1
|
Hassan MU, Sidoruk P, Lechniak D, Szumacher-Strabel M, Bocianowski J, Ślusarczyk S, Hargreaves PR, Ruska D, Dorbe A, Kreismane D, Klumpp K, Bloor J, Rees RM, Kuipers A, Galama P, Váradyová Z, Čobanová K, Cieślak A. Effect of multispecies swards on ruminal fermentation, methane emission and potential for climate care cattle farming - an in vitro study. Animal 2025; 19:101386. [PMID: 39708734 DOI: 10.1016/j.animal.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Greenhouse gas (GHG) emissions from livestock ruminants, particularly methane (CH4), nitrous oxide, and indirectly ammonia (NH3) significantly contribute to climate change and global warming. Conventional monoculture swards for cattle feeding, such as perennial ryegrass or Italian ryegrass, usually require substantial fertiliser inputs. Such management elevates soil mineral nitrogen levels, resulting in GHG emissions and potential water contamination. Mitigating the environmental footprint of these farming practices requires sustainable alternative feeding strategies for cattle production. Multispecies grassland swards (grass + legumes or legumes + herbs) represent a promising alternative to monoculture grassland swards for cattle nutrition due to their reduced nitrogen requirements, excellent herbage yield, and polyphenolic compounds (tannins, formononetin, luteolin, quercetin, and acteoside) which may have positive effects on animals. This study investigated the effects of selected multispecies grassland swards (plant blends) on in vitro ruminal fermentation and DM digestibility. Three experimental blends of plants cultivated without fertilisers were utilised: (1) perennial ryegrass (PRG) + red clover (RC), (2) chicory (C) + red clover (RC), and (3) Tonic plantain (PLA) + red clover (RC). The control blend included perennial ryegrass (PRG), and red clover (RC) cultivated with fertiliser. The in vitro trial showed a reduction in CH4 production and ruminal NH3 concentration (by 14.7 and 28.8%, respectively; P < 0.01) in the PLA+RC blend compared to the control. This plant blend also increased propionate concentration (P < 0.05) and reduced acetate and butyrate concentrations and the acetate-propionate ratio (P < 0.01). Additionally, the total protozoal and methanogen counts were mostly reduced by the PLA+RC blend (P < 0.01) among all blends investigated. In conclusion, the Tonic plantain and red clover blend (PLA+RC) cultivated without fertilisers have the potential to be utilised as a sustainable alternative feed source for climate-friendly cattle production, aligning with the aims of the European Climate Care Cattle Farming project.
Collapse
Affiliation(s)
- M U Hassan
- Poznań University of Life Sciences, Department of Animal Nutrition, Wołyńska 33, 60-637 Poznań, Poland
| | - P Sidoruk
- Poznań University of Life Sciences, Department of Animal Nutrition, Wołyńska 33, 60-637 Poznań, Poland
| | - D Lechniak
- Poznań University of Life Sciences, Department of Genetics and Animal Breeding, Wołyńska 33, 60-637 Poznań, Poland
| | - M Szumacher-Strabel
- Poznań University of Life Sciences, Department of Animal Nutrition, Wołyńska 33, 60-637 Poznań, Poland
| | - J Bocianowski
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - S Ślusarczyk
- Wrocław Medical University, Department of Pharmaceutical Biology and Biotechnology, 50-556 Wrocław, Poland
| | - P R Hargreaves
- SRUC, Scotland's Rural College, Scotland, United Kingdom
| | - D Ruska
- Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - A Dorbe
- Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - Dz Kreismane
- Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - K Klumpp
- INRAE, Université Clermont Auvergne, Clermont Ferrand, France
| | - J Bloor
- INRAE, Université Clermont Auvergne, Clermont Ferrand, France
| | - R M Rees
- SRUC, Scotland's Rural College, Scotland, United Kingdom
| | - A Kuipers
- Wageningen Livestock Research, De Elst 1, 6708 WD, Wageningen, Netherlands
| | - P Galama
- Wageningen Livestock Research, De Elst 1, 6708 WD, Wageningen, Netherlands
| | - Z Váradyová
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, Košice, Slovak Republic
| | - K Čobanová
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, Košice, Slovak Republic
| | - A Cieślak
- Poznań University of Life Sciences, Department of Animal Nutrition, Wołyńska 33, 60-637 Poznań, Poland.
| |
Collapse
|
2
|
Marraudino M, Nasini S, Porte C, Bonaldo B, Macchi E, Ponti G, Keller M, Gotti S. Infant mice fed soy-based formulas exhibit alterations in anxiety-like behaviours and the 5-HT system. Toxicology 2024; 511:154035. [PMID: 39708922 DOI: 10.1016/j.tox.2024.154035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Genistein (GEN) is a phytoestrogen with oestrogen-like activity found in many plants. Classified as an endocrine disruptor, GEN is potentially hazardous, particularly during developmental stages. It induces alterations in anxious behaviour, fertility, and energy metabolism, alongside modifications in specific brain circuits. As the serotonin (5-HT) system is critically involved in many of these behaviours, we hypothesised that some of GEN's behavioural effects might results from disruptions in the development of the 5-HT system. To test this, we examined the impact of early postnatal exposure to GEN at a dose of 50 mg/kg body weight, mimicking the exposure level of infants consuming soy-based formulas, on anxiety-related behaviours and 5-HT neuronal populations in the raphe nucleus. Male and female CD1 mice were treated orally with GEN or a vehicle during the first 8 days of life. On postnatal day 60, one cohort underwent anxiety behaviour testing, while another was euthanised for immunohistochemical analysis. Behavioural testing revealed that male control mice exhibited higher anxiety levels than females, whereas GEN exposure produced sex-specific effects: anxiolytic in males and anxiogenic in females. Immunohistochemical analysis of the raphe nuclei demonstrated significant alterations in 5-HT neuronal numbers in GEN-treated animals. Specifically, GEN exposure affected dorsal and median raphe 5-HT neuronal populations in a sexually dimorphic manner, with females showing a reduction and males an increase in 5-HT neurones compared to controls. These findings indicate that the regulation of anxiety-related behaviours and the 5-HT system are key targets of early phytoestrogen exposure at levels comparable to those in soy-based infant formulas.
Collapse
Affiliation(s)
- M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy; Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Via Cherasco 15, Torino 10126, Italy
| | - S Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, Padua, PD 35131, Italy
| | - C Porte
- UMR Physiologie de la Reproduction et des Comportements, Institut National de Recherche pour l'agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly 37380, France
| | - B Bonaldo
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - E Macchi
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Torino, Italy
| | - G Ponti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy
| | - M Keller
- UMR Physiologie de la Reproduction et des Comportements, Institut National de Recherche pour l'agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly 37380, France
| | - S Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy; Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Via Cherasco 15, Torino 10126, Italy.
| |
Collapse
|
3
|
Li Y, Yu B, Liu C, Xia S, Luo Y, Zheng P, Cong G, Yu J, Luo J, Yan H, He J. Effects of dietary genistin supplementation on reproductive performance, immunity and antioxidative capacity in gestating sows. Front Vet Sci 2024; 11:1489227. [PMID: 39641093 PMCID: PMC11618539 DOI: 10.3389/fvets.2024.1489227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Genistin is an isoflavone of soybean, with estrogenic activity. This experiment was conducted to investigate its effect on reproductive performance, antioxidant capacity, and immunity in gestating sows. Seventy-two sows (Landrace × Yorkshire) were selected and randomly divided into two treatment groups (n = 36) based on their backfat thickness, parity and fed with basal diet or supplementation of 150 mg/ kg genistin to the basal diet based on DMI for the entire gestation period. Results showed that dietary genistin supplementation significantly increased the average number of live born per litter (p < 0.05), and tended to increase the number of healthy piglets per litter (p = 0.058), but decreased the average weight of live born per litter (p < 0.05). Dietary genistin supplementation significantly decreased the number of mummified and stillbirths per litter (p < 0.05). Moreover, the average daily feed intake (ADFI) and total feed intake of the gestating sows were also increased in the genistin-supplemented group (p < 0.05). Genistin significantly increased the serum concentrations of catalase (CAT), immunoglobulin A (IgA), IgG, and IgM at 35 days of gestation (p < 0.05). The serum concentrations of interleukin-10 (IL-10) and interferon-γ (IFN-γ) were also increased upon genistin supplementation (p < 0.05). However, genistin supplementation tended to decrease the serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and leptin at 85 days of gestation (p = 0.081 and p = 0.096, respectively). Interestingly, genistin supplementation decreased the transcript abundance of interferon-γ (IFN-γ) and placental imprinting gene H19, but significantly increased the transcript abundance of insulin-like growth factor I (IGF-I) and amino acid transporters such as the sodium-coupled neutral amino acid transporter 2 (SNTA2) and SNAT4 in the placenta (p < 0.05). These results suggested that dietary genistin supplementation during gestation can improve the reproductive performance of sows, which was probably associated with improving of antioxidant capacity and immunity, as well as changes of transcript abundance of critical functional genes in the placenta.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | | | - Yuheng Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | | | - Jie Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Koch W, Zagórska J, Michalak-Tomczyk M, Karav S, Wawruszak A. Plant Phenolics in the Prevention and Therapy of Acne: A Comprehensive Review. Molecules 2024; 29:4234. [PMID: 39275081 PMCID: PMC11397085 DOI: 10.3390/molecules29174234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Plants are a rich source of secondary metabolites, among which phenolics are the most abundant. To date, over 8000 various polyphenolic compounds have been identified in plant species, among which phenolic acids, flavonoids, coumarins, stilbenes and lignans are the most important ones. Acne is one of the most commonly treated dermatological diseases, among which acne vulgaris and rosacea are the most frequently diagnosed. In the scientific literature, there is a lack of a detailed scientific presentation and discussion on the importance of plant phenolics in the treatment of the most common specific skin diseases, e.g., acne. Therefore, the aim of this review is to gather, present and discuss the current state of knowledge on the activity of various plant phenolics towards the prevention and treatment of acne, including in vitro, in vivo and human studies. It was revealed that because of their significant antibacterial, anti-inflammatory and antioxidant activities, phenolic compounds may be used in the treatment of various types of acne, individually as well as in combination with commonly used drugs like clindamycin and benzoyl peroxide. Among the various phenolics that have been tested, EGCG, quercetin and nobiletin seem to be the most promising ones; however, more studies, especially clinical trials, are needed to fully evaluate their efficacy in treating acne.
