1
|
Runge BR, Zadorozhnyi R, Quinn CM, Russell RW, Lu M, Antolínez S, Struppe J, Schwieters CD, Byeon IJL, Hadden-Perilla JA, Gronenborn AM, Polenova T. Integrating 19F Distance Restraints for Accurate Protein Structure Determination by Magic Angle Spinning NMR Spectroscopy. J Am Chem Soc 2024; 146:30483-30494. [PMID: 39440810 DOI: 10.1021/jacs.4c11373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Traditional protein structure determination by magic angle spinning (MAS) solid-state NMR spectroscopy primarily relies on interatomic distances up to 8 Å, extracted from 13C-, 15N-, and 1H-based dipolar-based correlation experiments. Here, we show that 19F fast (60 kHz) MAS NMR spectroscopy can supply additional, longer distances. Using 4F-Trp,U-13C,15N crystalline Oscillatoria agardhii agglutinin (OAA), we demonstrate that judiciously designed 2D and 3D 19F-based dipolar correlation experiments such as (H)CF, (H)CHF, and FF can yield interatomic distances in the 8-16 Å range. Incorporation of fluorine-based restraints into structure calculation improved the precision of Trp side chain conformations as well as regions in the protein around the fluorine containing residues, with notable improvements observed for residues in proximity to the Trp pairs (W10/W17 and W77/W84) in the carbohydrate-binding loops, which lacked sufficient long-range 13C-13C distance restraints. Our work highlights the use of fluorine and 19F fast MAS NMR spectroscopy as a powerful structural biology tool.
Collapse
Affiliation(s)
- Brent R Runge
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Roman Zadorozhnyi
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Caitlin M Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Ryan W Russell
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Manman Lu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Santiago Antolínez
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Charles D Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 12A, Bethesda, Maryland 20892, United States
| | - In-Ja L Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Jodi A Hadden-Perilla
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Sengupta I. Insights into the Structure and Dynamics of Proteins from 19F Solution NMR Spectroscopy. Biochemistry 2024. [PMID: 39495741 DOI: 10.1021/acs.biochem.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
19F NMR spectroscopy has recently witnessed a resurgence as an attractive analytical tool for the study of the structure and dynamics of biomolecules in vitro and in cells, despite reports of its applications in biomolecular NMR since the 1970s. The high gyromagnetic ratio, large chemical shift dispersion, and complete absence of the spin 1/2 19F nucleus from biomolecules results in background-free, high-resolution 19F NMR spectra. The introduction of 19F probes in a few selected locations in biomolecules reduces spectral crowding despite its increased line width in comparison to typical 1H NMR line widths and allows rapid site-specific measurements from simple 1D spectra alone. The design and synthesis of novel 19F probes with reduced line widths and increased chemical shift sensitivity to the surrounding environment, together with advances in labeling techniques, NMR methodology, and hardware, have overcome several drawbacks of 19F NMR spectroscopy. The increased interest and widespread use of 19F NMR spectroscopy of biomolecules is gradually establishing it as a sensitive and high-resolution probe of biomolecular structure and dynamics, supplementing traditional 13C/15N-based methods. This Review focuses on the advances in 19F solution NMR spectroscopy of proteins in the past 5 years, with an emphasis on novel 19F tags and labeling techniques, NMR experiments to probe protein structure and conformational dynamics in vitro, and in-cell NMR applications.
Collapse
Affiliation(s)
- Ishita Sengupta
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Pellegrini E, Juyoux P, von Velsen J, Baxter NJ, Dannatt HRW, Jin Y, Cliff MJ, Waltho JP, Bowler MW. Metal fluorides-multi-functional tools for the study of phosphoryl transfer enzymes, a practical guide. Structure 2024; 32:1834-1846.e3. [PMID: 39106858 DOI: 10.1016/j.str.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024]
Abstract
Enzymes facilitating the transfer of phosphate groups constitute the most extensive protein families across all kingdoms of life. They make up approximately 10% of the proteins found in the human genome. Understanding the mechanisms by which enzymes catalyze these reactions is essential in characterizing the processes they regulate. Metal fluorides can be used as multifunctional tools to study these enzymes. These ionic species bear the same charge as phosphate and the transferring phosphoryl group and, in addition, allow the enzyme to be trapped in catalytically important states with spectroscopically sensitive atoms interacting directly with active site residues. The ionic nature of these phosphate surrogates also allows their removal and replacement with other analogs. Here, we describe the best practices to obtain these complexes, their use in NMR, X-ray crystallography, cryo-EM, and SAXS and describe a new metal fluoride, scandium tetrafluoride, which has significant anomalous signal using soft X-rays.
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Pauline Juyoux
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Nicola J Baxter
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Hugh R W Dannatt
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Yi Jin
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Jonathan P Waltho
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| |
Collapse
|
4
|
Belyaeva J, Elgeti M. Exploring protein structural ensembles: Integration of sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling methods. eLife 2024; 13:e99770. [PMID: 39283059 PMCID: PMC11405019 DOI: 10.7554/elife.99770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure-function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.
Collapse
Affiliation(s)
- Julia Belyaeva
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
- Institute for Medical Physics and Biophysics, Leipzig University Medical School, Leipzig, Germany
| | - Matthias Elgeti
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
- Institute for Medical Physics and Biophysics, Leipzig University Medical School, Leipzig, Germany
- Integrative Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Kalabekova R, Quinn CM, Movellan KT, Gronenborn AM, Akke M, Polenova T. 19F Fast Magic-Angle Spinning NMR Spectroscopy on Microcrystalline Complexes of Fluorinated Ligands and the Carbohydrate Recognition Domain of Galectin-3. Biochemistry 2024; 63:2207-2216. [PMID: 39008798 DOI: 10.1021/acs.biochem.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Structural characterization of protein-ligand binding interfaces at atomic resolution is essential for improving the design of specific and potent inhibitors. Herein, we explored fast 19F- and 1H-detected magic angle spinning NMR spectroscopy to investigate the interaction between two fluorinated ligand diastereomers with the microcrystalline galectin-3 carbohydrate recognition domain. The detailed environment around the fluorine atoms was mapped by 2D 13C-19F and 1H-19F dipolar correlation experiments and permitted characterization of the binding interface. Our results demonstrate that 19F MAS NMR is a powerful tool for detailed characterization of protein-ligand interfaces and protein interactions at the atomic level.
Collapse
Affiliation(s)
- Roza Kalabekova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Kumar Tekwani Movellan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Angela M Gronenborn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261, United States
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Greenberg HC, Majumdar A, Cheema EK, Kozyryev A, Rokita SE. 19F NMR Reveals the Dynamics of Substrate Binding and Lid Closure for Iodotyrosine Deiodinase as a Complement to Steady-State Kinetics and Crystallography. Biochemistry 2024; 63:2225-2232. [PMID: 39137127 PMCID: PMC11371475 DOI: 10.1021/acs.biochem.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Active site lids are common features of enzymes and typically undergo conformational changes upon substrate binding to promote catalysis. Iodotyrosine deiodinase is no exception and contains a lid segment in all of its homologues from human to bacteria. The solution-state dynamics of the lid have now been characterized using 19F NMR spectroscopy with a CF3-labeled enzyme and CF3O-labeled ligands. From two-dimensional 19F-19F NMR exchange spectroscopy, interconversion rates between the free and bound states of a CF3O-substituted tyrosine (45 ± 10 s-1) and the protein label (40 ± 3 s-1) are very similar and suggest a correlation between ligand binding and conformational reorganization of the lid. Both occur at rates that are ∼100-fold faster than turnover, and therefore these steps do not limit catalysis. A simple CF3O-labeled phenol also binds to the active site and induces a conformational change in the lid segment that was not previously detectable by crystallography. Exchange rates of the ligand (130 ± 20 s-1) and protein (98 ± 8 s-1) in this example are faster than those above but remain self-consistent to affirm a correlation between ordering of the lid and binding of the ligand. Both ligands also protect the protein from limited proteolysis, as expected from their ability to stabilize a compact lid structure. However, the minimal turnover of simple phenol substrates indicates that such stabilization may be necessary but is not sufficient for efficient catalysis.
Collapse
Affiliation(s)
- Harrison C Greenberg
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ekroop Kaur Cheema
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Anton Kozyryev
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Pan B, Guo C, Liu D, Wüthrich K. Fluorine-19 labeling of the tryptophan residues in the G protein-coupled receptor NK1R using the 5-fluoroindole precursor in Pichia pastoris expression. JOURNAL OF BIOMOLECULAR NMR 2024; 78:133-138. [PMID: 38554216 DOI: 10.1007/s10858-024-00439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 04/01/2024]
Abstract
In NMR spectroscopy of biomolecular systems, the use of fluorine-19 probes benefits from a clean background and high sensitivity. Therefore, 19F-labeling procedures are of wide-spread interest. Here, we use 5-fluoroindole as a precursor for cost-effective residue-specific introduction of 5-fluorotryptophan (5F-Trp) into G protein-coupled receptors (GPCRs) expressed in Pichia pastoris. The method was successfully implemented with the neurokinin 1 receptor (NK1R). The 19F-NMR spectra of 5F-Trp-labeled NK1R showed one well-separated high field-shifted resonance, which was assigned by mutational studies to the "toggle switch tryptophan". Residue-selective labeling thus enables site-specific investigations of this functionally important residue. The method described here is inexpensive, requires minimal genetic manipulation and can be expected to be applicable for yeast expression of GPCRs at large.
