes exhibited weak expression in mature leaves but strong expression in shoot apex. Notably, LcGRF2 exhibited the highest expression level in the shoot apex of L. chinense. Further RT-qPCR assay revealed that the expression level of LcGRF2 gradually decreased along with the leaf development process, and also displayed a gradient along the leaf proximo-distal and medio-lateral axes. Furthermore, overexpression of LcGRF2 in Arabidopsis thaliana resulted in increased leaf size, and significantly up-regulated the expression of genes involved in cell division like AtCYCD3;1, AtKNOLLE, and AtCYCB1;1, indicating that LcGRF2 may influence leaf size by promoting cell proliferation. This work contributes to a better understanding of the roles and molecular mechanisms of LcGRFs in the regulation of leaf size in L. chinense.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Minxin Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Qinghua Hu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Fujiwara M, Imamura M, Matsushita K, Roszak P, Yamashino T, Hosokawa Y, Nakajima K, Fujimoto K, Miyashima S. Patterned proliferation orients tissue-wide stress to control root vascular symmetry in Arabidopsis. Curr Biol 2023; 33:886-898.e8. [PMID: 36787744 DOI: 10.1016/j.cub.2023.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/24/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Symmetric tissue alignment is pivotal to the functions of plant vascular tissue, such as long-distance molecular transport and lateral organ formation. During the vascular development of the Arabidopsis roots, cytokinins initially determine cell-type boundaries among vascular stem cells and subsequently promote cell proliferation to establish vascular tissue symmetry. Although it is unknown whether and how the symmetry of initially defined boundaries is progressively refined under tissue growth in plants, such boundary shapes in animal tissues are regulated by cell fluidity, e.g., cell migration and intercalation, lacking in plant tissues. Here, we uncover that cell proliferation during vascular development produces anisotropic compressive stress, smoothing, and symmetrizing cell arrangement of the vascular-cell-type boundary. Mechanistically, the GATA transcription factor HANABA-TARANU cooperates with the type-B Arabidopsis response regulators to form an incoherent feedforward loop in cytokinin signaling. The incoherent feedforward loop fine-tunes the position and frequency of vascular cell proliferation, which in turn restricts the source of mechanical stress to the position distal and symmetric to the boundary. By combinatorial analyses of mechanical simulations and laser cell ablation, we show that the spatially constrained environment of vascular tissue efficiently entrains the stress orientation among the cells to produce a tissue-wide stress field. Together, our data indicate that the localized proliferation regulated by the cytokinin signaling circuit is decoded into a globally oriented mechanical stress to shape the vascular tissue symmetry, representing a reasonable mechanism controlling the boundary alignment and symmetry in tissue lacking cell fluidity.
Collapse
Affiliation(s)
- Motohiro Fujiwara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Miyu Imamura
- Laboratory of Molecular and Functional Genomics, Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Katsuyoshi Matsushita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Pawel Roszak
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki 00014, Helsinki, Finland
| | - Takafumi Yamashino
- Laboratory of Molecular and Functional Genomics, Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoichiroh Hosokawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan.
| | - Shunsuke Miyashima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
5
|
Floral symmetry: the geometry of plant reproduction. Emerg Top Life Sci 2022; 6:259-269. [PMID: 35994008 PMCID: PMC9472818 DOI: 10.1042/etls20210270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/23/2022]
Abstract
The flower is an astonishing innovation that arose during plant evolution allowing flowering plants — also known as angiosperms — to dominate life on earth in a relatively short period of geological time. Flowers are formed from secondary meristems by co-ordinated differentiation of flower organs, such as sepals, petals, stamens, and carpels. The position, number and morphology of these flower organs impose a geometrical pattern — or symmetry type — within the flower which is a trait tightly connected to successful reproduction. During evolution, flower symmetry switched from the ancestral poly-symmetric (radial symmetry) to the mono-symmetric (bilateral symmetry) type multiple times, including numerous reversals, with these events linked to co-evolution with pollinators and reproductive strategies. In this review, we introduce the diversity of flower symmetry, trace its evolution in angiosperms, and highlight the conserved genetic basis underpinning symmetry control in flowers. Finally, we discuss the importance of building upon the concept of flower symmetry by looking at the mechanisms orchestrating symmetry within individual flower organs and summarise the current scenario on symmetry patterning of the female reproductive organ, the gynoecium, the ultimate flower structure presiding over fertilisation and seed production.
Collapse
|
6
|
Luo L, Ando S, Sakamoto Y, Suzuki T, Takahashi H, Ishibashi N, Kojima S, Kurihara D, Higashiyama T, Yamamoto KT, Matsunaga S, Machida C, Sasabe M, Machida Y. The formation of perinucleolar bodies is important for normal leaf development and requires the zinc-finger DNA-binding motif in Arabidopsis ASYMMETRIC LEAVES2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1118-1134. [PMID: 31639235 PMCID: PMC7155070 DOI: 10.1111/tpj.14579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, the ASYMMETRIC LEAVES2 (AS2) protein plays a key role in the formation of flat symmetric leaves via direct repression of the abaxial gene ETT/ARF3. AS2 encodes a plant-specific nuclear protein that contains the AS2/LOB domain, which includes a zinc-finger (ZF) motif that is conserved in the AS2/LOB family. We have shown that AS2 binds to the coding DNA of ETT/ARF3, which requires the ZF motif. AS2 is co-localized with AS1 in perinucleolar bodies (AS2 bodies). To identify the amino acid signals in AS2 required for formation of AS2 bodies and function(s) in leaf formation, we constructed recombinant DNAs that encoded mutant AS2 proteins fused to yellow fluorescent protein. We examined the subcellular localization of these proteins in cells of cotyledons and leaf primordia of transgenic plants and cultured cells. The amino acid signals essential for formation of AS2 bodies were located within and adjacent to the ZF motif. Mutant AS2 that failed to form AS2 bodies also failed to rescue the as2-1 mutation. Our results suggest the importance of the formation of AS2 bodies and the nature of interactions of AS2 with its target DNA and nucleolar factors including NUCLEOLIN1. The partial overlap of AS2 bodies with perinucleolar chromocenters with condensed ribosomal RNA genes implies a correlation between AS2 bodies and the chromatin state. Patterns of AS2 bodies in cells during interphase and mitosis in leaf primordia were distinct from those in cultured cells, suggesting that the formation and distribution of AS2 bodies are developmentally modulated in plants.