Collapse
Affiliation(s)
- Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Justyna Zagórska
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Magdalena Michalak-Tomczyk
- Department of Animal Physiology and Toxicology, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17000, Türkiye
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Fu K, Dai S, Ma C, Zhang Y, Zhang S, Wang C, Gong L, Zhou H, Li Y. Lignans are the main active components of
Schisandrae Chinensis Fructus for liver disease treatment: a review. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:2425-2444. [DOI: 10.26599/fshw.2022.9250200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Li C, Tan X, Deng D, Kong C, Feng L, Wang W, Lin K, Li Y, Lei Q, Liu L, Tao T, Pan R, Li G, Wu S. A Dopamine-Modified Hyaluronic Acid-Based Mucus Carrying Phytoestrogen and Urinary Exosome for Thin Endometrium Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407750. [PMID: 39115352 DOI: 10.1002/adma.202407750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Indexed: 09/28/2024]
Abstract
Thin endometrium (TE) is closely associated with infertility in reproductive medicine. Estrogen therapy gains unsatisfactory outcomes. In this study, an artificial mucus based on dopamine (L-DOPA)-modified hyaluronic acid combining phytoestrogen cajaninstilbene acid and rat urinary exosomes (CUEHD) is constructed for TE treatment using a rat TE model. In the rat TE model, the dominant elastic behavior and adhesive properties of CUEHD guarantee adequate retention, rendering superior synergistic treatment efficacy and favorable biosafety characteristics. CUEHD treatment significantly increases endometrial thickness and promotes receptivity and fertility. Mechanistically, estrogen homeostasis, inflammation inhibition, and endometrial regeneration are achieved through the crosstalk between ER-NLRP3-IL1β and Wnt-β catenin-TGFβ-smad signaling pathways. Moreover, the therapeutic potential of exosomes from human urine and adipose tissue-derived stem cells (ADSCs) and rat ADSCs are also demonstrated, indicating extensive use of the artificial mucus system. Thus, this study illustrates a platform combining phytoestrogen and exosomes with promising implications for TE treatment.
Collapse
Affiliation(s)
- Chenchen Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Xiyang Tan
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518004, China
| | - Dashi Deng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Chenfan Kong
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518004, China
| | - Lida Feng
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Weijing Wang
- Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Kaida Lin
- Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Yuqing Li
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Qifang Lei
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Lisha Liu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Tao Tao
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P. R. China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| |
Collapse
|
7
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
8
|
Karimi FZ, Hosseini H, Mazlom SR, Rakhshandeh H. The effect of oral capsules containing Ocimum basilicum leaf extract on menopausal symptoms in women: a triple-blind randomized clinical trial. Eur J Med Res 2024; 29:367. [PMID: 39014507 PMCID: PMC11253358 DOI: 10.1186/s40001-024-01965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/06/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Menopause, characterized by various physical and mental changes, is primarily caused by hormonal fluctuations, resulting in numerous complications. Recently, herbal treatments have gained significant attention for their minimal side effects compared to chemical drugs. This study aimed to investigate the effects of oral capsules containing Ocimum basilicum leaf extract (OBLE) on menopausal symptoms. METHODS This placebo-controlled clinical trial study was conducted in 2020. The research focused on 60 menopausal women referred to Mashhad health centers. Eligible participants were administered either an OBLE 500 mg capsule or a placebo daily for 1 month. Menopause symptoms were evaluated using the Menopause Rating Scale (MRS) before, two weeks, and one month after the intervention. Data were analyzed using SPSS21, independent t, Mann-Whitney, and Friedman tests. A significance level of p < 0.05 was considered significant. RESULTS The independent t-test indicated that the mean (SD) scores of menopausal symptoms in both the OBLE and placebo groups were initially similar before the intervention (P = 0.141). Two weeks after the intervention, the menopausal symptom scores were 9.5 ± 3.5 and 11.2 ± 5.6 in the OBLE and placebo groups, respectively (P = 0.163, df = 58, t = 1.4). After one month, the menopausal symptom scores were 6.9 ± 0.3 in the OBLE group and 11.26 ± 0.6 in the placebo group (P = 0.001, df = 58, t = 3.4). This indicates a significant difference between the two groups one month after the intervention, compared to before and two weeks after the intervention. Additionally, there was a significant difference in the scores of the physical and somato-vegetative dimension between the intervention and placebo groups two weeks and one month after the intervention (P < 0.05). CONCLUSION The study results suggested that taking OBLE capsules led to a decrease in the scores of menopausal symptoms. This indicates that OBLE can be considered as a safe and cost-effective medicinal plant for alleviating menopausal symptoms among women.
Collapse
Affiliation(s)
- Fatemeh Zahra Karimi
- Nursing and Midwifery Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Hosseini
- Department of Midwifery, School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyed Reza Mazlom
- Nursing and Midwifery Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Department of Pharmacology, Medical Plants Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Wang L, Li C, Luo K. Biosynthesis and metabolic engineering of isoflavonoids in model plants and crops: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1384091. [PMID: 38984160 PMCID: PMC11231381 DOI: 10.3389/fpls.2024.1384091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Isoflavonoids, the major secondary metabolites within the flavonoid biosynthetic pathway, play important roles in plant defense and exhibit free radical scavenging properties in mammals. Recent advancements in understanding the synthesis, transport, and regulation of isoflavonoids have identified their biosynthetic pathways as promising targets for metabolic engineering, offering potential benefits such as enhanced plant resistance, improved biomass, and restoration of soil fertility. This review provides an overview of recent breakthroughs in isoflavonoid biosynthesis, encompassing key enzymes in the biosynthetic pathway, transporters influencing their subcellular localization, molecular mechanisms regulating the metabolic pathway (including transcriptional and post-transcriptional regulation, as well as epigenetic modifications). Metabolic engineering strategies aimed at boosting isoflavonoid content in both leguminous and non-leguminous plants. Additionally, we discuss emerging technologies and resources for precise isoflavonoid regulation. This comprehensive review primarily focuses on model plants and crops, offering insights for more effective and sustainable metabolic engineering approaches to enhance nutritional quality and stress tolerance.
Collapse
Affiliation(s)
- Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chaofeng Li
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
11
|
Mandal P, Mortensen DA, Brito AF, Wallingford AK, Lima MRM, Warren ND, Smith RG. Water Stress Influences Phytoestrogen Levels in Red Clover ( Trifolium pratense) but Not Kura Clover ( T. ambiguum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10247-10256. [PMID: 38683760 DOI: 10.1021/acs.jafc.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Some forage legumes synthesize phytoestrogens. We conducted a glasshouse study to investigate how water stress (drought and waterlogging) influences phytoestrogen accumulation in red clover and kura clover. Compared to the red clover control, the 20 day drought resulted in an over 100% increase in the phytoestrogens formononetin and biochanin A, which together accounted for 91-96% of the total phytoestrogens measured. Waterlogging resulted in elevated concentrations of daidzein, genistein, and prunetin but not formononetin or biochanin A. Concentrations of phytoestrogens in kura clover were low or undetectable, regardless of water stress treatment. Leaf water potential was the most explanatory single-predictor of the variation in concentrations of formononetin, biochanin A, and total phytoestrogens in red clover. These results suggest that drought-stressed red clover may have higher potential to lead to estrogenic effects in ruminant livestock and that kura clover is a promising alternative low- or no-phytoestrogen perennial forage legume.
Collapse
Affiliation(s)
- Palash Mandal
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 129 Main Street, Durham, New Hampshire 03824, United States
| | - David A Mortensen
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 129 Main Street, Durham, New Hampshire 03824, United States
| | - André F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 129 Main Street, Durham, New Hampshire 03824, United States
| | - Anna K Wallingford
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 129 Main Street, Durham, New Hampshire 03824, United States
| | - Marta R M Lima
- School of Plant and Environmental Sciences, Virginia Tech, 185 Ag Quad Lane, Blacksburg, Virginia 24061, United States
| | - Nicholas D Warren
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, New Hampshire 03824, United States
| | - Richard G Smith
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, New Hampshire 03824, United States
| |
Collapse
|
12
|
Ethier R, Krishnamurthy A, Jeffrey M, Tompkins TA. Profiling of Metabolites in a Fermented Soy Dietary Supplement Reinforces its Role in the Management of Intestinal Inflammation. Mol Nutr Food Res 2024; 68:e2300770. [PMID: 38522032 DOI: 10.1002/mnfr.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Indexed: 03/25/2024]
Abstract
SCOPE Gastro-AD (GAD) is a soy flour derived product that undergoes an industrial fermentation with Lactobacillus delbrueckii R0187 and has demonstrated clinical effects in gastroesophageal reflux and peptic ulcer symptom resolution. The aim of this study is to describe and link GAD's metabolomic profile to plausible mechanisms that manifest and explain the documented clinical outcomes. METHODS AND RESULTS 1H NMR spectroscopy with multivariate statistical analysis is used to characterize the prefermented soy flour and GAD products. The acquired spectra are screened using various resources and the molecular assignments are confirmed using total correlation spectroscopy (TOCSY). Peaks corresponding to different metabolites are integrated and compared between the two products for relative changes. HPLC and GC are used to quantify some specific molecules. NMR analyses demonstrate significant changes in the composition of various assigned bioactive moieties. HPLC and GC analysis demonstrate deglycation of isoflavones after fermentation, resulting in estrogenically active secondary metabolites that have been previously shown to help to reduce inflammation. CONCLUSION The identification of bioactive molecules, such as genistein and SCFAs, capable of modulating anti-inflammatory signaling cascades in the stomach's gastric and neuroendocrine tissues can explain the reported biological effects in GAD and is supported by in vivo data.