Collapse
Affiliation(s)
- Benxun Pan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Canyong Guo
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA.
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, Zürich, 8093, Switzerland.
| |
Collapse
|
8
|
Li H, Zhang J, Wang Z, Shi P, Shi C. Genetically encoded site-specific 19F unnatural amino acid incorporation in V. natriegens for in-cell NMR analysis. Protein Expr Purif 2024; 219:106461. [PMID: 38460621 DOI: 10.1016/j.pep.2024.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy NMR is a well-established technique for probing protein structure, dynamics and conformational changes. Taking advantage of the high signal sensitivity and broad chemical shift range of 19F nuclei, 19F NMR has been applied to investigate protein function at atomic resolution. In this report, we extend the unnatural amino acid site-specific incorporation into V. natriegens, an alternate protein expression system. The unnatural amino acid L-4-trifluoromethylphenylalanine (tfmF) was site-specifically introduced into the mitogen-activated protein kinase MEKK3 in V. natriegens using genetically encoded technology, which will be an extensive method for in-cell protein structure and dynamic investigation.
Collapse
Affiliation(s)
- Hao Li
- Anhui Vocational and Technical College, Hefei, Anhui, 230011, PR China; Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China.
| | - Jin Zhang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Zilong Wang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Pan Shi
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Chaowei Shi
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China.
| |
Collapse
|
9
|
Toyama Y, Shimada I. Quantitative analysis of the slow exchange process by 19F NMR in the presence of scalar and dipolar couplings: applications to the ribose 2'- 19F probe in nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2024:10.1007/s10858-024-00446-7. [PMID: 38918317 DOI: 10.1007/s10858-024-00446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Solution NMR spectroscopy is a particularly powerful technique for characterizing the functional dynamics of biomolecules, which is typically achieved through the quantitative characterization of chemical exchange processes via the measurement of spin relaxation rates. In addition to the conventional nuclei such as 15N and 13C, which are abundant in biomolecules, fluorine-19 (19F) has recently garnered attention and is being widely used as a site-specific spin probe. While 19F offers the advantages of high sensitivity and low background, it can be susceptible to artifacts in quantitative relaxation analyses due to a multitude of dipolar and scalar coupling interactions with nearby 1H spins. In this study, we focused on the ribose 2'-19F spin probe in nucleic acids and investigated the effects of 1H-19F spin interactions on the quantitative characterization of slow exchange processes on the millisecond time scale. We demonstrated that the 1H-19F dipolar coupling can significantly affect the interpretation of 19F chemical exchange saturation transfer (CEST) experiments when 1H decoupling is applied, while the 1H-19F interactions have a lesser impact on Carr-Purcell-Meiboom-Gill relaxation dispersion applications. We also proposed a modified CEST scheme to alleviate these artifacts along with experimental verifications on self-complementary RNA systems. The theoretical framework presented in this study can be widely applied to various 19F spin systems where 1H-19F interactions are operative, further expanding the utility of 19F relaxation-based NMR experiments.
Collapse
Affiliation(s)
- Yuki Toyama
- Laboratory for Dynamic Structure of Biomolecules, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Ichio Shimada
- Laboratory for Dynamic Structure of Biomolecules, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
10
|
Tan YJ, Abdelkader EH, Tarcoveanu E, Maleckis A, Nitsche C, Otting G. (2 S,4 S)-5-Fluoroleucine, (2 S,4 R)-5-Fluoroleucine, and 5,5'-Difluoroleucine in Escherichia coli PpiB: Protein Production, 19F NMR, and Ligand Sensing Enhanced by the γ-Gauche Effect. Biochemistry 2024; 63:1376-1387. [PMID: 38753308 DOI: 10.1021/acs.biochem.4c00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Global substitution of leucine for analogues containing CH2F instead of methyl groups delivers proteins with multiple sites for monitoring by 19F nuclear magnetic resonance (NMR) spectroscopy. The 19 kDa Escherichia coli peptidyl-prolyl cis-trans isomerase B (PpiB) was prepared with uniform high-level substitution of leucine by (2S,4S)-5-fluoroleucine, (2S,4R)-5-fluoroleucine, or 5,5'-difluoroleucine. The stability of the samples toward thermal denaturation was little altered compared to the wild-type protein. 19F nuclear magnetic resonance (NMR) spectra showed large chemical shift dispersions between 6 and 17 ppm. The 19F chemical shifts correlate with the three-bond 1H-19F couplings (3JHF), providing the first experimental verification of the γ-gauche effect predicted by [Feeney, J. J. Am. Chem. Soc. 1996, 118, 8700-8706] and establishing the effect as the predominant determinant of the 19F chemical shifts of CH2F groups. Individual CH2F groups can be confined to single rotameric states by the protein environment, but most CH2F groups exchange between different rotamers at a rate that is fast on the NMR chemical shift scale. Interactions between fluorine atoms in 5,5'-difluoroleucine bias the CH2F rotamers in agreement with results obtained previously for 1,3-difluoropropane. The sensitivity of the 19F chemical shift to the rotameric state of the CH2F groups potentially renders them particularly sensitive for detecting allosteric effects.
Collapse
Affiliation(s)
- Yi Jiun Tan
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Eliza Tarcoveanu
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Ansis Maleckis
- Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Ma J, Ayres CM, Brambley CA, Chandran SS, Rosales TJ, Corcelli SA, Kovrigin EL, Klebanoff CA, Baker BM. Dynamic allostery in the peptide/MHC complex enables TCR neoantigen selectivity. RESEARCH SQUARE 2024:rs.3.rs-4457195. [PMID: 38854019 PMCID: PMC11160895 DOI: 10.21203/rs.3.rs-4457195/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The inherent cross-reactivity of the T cell receptor (TCR) is balanced by high specificity, which often manifests in confounding ways not easily interpretable from static structures. We show here that TCR discrimination between an HLA-A*03:01 (HLA-A3)-restricted public neoantigen derived from mutant PIK3CA and its wild-type (WT) counterpart emerges from motions within the HLA binding groove that vary with the identity of the peptide's first primary anchor. The motions form a dynamic gate that in the complex with the WT peptide impedes a large conformational change required for TCR binding. The more rigid neoantigen is insusceptible to this limiting dynamic, and with the gate open, is able to transit its central tryptophan residue underneath the peptide backbone to the contralateral side of the HLA-A3 peptide binding groove, facilitating TCR binding. Our findings reveal a novel mechanism driving TCR specificity for a cancer neoantigen that is rooted in the dynamic and allosteric nature of peptide/MHC-I complexes, with implications for resolving long-standing and often confounding questions about the determinants of T cell specificity.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Cory M. Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Chad A. Brambley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Smita S. Chandran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
| | - Tatiana J. Rosales
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Evgenii L. Kovrigin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher A. Klebanoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
12
|
Devitt AN, Vargas AL, Zhu W, Des Soye BJ, Butun FA, Alt T, Kaley N, Ferreira GM, Moran G, Kelleher NL, Liu D, Silverman RB. Design, Synthesis, and Mechanistic Studies of ( R)-3-Amino-5,5-difluorocyclohex-1-ene-1-carboxylic Acid as an Inactivator of Human Ornithine Aminotransferase. ACS Chem Biol 2024; 19:1066-1081. [PMID: 38630468 PMCID: PMC11274680 DOI: 10.1021/acschembio.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Human ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, has been shown to play an essential role in the metabolic reprogramming and progression of hepatocellular carcinoma (HCC). HCC accounts for approximately 75% of primary liver cancers and is within the top three causes of cancer death worldwide. As a result of treatment limitations, the overall 5-year survival rate for all patients with HCC is under 20%. The prevalence of HCC necessitates continued development of novel and effective treatment methods. In recent years, the therapeutic potential of selective inactivation of hOAT has been demonstrated for the treatment of HCC. Inspired by previous increased selectivity for hOAT by the expansion of the cyclopentene ring scaffold to a cyclohexene, we designed, synthesized, and evaluated a series of novel fluorinated cyclohexene analogues and identified (R)-3-amino-5,5-difluorocyclohex-1-ene-1-carboxylic acid as a time-dependent inhibitor of hOAT. Structural and mechanistic studies have elucidated the mechanism of inactivation of hOAT by 5, resulting in a PLP-inactivator adduct tightly bound to the active site of the enzyme. Intact protein mass spectrometry, 19F NMR spectroscopy, transient state kinetic studies, and X-ray crystallography were used to determine the structure of the final adduct and elucidate the mechanisms of inactivation. Interestingly, despite the highly electrophilic intermediate species conferred by fluorine and structural evidence of solvent accessibility in the hOAT active site, Lys292 and water did not participate in nucleophilic addition during the inactivation mechanism of hOAT by 5. Instead, rapid aromatization to yield the final adduct was favored.