Collapse
Affiliation(s)
- Lilan Luo
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Present address:
Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Sayuri Ando
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Yuki Sakamoto
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChiba278‐8510Japan
- Department of Biological SciencesGraduate School of ScienceOsaka University1‐1 Machikaneyama‐choToyonakaOsaka560‐0043Japan
| | - Takanori Suzuki
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Central Research InstituteIshihara Sangyo Kaisha, Ltd.2‐3‐1 Nishi‐ShibukawaKusatsuShiga525‐0025Japan
| | - Hiro Takahashi
- Graduate School of Medical SciencesKanazawa UniversityKakuma‐machiKanazawaIshikawa920‐1192Japan
| | - Nanako Ishibashi
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
| | - Shoko Kojima
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Daisuke Kurihara
- JST, PRESTOFuro‐cho, Chikusa‐kuNagoyaAichi464‐8601Japan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityFuro‐cho, Chiku00sa‐kuNagoyaAichi464‐8601Japan
| | - Tetsuya Higashiyama
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityFuro‐cho, Chiku00sa‐kuNagoyaAichi464‐8601Japan
- Department of Biological SciencesGraduate School of ScienceUniversity of Tokyo7‐3‐1 Hongo, Bukyo‐kuTokyo113‐0033Japan
| | - Kotaro T. Yamamoto
- Division of Biological SciencesFaculty of ScienceHokkaido UniversitySapporo060‐0810Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChiba278‐8510Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Michiko Sasabe
- Department of BiologyFaculty of Agriculture and Life ScienceHirosaki University3 Bunkyo‐choHirosaki036‐8561Japan
| | - Yasunori Machida
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
| |
Collapse
|
7
|
Luong TQ, Keta S, Asai T, Kojima S, Nakagawa A, Micol JL, Xia S, Machida Y, Machida C. A genetic link between epigenetic repressor AS1-AS2 and DNA replication factors in establishment of adaxial-abaxial leaf polarity of Arabidopsis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:39-49. [PMID: 31275036 PMCID: PMC6543732 DOI: 10.5511/plantbiotechnology.18.0129b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 05/27/2023]
Abstract
Balanced development of adaxial and abaxial domains in leaf primordia is critical for the formation of flat symmetric leaf lamina. Arabidopsis ASYMMETRIC LEAVES1 (AS1) and AS2 proteins form a complex (AS1-AS2), which acts as key regulators for the adaxial development by the direct repression of expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). Many modifier mutations have been identified, which enhance the defect of as1 and as2 mutations to generate abaxialized filamentous leaves without adaxial traits, suggesting that the development of the adaxial domain is achieved by cooperative repression by AS1-AS2 and the wild-type proteins corresponding to the modifiers. Mutations of several genes for DNA replication-related chromatin remodeling factors such as Chromatin Assembly Factor-1 (CAF-1) have been also identified as modifiers. It is still unknown, however, whether mutations in genes involved in DNA replication themselves might act as modifiers. Here we report that as1 and as2 mutants grown in the presence of hydroxyurea, a known inhibitor of DNA replication, form abaxialized filamentous leaves in a concentration-dependent manner. We further show that a mutation of the INCURVATA2 (ICU2) gene, which encodes the putative catalytic subunit of DNA polymerase α, and a mutation of the Replication Factor C Subunit3 (RFC3) gene, which encodes a protein used in replication as a clamp loader, act as modifiers. In addition, as2-1 icu2-1 double mutants showed increased mRNA levels of the genes for leaf abaxialization. These results suggest a tight link between DNA replication and the function of AS1-AS2 in the development of flat leaves.
Collapse
Affiliation(s)
- Toan Quy Luong
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Sumie Keta
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Toshiharu Asai
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Ayami Nakagawa
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth and Development, Hunan Agricultural University, Changsha 410128, China
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
8
|
Wilson-Sánchez D, Martínez-López S, Navarro-Cartagena S, Jover-Gil S, Micol JL. Members of the DEAL subfamily of the DUF1218 gene family are required for bilateral symmetry but not for dorsoventrality in Arabidopsis leaves. THE NEW PHYTOLOGIST 2018; 217:1307-1321. [PMID: 29139551 DOI: 10.1111/nph.14898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Most plant leaves exhibit bilateral symmetry, which has been hypothesized as an inevitable consequence of the existence of the proximodistal and dorsoventral axes. No gene has been described that affects leaf bilateral symmetry but not dorsoventrality in Arabidopsis thaliana. We screened for viable insertional mutations that affect leaf morphology, and out of more than 700 mutants found only one, desigual1-1 (deal1-1), that exhibited bilateral symmetry breaking but no obvious defects in dorsoventrality. We found that deal1-1 is an allele of VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC). Several overlapping regulatory pathways establish the interspersed lobes and indentations along the margin of Arabidopsis thaliana leaves. These pathways involve feedback loops of auxin, the PIN-FORMED1 (PIN1) auxin efflux carrier, and the CUP-SHAPED COTYLEDON2 (CUC2) transcriptional regulator. Early vcc (deal1) leaf primordia fail to acquire bilateral symmetry and instead form ectopic lobes and sinuses. The vcc leaves show aberrant recruitment of marginal cells expressing properly polarized PIN1, resulting in misplaced auxin maxima. Normal PIN1 polarization requires CUC2 expression and CUC2 genetically interacts with VCC; VCC also affects CUC2 expression. VCC has a domain of unknown function, DUF1218, and localizes to the endoplasmic reticulum membrane. VCC acts partially redundantly with its two closest paralogs, DEAL2 and DEAL3, in early leaf margin patterning and is required for bilateral symmetry, but its loss of function does not visibly affect dorsoventrality.
Collapse
Affiliation(s)
- David Wilson-Sánchez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - Sebastián Martínez-López
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| |
Collapse
|
9
|
Testing the influence of gravity on flower symmetry in five Saxifraga species. Naturwissenschaften 2017; 104:37. [DOI: 10.1007/s00114-017-1458-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
10
|
Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:655-71. [PMID: 26108442 PMCID: PMC4744985 DOI: 10.1002/wdev.196] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/23/2015] [Accepted: 05/12/2015] [Indexed: 01/17/2023]
Abstract
Leaf primordia are born around meristem‐containing stem cells at shoot apices, grow along three axes (proximal–distal, adaxial–abaxial, medial–lateral), and develop into flat symmetric leaves with adaxial–abaxial polarity. Axis development and polarity specification of Arabidopsis leaves require a network of genes for transcription factor‐like proteins and small RNAs. Here, we summarize present understandings of adaxial‐specific genes, ASYMMETRIC LEAVES1 (AS1) and AS2. Their complex (AS1–AS2) functions in the regulation of the proximal–distal leaf length by directly repressing class 1 KNOX homeobox genes (BP, KNAT2) that are expressed in the meristem periphery below leaf primordia. Adaxial–abaxial polarity specification involves antagonistic interaction of adaxial and abaxial genes including AS1 and AS2 for the development of two respective domains. AS1–AS2 directly represses the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3) and indirectly represses ETT/ARF3 and ARF4 through tasiR‐ARF. Modifier mutations have been identified that abolish adaxialization and enhance the defect in the proximal–distal patterning in as1 and as2. AS1–AS2 and its modifiers synergistically repress both ARFs and class 1 KNOXs. Repression of ARFs is critical for establishing adaxial–abaxial polarity. On the other hand, abaxial factors KANADI1 (KAN1) and KAN2 directly repress AS2 expression. These data delineate a molecular framework for antagonistic gene interactions among adaxial factors, AS1, AS2, and their modifiers, and the abaxial factors ARFs as key regulators in the establishment of adaxial–abaxial polarity. Possible AS1–AS2 epigenetic repression and activities downstream of ARFs are discussed. WIREs Dev Biol 2015, 4:655–671. doi: 10.1002/wdev.196 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Ayami Nakagawa
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | | |
Collapse
|
11
|
Muñoz-Nortes T, Wilson-Sánchez D, Candela H, Micol JL. Symmetry, asymmetry, and the cell cycle in plants: known knowns and some known unknowns. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2645-55. [PMID: 24474806 DOI: 10.1093/jxb/ert476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The body architectures of most multicellular organisms consistently display both symmetry and asymmetry. Here, we discuss some of the available knowledge and open questions on how symmetry and asymmetry appear in several conspicuous plant cells and tissues. We focus, where possible, on the role of genes that participate in the maintenance or the breaking of symmetry and that are directly or indirectly related to the cell cycle, under an organ-centric point of view and with an emphasis on the leaf.