Collapse
Affiliation(s)
- Richard Ethier
- Richard Ethier Consulting, Montreal, Quebec, H4C 2J9, Canada
| | - Arun Krishnamurthy
- Purity-IQ Inc., Suite# 102, 150 Research Lane, Guelph, Ontario, N1G 4T2, Canada
| | - Michael Jeffrey
- Faculty of Science, Engineering & Information Technology, Durham College, Oshawa, Ontario, L1G 0C5, Canada
| | - Thomas A Tompkins
- Lallemand Bio-Ingredients, 1620 rue Prefontaine, Montreal, Quebec, H1W 2N8, Canada
| |
Collapse
|
13
|
Yoo DY, Xie CL, Jeong JY, Park KH, Kang SS, Lee DH. Isoflavone-enriched soybean leaves (Glycine max) restore loss of dermal collagen fibers induced by ovariectomy in the Sprague Dawley rats. Lab Anim Res 2024; 40:4. [PMID: 38355576 PMCID: PMC10865608 DOI: 10.1186/s42826-024-00189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Phytoestrogens, such as isoflavones, are known for their capacity to simulate various physiological impacts of estrogen in the human body. Our research evaluated the effects of isoflavone-enriched soybean leaves (IESL) on collagen fiber loss prompted by ovariectomy in Sprague Dawley (SD) rats, thereby simulating menopausal changes in women. IESL, bolstered with an increased concentration of isoflavones through a metabolite farming process, contained a significantly higher amount of isoflavones than regular soybean leaves. Our results indicate that the administration of IESL can counteract the decrease in relative optical density and dermal thickness of collagen fibers caused by ovariectomy in SD rats, with more pronounced effects observed at higher isoflavone dosages. These outcomes suggest that soybean leaves rich in isoflavones may hold potential benefits in combating collagen degradation and skin aging symptoms related to menopause. Further research is needed to fully understand the exact molecular pathways at play and the potential clinical relevance of these findings.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheng-Liang Xie
- College of Ecology, Lishui University, Zhejiang, 323000, China
| | - Joo Yeon Jeong
- Department of Anatomy and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
14
|
Liao Y, Mao H, Gao X, Lin H, Li W, Chen Y, Li H. Drug screening identifies aldose reductase as a novel target for treating cisplatin-induced hearing loss. Free Radic Biol Med 2024; 210:430-447. [PMID: 38056576 DOI: 10.1016/j.freeradbiomed.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Cisplatin is a frequently used chemotherapeutic medicine for cancer treatment. Permanent hearing loss is one of the most serious side effects of cisplatin, but there are few FDA-approved medicines to prevent it. We applied high-through screening and target fishing and identified aldose reductase, a key enzyme of the polyol pathway, as a novel target for treating cisplatin ototoxicity. Cisplatin treatment significantly increased the expression level and enzyme activity of aldose reductase in the cochlear sensory epithelium. Genetic knockdown or pharmacological inhibition of aldose reductase showed a significant protective effect on cochlear hair cells. Cisplatin-induced overactivation of aldose reductase led to the decrease of NADPH/NADP+ and GSH/GSSG ratios, as well as the increase of oxidative stress, and contributed to hair cell death. Results of target prediction, molecular docking, and enzyme activity detection further identified that Tiliroside was an effective inhibitor of aldose reductase. Tiliroside was proven to inhibit the enzymatic activity of aldose reductase via competitively interfering with the substrate-binding region. Both Tiliroside and another clinically approved aldose reductase inhibitor, Epalrestat, inhibited cisplatin-induced oxidative stress and subsequent cell death and thus protected hearing function. These findings discovered the role of aldose reductase in the pathogenesis of cisplatin-induced deafness and identified aldose reductase as a new target for the prevention and treatment of hearing loss.
Collapse
Affiliation(s)
- Yaqi Liao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Huanyu Mao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Xian Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Hailiang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Wenyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| | - Yan Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| | - Huawei Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| |
Collapse
|
15
|
Ayeni KI, Jamnik T, Fareed Y, Flasch M, Braun D, Uhl M, Hartmann C, Warth B. The Austrian children's biomonitoring survey 2020 Part B: Mycotoxins, phytotoxins, phytoestrogens and food processing contaminants. Food Chem Toxicol 2023; 182:114173. [PMID: 37925015 DOI: 10.1016/j.fct.2023.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
This study assessed the levels of environment and food-related exposures in urine of Austrian school children aged six to ten (n = 85) focusing on mycotoxins, phytoestrogens, and food processing by-products using two multi-analyte LC-MS/MS methods. Out of the 55 biomarkers of exposure reported in this study, 22 were quantified in the first void urine samples. Mycotoxins frequently quantified included zearalenone (detection rate 100%; median 0.11 ng/mL), deoxynivalenol (99%; 15 ng/mL), alternariol monomethyl ether (75%; 0.04 ng/mL), and ochratoxin A (19%; 0.03 ng/mL). Several phytoestrogens, including genistein, daidzein, and its metabolite equol, were detected in all samples at median concentrations of 22 ng/mL, 43 ng/mL, and 14 ng/mL, respectively. The food processing by-product 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was detected in 4% of the samples (median 0.016 ng/mL). None of the investigated samples contained the tested phytotoxins that were rarely considered for human biomonitoring previously (pyrrolizidine alkaloids, tropane alkaloids, aristolochic acids). When relating estimated exposure to current health-based guidance values, 22% of the children exceeded the tolerable daily intake for deoxynivalenol, and the estimated MOE for OTA indicates possible health risks for some children. The results clearly demonstrate frequent low-level (co-)exposure and warrant further exposome-scale exposure assessments, especially in susceptible sub-populations and longitudinal settings.
Collapse
Affiliation(s)
- Kolawole I Ayeni
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria; Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Thomas Jamnik
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Yasmin Fareed
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Maria Uhl
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria
| | - Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
16
|
Laasmaa M, Branovets J, Stolova J, Shen X, Rätsepso T, Balodis MJ, Grahv C, Hendrikson E, Louch WE, Birkedal R, Vendelin M. Cardiomyocytes from female compared to male mice have larger ryanodine receptor clusters and higher calcium spark frequency. J Physiol 2023; 601:4033-4052. [PMID: 37561554 DOI: 10.1113/jp284515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Sex differences in cardiac physiology are receiving increased attention as it has become clear that men and women have different aetiologies of cardiac disease and require different treatments. There are experimental data suggesting that male cardiomyocytes exhibit larger Ca2+ transients due to larger Ca2+ sparks and a higher excitation-contraction coupling gain; in addition, they exhibit a larger response to adrenergic stimulation with isoprenaline (ISO). Here, we studied whether there are sex differences relating to structural organization of the transverse tubular network and ryanodine receptors (RyRs). Surprisingly, we found that female cardiomyocytes exhibited a higher spark frequency in a range of spark magnitudes. While overall RyR expression and phosphorylation were the same, female cardiomyocytes had larger but fewer RyR clusters. The density of transverse t-tubules was the same, but male cardiomyocytes had more longitudinal t-tubules. The Ca2+ transients were similar in male and female cardiomyocytes under control conditions and in the presence of ISO. The synchrony of the Ca2+ transients was similar between sexes as well. Overall, our data suggest subtle sex differences in the Ca2+ influx and efflux pathways and their response to ISO, but these differences are balanced, resulting in similar Ca2+ transients in field-stimulated male and female cardiomyocytes. The higher spark frequency in female cardiomyocytes is related to the organization of RyRs into larger, but fewer clusters. KEY POINTS: During a heartbeat, the force of contraction depends on the amplitude of the calcium transient, which in turn depends on the amount of calcium released as calcium sparks through ryanodine receptors in the sarcoplasmic reticulum. Previous studies suggest that cardiomyocytes from male compared to female mice exhibit larger calcium sparks, larger sarcoplasmic reticulum calcium release and greater response to adrenergic stimulation triggering a fight-or-flight response. In contrast, we show that cardiomyocytes from female mice have a higher spark frequency during adrenergic stimulation and similar spark morphology. The higher spark frequency is related to the organization of ryanodine receptors into fewer, but larger clusters in female compared to male mouse cardiomyocytes. Despite subtle sex differences in cardiomyocyte structure and calcium fluxes, the differences are balanced, leading to similar calcium transients in cardiomyocytes from male and female mice.
Collapse
Affiliation(s)
- Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Jekaterina Stolova
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Xin Shen
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Triinu Rätsepso
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Mihkel Jaan Balodis
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Cärolin Grahv
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Eliise Hendrikson
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - William Edward Louch
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
17
|
Stiefel C, Stintzing F. Endocrine-active and endocrine-disrupting compounds in food – occurrence, formation and relevance. NFS JOURNAL 2023; 31:57-92. [DOI: 10.1016/j.nfs.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Filippone A, Rossi C, Rossi MM, Di Micco A, Maggiore C, Forcina L, Natale M, Costantini L, Merendino N, Di Leone A, Franceschini G, Masetti R, Magno S. Endocrine Disruptors in Food, Estrobolome and Breast Cancer. J Clin Med 2023; 12:jcm12093158. [PMID: 37176599 PMCID: PMC10178963 DOI: 10.3390/jcm12093158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The microbiota is now recognized as one of the major players in human health and diseases, including cancer. Regarding breast cancer (BC), a clear link between microbiota and oncogenesis still needs to be confirmed. Yet, part of the bacterial gene mass inside the gut, constituting the so called "estrobolome", influences sexual hormonal balance and, since the increased exposure to estrogens is associated with an increased risk, may impact on the onset, progression, and treatment of hormonal dependent cancers (which account for more than 70% of all BCs). The hormonal dependent BCs are also affected by environmental and dietary endocrine disruptors and phytoestrogens which interact with microbiota in a bidirectional way: on the one side disruptors can alter the composition and functions of the estrobolome, ad on the other the gut microbiota influences the metabolism of endocrine active food components. This review highlights the current evidence about the complex interplay between endocrine disruptors, phytoestrogens, microbiome, and BC, within the frames of a new "oncobiotic" perspective.