Collapse
Affiliation(s)
- Allison N. Devitt
- Department of Chemistry, Chemistry of Life Processes Institute, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Abigail L. Vargas
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Wei Zhu
- Department of Chemistry, Chemistry of Life Processes Institute, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin James Des Soye
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Fatma Ayaloglu Butun
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Tyler Alt
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Nicholas Kaley
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Glaucio M. Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Graham Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Richard B. Silverman
- Department of Chemistry, Chemistry of Life Processes Institute, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern University, Chicago, Illinois, 60611, United States
| |
Collapse
|
13
|
Qianzhu H, Abdelkader EH, Otting G, Huber T. Genetic Encoding of Fluoro-l-tryptophans for Site-Specific Detection of Conformational Heterogeneity in Proteins by NMR Spectroscopy. J Am Chem Soc 2024; 146:13641-13650. [PMID: 38687675 DOI: 10.1021/jacs.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The substitution of a single hydrogen atom in a protein by fluorine yields a site-specific probe for sensitive detection by 19F nuclear magnetic resonance (NMR) spectroscopy, where the absence of background signal from the protein facilitates the detection of minor conformational species. We developed genetic encoding systems for the site-selective incorporation of 4-fluorotryptophan, 5-fluorotryptophan, 6-fluorotryptophan, and 7-fluorotryptophan in response to an amber stop codon and used them to investigate conformational heterogeneity in a designed amino acid binding protein and in flaviviral NS2B-NS3 proteases. These proteases have been shown to present variable conformations in X-ray crystal structures, including flips of the indole side chains of tryptophan residues. The 19F NMR spectra of different fluorotryptophan isomers installed at the conserved site of Trp83 indicate that the indole ring flip is common in flaviviral NS2B-NS3 proteases in the apo state and suppressed by an active-site inhibitor.
Collapse
Affiliation(s)
- Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Hartmann P, Bohdan K, Hommrich M, Juliá F, Vogelsang L, Eirich J, Zangl R, Farès C, Jacobs JB, Mukhopadhyay D, Mengeler JM, Vetere A, Sterling MS, Hinrichs H, Becker S, Morgner N, Schrader W, Finkemeier I, Dietz KJ, Griesinger C, Ritter T. Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation. Nat Chem 2024; 16:380-388. [PMID: 38123842 PMCID: PMC10914617 DOI: 10.1038/s41557-023-01388-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Cysteine conjugation is an important tool in protein research and relies on fast, mild and chemoselective reactions. Cysteinyl thiols can either be modified with prefunctionalized electrophiles, or converted into electrophiles themselves for functionalization with selected nucleophiles in an independent step. Here we report a bioconjugation strategy that uses a vinyl thianthrenium salt to transform cysteine into a highly reactive electrophilic episulfonium intermediate in situ, to enable conjugation with a diverse set of bioorthogonal nucleophiles in a single step. The reactivity profile can connect several nucleophiles to biomolecules through a short and stable ethylene linker, ideal for introduction of infrared labels, post-translational modifications or NMR probes. In the absence of reactive exogenous nucleophiles, nucleophilic amino acids can react with the episulfonium intermediate for native peptide stapling and protein-protein ligation. Ready synthetic access to isotopologues of vinyl thianthrenium salts enables applications in quantitative proteomics. Such diverse applications demonstrate the utility of vinyl-thianthrenium-based bioconjugation as a fast, selective and broadly applicable tool for chemical biology.
Collapse
Affiliation(s)
- Philipp Hartmann
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Kostiantyn Bohdan
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Moritz Hommrich
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Fabio Juliá
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Rene Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | | | | | - Alessandro Vetere
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | - Heike Hinrichs
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
15
|
Frere GA, Hasabnis A, Francisco CB, Suleiman M, Alimowska O, Rahmatullah R, Gould J, Su CYC, Voznyy O, Gunning PT, Basso EA, Prosser RS. Next-Generation Tags for Fluorine Nuclear Magnetic Resonance: Designing Amplification of Chemical Shift Sensitivity. J Am Chem Soc 2024; 146:3052-3064. [PMID: 38279916 DOI: 10.1021/jacs.3c09730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Fluorine NMR is a highly sensitive technique for delineating the conformational states of biomolecules and has shown great utility in drug screening and in understanding protein function. Current fluorinated protein tags leverage the intrinsic chemical shift sensitivity of the 19F nucleus to detect subtle changes in protein conformation and topology. This chemical shift sensitivity can be amplified by embedding the fluorine or trifluoromethyl reporter within a pyridone. Due to their polarizability and rapid tautomerization, pyridones exhibit a greater range of electron delocalization and correspondingly greater 19F NMR chemical shift dispersion. To assess the chemical shift sensitivity of these tautomeric probes to the local environment, 19F NMR spectra of all possible monofluorinated and trifluoromethyl-tagged versions of 2-pyridone were recorded in methanol/water mixtures ranging from 100% methanol to 100% water. 4-Fluoro-2-pyridone and 6-(trifluoromethyl)-2-pyridone (6-TFP) displayed the greatest sensitivity of the monofluorinated and trifluoromethylated pyridones, exceeding that of known conventional CF3 reporters. To evaluate the utility of tautomeric pyridone tags for 19F NMR of biomolecules, the alpha subunit of the stimulatory G protein (Gsα) and human serum albumin (HSA) were each labeled with a thiol-reactive derivative of 6-TFP and the spectra were recorded as a function of various adjuvants and drugs. The tautomeric tag outperformed the conventional tag, 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide through the improved resolution of several functional states.
Collapse
Affiliation(s)
- Geordon A Frere
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Advait Hasabnis
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Camila B Francisco
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, State University of Maringá, 5790, Maringá 87020-900, Brazil
| | - Motasem Suleiman
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Olga Alimowska
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Rima Rahmatullah
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Jerome Gould
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Celia Yi-Chia Su
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Oleksandr Voznyy
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Patrick T Gunning
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Ernani A Basso
- Department of Chemistry, State University of Maringá, 5790, Maringá 87020-900, Brazil
| | - Robert S Prosser
- Department of Chemistry, University of Toronto, CPS, UTM, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
16
|
Baumann P, Jin Y. Far-reaching effects of tyrosine64 phosphorylation on Ras revealed with BeF 3- complexes. Commun Chem 2024; 7:19. [PMID: 38297137 PMCID: PMC10830474 DOI: 10.1038/s42004-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Tyrosine phosphorylation on Ras by Src kinase is known to uncouple Ras from upstream regulation and downstream communication. However, the mechanisms by which phosphorylation modulates these interactions have not been detailed. Here, the major mono-phosphorylation level on tyrosine64 is quantified by 31P NMR and mutagenesis. Crystal structures of unphosphorylated and tyrosine64-phosphorylated Ras in complex with a BeF3- ground state analogue reveal "closed" Ras conformations very different from those of the "open" conformations previously observed for non-hydrolysable GTP analogue structures of Ras. They deliver new mechanistic and conformational insights into intrinsic GTP hydrolysis. Phosphorylation of tyrosine64 delivers conformational changes distant from the active site, showing why phosphorylated Ras has reduced affinity to its downstream effector Raf. 19F NMR provides evidence for changes in the intrinsic GTPase and nucleotide exchange rate and identifies the concurrent presence of a major "closed" conformation alongside a minor yet functionally important "open" conformation at the ground state of Ras. This study expands the application of metal fluoride complexes in revealing major and minor conformational changes of dynamic and modified Ras proteins.
Collapse
Affiliation(s)
- Patrick Baumann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yi Jin
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
17
|
Zhou Y, Tang S, Chen Z, Zhou Z, Huang J, Kang XW, Zou S, Wang B, Zhang T, Ding B, Zhong D. Origin of the multi-phasic quenching dynamics in the BLUF domains across the species. Nat Commun 2024; 15:623. [PMID: 38245518 PMCID: PMC10799861 DOI: 10.1038/s41467-023-44565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial. Here, we incorporate site-specific fluorinated Trp into three BLUF proteins, i.e., AppA, OaPAC and SyPixD, and characterize the percentages for the Wout, WinNHin and WinNHout conformations using 19F nuclear magnetic resonance spectroscopy. Using femtosecond spectroscopy, we identify that one key WinNHin conformation can introduce a branching one-step proton transfer in AppA and a two-step proton transfer in OaPAC and SyPixD. Correlating the flavin quenching dynamics with the active-site structural heterogeneity, we conclude that the quenching rate is determined by the percentage of WinNHin, which encodes a Tyr-Gln configuration that is not conducive to proton transfer.