Collapse
Affiliation(s)
- Tamara Muñoz-Nortes
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - David Wilson-Sánchez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
12
|
Iwasaki M, Takahashi H, Iwakawa H, Nakagawa A, Ishikawa T, Tanaka H, Matsumura Y, Pekker I, Eshed Y, Vial-Pradel S, Ito T, Watanabe Y, Ueno Y, Fukazawa H, Kojima S, Machida Y, Machida C. Dual regulation of ETTIN (ARF3) gene expression by AS1-AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial-abaxial partitioning in Arabidopsis. Development 2013; 140:1958-69. [PMID: 23571218 DOI: 10.1242/dev.085365] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leaf primordia are generated at the periphery of the shoot apex, developing into flat symmetric organs with adaxial-abaxial polarity, in which the indeterminate state is repressed. Despite the crucial role of the ASYMMETRIC LEAVES1 (AS1)-AS2 nuclear-protein complex in leaf adaxial-abaxial polarity specification, information on mechanisms controlling their downstream genes has remained elusive. We systematically analyzed transcripts by microarray and chromatin immunoprecipitation assays and performed genetic rescue of as1 and as2 phenotypic abnormalities, which identified a new target gene, ETTIN (ETT)/AUXIN RESPONSE FACTOR3 (ARF3), which encodes an abaxial factor acting downstream of the AS1-AS2 complex. While the AS1-AS2 complex represses ETT by direct binding of AS1 to the ETT promoter, it also indirectly activates miR390- and RDR6-dependent post-transcriptional gene silencing to negatively regulate both ETT and ARF4 activities. Furthermore, AS1-AS2 maintains the status of DNA methylation in the ETT coding region. In agreement, filamentous leaves formed in as1 and as2 plants treated with a DNA methylation inhibitor were rescued by loss of ETT and ARF4 activities. We suggest that negative transcriptional, post-transcriptional and epigenetic regulation of the ARFs by AS1-AS2 is important for stabilizing early leaf partitioning into abaxial and adaxial domains.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Luo L, Ando S, Sasabe M, Machida C, Kurihara D, Higashiyama T, Machida Y. Arabidopsis ASYMMETRIC LEAVES2 protein required for leaf morphogenesis consistently forms speckles during mitosis of tobacco BY-2 cells via signals in its specific sequence. JOURNAL OF PLANT RESEARCH 2012; 125:661-8. [PMID: 22351044 PMCID: PMC3428529 DOI: 10.1007/s10265-012-0479-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/23/2012] [Indexed: 05/05/2023]
Abstract
Leaf primordia with high division and developmental competencies are generated around the periphery of stem cells at the shoot apex. Arabidopsis ASYMMETRIC-LEAVES2 (AS2) protein plays a key role in the regulation of many genes responsible for flat symmetric leaf formation. The AS2 gene, expressed in leaf primordia, encodes a plant-specific nuclear protein containing an AS2/LOB domain with cysteine repeats (C-motif). AS2 proteins are present in speckles in and around the nucleoli, and in the nucleoplasm of some leaf epidermal cells. We used the tobacco cultured cell line BY-2 expressing the AS2-fused yellow fluorescent protein to examine subnuclear localization of AS2 in dividing cells. AS2 mainly localized to speckles (designated AS2 bodies) in cells undergoing mitosis and distributed in a pairwise manner during the separation of sets of daughter chromosomes. Few interphase cells contained AS2 bodies. Deletion analyses showed that a short stretch of the AS2 amino-terminal sequence and the C-motif play negative and positive roles, respectively, in localizing AS2 to the bodies. These results suggest that AS2 bodies function to properly distribute AS2 to daughter cells during cell division in leaf primordia; and this process is controlled at least partially by signals encoded by the AS2 sequence itself.
Collapse
Affiliation(s)
- Lilan Luo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Sayuri Ando
- Graduate school of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Michiko Sasabe
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Chiyoko Machida
- Graduate school of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Daisuke Kurihara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| |
Collapse
|
14
|
Nakagawa A, Takahashi H, Kojima S, Sato N, Ohga K, Cha BY, Woo JT, Nagai K, Horiguchi G, Tsukaya H, Machida Y, Machida C. Berberine enhances defects in the establishment of leaf polarity in asymmetric leaves1 and asymmetric leaves2 of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2012; 79:569-81. [PMID: 22684430 PMCID: PMC3402677 DOI: 10.1007/s11103-012-9929-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 05/13/2012] [Indexed: 05/09/2023]
Abstract
Leaves develop as flat lateral organs from the indeterminate shoot apical meristem. The establishment of polarity along three-dimensional axes, proximal-distal, medial-lateral, and adaxial-abaxial axes, is crucial for the growth of normal leaves. The mutations of ASYMMETRIC LEAVES1 (AS1) and AS2 of Arabidopsis thaliana cause defects in repression of the indeterminate state and the establishment of axis formation in leaves. Although many mutations have been identified that enhance the adaxial-abaxial polarity defects of as1 and as2 mutants, the roles of the causative genes in leaf development are still unknown. In this study, we found that wild-type plants treated with berberine produced pointed leaves, which are often observed in the single mutants that enhance phenotypes of as1 and as2 mutants. The berberine-treated as1 and as2 mutants formed abaxialized filamentous leaves. Berberine, an isoquinoline alkaloid compound naturally produced in various plant sources, has a growth inhibitory effect on plants that do not produce berberine. We further showed that transcript levels of meristem-specific class 1 KNOX homeobox genes and abaxial determinant genes were increased in berberine-treated as1 and as2. Berberine treated plants carrying double mutations of AS2 and the large subunit ribosomal protein gene RPL5B showed more severe defects in polarity than did the as2 single mutant plants. We suggest that berberine inhibits (a) factor(s) that might be required for leaf adaxial cell differentiation through a pathway independent of AS1 and AS2. Multiple pathways might play important roles in the formation of flat symmetric leaves.