Collapse
Affiliation(s)
- Alessio Filippone
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristina Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Maddalena Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Annalisa Di Micco
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Maggiore
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luana Forcina
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Natale
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Alba Di Leone
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Franceschini
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Women's Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Masetti
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Women's Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Magno
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
19
|
Pavlopoulos DT, Myrtsi ED, Tryfinopoulou P, Iliopoulos V, Koulocheri SD, Haroutounian SA. Phytoestrogens as Biomarkers of Plant Raw Materials Used for Fish Feed Production. Molecules 2023; 28:molecules28083623. [PMID: 37110857 PMCID: PMC10144496 DOI: 10.3390/molecules28083623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The intensive use of plant materials as a sustainable alternative for fish feed production, combined with their phytochemical content, which affects the growth and production characteristics of farmed fishes, necessitates their monitoring for the presence of raw materials of plant origin. This study reported herein concerns the development, validation and application of a workflow using high-performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) for the quantification of 67 natural phytoestrogens in plant-derived raw materials that were used to produce fish feeds. Specifically, we verified the presence of 8 phytoestrogens in rapeseed meal samples, 20 in soybean meal samples, 12 in sunflower meal samples and only 1 in wheat meal samples in quantities enabling their efficient incorporation into clusters. Among the various constituents, the soybean phytoestrogens daidzein, genistein, daidzin, glycitin, apigenin, calycosin and coumestrol, as well as the sunflower neochlorogenic, caffeic and chlorogenic phenolic acids, displayed the highest correlations with their origin descriptions. A hierarchical cluster analysis of the studied samples, based on their phytoestrogen contents, led to the efficient clustering of raw materials. The accuracy and efficiency of this clustering were tested through the incorporation of additional samples of soybean meal, wheat meal and maize meal, which verified the utilization of the phytoestrogen content as a valuable biomarker for the discrimination of raw materials used for fish feed production.
Collapse
Affiliation(s)
- Dionysios T Pavlopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleni D Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Paschalitsa Tryfinopoulou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Vasilios Iliopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Sofia D Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Serkos A Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
20
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
21
|
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023; 160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.
Collapse
Affiliation(s)
- Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Baowen Qi
- South China Hospital of Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen, 518116, P. R. China; BioCangia Inc., 205 Torbay Road, Markham, ON L3R 3W4, Canada
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ya Zhao
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| |
Collapse
|
22
|
Chen H, Liu C, Li Y, Wang X, Pan X, Wang F, Zhang Q. Developmental dynamic transcriptome and systematic analysis reveal the major genes underlying isoflavone accumulation in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1014349. [PMID: 36959940 PMCID: PMC10027745 DOI: 10.3389/fpls.2023.1014349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Soy isoflavone, a class of polyphenolic compounds exclusively occurred in legumes, is an important bioactive compound for both plants and human beings. The outline of isoflavones biosynthesis pathway has been drawn up basically in the previous research. However, research on the subject has been mostly restricted to investigate the static regulation of isoflavone content in soybean, rather than characterize its dynamic variation and modulation network in developing seeds. METHODS In this study, by using eight recombinant inbred lines (RIL), the contents of six isoflavone components in the different stages of developing soybean seeds were determined to characterize the dynamic variation of isoflavones, and the isoflavones accumulation pattern at physiological level was investigated. Meanwhile, we integrated and analyzed the whole genome expression profile of four lines and 42 meta-transcriptome data, based on the multiple algorithms. RESULTS This study: 1) obtained 4 molecular modules strongly correlated with isoflavone accumulation; 2) identified 28 novel major genes that could affect the accumulation of isoflavones in developing seeds free from the limitation of environments; 3) discussed the dynamic molecular patterns regulating isoflavones accumulation in developing seed; 4) expanded the isoflavone biosynthesis pathway. DISCUSSION The results not only promote the understandings on the biosynthesis and regulation of isoflavones at physiological and molecular level, but also facilitate to breed elite soybean cultivars with high isoflavone contents.
Collapse
Affiliation(s)
- Heng Chen
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Changkai Liu
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Yansheng Li
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Xue Wang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Xiangwen Pan
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Feifei Wang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Qiuying Zhang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
23
|
Fucic A, Mantovani A, Vena J, Bloom MS, Sincic N, Vazquez M, Aguado-Sierra J. Impact of endocrine disruptors from mother's diet on immuno-hormonal orchestration of brain development and introduction of the virtual human twin tool. Reprod Toxicol 2023; 117:108357. [PMID: 36863570 DOI: 10.1016/j.reprotox.2023.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Diet has long been known to modify physiology during development and adulthood. However, due to a growing number of manufactured contaminants and additives over the last few decades, diet has increasingly become a source of exposure to chemicals that has been associated with adverse health risks. Sources of food contaminants include the environment, crops treated with agrochemicals, inappropriate storage (e.g., mycotoxins) and migration of xenobiotics from food packaging and food production equipment. Hence, consumers are exposed to a mixture of xenobiotics, some of which are endocrine disruptors (EDs). The complex interactions between immune function and brain development and their orchestration by steroid hormones are insufficiently understood in human populations, and little is known about the impact on immune-brain interactions by transplacental fetal exposure to EDs via maternal diet. To help to identify the key data gaps, this paper aims to present (a) how transplacental EDs modify immune system and brain development, and (b) how these mechanisms may correlate with diseases such as autism and disturbances of lateral brain development. Attention is given to disturbances of the subplate, a transient structure of crucial significance in brain development. Additionally, we describe cutting edge approaches to investigate the developmental neurotoxicity of EDs, such as the application of artificial intelligence and comprehensive modelling. In the future, highly complex investigations will be performed using virtual brain models constructed using sophisticated multi-physics/multi-scale modelling strategies based on patient and synthetic data, which will enable a greater understanding of healthy or disturbed brain development.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska C 2, Zagreb, Croatia.
| | - A Mantovani
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - J Vena
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M S Bloom
- Global and Community Health, George Mason University, 4400 University Dr., Fairfax, VA, USA
| | - N Sincic
- Medical School, University of Zagreb, Salata 3, Croatia
| | - M Vazquez
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - J Aguado-Sierra
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| |
Collapse
|
24
|
Lee W, Kim SJ. Protective effects of isoflavones on alcoholic liver diseases: Computational approaches to investigate the inhibition of ALDH2 with isoflavone analogues. Front Mol Biosci 2023; 10:1147301. [PMID: 36923641 PMCID: PMC10009234 DOI: 10.3389/fmolb.2023.1147301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Excessive and chronic alcohol intake can lead to the progression of alcoholic liver disease (ALD), which is a major cause of morbidity and mortality worldwide. ALD encompasses a pathophysiological spectrum such as simple steatosis, alcoholic steatohepatitis (ASH), fibrosis, alcoholic cirrhosis, and hepatocellular carcinoma (HCC). Aldehyde dehydrogenase (ALDH2) is the most vital enzyme that produces acetate from acetaldehyde and is expressed at high levels in the liver, kidneys, muscles, and heart. The ALDH2*2 allele is found in up to 40% of East Asian populations, and has a significant impact on alcohol metabolism. Interestingly, several studies have shown that individuals with ALDH2 deficiency are more susceptible to liver inflammation after drinking alcohol. Furthermore, there is growing evidence of an association between ALDH2 deficiency and the development of cancers in the liver, stomach, colon, and lung. Isoflavone analogues are low molecular-weight compounds derived from plants, similar in structure and activity to estrogen in mammals, known as phytoestrogens. Recent studies have reported that isoflavone analogues have beneficial effects on the progression of ALD. This mini-review summarizes the current knowledge about the roles of isoflavone analogues in ALD and discusses the therapeutic potential of isoflavone analogues in liver pathophysiology. In particular, we highlight the significance of computational approaches in this field.
Collapse
Affiliation(s)
- Wook Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Jin Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Republic of Korea.,Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
25
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. A comprehensive approach to modeling maternal immune activation in rodents. Front Neurosci 2022; 16:1071976. [PMID: 36590294 PMCID: PMC9800799 DOI: 10.3389/fnins.2022.1071976] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Prenatal brain development is a highly orchestrated process, making it a very vulnerable window to perturbations. Maternal stress and subsequent inflammation during pregnancy leads to a state referred to as, maternal immune activation (MIA). If persistent, MIA can pose as a significant risk factor for the manifestation of neurodevelopmental disorders (NDDs) such as autism spectrum disorder and schizophrenia. To further elucidate this association between MIA and NDD risk, rodent models have been used extensively across laboratories for many years. However, there are few uniform approaches for rodent MIA models which make not only comparisons between studies difficult, but some established approaches come with limitations that can affect experimental outcomes. Here, we provide researchers with a comprehensive review of common experimental variables and potential limitations that should be considered when designing an MIA study based in a rodent model. Experimental variables discussed include: innate immune stimulation using poly I:C and LPS, environmental gestational stress paradigms, rodent diet composition and sterilization, rodent strain, neonatal handling, and the inclusion of sex-specific MIA offspring analyses. We discuss how some aspects of these variables have potential to make a profound impact on MIA data interpretation and reproducibility.
Collapse
Affiliation(s)
- Morgan C. Bucknor
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anand Gururajan
- The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Russell C. Dale
- The Children’s Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Wyse J, Latif S, Gurusinghe S, McCormick J, Weston LA, Stephen CP. Phytoestrogens: A Review of Their Impacts on Reproductive Physiology and Other Effects upon Grazing Livestock. Animals (Basel) 2022; 12:ani12192709. [PMID: 36230450 PMCID: PMC9559698 DOI: 10.3390/ani12192709] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Legume crops and pastures have a high economic value in Australia. However, legume species commonly used for grazing enterprises have been identified to produce high concentrations of phytoestrogens. These compounds are heterocyclic phenolic, and are similar in structure to the mammalian estrogen, 17β-estradiol. The biological activity of the various phytoestrogen types; isoflavones, lignans and coumestans, are species-specific, although at concentrations of 25 mg/kg of dry matter each of the phytoestrogen types affect reproductive functions in grazing livestock. The impacts upon fertility in grazing livestock such as cattle and sheep, vary greatly over length of exposure time, age and health of animal and the stress stimuli the plant is exposed to. More recently, research into the other effects that phytoestrogens may have upon metabolism, immune capacity and growth and performance of grazing livestock has been conducted. Potential new benefits for using these phytoestrogens, such as daidzein and genistein, have been identified by observing the stimulation of production in lymphocytes and other antibody cells. Numerous isoflavones have also been recognized to promote protein synthesis, increase the lean meat ratio, and increase weight gain in cattle and sheep. In Australia, the high economic value of legumes as pasture crops in sheep and cattle production enterprises requires proactive management strategies to mitigate risk associated with potential loss of fertility associated with inclusion of pasture legumes as forages for grazing livestock.