Collapse
Affiliation(s)
- Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyi Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
18
|
Vitali V, Torricella F, Massai L, Messori L, Banci L. Enlarging the scenario of site directed 19F labeling for NMR spectroscopy of biomolecules. Sci Rep 2023; 13:22017. [PMID: 38086881 PMCID: PMC10716153 DOI: 10.1038/s41598-023-49247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The possibility of using selectively incorporated 19F nuclei for NMR spectroscopic studies has retrieved increasing interest in recent years. The high gyromagnetic ratio of 19F and its absence in native biomolecular systems make this nucleus an interesting alternative to standard 1H NMR spectroscopy. Here we show how we can attach a label, carrying a 19F atom, to protein tyrosines, through the use of a specific three component Mannich-type reaction. To validate the efficacy and the specificity of the approach, we tested it on two selected systems with the aid of ESI MS measurements.
Collapse
Affiliation(s)
- Valentina Vitali
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Francesco Torricella
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy.
| |
Collapse
|
19
|
Kuehl NJ, Taylor MT. Rapid Biomolecular Trifluoromethylation Using Cationic Aromatic Sulfonate Esters as Visible-Light-Triggered Radical Photocages. J Am Chem Soc 2023; 145:22878-22884. [PMID: 37819426 PMCID: PMC11076010 DOI: 10.1021/jacs.3c08098] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Described here is a photodecaging approach to radical trifluoromethylation of biomolecules. This was accomplished by designing a quinolinium sulfonate ester that, upon absorption of visible light, achieves decaging via photolysis of the sulfonate ester to ultimately liberate free trifluoromethyl radicals that are trapped by π-nucleophiles in biomolecules. This photodecaging process enables protein and protein-interaction mapping experiments using trifluoromethyl radicals that require only 1 s reaction times and low photocage concentrations. In these experiments, aromatic side chains are labeled in an environmentally dependent fashion, with selectivity observed for tryptophan (Trp), followed by histidine (His) and tyrosine (Tyr). Scalable peptide trifluoromethylation through photodecaging is also demonstrated, where bespoke peptides harboring trifluoromethyl groups at tryptophan residues can be synthesized with 5-7 min reaction times and good yields.
Collapse
Affiliation(s)
- Nicholas J. Kuehl
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, United States
| | - Michael T. Taylor
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
20
|
Huang Y, Reddy KD, Bracken C, Qiu B, Zhan W, Eliezer D, Boudker O. Environmentally Ultrasensitive Fluorine Probe to Resolve Protein Conformational Ensembles by 19F NMR and Cryo-EM. J Am Chem Soc 2023; 145:8583-8592. [PMID: 37023263 PMCID: PMC10119980 DOI: 10.1021/jacs.3c01003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 04/08/2023]
Abstract
Limited chemical shift dispersion represents a significant barrier to studying multistate equilibria of large membrane proteins by 19F NMR. We describe a novel monofluoroethyl 19F probe that dramatically increases the chemical shift dispersion. The improved conformational sensitivity and line shape enable the detection of previously unresolved states in one-dimensional (1D) 19F NMR spectra of a 134 kDa membrane transporter. Changes in the populations of these states in response to ligand binding, mutations, and temperature correlate with population changes of distinct conformations in structural ensembles determined by single-particle cryo-electron microscopy (cryo-EM). Thus, 19F NMR can guide sample preparation to discover and visualize novel conformational states and facilitate image analysis and three-dimensional (3D) classification.
Collapse
Affiliation(s)
- Yun Huang
- Department
of Physiology & Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10021, United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Krishna D. Reddy
- Department
of Physiology & Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10021, United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Clay Bracken
- Department
of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10021, United States
| | - Biao Qiu
- Department
of Physiology & Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10021, United States
| | - Wenhu Zhan
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 1300 York Avenue, New York, New York 10021, United States
| | - David Eliezer
- Department
of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10021, United States
| | - Olga Boudker
- Department
of Physiology & Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10021, United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| |
Collapse
|
21
|
Huang SK, Picard LP, Rahmatullah RSM, Pandey A, Van Eps N, Sunahara RK, Ernst OP, Sljoka A, Prosser RS. Mapping the conformational landscape of the stimulatory heterotrimeric G protein. Nat Struct Mol Biol 2023; 30:502-511. [PMID: 36997760 DOI: 10.1038/s41594-023-00957-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
Heterotrimeric G proteins serve as membrane-associated signaling hubs, in concert with their cognate G-protein-coupled receptors. Fluorine nuclear magnetic resonance spectroscopy was employed to monitor the conformational equilibria of the human stimulatory G-protein α subunit (Gsα) alone, in the intact Gsαβ1γ2 heterotrimer or in complex with membrane-embedded human adenosine A2A receptor (A2AR). The results reveal a concerted equilibrium that is strongly affected by nucleotide and interactions with the βγ subunit, the lipid bilayer and A2AR. The α1 helix of Gsα exhibits significant intermediate timescale dynamics. The α4β6 loop and α5 helix undergo membrane/receptor interactions and order-disorder transitions respectively, associated with G-protein activation. The αN helix adopts a key functional state that serves as an allosteric conduit between the βγ subunit and receptor, while a significant fraction of the ensemble remains tethered to the membrane and receptor upon activation.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | | | - Rima S M Rahmatullah
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | - Aditya Pandey
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Wang X, Neale C, Kim SK, Goddard WA, Ye L. Intermediate-state-trapped mutants pinpoint G protein-coupled receptor conformational allostery. Nat Commun 2023; 14:1325. [PMID: 36899002 PMCID: PMC10006191 DOI: 10.1038/s41467-023-36971-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Understanding the roles of intermediate states in signaling is pivotal to unraveling the activation processes of G protein-coupled receptors (GPCRs). However, the field is still struggling to define these conformational states with sufficient resolution to study their individual functions. Here, we demonstrate the feasibility of enriching the populations of discrete states via conformation-biased mutants. These mutants adopt distinct distributions among five states that lie along the activation pathway of adenosine A2A receptor (A2AR), a class A GPCR. Our study reveals a structurally conserved cation-π lock between transmembrane helix VI (TM6) and Helix8 that regulates cytoplasmic cavity opening as a "gatekeeper" for G protein penetration. A GPCR activation process based on the well-discerned conformational states is thus proposed, allosterically micro-modulated by the cation-π lock and a previously well-defined ionic interaction between TM3 and TM6. Intermediate-state-trapped mutants will also provide useful information in relation to receptor-G protein signal transduction.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Chris Neale
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, 91125, USA
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
- H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
23
|
Essien NB, Galvácsi A, Kállay C, Al-Hilaly Y, González-Méndez R, Akien GR, Tizzard GJ, Coles SJ, Besora M, Kostakis GE. Fluorine-based Zn salan complexes. Dalton Trans 2023; 52:4044-4057. [PMID: 36880418 DOI: 10.1039/d2dt04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We synthesised and characterised the racemic and chiral versions of two Zn salan fluorine-based complexes from commercially available materials. The complexes are susceptible to absorbing H2O from the atmosphere. In solution (DMSO-H2O) and at the millimolar level, experimental and theoretical studies identify that these complexes exist in a dimeric-monomeric equilibrium. We also investigated their ability to sense amines via19F NMR. In CDCl3 or d6-DMSO, strongly coordinating molecules (H2O or DMSO) are the limiting factor in using these easy-to-make complexes as chemosensory platforms since their exchange with analytes requires an extreme excess of the latter.
Collapse
Affiliation(s)
- Nsikak B Essien
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Antal Galvácsi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Youssra Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.,Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ramón González-Méndez
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Maria Besora
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo, 1, 43007 Tarragona, Spain.