Collapse
Affiliation(s)
- Ayami Nakagawa
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Hiro Takahashi
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Shoko Kojima
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Nobuo Sato
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Kazuomi Ohga
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Byung Yoon Cha
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Je-Tae Woo
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Kazuo Nagai
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501 Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasunori Machida
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
| | - Chiyoko Machida
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| |
Collapse
|
15
|
ASYMMETRIC LEAVES2 gene, a member of LOB/AS2 family of Arabidopsis thaliana, causes an abaxializing leaves in transgenic cockscomb. Mol Biol Rep 2011; 39:4927-35. [PMID: 22143880 DOI: 10.1007/s11033-011-1288-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 11/30/2011] [Indexed: 10/15/2022]
Abstract
The leaf primordium derives from the peripheral zone of shoot apical meristem. During the formation of leaf primordia, they need to establish the proximodistal, mediolateral, and ab/adaxial axes. Among these axes, the ab/adaxial axis might be the most important. ASYMMETRIC LEAVES2 (AS2) gene is a member of AS2/LATERAL ORGAN BOUNDARY (LOB) family of Arabidopsis thaliana. In this work, we transformed 35S:AS2 transgene constructs to cockscomb (Celosia cristata) via Agrobacterium tumefaciens. All primary transformants subsequently obtained were placed into phenotypic categories and self-pollinated. As a whole, a total of 44 T1 35S:AS2 cockscomb plants obtained were grouped into two major categories: (I) slightly wrinkled leaves (28/44), (II) extremely curved leaves (16/44), on the basis of their leaf phenotypes. Furthermore, we characterized the anatomical features of these malformed leaves; and found the transformation of adaxial cell types into abaxial cell ones. A series of data suggest that AS2 might be involved in the determination of abaxial polarity in cockscomb plants. However, a few research teams have reported that AS2 might be involved in the determination of adaxial polarity in leaf primodia of Arabidopsis thaliana. These data above indicate that the roles of the same ab/adaxial determinant might differ between distinct species. At last, the different function of AS2 in distinct species was discussed.
Collapse
|
16
|
Kojima S, Iwasaki M, Takahashi H, Imai T, Matsumura Y, Fleury D, Van Lijsebettens M, Machida Y, Machida C. Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2011; 52:1259-73. [PMID: 21700721 DOI: 10.1093/pcp/pcr083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Leaf primordia are generated around the shoot apical meristem. Mutation of the ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana results in defects in repression of the meristematic and indeterminate state, establishment of adaxial-abaxial polarity and left-right symmetry in leaves. AS2 represses transcription of meristem-specific class 1 KNOX homeobox genes and of the abaxial-determinant genes ETTIN/ARF3, KANADI2 and YABBY5. To clarify the role of AS2 in the establishment of leaf polarity, we isolated mutations that enhanced the polarity defects associated with as2. We describe here the enhancer-of-asymmetric-leaves-two1 (east1) mutation, which caused the formation of filamentous leaves with abaxialized epidermis on the as2-1 background. Levels of transcripts of class 1 KNOX and abaxial-determinant genes were markedly higher in as2-1 east1-1 mutant plants than in the wild-type and corresponding single-mutant plants. EAST1 encodes the histone acetyltransferase ELONGATA3 (ELO3), a component of the Elongator complex. Genetic analysis, using mutations in genes involved in the biogenesis of a trans-acting small interfering RNA (ta-siRNA), revealed that ELO3 mediated establishment of leaf polarity independently of AS2 and the ta-siRNA-related pathway. Treatment with an inhibitor of histone deacetylases (HDACs) caused additive polarity defects in as2-1 east1-1 mutant plants, suggesting the operation of an ELO3 pathway, independent of the HDAC pathway, in the determination of polarity. We propose that multiple pathways play important roles in repression of the expression of class 1 KNOX and abaxial-determinant genes in the development of the adaxial domain of leaves and, thus, in the establishment of leaf polarity.
Collapse
Affiliation(s)
- Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
CONTENTS Summary 319 I. Introduction 320 II. The cell biology and biophysics of growth 320 III. Timing is everything: what determines when proliferation gives way to expansion? 323 IV. Anisotropic growth and the importance of polarity 325 V. How does organ identity and developmental patterning modulate growth behaviour? 326 VI. Coordination of growth at different scales 327 VII. Conclusions 329 Acknowledgements 329 References 330 SUMMARY The growth of plant organs is under genetic control. Work in model species has identified a considerable number of genes that regulate different aspects of organ growth. This has led to an increasingly detailed knowledge about how the basic cellular processes underlying organ growth are controlled, and which factors determine when proliferation gives way to expansion, with this transition emerging as a critical decision point during primordium growth. Progress has been made in elucidating the genetic basis of allometric growth and the role of tissue polarity in shaping organs. We are also beginning to understand how the mechanisms that determine organ identity influence local growth behaviour to generate organs with characteristic sizes and shapes. Lastly, growth needs to be coordinated at several levels, for example between different cell layers and different regions within one organ, and the genetic basis for such coordination is being elucidated. However, despite these impressive advances, a number of basic questions are still not fully answered, for example, whether and how a growing primordium keeps track of its size. Answering these questions will likely depend on including additional approaches that are gaining in power and popularity, such as combined live imaging and modelling.