Collapse
Affiliation(s)
- Jessica Wyse
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: (J.W.); (C.P.S.)
| | - Sajid Latif
- National Life Sciences Research Hub, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Saliya Gurusinghe
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Jeffrey McCormick
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Leslie A. Weston
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Cyril P. Stephen
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: (J.W.); (C.P.S.)
| |
Collapse
|
27
|
Jantaratnotai N, Thampithak A, Utaisincharoen P, Pinthong D, Sanvarinda P. Inhibition of LPS-Induced Microglial Activation by the Ethyl Acetate Extract of Pueraria mirifica. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12920. [PMID: 36232220 PMCID: PMC9566591 DOI: 10.3390/ijerph191912920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Microglial activation has been found to play a crucial role in various neurological disorders. Proinflammatory substances overproduced by activated microglia, such as cytokines, chemokines, reactive oxygen species, and nitric oxide (NO), can result in neuroinflammation that further exacerbates the course of the diseases. This study aimed to explore the anti-inflammatory effect of the ethyl acetate extract of Pueraria mirifica on microglial activation. Lipopolysaccharide (LPS)-induced inflammation was used as a model to investigate the effects of P. mirifica on HAPI (highly aggressive proliferating immortalized), a rat microglial cell line. Administration of ethyl acetate extract from the tuberous roots of P. mirifica to HAPI cells dose-dependently reduced NO production and iNOS expression induced by LPS. Attenuation of IRF-1 (interferon regulatory factor-1) induction, one of the transcription factors governing iNOS expression, suggested that the inhibitory effect on NO production by the plant extract was at least partially mediated through this transcription factor. In addition, LPS-stimulated mRNA expression of MCP-1 (monocyte chemoattractant protein-1), IL-6 (interleukin-6), and TNF-α (tumor necrosis factor-α) was also suppressed with P. mirifica extract pretreatment. This study indicates that the ethyl acetate extract of P. mirifica could potentially serve as an anti-inflammatory mediator and may be useful in relieving the severity of neurological diseases where microglia play a role.
Collapse
Affiliation(s)
- Nattinee Jantaratnotai
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Anusorn Thampithak
- Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| | - Pongsak Utaisincharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Darawan Pinthong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pimtip Sanvarinda
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
28
|
Meng J, Zhang Y, Wang G, Ji M, Wang B, He G, Wang Q, Bai F, Xu K, Yuan D, Li S, Cheng Y, Wei S, Fu C, Wang G, Zhou G. Conduction of a chemical structure-guided metabolic phenotype analysis method targeting phenylpropane pathway via LC-MS: Ginkgo biloba and soybean as examples. Food Chem 2022; 390:133155. [PMID: 35576806 DOI: 10.1016/j.foodchem.2022.133155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
Abstract
The phenylpropane pathway (PPP) is one of the most extensively investigated metabolic routes. This pathway biosynthesizes many important active ingredients such as phenylpropanoids and flavonoids that affect the flavor, taste and nutrients of food. How to elucidate the metabolic phenotype of PPP is fundamental in food research and development. In this study, we designed a structural periodical table filled with 103 metabolites produced from PPP. All of them especially the 62 structural isomers were qualified and quantified with high resolution and sensitivity via multiple reaction mode in liquid chromatography tandem triple quadrupole mass spectrometry. Ginkgo biloba and soybean were used as samples for the practical application of this method: The delicate spatial-temporal metabolic balance of PPP from ginkgo biloba has been first elucidated; It is first confirmed that the salt and draught stresses could redirect the biosynthesis trend of PPP to produce more isoflavones in soybean leaves.
Collapse
Affiliation(s)
- Jie Meng
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Yiran Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guolin Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Meijing Ji
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Bo Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Guo He
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qianwen Wang
- Central Public Laboratory of Qingdao Agricultural University, Qingdao 266109, China
| | - Fali Bai
- Public Laboratory of Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Kun Xu
- Central Public Laboratory of Qingdao Agricultural University, Qingdao 266109, China
| | - Dongliang Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Cheng
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuhui Wei
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
29
|
Payette M, Lima MRM, Coleman WM, Ashraf-Khorassani M. Separation optimization and quantitative analysis of phytoestrogens employing reverse-phase high-performance liquid chromatography with UV-VIS detection. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Michael Payette
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Marta R. M. Lima
- School of Plant & Environmental Sciences Blacksburg, Virginia Tech, Blacksburg, Virginia, USA
| | | | | |
Collapse
|
30
|
Liu H, Wang Y, Zhu D, Xu J, Xu X, Liu J. Bioaccessibility and Application of Soybean Isoflavones: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- He Liu
- College of Food Science and Technology, Bohai University, Jinszhou, Liaoning, China
| | - Yue Wang
- College of Food Science and Technology, Bohai University, Jinszhou, Liaoning, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinszhou, Liaoning, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinszhou, Liaoning, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinszhou, Liaoning, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co. Ltd, Yucheng, Shandong, China
| |
Collapse
|
31
|
Daodee S, Monthakantirat O, Tantipongpiradet A, Maneenet J, Chotritthirong Y, Boonyarat C, Khamphukdee C, Kwankhao P, Pitiporn S, Awale S, Matsumoto K, Chulikhit Y. Effect of Yakae-Prajamduen-Jamod Traditional Thai Remedy on Cognitive Impairment in an Ovariectomized Mouse Model and Its Mechanism of Action. Molecules 2022; 27:molecules27134310. [PMID: 35807554 PMCID: PMC9267962 DOI: 10.3390/molecules27134310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Cognitive impairment is a neurological symptom caused by reduced estrogen levels in menopausal women. The Thai traditional medicine, Yakae-Prajamduen-Jamod (YPJ), is a formula consisting of 23 medicinal herbs and has long been used to treat menopausal symptoms in Thailand. In the present study, we investigated the effects of YPJ on cognitive deficits and its underlying mechanisms of action in ovariectomized (OVX) mice, an animal model of menopause. OVX mice showed cognitive deficits in the Y-maze, the novel object recognition test, and the Morris water maze. The serum corticosterone (CORT) level was significantly increased in OVX mice. Superoxide dismutase and catalase activities were reduced, while the mRNA expression of IL-1β, IL-6, and TNF-α inflammatory cytokines were up-regulated in the frontal cortex and hippocampus of OVX mice. These alterations were attenuated by daily treatment with either YPJ or 17β-estradiol. HPLC analysis revealed that YPJ contained antioxidant and phytoestrogen constituents including gallic acid, myricetin, quercetin, luteolin, genistein, and coumestrol. These results suggest that YPJ exerts its ameliorative effects on OVX-induced cognitive deficits in part by mitigating HPA axis overactivation, neuroinflammation, and oxidative brain damage. Therefore, YPJ may be a novel alternative therapeutic medicine suitable for the treatment of cognitive deficits during the menopausal transition.
Collapse
Affiliation(s)
- Supawadee Daodee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (O.M.); (A.T.); (J.M.); (Y.C.); (C.B.)
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (O.M.); (A.T.); (J.M.); (Y.C.); (C.B.)
| | - Ariyawan Tantipongpiradet
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (O.M.); (A.T.); (J.M.); (Y.C.); (C.B.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Juthamart Maneenet
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (O.M.); (A.T.); (J.M.); (Y.C.); (C.B.)
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Yutthana Chotritthirong
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (O.M.); (A.T.); (J.M.); (Y.C.); (C.B.)
| | - Chantana Boonyarat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (O.M.); (A.T.); (J.M.); (Y.C.); (C.B.)
| | - Charinya Khamphukdee
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Pakakrong Kwankhao
- Department of Pharmacy, Chao Phya Abhaibhubejhr Hospital, Ministry of Public Health, Prachinburi 25000, Thailand; (P.K.); (S.P.)
| | - Supaporn Pitiporn
- Department of Pharmacy, Chao Phya Abhaibhubejhr Hospital, Ministry of Public Health, Prachinburi 25000, Thailand; (P.K.); (S.P.)
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Kinzo Matsumoto
- Graduate School of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (O.M.); (A.T.); (J.M.); (Y.C.); (C.B.)
- Correspondence: ; Tel.: +66-81-380-2357
| |
Collapse
|
32
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
33
|
Zhang K, Lin L, Zhu Y, Zhang N, Zhou M, Li Y. Saikosaponin d Alleviates Liver Fibrosis by Negatively Regulating the ROS/NLRP3 Inflammasome Through Activating the ERβ Pathway. Front Pharmacol 2022; 13:894981. [PMID: 35694250 PMCID: PMC9174603 DOI: 10.3389/fphar.2022.894981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
Background and aims: Saikosaponin d (SSd) has a steroidal structure and significant anti-inflammatory effects. The purpose of this study was to explore the mechanism underlying SSd’s inhibitory effects on liver fibrosis. Methods: Wild-type and estrogen receptor knockout (ERKO) mice were treated with CCl4 to establish liver fibrosis mouse models. The effects of SSd on hepatic fibrogenesis were studied in these mouse models. Hepatic stellate cells (HSCs) were activated by H2O2 to investigate the potential molecular mechanisms. The establishment of the models and the degrees of inflammation and liver tissue fibrosis were evaluated by detecting changes in serum liver enzymes and liver histopathology. The expression of α-SMA and TGF-β1 was determined by immunohistochemistry. The expression and significance of NLRP3 inflammasome proteins were explored by RT-PCR and Western blotting analyses. The mitochondrial ROS-related indexes were evaluated by MitoSOX Red. Results: In wild-type and ERKO mice treated with CCl4, the fluorescence expression of mitochondrial ROS was up-regulated, while the mitochondrial membrane potential and ATP content were decreased, suggesting that the mitochondria were damaged. In addition, the expression of NLRP3 inflammatory bodies and fibrosis markers (α-SMA, TGF-β, TIMP-1, MMP-2, and Vimentin) in liver tissue increased. Furthermore, the above indexes showed the same expression trend in activated HSCs. In addition, the peripheral serum ALT and AST levels increased in CCl4-induced liver injury model mice. And HE staining showed a large number of inflammatory cell infiltration in the liver of model mice. Picric acid-Sirius staining and Masson staining showed that there was significant collagen fibrous tissue deposition in mice liver sections. IHC and WB detection confirmed that the expression of α-SMA and TGF-β1 increased. Liver fibrosis scores were also elevated. Then, after SSd intervention, the expression of ROS in wild-type mice and αERKO mice decreased, mitochondrial membrane potential recovered, ATP level increased, NLRP3 inflammasome and fibrosis indexes decreased, liver enzyme levels decreased, and liver pathology showed liver inflammation. The damage and collagen deposition were significantly relieved, the expression of α-SMA and TGF-β1 was decreased, and the fibrosis score was also decreased. More importantly, the effect of SSd in alleviating liver injury and liver fibrosis had no effect on βERKO mice. Conclusion: SSd alleviated liver fibrosis by negatively regulating the ROS/NLRP3 inflammasome through activating the ERβ pathway. By establishing liver fibrosis models using wild-type and ERKO mice, we demonstrated that SSd could alleviate liver fibrosis by inhibiting the ROS/NLRP3 inflammasome axis through activating the ERβ pathway.