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
24
|
Isenegger PG, Josephson B, Gaunt B, Davy MJ, Gouverneur V, Baldwin AJ, Davis BG. Posttranslational, site-directed photochemical fluorine editing of protein sidechains to probe residue oxidation state via 19F-nuclear magnetic resonance. Nat Protoc 2023; 18:1543-1562. [PMID: 36806799 DOI: 10.1038/s41596-022-00800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/23/2022] [Indexed: 02/22/2023]
Abstract
The fluorination of amino acid residues represents a near-isosteric alteration with the potential to report on biological pathways, yet the site-directed editing of carbon-hydrogen (C-H) bonds in complex biomolecules to carbon-fluorine (C-F) bonds is challenging, resulting in its limited exploitation. Here, we describe a protocol for the posttranslational and site-directed alteration of native γCH2 to γCF2 in protein sidechains. This alteration allows the installation of difluorinated sidechain analogs of proteinogenic amino acids, in both native and modified states. This chemical editing is robust, mild, fast and highly efficient, exploiting photochemical- and radical-mediated C-C bonds grafted onto easy-to-access cysteine-derived dehydroalanine-containing proteins as starting materials. The heteroaryl-sulfonyl reagent required for generating the key carbon-centered C• radicals that install the sidechain can be synthesized in two to six steps from commercially available precursors. This workflow allows the nonexpert to create fluorinated proteins within 24 h, starting from a corresponding purified cysteine-containing protein precursor, without the need for bespoke biological systems. As an example, we readily introduce three γCF2-containing methionines in all three progressive oxidation states (sulfide, sulfoxide and sulfone) as D-/L- forms into histone eH3.1 at site 4 (a relevant lysine to methionine oncomutation site), and each can be detected by 19F-nuclear magnetic resonance of the γCF2 group, as well as the two diastereomers of the sulfoxide, even when found in a complex protein mixture of all three. The site-directed editing of C-H→C-F enables the use of γCF2 as a highly sensitive, 'zero-size-zero-background' label in protein sidechains, which may be used to probe biological phenomena, protein structures and/or protein-ligand interactions by 19F-based detection methods.
Collapse
Affiliation(s)
| | | | - Ben Gaunt
- The Rosalind Franklin Institute, Oxfordshire, UK
| | - Matthew J Davy
- The Rosalind Franklin Institute, Oxfordshire, UK.,Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Andrew J Baldwin
- Department of Chemistry, University of Oxford, Oxford, UK. .,The Rosalind Franklin Institute, Oxfordshire, UK. .,Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Oxford, UK. .,The Rosalind Franklin Institute, Oxfordshire, UK. .,Department of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Montgomery K, Elhabashy A, Chen G, Chen QH, Krishnan VV. Targeted F 19 - tags to detect amino acids in complex mixtures using NMR spectroscopy. J Fluor Chem 2023; 266:110084. [PMID: 39450044 PMCID: PMC11500796 DOI: 10.1016/j.jfluchem.2022.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nuclear magnetic resonance spectroscopy of fluorine-19 nucleus ( F 19 -NMR) emerges as a powerful tool because of the high sensitivity due to its high natural abundance, broad spectral range, and the simplicity of a spin-half system. However, it is still seldom utilized in the chemistry classroom or research. This article thus aims to demonstrate the power of NMR by investigating the kinetics when a F 19 - tag reacts with individual amino acids (AA) and eventually utilizing the approach to identify and quantify various AAs from a complex mixture such as a metabolomics sample. The F 19 - tag named 2,5-dioxopyrrolidin-1-yl-2-(trifluoromethyl)benzoate was synthesized following a previously established method. The reaction kinetics of the tag was then continuously measured using F 19 NMR in the presence of selected AAs. The estimated reaction rate constants to form the F 19 - tags with each AA differ, which could be used as an identification tool. The tag formations were typically completed in 24-48 h in water for all the samples. These demonstrations suggest that F 19 - tags could form the basis for chemical kinetics and AA detection using F 19 -NMR.
Collapse
Affiliation(s)
- Keeton Montgomery
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Aya Elhabashy
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - V V Krishnan
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
26
|
Audsley G, Carpenter H, Essien NB, Lai-Morrice J, Al-Hilaly Y, Serpell LC, Akien GR, Tizzard GJ, Coles SJ, Ulldemolins CP, Kostakis GE. Chiral Co 3Y Propeller-Shaped Chemosensory Platforms Based on 19F-NMR. Inorg Chem 2023; 62:2680-2693. [PMID: 36716401 PMCID: PMC9930122 DOI: 10.1021/acs.inorgchem.2c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two propeller-shaped chiral CoIII3YIII complexes built from fluorinated ligands are synthesized and characterized by single-crystal X-ray diffraction (SXRD), IR, UV-vis, circular dichroism (CD), elemental analysis, thermogravimetric analysis (TGA), electron spray ionization mass spectroscopy (ESI-MS), and NMR (1H, 13C, and 19F). This work explores the sensing and discrimination abilities of these complexes, thus providing an innovative sensing method using a 19F NMR chemosensory system and opening new directions in 3d/4f chemistry. Control experiments and theoretical studies shed light on the sensing mechanism, while the scope and limitations of this method are discussed and presented.
Collapse
Affiliation(s)
- Gabrielle Audsley
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Harry Carpenter
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Nsikak B. Essien
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - James Lai-Morrice
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Youssra Al-Hilaly
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK,Chemistry
Department, College of Science, Mustansiriyah
University, Baghdad 10001, Iraq
| | - Louise C. Serpell
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK
| | - Geoffrey R. Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | | | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK,
| |
Collapse
|
27
|
Galles GD, Infield DT, Clark CJ, Hemshorn ML, Manikandan S, Fazan F, Rasouli A, Tajkhorshid E, Galpin JD, Cooley RB, Mehl RA, Ahern CA. Tuning phenylalanine fluorination to assess aromatic contributions to protein function and stability in cells. Nat Commun 2023; 14:59. [PMID: 36599844 PMCID: PMC9813137 DOI: 10.1038/s41467-022-35761-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The aromatic side-chains of phenylalanine, tyrosine, and tryptophan interact with their environments via both hydrophobic and electrostatic interactions. Determining the extent to which these contribute to protein function and stability is not possible with conventional mutagenesis. Serial fluorination of a given aromatic is a validated method in vitro and in silico to specifically alter electrostatic characteristics, but this approach is restricted to a select few experimental systems. Here, we report a group of pyrrolysine-based aminoacyl-tRNA synthetase/tRNA pairs (tRNA/RS pairs) that enable the site-specific encoding of a varied spectrum of fluorinated phenylalanine amino acids in E. coli and mammalian (HEK 293T) cells. By allowing the cross-kingdom expression of proteins bearing these unnatural amino acids at biochemical scale, these tools may potentially enable the study of biological mechanisms which utilize aromatic interactions in structural and cellular contexts.
Collapse
Affiliation(s)
- Grace D Galles
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Colin J Clark
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Marcus L Hemshorn
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Shivani Manikandan
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Frederico Fazan
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Ali Rasouli
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Richard B Cooley
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Ryan A Mehl
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
28
|
Jørgensen FK, Reinholdt P, Hedegård ED, Kongsted J. Nuclear Magnetic Shielding Constants with the Polarizable Density Embedding Model. J Chem Theory Comput 2022; 18:7384-7393. [PMID: 36332108 DOI: 10.1021/acs.jctc.2c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We extend the polarizable density embedding (PDE) model to support the calculation of nuclear magnetic resonance (NMR) shielding constants using gauge-including atomic orbitals (GIAOs) within a density functional theory (DFT) framework. The PDE model divides the total system into fragments, describing some by quantum mechanics (QM) and the others through an embedding model. The PDE model uses anisotropic polarizabilities, inter-fragment two-electron Coulomb integrals, and a non-local repulsion operator to emulate the QM effects. The terms involving Coulomb integrals are straightforwardly extended with GIAOs. In contrast, we consider two approaches to handle the gauge dependency of the non-local operator, employing either simple symmetrization or a gauge transformation. We find the latter approach to be most stable with respect to increasing the basis set size of the QM region. We examine the accuracy of the PDE model for calculating NMR shielding constants on several solutes in a water solution. The performance is compared with the classical polarizable embedding (PE) model in addition to supermolecular reference calculations. Based on these systems, we address the basis set convergence characteristics and the QM region size requirements. Furthermore, we investigate the performance of the PDE model for a system with significant electron spill-out. In many cases, we find that the PDE model outperforms the PE model, especially regarding the accuracy of nuclear shielding constants when using small QM region sizes and in systems with significant electron spill-out.
Collapse
Affiliation(s)
- Frederik Kamper Jørgensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| |
Collapse
|
29
|
Luo W, Yang M, Zhao Y, Wang H, Yang X, Zhang W, Zhao F, Zhao S, Tao H. Transition-Linker Containing Detergents for Membrane Protein Studies. Chemistry 2022; 28:e202202242. [PMID: 36053145 DOI: 10.1002/chem.202202242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 12/14/2022]
Abstract
It is a pressing need, but still challenging to explore the structure and function of membrane proteins (MPs). One of the main obstacles is the limited availability of matched detergents for the handling of specific MPs. We describe herein the design of new detergents by incorporation of a transition linker between the hydrophilic head and the hydrophobic tail. This design allows a gradual change of hydrophobicity between the outside and inside of micelles, in contrast to the abrupt switch in conventional detergents. Notably, many of these detergents assembled into micelles in while retaining low critical micelle concentrations. Meanwhile, thermal stabilizing evaluation identified superior detergents for representative MPs, including G protein-coupled receptors and a transporter protein. Among them, further improved the NMR study of MPs. We anticipate these that results will encourage future detergent expansion through new remodeling on the traditional detergent scaffold.