Collapse
Affiliation(s)
- Kim Johnson
- Cell & Developmental Biology Department, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
18
|
Wang L, Gu X, Xu D, Wang W, Wang H, Zeng M, Chang Z, Huang H, Cui X. miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:761-73. [PMID: 21036927 PMCID: PMC3003814 DOI: 10.1093/jxb/erq307] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/12/2010] [Accepted: 09/13/2010] [Indexed: 05/06/2023]
Abstract
In plants, cell proliferation and polarized cell differentiation along the adaxial-abaxial axis in the primordium is critical for leaf morphogenesis, while the temporal-spatial relationships between these two processes remain largely unexplored. Here, it is reported that microRNA396 (miR396)-targeted Arabidopsis growth-regulating factors (AtGRFs) are required for leaf adaxial-abaxial polarity in Arabidopsis. Reduction of the expression of AtGRF genes by transgenic miR396 overexpression in leaf polarity mutants asymmetric leaves1 (as1) and as2 resulted in plants with enhanced leaf adaxial-abaxial defects, as a consequence of reduced cell proliferation. Moreover, transgenic miR396 overexpression markedly decreased the cell division activity and the expression of cell cycle-related genes, but resulted in an increased percentage of leaf cells with a higher ploidy level, indicating that miR396 negatively regulates cell proliferation by controlling entry into the mitotic cell cycle. miR396 is mainly expressed in the leaf cells arrested for cell division, coinciding with its roles in cell cycle regulation. These results together suggest that cell division activity mediated by miR396-targeted AtGRFs is important for polarized cell differentiation along the adaxial-abaxial axis during leaf morphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Li Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaolu Gu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Wei Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hua Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Minhuan Zeng
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Zhaoyang Chang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Xiaofeng Cui
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
19
|
Woodward JB, Abeydeera ND, Paul D, Phillips K, Rapala-Kozik M, Freeling M, Begley TP, Ealick SE, McSteen P, Scanlon MJ. A maize thiamine auxotroph is defective in shoot meristem maintenance. THE PLANT CELL 2010; 22:3305-17. [PMID: 20971897 PMCID: PMC2990124 DOI: 10.1105/tpc.110.077776] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/27/2010] [Accepted: 09/25/2010] [Indexed: 05/18/2023]
Abstract
Plant shoots undergo organogenesis throughout their life cycle via the perpetuation of stem cell pools called shoot apical meristems (SAMs). SAM maintenance requires the coordinated equilibrium between stem cell division and differentiation and is regulated by integrated networks of gene expression, hormonal signaling, and metabolite sensing. Here, we show that the maize (Zea mays) mutant bladekiller1-R (blk1-R) is defective in leaf blade development and meristem maintenance and exhibits a progressive reduction in SAM size that results in premature shoot abortion. Molecular markers for stem cell maintenance and organ initiation reveal that both of these meristematic functions are progressively compromised in blk1-R mutants, especially in the inflorescence and floral meristems. Positional cloning of blk1-R identified a predicted missense mutation in a highly conserved amino acid encoded by thiamine biosynthesis2 (thi2). Consistent with chromosome dosage studies suggesting that blk1-R is a null mutation, biochemical analyses confirm that the wild-type THI2 enzyme copurifies with a thiazole precursor to thiamine, whereas the mutant enzyme does not. Heterologous expression studies confirm that THI2 is targeted to chloroplasts. All blk1-R mutant phenotypes are rescued by exogenous thiamine supplementation, suggesting that blk1-R is a thiamine auxotroph. These results provide insight into the role of metabolic cofactors, such as thiamine, during the proliferation of stem and initial cell populations.
Collapse
Affiliation(s)
- John B. Woodward
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | | | - Debamita Paul
- Department of Chemistry, Cornell University, Ithaca, New York 14853
| | - Kimberly Phillips
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Maria Rapala-Kozik
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94704
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College Station, Texas 77842
| | - Steven E. Ealick
- Department of Chemistry, Cornell University, Ithaca, New York 14853
| | - Paula McSteen
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael J. Scanlon
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
- Address correspondence to
| |
Collapse
|
20
|
Symmetry versus Asymmetry in the Molecules of Life: Homomeric Protein Assemblies. Symmetry (Basel) 2010. [DOI: 10.3390/sym2020884] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Ikezaki M, Kojima M, Sakakibara H, Kojima S, Ueno Y, Machida C, Machida Y. Genetic networks regulated by ASYMMETRIC LEAVES1 (AS1) and AS2 in leaf development in Arabidopsis thaliana: KNOX genes control five morphological events. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:70-82. [PMID: 19891706 DOI: 10.1111/j.1365-313x.2009.04033.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The asymmetric leaves 1 (as1) and as2 mutants of Arabidopsis thaliana exhibit pleiotropic phenotypes. Expression of a number of genes, including three class-1 KNOTTED-like homeobox (KNOX) genes (BP, KNAT2 and KNAT6) and ETTIN/ARF3, is enhanced in these mutants. In the present study, we attempted to identify the phenotypic features of as1 and as2 mutants that were generated by ectopic expression of KNOX genes, using multiple loss-of-function mutations of KNOX genes as well as as1 and as2. Our results revealed that the ectopic expression of class-1 KNOX genes resulted in reductions in the sizes of leaves, reductions in the size of sepals and petals, the formation of a less prominent midvein, the repression of adventitious root formation and late flowering. Our results also revealed that the reduction in leaf size and late flowering were caused by the repression, by KNOX genes, of a gibberellin (GA) pathway in as1 and as2 plants. The formation of a less prominent midvein and the repression of adventitious root formation were not, however, related to the GA pathway. The asymmetric formation of leaf lobes, the lower complexity of higher-ordered veins, and the elevated frequency of adventitious shoot formation on leaves of as1 and as2 plants were not rescued by multiple mutations in KNOX genes. These features must, therefore, be controlled by other genes in which expression is enhanced in the as1 and as2 mutants.
Collapse
Affiliation(s)
- Masaya Ikezaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Liu Q, Yao X, Pi L, Wang H, Cui X, Huang H. The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:27-40. [PMID: 19054365 DOI: 10.1111/j.1365-313x.2008.03757.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The shoot apical meristem (SAM) of angiosperms comprises a group of undifferentiated cells which divide to maintain the meristem and also give rise to all the above-ground structures of the plant. Previous studies revealed that the Arabidopsis ARGONAUTE10 [AGO10, also called PINHEAD (PNH) or ZWILLE (ZLL)] gene is one of the critical SAM regulators, but the mechanism by which AGO10 modulates the SAM is unknown. In the present study we show that AGO10 genetically represses microRNA165/166 (miR165/166) for SAM maintenance as well as establishment of leaf adaxial-abaxial polarity. Levels of miR165/166 in leaves and embryonic SAMs of pnh/zll/ago10 mutants are abnormally elevated, leading to a reduction in the quantity of homeodomain-leucine zipper (HD-ZIP) III gene transcripts, the targets of miR165/166. This reduction is the primary cause of pnh/zll SAM and leaf defects, because the aberrant pnh/zll phenotypes were partially rescued by either increasing levels of HD-ZIP III transcripts or decreasing levels of miR165/166 in the SAM and leaf. Furthermore, plants with an abnormal apex were more frequent among pnh/zll rdr6 and pnh/zll ago7 double mutants and increased levels of miR165/166 were detected in rdr6 apices. These results indicate that AGO10 and RDR6/AGO7 may act in parallel in modulating accumulation of miR165/166 for normal plant development.