Collapse
|
34
|
Design, Semisynthesis, and Estrogenic Activity of Lignan Derivatives from Natural Dibenzylbutyrolactones. Pharmaceuticals (Basel) 2022; 15:ph15050585. [PMID: 35631411 PMCID: PMC9145393 DOI: 10.3390/ph15050585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 12/25/2022] Open
Abstract
Based on molecular docking studies on the ERα, a series of lignan derivatives (3–16) were designed and semisynthesized from the natural dibenzylbutyrolactones bursehernin (1) and matairesinol dimethyl ether (2). To examine their estrogenic and antiestrogenic potencies, the effects of these compounds on estrogen receptor element (ERE)-driven reporter gene expression and viability in human ER+ breast cancer cells were evaluated. Lignan compounds induced ERE-driven reporter gene expression with very low potency as compared with the pure agonist E2. However, coincubation of 5 μM of lignan derivatives 1, 3, 4, 7, 8, 9, 11, 13, and 14 with increasing concentrations of E2 (from 0.01 pM to 1 nM) reduced both the potency and efficacy of pure agonists. The binding to the rhERα-LBD was validated by TR-FRET competitive binding assay and lignans bound to the rhERα with IC50 values from 0.16 μM (compound 14) to 6 μM (compound 4). Induced fit docking (IFD) and molecular dynamics (MD) simulations for compound 14 were carried out to further investigate the binding mode interactions. Finally, the in silico ADME predictions indicated that the most potent lignan derivatives exhibited good drug-likeness.
Collapse
|
35
|
The Potent Phytoestrogen 8-Prenylnaringenin: A Friend or a Foe? Int J Mol Sci 2022; 23:ijms23063168. [PMID: 35328588 PMCID: PMC8953904 DOI: 10.3390/ijms23063168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
8-prenylnaringenin (8-PN) is a prenylated flavonoid, occurring, in particular, in hop, but also in other plants. It has proven to be one of the most potent phytoestrogens in vitro known to date, and in the past 20 years, research has unveiled new effects triggered by it in biological systems. These findings have aroused the hopes, expectations, and enthusiasm of a “wonder-drug” for a host of human diseases. However, the majority of 8-PN effects require such high concentrations that they cannot be reached by normal dietary exposure, only pharmacologically; thus, adverse impacts may also emerge. Here, we provide a comprehensive and up-to-date review on this fascinating compound, with special reference to the range of beneficial and untoward health consequences that may ensue from exposure to it.
Collapse
|
36
|
Kazlauskaite JA, Ivanauskas L, Marksa M, Bernatoniene J. The Effect of Traditional and Cyclodextrin-Assisted Extraction Methods on Trifolium pratense L. (Red Clover) Extracts Antioxidant Potential. Antioxidants (Basel) 2022; 11:435. [PMID: 35204317 PMCID: PMC8868588 DOI: 10.3390/antiox11020435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Red clover is the subject of numerous studies because of its antioxidant properties, the positive influence of isoflavones on the health, and its potential use in the prevention and treatment of chronic diseases. The right excipients, such as cyclodextrins, can increase the profile of valuable phenolic compounds in extraction media to obtain rich in antioxidants, extracts that can be used in nutraceuticals production. The aim of this study was to investigate and compare the total phenolic content, flavonoid content, and antioxidant activity of red clover aerial parts, aqueous and ethanolic extracts prepared using traditional and cyclodextrins-assisted methods. The antioxidant activity of the extracts was established using ABTS, DPPH, FRAP, and ABTS-post column methods. It was determined that cyclodextrins significantly increased total phenolic content (compared with control)-using β-cyclodextrin 20.29% (in aqueous samples); γ-cyclodextrin 22.26% (in ethanolic samples). All the samples prepared with excipients demonstrated a strong relationship between total phenolic content and DPPH assay. Study showed that for extraction with water, the highest amounts of phenolic compounds, flavonoids and antioxidant activity will be achieved with β-cyclodextrin, but extractions with ethanol will give the best results with γ-cyclodextrin. Therefore, cyclodextrins are a great and safe tool for obtaining rich, red clover flower extracts that are high in antioxidant activity, which can be used in the pharmaceutical industry for nutraceuticals production.
Collapse
Affiliation(s)
- Jurga Andreja Kazlauskaite
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.I.); (M.M.)
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.I.); (M.M.)
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
37
|
Martín JF, Liras P. Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics (Basel) 2022; 11:antibiotics11010082. [PMID: 35052959 PMCID: PMC8773403 DOI: 10.3390/antibiotics11010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Naringenin and its glycosylated derivative naringin are flavonoids that are synthesized by the phenylpropanoid pathway in plants. We found that naringenin is also formed by the actinobacterium Streptomyces clavuligerus, a well-known microorganism used to industrially produce clavulanic acid. The production of naringenin in S. clavuligerus involves a chalcone synthase that uses p-coumaric as a starter unit and a P450 monoxygenase, encoded by two adjacent genes (ncs-ncyP). The p-coumaric acid starter unit is formed by a tyrosine ammonia lyase encoded by an unlinked, tal, gene. Deletion and complementation studies demonstrate that these three genes are required for biosynthesis of naringenin in S. clavuligerus. Other actinobacteria chalcone synthases use caffeic acid, ferulic acid, sinapic acid or benzoic acid as starter units in the formation of different antibiotics and antitumor agents. The biosynthesis of naringenin is restricted to a few Streptomycess species and the encoding gene cluster is present also in some Saccharotrix and Kitasatospora species. Phylogenetic comparison of S. clavuligerus naringenin chalcone synthase with homologous proteins of other actinobacteria reveal that this protein is closely related to chalcone synthases that use malonyl-CoA as a starter unit for the formation of red-brown pigment. The function of the core enzymes in the pathway, such as the chalcone synthase and the tyrosine ammonia lyase, is conserved in plants and actinobacteria. However, S. clavuligerus use a P450 monooxygenase proposed to complete the cyclization step of the naringenin chalcone, whereas this reaction in plants is performed by a chalcone isomerase. Comparison of the plant and S. clavuligerus chalcone synthases indicates that they have not been transmitted between these organisms by a recent horizontal gene transfer phenomenon. We provide a comprehensive view of the molecular genetics and biochemistry of chalcone synthases and their impact on the development of antibacterial and antitumor compounds. These advances allow new bioactive compounds to be obtained using combinatorial strategies. In addition, processes of heterologous expression and bioconversion for the production of naringenin and naringenin-derived compounds in yeasts are described.
Collapse
|
38
|
Li X, Chen H, Yang H, Liu J, Li Y, Dang Y, Wang J, Wang L, Li J, Nie G. Study on the Potential Mechanism of Tonifying Kidney and Removing Dampness Formula in the Treatment of Postmenopausal Dyslipidemia Based on Network Pharmacology, Molecular Docking and Experimental Evidence. Front Endocrinol (Lausanne) 2022; 13:918469. [PMID: 35872979 PMCID: PMC9302042 DOI: 10.3389/fendo.2022.918469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Management of menopausal dyslipidemia is the main measure to reduce the incidence of cardiovascular disease in postmenopausal women. Tonifying Kidney and Removing Dampness Formula (TKRDF) is a traditional Chinese medicine (TCM) formula that ameliorates dyslipidemia in postmenopausal women. This study applied network pharmacology, molecular docking, and in vitro and in vitro experiments to investigate the underlying mechanism of TKRDF against postmenopausal dyslipidemia. METHODS Network pharmacology research was first conducted, and the active compounds and targets of TKRDF, as well as the targets of postmenopausal dyslipidemia, were extracted from public databases. Protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to identify the potential targets and signaling pathways of TKRDF in postmenopausal dyslipidemia. Molecular docking was then performed to evaluate the combination of active compounds with principal targets. Finally, an ovariectomized rat model was used for the in vivo experiment and alpha mouse liver 12 (AML12) cells treated with palmitic acid were used for the in vitro experiments to provide further evidence for the research. RESULTS Based on network pharmacology analysis, we obtained 78 active compounds from TKRDF that acted on 222 targets of postmenopausal dyslipidemia. The analysis results indicated that IL6, TNF, VEGFA, AKT1, MAPK3, MAPK1, PPARG and PIK3CA, etc., were the potentially key targets, and the PI3K/AKT signaling pathway was the possibly crucial pathway for TKRDF to treat postmenopausal dyslipidemia. Molecular docking suggested that the active compounds have good binding activity with the core targets. The in vivo and in vitro experiments demonstrated that TKRDF ameliorates postmenopausal dyslipidemia by regulating hormone levels, inhibiting inflammation, promoting angiogenesis and inhibiting lipid synthesis, which appear to be related to TKRDF's regulation of the ERK1/2 and PI3K/AKT signaling pathways. CONCLUSION This study clarified the active ingredients, potential targets, and molecular mechanisms of TKRDF for treating postmenopausal dyslipidemia. It also provided a feasible method to uncover the scientific basis and therapeutic mechanism for prescribing TCM in the treatment of diseases.