Collapse
Affiliation(s)
- Weiling Luo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China.,iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Meifang Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Yitian Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Huixia Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Xiaodi Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Wei Zhang
- College of Chemistry and Materials Science, Hebei Normal University, 050024, Shijiazhuang, P. R. China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| |
Collapse
|
30
|
Huang B, Xu L, Zhao Z, Wang N, Zhao Y, Huang S. Simultaneous analysis of amino acids based on discriminative 19F NMR spectroscopy. Bioorg Chem 2022; 124:105818. [PMID: 35489271 DOI: 10.1016/j.bioorg.2022.105818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/02/2022]
Abstract
The simultaneous analysis of amino acids (AAs) is crucial for human health, diagnosis and treatment of disease, and nutritional quality evaluation in foodstuffs. Here, we establish an easy and rapid method for the simultaneous analysis of AAs using a single reagent 2-(trifluoromethyl)benzaldehyde (oTFMBA) based on spectral-separation-enabled 19F NMR spectroscopy. oTFMBA, a highly sensitive chemosensor, is capable of analyzing 19 proteinogenic AAs or non-amino acid amines (non-AAs) in a complex mixture by adjusting the pH in a toilless way. The 19F signals of oTFMBA-labeled AAs are distributed over a wide range of ∼ 0.7 ppm, demonstrating oTFMBA with higher resolution for simultaneous analysis of AAs compared to the o-phthaldialdehyde (OPA) method (<0.6 ppm). Additionally, 12 AAs were unambiguously identified in human urine, including Asp, Ser, Gly, Thr, Glu, Arg, Ala, Val, Ile, Tyr, His, and Phe. Furthermore, our method's detection limit for AAs is 5.83 μM, illustrating sensitivity with an ∼100-fold improvement over the OPA method. This work represents an approach to the analysis of AAs or non-AAs in a complicated mixture (even biofluid) using a 19F NMR probe with high sensitivity, which is of great significance for the simultaneous analysis of multiple analytes.
Collapse
Affiliation(s)
- Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Lihua Xu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhao Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
31
|
Yang D, Gronenborn AM, Chong LT. Development and Validation of Fluorinated, Aromatic Amino Acid Parameters for Use with the AMBER ff15ipq Protein Force Field. J Phys Chem A 2022; 126:2286-2297. [PMID: 35352936 PMCID: PMC9014858 DOI: 10.1021/acs.jpca.2c00255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/15/2022] [Indexed: 12/27/2022]
Abstract
We developed force field parameters for fluorinated, aromatic amino acids enabling molecular dynamics (MD) simulations of fluorinated proteins. These parameters are tailored to the AMBER ff15ipq protein force field and enable the modeling of 4, 5, 6, and 7F-tryptophan, 3F- and 3,5F-tyrosine, and 4F- or 4-CF3-phenylalanine. The parameters include 181 unique atomic charges derived using the implicitly polarized charge (IPolQ) scheme in the presence of SPC/Eb explicit water molecules and 9 unique bond, angle, or torsion terms. Our simulations of benchmark peptides and proteins maintain expected conformational propensities on the μs time scale. In addition, we have developed an open-source Python program to calculate fluorine relaxation rates from MD simulations. The extracted relaxation rates from protein simulations are in good agreement with experimental values determined by 19F NMR. Collectively, our results illustrate the power and robustness of the IPolQ lineage of force fields for modeling the structure and dynamics of fluorine-containing proteins at the atomic level.
Collapse
Affiliation(s)
- Darian
T. Yang
- Molecular
Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15260, United States
- Department
of Structural Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lillian T. Chong
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
32
|
Huang SK, Prosser RS. Dynamics and Mechanistic Underpinnings to Pharmacology of Class A GPCRs - An NMR Perspective. Am J Physiol Cell Physiol 2022; 322:C739-C753. [PMID: 35235425 DOI: 10.1152/ajpcell.00044.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One-third of current pharmaceuticals target G protein-coupled receptors (GPCRs), the largest receptor superfamily in humans and mediators of diverse physiological processes. This review summarizes the recent progress in GPCR structural dynamics, focusing on class A receptors and insights derived from nuclear magnetic resonance (NMR) and other spectroscopic techniques. We describe the structural aspects of GPCR activation and the various pharmacological models that capture aspects of receptor signaling behaviour. Spectroscopic studies revealed that receptors and their signaling complexes are dynamic allosteric systems that sample multiple functional states under basal conditions. The distribution of states within the conformational ensemble and the kinetics of transitions between states are regulated through the binding of ligands, allosteric modulators, and the membrane environment. This ensemble view of GPCRs provides a mechanistic framework for understanding many of the pharmacological phenomena associated with receptor signaling, such as basal activity, efficacy, and functional bias.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
|
34
|
Gronenborn AM. Small, but powerful and attractive: 19F in biomolecular NMR. Structure 2022; 30:6-14. [PMID: 34995480 PMCID: PMC8797020 DOI: 10.1016/j.str.2021.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 01/09/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for probing structure, dynamics, folding, and interactions at atomic resolution. While naturally occurring magnetically active isotopes, such as 1H, 13C, or 15N, are most commonly used in biomolecular NMR, with 15N and 13C isotopic labeling routinely employed at the present time, 19F is a very attractive and sensitive alternative nucleus, which offers rich information on biomolecules in solution and in the solid state. This perspective summarizes the unique benefits of solution and solid-state 19F NMR spectroscopy for the study of biological systems. Particular focus is on the most recent studies and on future unique and important potential applications of fluorine NMR methodology.
Collapse
|
35
|
Orton HW, Qianzhu H, Abdelkader EH, Habel EI, Tan YJ, Frkic RL, Jackson CJ, Huber T, Otting G. Through-Space Scalar 19F- 19F Couplings between Fluorinated Noncanonical Amino Acids for the Detection of Specific Contacts in Proteins. J Am Chem Soc 2021; 143:19587-19598. [PMID: 34780162 DOI: 10.1021/jacs.1c10104] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorine atoms are known to display scalar 19F-19F couplings in nuclear magnetic resonance (NMR) spectra when they are sufficiently close in space for nonbonding orbitals to overlap. We show that fluorinated noncanonical amino acids positioned in the hydrophobic core or on the surface of a protein can be linked by scalar through-space 19F-19F (TSJFF) couplings even if the 19F spins are in the time average separated by more than the van der Waals distance. Using two different aromatic amino acids featuring CF3 groups, O-trifluoromethyl-tyrosine and 4-trifluoromethyl-phenylalanine, we show that 19F-19F TOCSY experiments are sufficiently sensitive to detect TSJFF couplings between 2.5 and 5 Hz in the 19 kDa protein PpiB measured on a two-channel 400 MHz NMR spectrometer with a regular room temperature probe. A quantitative J evolution experiment enables the measurement of TSJFF coupling constants that are up to five times smaller than the 19F NMR line width. In addition, a new aminoacyl-tRNA synthetase was identified for genetic encoding of N6-(trifluoroacetyl)-l-lysine (TFA-Lys) and 19F-19F TOCSY peaks were observed between two TFA-Lys residues incorporated into the proteins AncCDT-1 and mRFP despite high solvent exposure and flexibility of the TFA-Lys side chains. With the ready availability of systems for site-specific incorporation of fluorinated amino acids into proteins by genetic encoding, 19F-19F interactions offer a straightforward way to probe the spatial proximity of selected sites without any assignments of 1H NMR resonances.
Collapse
Affiliation(s)
- Henry W Orton
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Edan I Habel
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yi Jiun Tan
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Rebecca L Frkic
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
36
|
Welte H, Sinn P, Kovermann M. Fluorine NMR Spectroscopy Enables to Quantify the Affinity Between DNA and Proteins in Cell Lysate. Chembiochem 2021; 22:2973-2980. [PMID: 34390111 PMCID: PMC8596521 DOI: 10.1002/cbic.202100304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Indexed: 11/12/2022]
Abstract
The determination of the binding affinity quantifying the interaction between proteins and nucleic acids is of crucial interest in biological and chemical research. Here, we have made use of site-specific fluorine labeling of the cold shock protein from Bacillus subtilis, BsCspB, enabling to directly monitor the interaction with single stranded DNA molecules in cell lysate. High-resolution 19 F NMR spectroscopy has been applied to exclusively report on resonance signals arising from the protein under study. We have found that this experimental approach advances the reliable determination of the binding affinity between single stranded DNA molecules and its target protein in this complex biological environment by intertwining analyses based on NMR chemical shifts, signal heights, line shapes and simulations. We propose that the developed experimental platform offers a potent approach for the identification of binding affinities characterizing intermolecular interactions in native surroundings covering the nano-to-micromolar range that can be even expanded to in cell applications in future studies.