Collapse
Affiliation(s)
- Qili Liu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
23
|
Zhu Y, Li Z, Xu B, Li H, Wang L, Dong A, Huang H. Subcellular localizations of AS1 and AS2 suggest their common and distinct roles in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:897-905. [PMID: 18713400 DOI: 10.1111/j.1744-7909.2008.00693.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
During leaf organogenesis, a critical step for normal leaf primordium initiation is the repression of the class 1 KNOTTED1-like homeobox (KNOX) genes. After leaf primordia are formed, they must establish polarity for normal leaf morphogenesis. Recent studies have led to the identification of a number of genes that participate in the class 1 KNOX gene repression and/or the leaf polarity establishment. ASTMMETRIC LEAVES1 and 2 (AS1 and AS2) are two of these genes, which are critical for both of these two processes. As a first step towards understanding the molecular genetic basis of the AS1-AS2 action, we determined the subcellular localizations of the two proteins in both tobacco BY2 cells and Arabidopsis plants, by fusing them to yellow/cyan fluorescent protein (YFP/CFP). Our data showed that AS1 and AS2 alone were predominantly localized in the nucleolus and the nucleoplasm, respectively. The presence of both AS1 and AS2 proteins in the same interphase cell demonstrated their co-localization in both nucleolus and nucleoplasm. In addition, AS1 alone was able to associate with the condensed chromosome in the metaphase cell. Our data suggest that AS1, AS2 and the AS1-AS2 protein complex may have distinct functions, which are all required for normal plant development.
Collapse
Affiliation(s)
- Yan Zhu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Ishikawa T, Machida C, Yoshioka Y, Ueda T, Nakano A, Machida Y. EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana. Genes Cells 2008; 13:521-35. [DOI: 10.1111/j.1365-2443.2008.01186.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Han P, Li Q, Zhu YX. Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center. THE PLANT CELL 2008; 20:1482-93. [PMID: 18591352 PMCID: PMC2483370 DOI: 10.1105/tpc.108.058867] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/02/2008] [Accepted: 06/14/2008] [Indexed: 05/18/2023]
Abstract
Stem cell fate in the Arabidopsis thaliana shoot apical meristem (SAM) is controlled by WUSCHEL (WUS) and CLAVATA. Here, we examine BARD1 (for BRCA1-associated RING domain 1), which had previously been implicated in DNA repair functions; we find that it also regulates WUS expression. We observed severe SAM defects in the knockout mutant bard1-3. WUS transcripts accumulated >238-fold in bard1-3 compared with the wild type and were located mainly in the outermost cell layers instead of the usual organizing center. A specific WUS promoter region was recognized by nuclear protein extracts obtained from wild-type plants, and this protein-DNA complex was recognized by antibodies against BARD1. The double mutant (wus-1 bard1-3) showed prematurely terminated SAM structures identical to those of wus-1, indicating that BARD1 functions through regulation of WUS. BARD1 overexpression resulted in reduced WUS transcript levels, giving a wus-1-like phenotype. Either full-length BARD1 or a clone that encoded the C-terminal domain (BARD1:C-ter;bard1-3) was sufficient to complement the bard1-3 phenotype, indicating that BARD1 functions through its C-terminal domain. Our data suggest that BARD1 regulates SAM organization and maintenance by limiting WUS expression to the organizing center.
Collapse
Affiliation(s)
- Pei Han
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
26
|
Xu B, Li Z, Zhu Y, Wang H, Ma H, Dong A, Huang H. Arabidopsis genes AS1, AS2, and JAG negatively regulate boundary-specifying genes to promote sepal and petal development. PLANT PHYSIOLOGY 2008; 146:566-75. [PMID: 18156293 PMCID: PMC2245835 DOI: 10.1104/pp.107.113787] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 12/13/2007] [Indexed: 05/18/2023]
Abstract
Boundary formation is crucial for organ development in multicellular eukaryotes. In higher plants, boundaries that separate the organ primordia from their surroundings have relatively low rates of cell proliferation. This cellular feature is regulated by the actions of certain boundary-specifying genes, whose ectopic expression in organs can cause inhibition of organ growth. Here, we show that the Arabidopsis thaliana ASYMMETRIC LEAVES1 and 2 (AS1 and AS2) and JAGGED (JAG) genes function in the sepal and petal primordia to repress boundary-specifying genes for normal development of the organs. Loss-of-function as1 jag and as2 jag double mutants produced extremely tiny sepals and petals. Analysis of a cell-cycle marker HISTONE4 revealed that cell division in sepal primordia of the double mutant was inhibited. Moreover, these abnormal sepals and petals exhibited ectopic overexpression of the boundary-specifying genes PETAL LOSS (PTL) and CUP-SHAPED COTYLEDON1 [corrected] and 2 (CUC1 and CUC2). Loss of PTL or CUC1 and CUC2 functions in the as1 jag background could partially rescue the tiny sepal and petal phenotypes, supporting the model that the tiny sepal/petal phenotypes are caused, at least in part, by ectopic expression of boundary-specifying genes. Together, our data reveal a previously unrecognized fundamental regulation by which AS1, AS2, and JAG act to define sepal and petal from their boundaries.
Collapse
Affiliation(s)
- Ben Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:173-84. [PMID: 17559509 DOI: 10.1111/j.1365-313x.2007.03132.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The ASYMMETRIC LEAVES2 (AS2) gene, a member of the AS2/LOB gene family, and the ASYMMETRIC LEAVES1 (AS1) gene of Arabidopsis thaliana participate in the development of a symmetrical, expanded lamina. We report here the patterns of expression of these genes, and the importance of the sites of such expression in leaf development. Transcripts of both genes accumulated in the entire leaf primordia at early stages, but the patterns of accumulation changed as the leaves expanded. AS2 and AS1 transcripts were detected, respectively, in the adaxial domain and in the inner domain between the adaxial and abaxial domains of leaves. The ratios of numbers of adaxial cells to abaxial cells in cotyledons of corresponding mutant lines were greater than the ratios in wild-type cotyledons. The low levels of ectopic expression of AS2 under the control of the AS1 promoter in as2 mutant plants restored an almost normal phenotype in some cases, but also resulted in flatter leaves than those of wild-type plants. Strong expression of the construct in wild-type and as2 plants, but not as1 plants, resulted in the formation of narrow, upwardly curled leaves. Our results indicate that AS2 represses cell proliferation in the adaxial domain in the presence of AS1, and that adaxial expression of AS2 at an appropriate level is critical for the development of a symmetrical, expanded lamina. Real-time RT-PCR analysis revealed that mutation of either AS2 or AS1 resulted in an increase in the levels of transcripts of ETTIN (ETT; also known as AUXIN RESPONSE FACTOR3, ARF3) and KANADI2 (KAN2), which are abaxial determinants, and YABBY5 (YAB5). Thus, AS2 and AS1 might negatively regulate the expression of these genes in the adaxial domain, which might be related to the development of flat and expanded leaves.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Plant Biology Research Center, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bove J, Hord CLH, Mullen MA. The blossoming of RNA biology: Novel insights from plant systems. RNA (NEW YORK, N.Y.) 2006; 12:2035-46. [PMID: 17053084 PMCID: PMC1664721 DOI: 10.1261/rna.303806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Jérôme Bove
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
29
|
Huang W, Pi L, Liang W, Xu B, Wang H, Cai R, Huang H. The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity. THE PLANT CELL 2006; 18:2479-92. [PMID: 17028202 PMCID: PMC1626615 DOI: 10.1105/tpc.106.045013] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Polarity formation is central to leaf morphogenesis, and several key genes that function in adaxial-abaxial polarity establishment have been identified and characterized extensively. We previously reported that Arabidopsis thaliana ASYMMERTIC LEAVES1 (AS1) and AS2 are important in promoting leaf adaxial fates. We obtained an as2 enhancer mutant, asymmetric leaves enhancer3 (ae3), which demonstrated pleiotropic plant phenotypes, including a defective adaxial identity in some leaves. The ae3 as2 double mutant displayed severely abaxialized leaves, which were accompanied by elevated levels of leaf abaxial promoting genes FILAMENTOUS FLOWER, YABBY3, KANADI1 (KAN1), and KAN2 and a reduced level of the adaxial promoting gene REVOLUTA. We identified AE3, which encodes a putative 26S proteasome subunit RPN8a. Furthermore, double mutant combinations of as2 with other 26S subunit mutations, including rpt2a, rpt4a, rpt5a, rpn1a, rpn9a, pad1, and pbe1, all displayed comparable phenotypes with those of ae3 as2, albeit with varying phenotypic severity. Since these mutated genes encode subunits that are located in different parts of the 26S proteasome, it is possible that the proteolytic function of the 26S holoenzyme is involved in leaf polarity formation. Together, our findings reveal that posttranslational regulation is essential in proper leaf patterning.