Collapse
Affiliation(s)
- Xuewen Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyan Yang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian Liu
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Li
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiajing Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Guangning Nie, ; Jun Li,
| | - Guangning Nie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Guangning Nie, ; Jun Li,
| |
Collapse
|
39
|
Vasiljević S, Mikulić M, Aćimović M, Kiprovski B, Krstić S, Katanski S, Mamlić Z. Isoflavones profiles of red clover (Trifolium pratense L.) at different growth stages. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/10.33320/maced.pharm.bull.2020.66.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sanja Vasiljević
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Republic of Serbia
| | - Mira Mikulić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Republic of Serbia
| | - Milica Aćimović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Republic of Serbia
| | - Biljana Kiprovski
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Republic of Serbia
| | - Sanja Krstić
- Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Snežana Katanski
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Republic of Serbia
| | - Zlatica Mamlić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Republic of Serbia
| |
Collapse
|
40
|
Chen H, Pan X, Wang F, Liu C, Wang X, Li Y, Zhang Q. Novel QTL and Meta-QTL Mapping for Major Quality Traits in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:774270. [PMID: 34956271 PMCID: PMC8692671 DOI: 10.3389/fpls.2021.774270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 05/27/2023]
Abstract
Isoflavone, protein, and oil are the most important quality traits in soybean. Since these phenotypes are typically quantitative traits, quantitative trait locus (QTL) mapping has been an efficient way to clarify their complex and unclear genetic background. However, the low-density genetic map and the absence of QTL integration limited the accurate and efficient QTL mapping in previous researches. This paper adopted a recombinant inbred lines (RIL) population derived from 'Zhongdou27'and 'Hefeng25' and a high-density linkage map based on whole-genome resequencing to map novel QTL and used meta-analysis methods to integrate the stable and consentaneous QTL. The candidate genes were obtained from gene functional annotation and expression analysis based on the public database. A total of 41 QTL with a high logarithm of odd (LOD) scores were identified through composite interval mapping (CIM), including 38 novel QTL and 2 Stable QTL. A total of 660 candidate genes were predicted according to the results of the gene annotation and public transcriptome data. A total of 212 meta-QTL containing 122 stable and consentaneous QTL were mapped based on 1,034 QTL collected from previous studies. For the first time, 70 meta-QTL associated with isoflavones were mapped in this study. Meanwhile, 69 and 73 meta-QTL, respectively, related to oil and protein were obtained as well. The results promote the understanding of the biosynthesis and regulation of isoflavones, protein, and oil at molecular levels, and facilitate the construction of molecular modular for great quality traits in soybean.
Collapse
Affiliation(s)
- Heng Chen
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangwen Pan
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Feifei Wang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Changkai Liu
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Xue Wang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yansheng Li
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Qiuying Zhang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
41
|
Mezzomo NF, da Silva Schmitz I, de Lima VB, Dorneles GP, Schaffer LF, Boeck CR, Romao PRT, Peroza LR. Reversal of haloperidol-induced orofacial dyskinesia and neuroinflammation by isoflavones. Mol Biol Rep 2021; 49:1917-1923. [PMID: 34854012 DOI: 10.1007/s11033-021-07003-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Schizophrenia is a mental illness and its pharmacological treatment consists in the administration of antipsychotics like haloperidol. However, haloperidol often causes extrapyramidal motor disorders such as tardive dyskinesia (TD). So far, there is no effective treatment against TD and alternatives for it have been sought. Isoflafones have been studied as neuroprotector and inhibitor of monoamine oxidase enzyme. Thus, the objective is to evaluate the possible protective effect of isoflavones against the induction of involuntary movements induced by haloperidol in an animal model. METHODS AND RESULTS Male Wistar rats were treated with haloperidol (1 mg/kg/day) and/or isoflavones (80 mg/kg) for 28 days. Rats were submitted to behavioral evaluation to quantify vacuous chewing movements (VCM) and locomotor activity. In addition, the levels of pro-inflammatory cytokines were measured in the striatum. Haloperidol treatment reduced the locomotor activity and increased the number of VCM in rats. Co-treatment with isoflavones was able to reverse hypolocomotion and reduce the number of VCM. Besides, haloperidol caused significant increase in the proinflammatory cytokines (interleukin-1β:IL-1β, tumor necrosis factor-α: TNF-α and IL-6 and the co-treatment with isoflavones was able to reduce the levels of IL-1β and TNF-α, but not IL-6. CONCLUSIONS It is believed that the beneficial effect found with this alternative treatment is related to its anti-inflammatory potential and to the action on estrogen receptors (based on scientific literature findings). Finally, further studies are needed to elucidate the mechanisms of isoflavones in reducing motor disorders induced by antipsychotics.
Collapse
Affiliation(s)
| | | | | | - Gilson Pires Dorneles
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Carina Rodrigues Boeck
- Mestrado em Ciências da Saúde e da Vida, Universidade Franciscana (UFN), Santa Maria, RS, Brazil
| | - Pedro Roosevelt Torres Romao
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Luis Ricardo Peroza
- Mestrado em Ciências da Saúde e da Vida, Universidade Franciscana (UFN), Santa Maria, RS, Brazil.
- Universidade Franciscana (UFN), 97010-032, Santa Maria, RS, Brazil.
| |
Collapse
|
42
|
Shatavari Supplementation in Postmenopausal Women Improves Handgrip Strength and Increases Vastus lateralis Myosin Regulatory Light Chain Phosphorylation but Does Not Alter Markers of Bone Turnover. Nutrients 2021; 13:nu13124282. [PMID: 34959836 PMCID: PMC8708006 DOI: 10.3390/nu13124282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Shatavari has long been used as an Ayurvedic herb for women's health, but empirical evidence for its effectiveness has been lacking. Shatavari contains phytoestrogenic compounds that bind to the estradiol receptor. Postmenopausal estradiol deficiency contributes to sarcopenia and osteoporosis. In a randomised double-blind trial, 20 postmenopausal women (68.5 ± 6 years) ingested either placebo (N = 10) or shatavari (N = 10; 1000 mg/d, equivalent to 26,500 mg/d fresh weight shatavari) for 6 weeks. Handgrip and knee extensor strength were measured at baseline and at 6 weeks. Vastus lateralis (VL) biopsy samples were obtained. Data are presented as difference scores (Week 6-baseline, median ± interquartile range). Handgrip (but not knee extensor) strength was improved by shatavari supplementation (shatavari +0.7 ± 1.1 kg, placebo -0.4 ± 1.3 kg; p = 0.04). Myosin regulatory light chain phosphorylation, a known marker of improved myosin contractile function, was increased in VL following shatavari supplementation (immunoblotting; placebo -0.08 ± 0.5 a.u., shatavari +0.3 ± 1 arbitrary units (a.u.); p = 0.03). Shatavari increased the phosphorylation of Aktser473 (Aktser473 (placebo -0.6 ± 0.6 a.u., shatavari +0.2 ± 1.3 a.u.; p = 0.03) in VL. Shatavari supplementation did not alter plasma markers of bone turnover (P1NP, β-CTX) and stimulation of human osteoblasts with pooled sera (N = 8 per condition) from placebo and shatavari supplementation conditions did not alter cytokine or metabolic markers of osteoblast activity. Shatavari may improve muscle function and contractility via myosin conformational change and further investigation of its utility in conserving and enhancing musculoskeletal function, in larger and more diverse cohorts, is warranted.
Collapse
|
43
|
Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health. Antioxidants (Basel) 2021; 10:antiox10121893. [PMID: 34942997 PMCID: PMC8750933 DOI: 10.3390/antiox10121893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of dietary phytoestrogens on human health has been a topic of continuous debate since their discovery. Nowadays, based on their presumptive beneficial effects, the amount of phytoestrogens consumed in the daily diet has increased considerably worldwide. Thus, there is a growing need for scientific data regarding their mode of action in the human body. Recently, new insights of phytoestrogens’ bioavailability and metabolism have demonstrated an inter-and intra-population heterogeneity of final metabolites’ production. In addition, the phytoestrogens may have the ability to modulate epigenetic mechanisms that control gene expression. This review highlights the complexity and particularity of the metabolism of each class of phytoestrogens, pointing out the diversity of their bioactive gut metabolites. Futhermore, it presents emerging scientific data which suggest that, among well-known genistein and resveratrol, other phytoestrogens and their gut metabolites can act as epigenetic modulators with a possible impact on human health. The interconnection of dietary phytoestrogens’ consumption with gut microbiota composition, epigenome and related preventive mechanisms is discussed. The current challenges and future perspectives in designing relevant research directions to explore the potential health benefits of dietary phytoestrogens are also explored.
Collapse
|
44
|
Kim J, Lee K, Nam YS. Metal-polyphenol Complexes as Versatile Building Blocks for Functional Biomaterials. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Wyse JM, Latif S, Gurusinghe S, Berntsen ED, Weston LA, Stephen CP. Characterization of Phytoestrogens in Medicago sativa L. and Grazing Beef Cattle. Metabolites 2021; 11:metabo11080550. [PMID: 34436490 PMCID: PMC8398016 DOI: 10.3390/metabo11080550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Phytoestrogens are plant-produced bioactive secondary metabolites known to play an integral role in plant defense that frequently accumulate in times of stress and/or microbial infection. Phytoestrogens typically belong to two distinct chemical classes; flavonoids (isoflavones) and non-flavonoids (lignans and coumestans). Upon consumption by livestock, high concentrations of phytoestrogens can cause long-term disruption in reproduction due to structural similarities with mammalian estrogens and their tendency to bind estrogen receptors. Wide variation in phytoestrogen concentration has been reported in pasture legumes and corresponding silage or hay. Lucerne is a common perennial pasture legume in temperate climates, but information on phytoestrogen production or accumulation in grazing livestock is currently limited. Therefore, metabolic profiling using UHPLC-MS-QToF was performed to identify and quantitate key phytoestrogens in both fresh and dried lucerne fodder from replicated field or controlled glasshouse environments. Phytoestrogens were also profiled in the blood plasma of Angus cattle grazing field-grown lucerne. Results revealed that phytoestrogens varied quantitatively and qualitatively among selected lucerne cultivars grown under glasshouse conditions. Fresh lucerne samples contained higher concentrations of coumestans and other phytoestrogenic isoflavones than did dried samples for all cultivars profiled, with several exceeding desirable threshold levels for grazing cattle. Coumestans and isoflavones profiled in plasma of Angus heifers grazing lucerne increased significantly over a 21-day sampling period following experimental initiation. Currently, threshold concentrations for phytoestrogens in plasma are unreported. However, total phytoestrogen concentration exceeded 300 mg·kg−1 in fresh and 180 mg·kg−1 in dried samples of selected cultivars, suggesting that certain genotypes may upregulate phytoestrogen production, while others may prove suitable sources of fodder for grazing livestock.