Collapse
Affiliation(s)
- Hannah Welte
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078467KonstanzGermany
| | - Pia Sinn
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078467KonstanzGermany
| | - Michael Kovermann
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078467KonstanzGermany
| |
Collapse
|
37
|
Buchholz CR, Pomerantz WCK. 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2021; 2:1312-1330. [PMID: 34704040 PMCID: PMC8496043 DOI: 10.1039/d1cb00085c] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
19F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of 19F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This review will cover developments in ligand-observed and protein-observed 19F NMR experiments tailored towards drug discovery with a focus on fragment screening. We also cover the key advances that have furthered the field in recent years, including quantitative, structural, and in-cell methodologies. Several case studies are described for each application to highlight areas for innovation and to further catalyze new NMR developments for using this versatile nucleus.
Collapse
Affiliation(s)
- Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
| | - William C K Pomerantz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
38
|
Guo C, Fritz MP, Struppe J, Wegner S, Stringer J, Sergeyev IV, Quinn CM, Gronenborn AM, Polenova T. Fast 19F Magic Angle Spinning NMR Crystallography for Structural Characterization of Fluorine-Containing Pharmaceutical Compounds. Anal Chem 2021; 93:8210-8218. [PMID: 34080855 DOI: 10.1021/acs.analchem.1c00784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fluorine-containing compounds comprise 20 to 30 percent of all commercial drugs, and the proportion of fluorinated pharmaceuticals is rapidly growing. While magic angle spinning (MAS) NMR spectroscopy is a popular technique for analysis of solid pharmaceutical compounds, fluorine has been underutilized as a structural probe so far. Here, we report a fast (40-60 kHz) MAS 19F NMR approach for structural characterization of fluorine-containing crystalline pharmaceutical compounds at natural abundance, using the antimalarial fluorine-containing drug mefloquine as an example. We demonstrate the utility of 2D 19F-13C and 19F-19F dipolar-coupling-based correlation experiments for 19F and 13C resonance frequency assignment, which permit identification of crystallographically inequivalent sites. The efficiency of 19F-13C cross-polarization and the effect of 1H and 19F decoupling on spectral resolution and sensitivity were evaluated in a broad range of experimental conditions. We further demonstrate a protocol for measuring accurate interfluorine distances based on 1D DANTE-RFDR experiments combined with multispin numerical simulations.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Matthew P Fritz
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | | | - John Stringer
- PhoenixNMR, 510 E. 5th Street, Loveland, Colorado 80537, United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States.,Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
39
|
Vincenzi M, Mercurio FA, Leone M. NMR Spectroscopy in the Conformational Analysis of Peptides: An Overview. Curr Med Chem 2021; 28:2729-2782. [PMID: 32614739 DOI: 10.2174/0929867327666200702131032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND NMR spectroscopy is one of the most powerful tools to study the structure and interaction properties of peptides and proteins from a dynamic perspective. Knowing the bioactive conformations of peptides is crucial in the drug discovery field to design more efficient analogue ligands and inhibitors of protein-protein interactions targeting therapeutically relevant systems. OBJECTIVE This review provides a toolkit to investigate peptide conformational properties by NMR. METHODS Articles cited herein, related to NMR studies of peptides and proteins were mainly searched through PubMed and the web. More recent and old books on NMR spectroscopy written by eminent scientists in the field were consulted as well. RESULTS The review is mainly focused on NMR tools to gain the 3D structure of small unlabeled peptides. It is more application-oriented as it is beyond its goal to deliver a profound theoretical background. However, the basic principles of 2D homonuclear and heteronuclear experiments are briefly described. Protocols to obtain isotopically labeled peptides and principal triple resonance experiments needed to study them, are discussed as well. CONCLUSION NMR is a leading technique in the study of conformational preferences of small flexible peptides whose structure can be often only described by an ensemble of conformations. Although NMR studies of peptides can be easily and fast performed by canonical protocols established a few decades ago, more recently we have assisted to tremendous improvements of NMR spectroscopy to investigate instead large systems and overcome its molecular weight limit.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| |
Collapse
|
40
|
Picard LP, Prosser RS. Advances in the study of GPCRs by 19F NMR. Curr Opin Struct Biol 2021; 69:169-176. [PMID: 34130235 DOI: 10.1016/j.sbi.2021.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Crystallography and cryo-electron microscopy have advanced atomic resolution perspectives of inactive and active states of G protein-coupled receptors (GPCRs), alone and in complex with G proteins or arrestin. 19F NMR can play a role in ascertaining activation mechanisms and understanding the complete energy landscape associated with signal transduction. Fluorinated reporters are introduced biosynthetically via fluorinated amino acid analogs or chemically, via thiol-specific fluorinated reporters. The chemical shift sensitivity of these reporters makes it possible to discern details of conformational ensembles. In addition to spectroscopic details, paramagnetic species can be incorporated through orthogonal techniques to obtain distance information on fluorinated reporters, while T2-and T1-based relaxation experiments provide details on exchange kinetics in addition to fluctuations within a given state.
Collapse
|
41
|
Chang Z, Deng J, Zhao W, Yang J. Exploring interactions between lipids and amyloid-forming proteins: A review on applying fluorescence and NMR techniques. Chem Phys Lipids 2021; 236:105062. [PMID: 33600803 DOI: 10.1016/j.chemphyslip.2021.105062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
A hallmark of Alzheimer's, Parkinson's, and other amyloid diseases is the assembly of amyloid proteins into amyloid aggregates or fibrils. In many cases, the formation and cytotoxicity of amyloid assemblies are associated with their interaction with cell membranes. Despite studied for many years, the characterization of the interaction is challenged for reasons on the multiple aggregation states of amyloid-forming proteins, transient and weak interactions in the complex system. Although several strategies such as computation biology, spectroscopy, and imaging methods have been performed, there is an urgent need to detail the molecular mechanism in different time scales and high resolutions. This review highlighted the recent applications of fluorescence, solution and solid-state NMR in exploring the interactions between amyloid protein and membranes attributing to their advantages of high sensitivity and atomic resolution.
Collapse
Affiliation(s)
- Ziwei Chang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
42
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
43
|
Wang X, Zhao W, Al-Abdul-Wahid S, Lu Y, Cheng T, Madsen JJ, Ye L. Trifluorinated Keto-Enol Tautomeric Switch in Probing Domain Rotation of a G Protein-Coupled Receptor. Bioconjug Chem 2020; 32:99-105. [PMID: 33377784 DOI: 10.1021/acs.bioconjchem.0c00670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conformational dynamics and transitions of biologically active molecules are pivotal for understanding the physiological responses they elicit. In the case of receptor activation, there are major implications elucidating disease mechanisms and drug discovery innovation. Yet, incorporation of these factors into drug screening systems remains challenging in part due to the lack of suitable approaches to include them. Here, we present a novel strategy to probe the GPCR domain rotation by utilizing the 19fluorine signal variability of a trifluorinated keto-enol (TFKE) chemical equilibrium. The method takes advantage of the high sensitivity of the TFKE tautomerism toward microenvironmental changes resulting from receptor conformational transitions upon ligand binding. We validated the method using the adenosine A2AR receptor as a model system in which the TFKE was attached to two sites exhibiting opposing motions upon ligand binding, namely, V229C6.31 on transmembrane domain VI (TM6) and A289C7.54 on TM7. Our results demonstrated that the TFKE switch was an excellent reporter for the domain rotation and could be used to study the conformational transition and dynamics of relative domain motions. Although further studies are needed in order to establish a quantitative relationship between the rotational angle and the population distribution of different components in a particular system, the research presented here provides a foundation for its application in studying receptor domain rotation and dynamics, which could be useful in drug screening efforts.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Wenjie Zhao
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Sameer Al-Abdul-Wahid
- Nuclear Magnetic Resonance Center, University of Guelph, Guelph, Ontario NIG2W1, Canada
| | - Yiming Lu
- Institute of Functional Nano&Soft Materials, Soochow University, Dushu-Lake Campus, Suzhou, Jiangsu 215123, China
| | - Tao Cheng
- Institute of Functional Nano&Soft Materials, Soochow University, Dushu-Lake Campus, Suzhou, Jiangsu 215123, China
| | - Jesper J Madsen
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, United States.,H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| |
Collapse
|
44
|
The Potential of 19F NMR Application in GPCR Biased Drug Discovery. Trends Pharmacol Sci 2020; 42:19-30. [PMID: 33250272 DOI: 10.1016/j.tips.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023]
Abstract
Although structure-based virtual drug discovery is revolutionizing the conventional high-throughput cell-based screening system, its limitation is obvious, together with other critical challenges. In particular, the resolved static snapshots fail to represent a full free-energy landscape due to homogenization in structural determination processing. The loss of conformational heterogeneity and related functional diversity emphasize the necessity of developing an approach that can fill this space. In this regard, NMR holds undeniable potential. However, outstanding questions regarding the NMR application remain. This review summarizes the limitations of current drug discovery and explores the potential of 19F NMR in establishing a conformation-guided drug screening system, advancing the cell- and structure-based discovery strategy for G protein-coupled receptor (GPCR) biased drug screening.