Collapse
Affiliation(s)
- Weihua Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Li H, Xu L, Wang H, Yuan Z, Cao X, Yang Z, Zhang D, Xu Y, Huang H. The Putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis leaf development. THE PLANT CELL 2005; 17:2157-71. [PMID: 16006579 PMCID: PMC1182480 DOI: 10.1105/tpc.105.033449] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana ASYMMETRIC LEAVES1 (AS1) and AS2 genes are important for repressing class I KNOTTED1-like homeobox (KNOX) genes and specifying leaf adaxial identity in leaf development. RNA-dependent RNA polymerases (RdRPs) are critical for posttranscriptional and transcriptional gene silencing in eukaryotes; however, very little is known about their functions in plant development. Here, we show that the Arabidopsis RDR6 gene (also called SDE1 and SGS2) that encodes a putative RdRP, together with AS1 and AS2, regulates leaf development. rdr6 single mutant plants displayed only minor phenotypes, whereas rdr6 as1 and rdr6 as2 double mutants showed dramatically enhanced as1 and as2 phenotypes, with severe defects in the leaf adaxial-abaxial polarity and vascular development. In addition, the double mutant plants produced more lobed leaves than the as1 and as2 single mutants and showed leaf-like structures associated on a proportion of leaf blades. The abnormal leaf morphology of the double mutants was accompanied by an extended ectopic expression of a class I KNOX gene BREVIPEDICELLUS (BP) and high levels of microRNA165/166 that may lead to mRNA degradation of genes in the class III HD-ZIP family. Taken together, our data suggest that the Arabidopsis RDR6-associated epigenetic pathway and the AS1-AS2 pathway synergistically repress BP and MIR165/166 for proper plant development.
Collapse
Affiliation(s)
- Hong Li
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hua Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zheng Yuan
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Dabing Zhang
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuquan Xu
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
- To whom correspondence should be addressed. E-mail ; fax 86-21-54924015
| |
Collapse
|
31
|
Irish EE, Szymkowiak EJ, Garrels K. The wandering carpel mutation of Zea mays (Gramineae) causes misorientation and loss of zygomorphy in flowers and two-seeded kernels. AMERICAN JOURNAL OF BOTANY 2003; 90:551-560. [PMID: 21659148 DOI: 10.3732/ajb.90.4.551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have isolated a new mutation, wandering carpel (wcr), which affects polarity of the maize flower, altering its orientation or converting it from zygomorphy to radial symmetry. These changes result in the development of embryos on locations other than the normal, acropetal side of the kernel. More than two carpels can develop into silks. More rarely, two ovules develop in a single ovary, giving rise to kernels with two seeds. The wcr mutation is a maternal-sporophyte-effect, semidominant mutation whose expression is background dependent. As spikelets with abnormal flowers are almost always paired with a normal spikelet, we hypothesize that WCR+ is required for establishing polarity in spikelet meristems during inflorescence development.
Collapse
Affiliation(s)
- Erin E Irish
- Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52246 USA
| | | | | |
Collapse
|
32
|
Abstract
Conspicuous asymmetries in forms that are polymorphic within a species can be genetically or environmentally determined. Here, we present a genetic analysis of the inheritance of dimorphic enantiostyly, a sexual polymorphism in which all flowers on a plant have styles that are consistently deflected either to the left or the right side of the floral axis. Using Heteranthera multiflora (Pontederiaceae), a short-lived herb, we conducted crosses within and between left- and right-styled plants and scored progeny ratios of the style morphs in F(1), F(2) and F(3) generations. Crosses conducted in the parental generation between morphs or right-styled plants resulted in right-styled progeny, whereas crosses between left-styled plants resulted in left-styled progeny. When putative heterozygous F(1) plants were selfed, the resulting F(2) segregation ratios were not significantly different from a 3 : 1 ratio for right- and left-styled plants. Crosses between left- and right-styled plants in the F(2) generation yielded F(3) progeny with either a 1 : 1 ratio of left- and right-styled plants or right-styled progeny. Our results are consistent with a model in which a single Mendelian locus with two alleles, with the right-styled allele (R) dominant to the left-styled allele (r), governs stylar deflection. The simple inheritance of dimorphic enantiostyly has implications for the evolution and maintenance of this unusual sexual polymorphism.