Collapse
Affiliation(s)
- Jessica M. Wyse
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (J.M.W.); (S.G.); (C.P.S.)
- Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
| | - Sajid Latif
- Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
- Faculty of Science, National Life Sciences Hub, Building 289, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Saliya Gurusinghe
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (J.M.W.); (S.G.); (C.P.S.)
- Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
| | - Erica D. Berntsen
- Department of Agriculture, Falkland Islands Government, Stanley FIQQ 1ZZ, Falkland Islands;
| | - Leslie A. Weston
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (J.M.W.); (S.G.); (C.P.S.)
- Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
- Correspondence:
| | - Cyril P. Stephen
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (J.M.W.); (S.G.); (C.P.S.)
- Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
| |
Collapse
|
46
|
Bessaire T, Ernest M, Christinat N, Carrères B, Panchaud A, Badoud F. High resolution mass spectrometry workflow for the analysis of food contaminants: Application to plant toxins, mycotoxins and phytoestrogens in plant-based ingredients. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:978-996. [PMID: 33861158 DOI: 10.1080/19440049.2021.1902575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/03/2021] [Indexed: 01/27/2023]
Abstract
An analytical workflow including mass spectral library, generic sample preparation, chromatographic separation, and analysis by high-resolution mass spectrometry (HRMS) was developed to gain insight into the occurrence of plant toxins, mycotoxins and phytoestrogens in plant-based food. This workflow was applied to 156 compounds including 90 plant toxins (pyrrolizidine alkaloids, tropane alkaloids, glycoalkaloids, isoquinoline alkaloids and aristolochic acids), 54 mycotoxins (including ergot alkaloids and Alternaria toxins) and 12 phytoestrogens (including isoflavones, lignans and coumestan) in plant-based protein ingredients, cereal and pseudo-cereal products. A mass spectral library was built based on fragmentation spectra collected at 10 different collision energies in both positive and negative ionisation modes for each toxin. Emphasis was put on a generic QuEChERS-like sample preparation followed by ultra-high-pressure liquid chromatography using alkaline mobile phase allowing the separation of more than 50 toxic pyrrolizidine alkaloids. HRMS acquisition comprised a full-scan event for toxins detection followed by data-dependent MS2 for toxin identification against mass spectrum. Method performance was evaluated using fortified samples in terms of sensitivity, repeatability, reproducibility and recovery. All toxins were positively identified at levels ranging from 1 µg kg-1 to 100 µg kg-1. Quantitative results obtained by a standard addition approach met SANTE/12682/2019 criteria for 132 out of 156 toxins. Such a workflow using generic, sensitive and selective multi-residue method allows a better insight into the occurrence of regulated and non-regulated toxins in plant-based foods and to conduct safety evaluation and risk assessments when needed.
Collapse
Affiliation(s)
- Thomas Bessaire
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Marion Ernest
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | | | - Benoit Carrères
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | | | - Flavia Badoud
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| |
Collapse
|
47
|
Lee S, Kim GJ, Kwon H, Nam JW, Baek JY, Shim SH, Choi H, Kang KS. Estrogenic Effects of Extracts and Isolated Compounds from Belowground and Aerial Parts of Spartina anglica. Mar Drugs 2021; 19:210. [PMID: 33920324 PMCID: PMC8069246 DOI: 10.3390/md19040210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
Menopause, caused by decreases in estrogen production, results in symptoms such as facial flushing, vaginal atrophy, and osteoporosis. Although hormone replacement therapy is utilized to treat menopausal symptoms, it is associated with a risk of breast cancer development. We aimed to evaluate the estrogenic activities of Spartina anglica (SA) and its compounds and identify potential candidates for the treatment of estrogen reduction without the risk of breast cancer. We evaluated the estrogenic and anti-proliferative effects of extracts of SA and its compounds in MCF-7 breast cancer cells. We performed an uterotrophic assay using an immature female rat model. Among extracts of SA, belowground part (SA-bg-E50) had potent estrogenic activity. In the immature female rat model, the administration of SA-bg-E50 increased uterine weight compared with that in the normal group. Among the compounds isolated from SA, 1,3-di-O-trans-feruloyl-(-)-quinic acid (1) had significant estrogenic activity and induced phosphorylation at serine residues of estrogen receptor (ER)α. All extracts and compounds from SA did not increase MCF-7 cell proliferation. Compound 1 is expected to act as an ERα ligand and have estrogenic effects, without side effects, such as breast cancer development.
Collapse
Affiliation(s)
- Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea;
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (G.J.K.); (H.K.); (J.-W.N.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Hyukbean Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (G.J.K.); (H.K.); (J.-W.N.)
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (G.J.K.); (H.K.); (J.-W.N.)
| | - Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (G.J.K.); (H.K.); (J.-W.N.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
48
|
Quero J, Mármol I, Cerrada E, Rodríguez-Yoldi MJ. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct 2021; 11:2805-2825. [PMID: 32134090 DOI: 10.1039/d0fo00216j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent times, a great number of plants have been studied in order to identify new components with nutraceutical properties, among which are polyphenols. Dietary polyphenols represent a large group of bioactive molecules widely found in the food of plant origin and they have been found able to prevent the onset and progression of degenerative diseases, and to reduce and control their symptoms. These health protective effects have been mainly related to their antioxidant and anti-inflammatory properties. However, it must be considered that the application of isolated polyphenols as nutraceuticals is quite limited due to their poor systemic distribution and relative bioavailability. The present review highlights the potential effect of dietary intervention with polyphenol-rich food and plant extracts in patients with cancer, diabetes and neurodegenerative, autoimmune, cardiovascular and ophthalmic diseases, as well as the possible molecular mechanisms of action suggested in numerous studies with animal models.
Collapse
Affiliation(s)
- Javier Quero
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| | - Inés Mármol
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| |
Collapse
|
49
|
Kim SI, Kim YH, Kang BG, Kang MK, Lee EJ, Kim DY, Oh H, Oh SY, Na W, Lim SS, Kang YH. Linarin and its aglycone acacetin abrogate actin ring formation and focal contact to bone matrix of bone-resorbing osteoclasts through inhibition of αvβ3 integrin and core-linked CD44. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153351. [PMID: 32987362 DOI: 10.1016/j.phymed.2020.153351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Since enhanced bone resorption due to osteoclast differentiation and activation cause skeletal diseases, there is a growing need in therapeutics for combating bone-resorbing osteoclasts. Botanical antioxidants are being increasingly investigated for their health-promoting effects on bone. Edible Cirsium setidens contains various polyphenols of linarin, pectolinarin, and apigenin with antioxidant and hepatoprotective effects. PURPOSE This study aimed to determine whether linarin present in Cirsium setidens water extracts (CSE) and its aglycone acacetin inhibited osteoclastogenesis of RANKL-exposed RAW 264.7 murine macrophages for 5 days. METHODS This study assessed the osteoprotective effects of CSE, linarin and acacetin on RANKL-induced differentiation and activation of osteoclasts by using MTT assay, TRAP staining, Western blot analysis, bone resorption assay actin ring staining, adhesion assay and immunocytochemical assay. This study explored the underlying mechanisms of their osteoprotection, and identified major components present in CSE by HPLC analysis. RESULTS Linarin and pectolinarin were identified as major components of CSE. Nontoxic linarin and acacetin as well as CSE, but not pectolinarin attenuated the RANKL-induced macrophage differentiation into multinucleated osteoclasts, and curtailed osteoclastic bone resorption through reducing lacunar acidification and bone matrix degradation in the osteoclast-bone interface. Linarin and acacetin in CSE reduced the transmigration and focal contact of osteoclasts to bone matrix-mimicking RGD peptide. Such reduction was accomplished by inhibiting the induction of integrins, integrin-associated proteins of paxillin and gelsolin, cdc42 and CD44 involved in the formation of actin rings. The inhibition of integrin-mediated actin ring formation by linarin and acacetin entailed the disruption of TRAF6-c-Src-PI3K signaling of bone-resorbing osteoclasts. The functional inhibition of c-Src was involved in the loss of F-actin-enriched podosome core protein cortactin-mediated actin assembly due to linarin and acacetin. CONCLUSION These observations demonstrate that CSE, linarin and acacetin were effective in retarding osteoclast function of focal adhesion to bone matrix and active bone resorption via inhibition of diffuse cloud-associated αvβ3 integrin and core-linked CD44.
Collapse
Affiliation(s)
- Soo-Il Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Beom Goo Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Hyeongjoo Oh
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Su Yeon Oh
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Woojin Na
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea.
| |
Collapse
|
50
|
Ahmed QU, Ali AHM, Mukhtar S, Alsharif MA, Parveen H, Sabere ASM, Nawi MSM, Khatib A, Siddiqui MJ, Umar A, Alhassan AM. Medicinal Potential of Isoflavonoids: Polyphenols That May Cure Diabetes. Molecules 2020; 25:molecules25235491. [PMID: 33255206 PMCID: PMC7727648 DOI: 10.3390/molecules25235491] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.
Collapse
Affiliation(s)
- Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
- Correspondence: (Q.U.A.); (S.M.)
| | - Abdul Hasib Mohd Ali
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
- Correspondence: (Q.U.A.); (S.M.)
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
| | - Awis Sukarni Mohmad Sabere
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Mohamed Sufian Mohd. Nawi
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Mohammad Jamshed Siddiqui
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Abdulrashid Umar
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P M B: 2436 Sokoto, Nigeria; (A.U.); (A.M.A.)
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P M B: 2436 Sokoto, Nigeria; (A.U.); (A.M.A.)
| |
Collapse
|