Collapse
|
45
|
Capturing Peptide-GPCR Interactions and Their Dynamics. Molecules 2020; 25:molecules25204724. [PMID: 33076289 PMCID: PMC7587574 DOI: 10.3390/molecules25204724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Many biological functions of peptides are mediated through G protein-coupled receptors (GPCRs). Upon ligand binding, GPCRs undergo conformational changes that facilitate the binding and activation of multiple effectors. GPCRs regulate nearly all physiological processes and are a favorite pharmacological target. In particular, drugs are sought after that elicit the recruitment of selected effectors only (biased ligands). Understanding how ligands bind to GPCRs and which conformational changes they induce is a fundamental step toward the development of more efficient and specific drugs. Moreover, it is emerging that the dynamic of the ligand–receptor interaction contributes to the specificity of both ligand recognition and effector recruitment, an aspect that is missing in structural snapshots from crystallography. We describe here biochemical and biophysical techniques to address ligand–receptor interactions in their structural and dynamic aspects, which include mutagenesis, crosslinking, spectroscopic techniques, and mass-spectrometry profiling. With a main focus on peptide receptors, we present methods to unveil the ligand–receptor contact interface and methods that address conformational changes both in the ligand and the GPCR. The presented studies highlight a wide structural heterogeneity among peptide receptors, reveal distinct structural changes occurring during ligand binding and a surprisingly high dynamics of the ligand–GPCR complexes.
Collapse
|
46
|
Boeszoermenyi A, Ogórek B, Jain A, Arthanari H, Wagner G. The precious fluorine on the ring: fluorine NMR for biological systems. JOURNAL OF BIOMOLECULAR NMR 2020; 74:365-379. [PMID: 32651751 PMCID: PMC7539674 DOI: 10.1007/s10858-020-00331-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 05/08/2023]
Abstract
The fluorine-19 nucleus was recognized early to harbor exceptional properties for NMR spectroscopy. With 100% natural abundance, a high gyromagnetic ratio (83% sensitivity compared to 1H), a chemical shift that is extremely sensitive to its surroundings and near total absence in biological systems, it was destined to become a favored NMR probe, decorating small and large molecules. However, after early excitement, where uptake of fluorinated aromatic amino acids was explored in a series of animal studies, 19F-NMR lost popularity, especially in large molecular weight systems, due to chemical shift anisotropy (CSA) induced line broadening at high magnetic fields. Recently, two orthogonal approaches, (i) CF3 labeling and (ii) aromatic 19F-13C labeling leveraging the TROSY (Transverse Relaxation Optimized Spectroscopy) effect have been successfully applied to study large biomolecular systems. In this perspective, we will discuss the fascinating early work with fluorinated aromatic amino acids, which reveals the enormous potential of these non-natural amino acids in biological NMR and the potential of 19F-NMR to characterize protein and nucleic acid structure, function and dynamics in the light of recent developments. Finally, we explore how fluorine NMR might be exploited to implement small molecule or fragment screens that resemble physiological conditions and discuss the opportunity to follow the fate of small molecules in living cells.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| | - Barbara Ogórek
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, MA, 02115, USA
| | - Akshay Jain
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
47
|
Huang Y, Wang X, Lv G, Razavi AM, Huysmans GHM, Weinstein H, Bracken C, Eliezer D, Boudker O. Use of paramagnetic 19F NMR to monitor domain movement in a glutamate transporter homolog. Nat Chem Biol 2020; 16:1006-1012. [PMID: 32514183 PMCID: PMC7442671 DOI: 10.1038/s41589-020-0561-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
In proteins where conformational changes are functionally important, the number of accessible states and their dynamics are often difficult to establish. Here we describe a novel 19F-NMR spectroscopy approach to probe dynamics of large membrane proteins. We labeled a glutamate transporter homolog with a 19F probe via cysteine chemistry and with a Ni2+ ion via chelation by a di-histidine motif. We used distance-dependent enhancement of the longitudinal relaxation of 19F nuclei by the paramagnetic metal to assign the observed resonances. We identified one inward- and two outward-facing states of the transporter, in which the substrate-binding site is near the extracellular and intracellular solutions, respectively. We then resolved the structure of the unanticipated second outward-facing state by cryo-EM. Finally, we showed that the rates of the conformational exchange are accessible from measurements of the metal-enhanced longitudinal relaxation of 19F nuclei.
Collapse
Affiliation(s)
- Yun Huang
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xiaoyu Wang
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Guohua Lv
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou, China
| | - Asghar M Razavi
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Gerard H M Huysmans
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Harel Weinstein
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Clay Bracken
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
48
|
Fluorine-19 NMR spectroscopy of fluorinated analogs of tritrpticin highlights a distinct role for Tyr residues in antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183260. [DOI: 10.1016/j.bbamem.2020.183260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
|
49
|
Bai J, Wang J, Ravula T, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A. Expression, purification, and functional reconstitution of 19F-labeled cytochrome b5 in peptide nanodiscs for NMR studies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183194. [PMID: 31953231 PMCID: PMC7050362 DOI: 10.1016/j.bbamem.2020.183194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein capable of donating the second electron to cytochrome P450s (cytP450s) in the cytP450s monooxygenase reactions. Recent studies have demonstrated the importance of the transmembrane domain of cytb5 in the interaction with cytP450 by stabilizing its monomeric structure. While recent NMR studies have provided high-resolution insights into the structural interactions between the soluble domains of ~16-kDa cytb5 and ~57-kDa cytP450 in a membrane environment, there is need for studies to probe the residues in the transmembrane region as well as to obtain intermolecular distance constraints to better understand the very large size cytb5-cytP450 complex structure in a near native membrane environment. In this study, we report the expression, purification, functional reconstitution of 19F-labeled full-length rabbit cytb5 in peptide based nanodiscs for structural studies using NMR spectroscopy. Size exclusion chromatography, dynamic light scattering, transmission electron microscopy, and NMR experiments show a stable reconstitution of cytb5 in 4F peptide-based lipid-nanodiscs. The reported results demonstrate the use of 19F NMR experiments to study 19F-labeled (with 5-fluorotryptophan (5FW)) cytb5 reconstituted in peptide-nanodiscs and the detection of residues from the transmembrane domain by solution 19F NMR experiments. 19F NMR results revealing the interaction of the transmembrane domain of cytb5 with the full-length rabbit cytochrome P450 2B4 (CYP2B4) are also presented. We expect the results presented in this study to be useful to devise approaches to probe the structure, dynamics and functional roles of transmembrane domains of a membrane protein, and also to measure intermolecular 19F-19F distance constraints to determine the structural interactions between the transmembrane domains.
Collapse
Affiliation(s)
- Jia Bai
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Jian Wang
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sang-Choul Im
- Department of Internal Medicine, The University of Michigan, and VA Medical Center, Ann Arbor, MI 48105, USA
| | | | - Lucy Waskell
- Department of Anesthesiology, The University of Michigan, and VA Medical Center, Ann Arbor, MI 48105, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
50
|
Ruben EA, Gandhi PS, Chen Z, Koester SK, DeKoster GT, Frieden C, Di Cera E. 19F NMR reveals the conformational properties of free thrombin and its zymogen precursor prethrombin-2. J Biol Chem 2020; 295:8227-8235. [PMID: 32358061 PMCID: PMC7294081 DOI: 10.1074/jbc.ra120.013419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Indexed: 11/06/2022] Open
Abstract
The conformational properties of trypsin-like proteases and their zymogen forms remain controversial because of a lack of sufficient information on their free forms. Specifically, it is unclear whether the free protease is zymogen-like and shifts to its mature form upon a ligand-induced fit or exists in multiple conformations in equilibrium from which the ligand selects the optimal fit via conformational selection. Here we report the results of 19F NMR measurements that reveal the conformational properties of a protease and its zymogen precursor in the free form. Using the trypsin-like, clotting protease thrombin as a relevant model system, we show that its conformation is quite different from that of its direct zymogen precursor prethrombin-2 and more similar to that of its fully active Na+-bound form. The results cast doubts on recent hypotheses that free thrombin is zymogen-like and transitions to protease-like forms upon ligand binding. Rather, they validate the scenario emerged from previous findings of X-ray crystallography and rapid kinetics supporting a pre-existing equilibrium between open (E) and closed (E*) forms of the active site. In this scenario, prethrombin-2 is more dynamic and exists predominantly in the E* form, whereas thrombin is more rigid and exists predominantly in the E form. Ligand binding to thrombin takes place exclusively in the E form without significant changes in the overall conformation. In summary, these results disclose the structural architecture of the free forms of thrombin and prethrombin-2, consistent with an E*-E equilibrium and providing no evidence that free thrombin is zymogen-like.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarah K Koester
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|