Collapse
Affiliation(s)
- Linley K Jesson
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2.
| | | |
Collapse
|
33
|
Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. PLANT & CELL PHYSIOLOGY 2002; 43:467-78. [PMID: 12040093 DOI: 10.1093/pcp/pcf077] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana is involved in the establishment of the leaf venation system, which includes the prominent midvein, as well as in the development of a symmetric lamina. The gene product also represses the expression of class 1 knox homeobox genes in leaves. We have characterized the AS2 gene, which appears to encode a novel protein with cysteine repeats (designated the C-motif) and a leucine-zipper-like sequence in the amino-terminal half of the primary sequence. The Arabidopsis genome contains 42 putative genes that potentially encode proteins with conserved amino acid sequences that include the C-motif and the leucine-zipper-like sequence in the amino-terminal half. Thus, the AS2 protein belongs to a novel family of proteins that we have designated the AS2 family. Members of this family except AS2 also have been designated ASLs (AS2-like proteins). Transcripts of AS2 were detected mainly in adaxial domains of cotyledonary primordia. Green fluorescent protein-fused AS2 was concentrated in plant cell nuclei. Overexpression of AS2 cDNA in transgenic Arabidopsis plants resulted in upwardly curled leaves, which differed markedly from the downwardly curled leaves generated by loss-of-function mutation of AS2. Our results suggest that AS2 functions in the transcription of a certain gene(s) in plant nuclei and thereby controls the formation of a symmetric flat leaf lamina and the establishment of a prominent midvein and other patterns of venation.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
When Arabidopsis seedlings are grown on a hard-agar plate, their primary roots show characteristic spiralling movements, apparent as waves, coils and torsions, together with a slanting toward the right-hand side. All these movements are believed to be the result of three different processes acting on the roots: circumnutation, positive gravitropism and negative thigmotropism. The basic movement of the roots is described as that of a growing right-handed helix, which, because of the root tip hitting the agar plate, is continuously switched from the right-hand to the left-hand of the growth direction, and vice versa. This movement also produces a slanting root-growth direction toward the right-hand because of the incomplete waves made by the right-handed root to the left-hand. By contrast, the torsions seen in the coils and waves are interpreted as artefacts that form as an adaptation of the three-dimensional root helix to the flat two-dimensional agar surface.
Collapse
Affiliation(s)
- F Migliaccio
- Institute of Plant Biochemistry and Ecophysiology, Consiglio Nazionale delle Ricerche, Via Salaria Km 29.300, 00016 Monterotondo, Rome, Italy.
| | | |
Collapse
|
35
|
Abstract
The leaf is a coordinated mosaic of developmental domains, which are evident from leaf inception on the flanks of the apical meristem. The subdivision of the meristem into molecularly defined domains is regulated by the interactions of a number of gene products and by receptor kinase-mediated signals. The acquisition of symmetry axes in the emerging leaf is a process coordinated by hormones (such as auxin and cytokinins) and the expression of classes of genes (such as the knox and the ARP, as1/rs2/phan, genes). As with simple leaves, the architecture of compound leaves is defined by spatial/temporal gradients of regulatory gene functions: complexity results from the interplay between leaf differentiation processes and genes maintaining a partial level of indeterminacy in the developing primordium. Boundaries between regions with different molecular 'addresses' are considered, in plants as in Drosophila, as organizing centres for lateral organ development.
Collapse
Affiliation(s)
- C Pozzi
- Centro Ricerche e Studi Agroalimentari (CERSA-FPTP), c/o DiProVe Via Celoria 2, 20133, Milano, Italy.
| | | | | |
Collapse
|
36
|
Abstract
We have recently gained insight into a number of mechanisms governing the formation of the major axes that define the embryonic and adult plant body plan. Phenotypic analysis and molecular characterization of mutants with aberrant morphogenesis has led to a better understanding of key processes including the generation of the shape of the apical embryo, the establishment and maintenance of the radial pattern of the root, and the placement of lateral organ primordia around the shoot apical meristem.
Collapse
Affiliation(s)
- A J Paquette
- Department of Biology, 1009 Main Building, New York University, 100Washington Square East, 10003, New York, NY, USA.
| | | |
Collapse
|
37
|
Affiliation(s)
- D R Smyth
- Department of Biological Sciences, PO Box 18, Monash University, Victoria 3800, Australia.
| |
Collapse
|
38
|
Abstract
Morphogenesis of leaf shape and formation of the major elements of leaf vasculature are temporally coordinated during leaf development. Current analyses of mutant phenotypes provide strong support for the role of auxin signaling in vascular pattern formation and indicate that leaf shape and vasculature are developmentally coupled. Two other mechanisms that may contribute to the regulation of these processes are a diffusion-reaction system and long-distance signaling of informational macromolecules.
Collapse
Affiliation(s)
- N Dengler
- Department of Botany, University of Toronto, 25 Willcocks Street, Ontario, M5S 3B2, Toronto, Canada.
| | | |
Collapse
|
39
|
Abstract
Floral monosymmetry, which is conspicuous and prominent in many angiosperms, has attracted much attention from both developmental geneticists and pollination biologists. A combined evolutionary biological approach to studying floral monosymmetry in the Lamiales, the order that contains the model plant Antirrhinum, is just beginning to take shape. In contrast, floral left-right asymmetry has largely been neglected, although it is much in discussion in animal biology, probably because in flowers (unlike in animals) left-right asymmetry is not predominant. Nevertheless, there are patterns in the evolution of floral left-right asymmetry that are interesting enough to be addressed by developmental genetics. These are the direction of contortion in flowers with contort petal aestivation, and the direction of deflection of pollination organs in groups with enantiostylous flowers or in some groups with enclosed pollination organs, such as beans (Phaseolinae, Fabaceae) or louseworts (Pedicularis, Orobanchaceae).
Collapse
Affiliation(s)
- P K Endress
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| |
Collapse
|
40
|
Byrne M, Timmermans M, Kidner C, Martienssen R. Development of leaf shape. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:38-43. [PMID: 11163166 DOI: 10.1016/s1369-5266(00)00133-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Variation among vascular plants in the initiation and patterning of leaves results in a diverse array of leaf shape, including the strap-like leaf of many grasses and the broad lamina of most eudicots. Recent findings highlight the importance of interactions between the shoot apical meristem (SAM) and developing leaf primordia in axis specification and the establishment of leaf shape. Global regulators of epigenetic states have been implicated in these interactions and may play a role in distinguishing founder cells and stem cells within the SAM.
Collapse
Affiliation(s)
- M Byrne
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
41
|
Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 2000; 408:967-71. [PMID: 11140682 DOI: 10.1038/35050091] [Citation(s) in RCA: 532] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Meristem function in plants requires both the maintenance of stem cells and the specification of founder cells from which lateral organs arise. Lateral organs are patterned along proximodistal, dorsoventral and mediolateral axes. Here we show that the Arabidopsis mutant asymmetric leaves1 (as1) disrupts this process. AS1 encodes a myb domain protein, closely related to PHANTASTICA in Antirrhinum and ROUGH SHEATH2 in maize, both of which negatively regulate knotted-class homeobox genes. AS1 negatively regulates the homeobox genes KNAT1 and KNAT2 and is, in turn, negatively regulated by the meristematic homeobox gene SHOOT MERISTEMLESS. This genetic pathway defines a mechanism for differentiating between stem cells and organ founder cells within the shoot apical meristem and demonstrates that genes expressed in organ primordia interact with meristematic genes to regulate shoot morphogenesis.
Collapse
Affiliation(s)
- M E Byrne
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | | | | | | | |
Collapse
|