1
|
González-Sánchez M, Valera JS, Veiga-Herrero J, Chamorro PB, Aparicio F, González-Rodríguez D. Self-assembled nanotubes from the supramolecular polymerization of discrete cyclic entities. Chem Soc Rev 2025. [PMID: 40332948 DOI: 10.1039/d4cs01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Inspired by the extraordinary attributes displayed by nanotubes in Nature, the creation of self-assembled nano-sized hollow tubes is an area of significant and growing interest given its potential application in transmembrane ion channels, ion sensing or catalysis, among others. One of the most utilized strategies employed to build these supramolecular entities implies the stacking of discrete cyclic units. Given the intrinsic dynamicity of the forces that drive the self-assembly processes, this approach offers substantial advantages when compared to inorganic or covalent approaches, ranging from tunable pore designs to error correction, to name a few. Herein we focus on the different approaches explored to design discrete cyclic entities as building blocks for the construction of self-assembled nanotubes, as well as the analytical tools used to elucidate the resulting structures. Attending to the nature of the bond involved in the formation of the cycle, we have distinguised three main categories: covalent, non-novalent and dynamic-covalent cycles. This review thus constitutes a roadmap to build self-assembled nanotubes based on soft matter and paves the way to expand their current applications.
Collapse
Affiliation(s)
- Marina González-Sánchez
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jorge S Valera
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jacobo Veiga-Herrero
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Paula B Chamorro
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Fátima Aparicio
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David González-Rodríguez
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Cho H, Kim KS. Characterization of Escherichia coli chaperonin GroEL as a ribonuclease. Int J Biol Macromol 2024; 281:136330. [PMID: 39370076 DOI: 10.1016/j.ijbiomac.2024.136330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Chaperonins are evolutionarily conserved proteins that facilitate polypeptide assemblies. The most extensively studied chaperonin is GroEL, which plays a crucial role in Escherichia coli. In addition to its chaperone activity, the RNA cleavage activity of GroEL has also been proposed. However, direct evidence of GroEL as a ribonuclease (RNase) and its physiological significance has not been fully elucidated. Here, we characterized the role of GroEL in E. coli as an RNase distinct from RNase E/G activity using in vivo reporter assays, in vitro cleavage assays with varying reaction times, divalent ions, and 5' phosphorylation status. GroEL bound to single-stranded RNA at nanomolar concentrations. Functional analysis of GroEL chaperonin-defective mutants and segments identified specific regions, and the chaperone active status of GroEL is not a necessary factor for RNase activity. Additionally, RNase activity of GroEL was attenuated by co-overexpression with GroES. Finally, we characterized potential transcripts regulated by GroEL and the conserved RNase activity of GroEL in Shigella flexneri. Our findings indicate that GroEL is a novel post-transcriptional regulator in bacteria.
Collapse
Affiliation(s)
- Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Easson DD, Murphy VA, Ballok AE, Soto-Giron MJ, Miller KJ, Charbonneau MR, Schott EM, Greene T, Rodricks J, Toledo GV. Food safety assessment and 28-day toxicity study of the synbiotic medical food consortium SBD121. Food Chem Toxicol 2024; 191:114839. [PMID: 38942165 DOI: 10.1016/j.fct.2024.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The human gut microbiome plays a crucial role in immune function. The synbiotic consortium or Defined Microbial Assemblage™ (DMA™) Medical Food product, SBD121, consisting of probiotic microbes and prebiotic fibers was designed for the clinical dietary management of rheumatoid arthritis. A 28-day repeated administration study was performed to evaluate the oral toxicity of SBD121 in male and female rats (age/weight at study start: 60 days/156-264 g) administered levels of 0, 4.96 x 1010, 2.48 x 1011, or 4.96 x 1011 colony forming units (CFU)/kg-bw. No treatment related changes were observed in ophthalmological effects, mortality, morbidity, general health and clinical observations, urinalysis, hematology, serum chemistry, absolute or relative organ weights, gross necropsy, or histopathology. A significant decrease in body weight was reported in females in the low and high-concentration groups, which corresponded in part with a significant decrease in food consumption. Results of the functional observation battery indicated front grip strength was significantly greater in the high-concentration males compared to the controls; however, this effect was not considered adverse. Based on these findings, the administration of the Medical Food SBD121 to male and female rats has a no-observable adverse effect level (NOAEL) at the highest level tested of 4.96 x 1011 CFU/kg-bw.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tracy Greene
- Ramboll Americas Engineering Solutions, Inc, USA
| | | | | |
Collapse
|
4
|
Syed A, Zhai J, Guo B, Zhao Y, Wang JCY, Chen L. Cryo-EM structure and molecular dynamic simulations explain the enhanced stability and ATP activity of the pathological chaperonin mutant. Structure 2024; 32:575-584.e3. [PMID: 38412855 PMCID: PMC11069440 DOI: 10.1016/j.str.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Chaperonins Hsp60s are required for cellular vitality by assisting protein folding in an ATP-dependent mechanism. Although conserved, the human mitochondrial mHsp60 exhibits molecular characteristics distinct from the E. coli GroEL, with different conformational assembly and higher subunit association dynamics, suggesting a different mechanism. We previously found that the pathological mutant mHsp60V72I exhibits enhanced subunit association stability and ATPase activity. To provide structural explanations for the V72I mutational effects, here we determined a cryo-EM structure of mHsp60V72I. Our structural analysis combined with molecular dynamic simulations showed mHsp60V72I with increased inter-subunit interface, binding free energy, and dissociation force, all contributing to its enhanced subunit association stability. The gate to the nucleotide-binding (NB) site in mHsp60V72I mimicked the open conformation in the nucleotide-bound state with an additional open channel leading to the NB site, both promoting the mutant's ATPase activity. Our studies highlight the importance of mHsp60's characteristics in its biological function.
Collapse
Affiliation(s)
- Aiza Syed
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S. Hawthorne Dr., Bloomington, IN 47405, USA
| | - Jihang Zhai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475000, China
| | - Baolin Guo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475000, China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475000, China.
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Lingling Chen
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S. Hawthorne Dr., Bloomington, IN 47405, USA.
| |
Collapse
|
5
|
Singh MK, Shin Y, Ju S, Han S, Choe W, Yoon KS, Kim SS, Kang I. Heat Shock Response and Heat Shock Proteins: Current Understanding and Future Opportunities in Human Diseases. Int J Mol Sci 2024; 25:4209. [PMID: 38673794 PMCID: PMC11050489 DOI: 10.3390/ijms25084209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The heat shock response is an evolutionarily conserved mechanism that protects cells or organisms from the harmful effects of various stressors such as heat, chemicals toxins, UV radiation, and oxidizing agents. The heat shock response triggers the expression of a specific set of genes and proteins known as heat shock genes/proteins or molecular chaperones, including HSP100, HSP90, HSP70, HSP60, and small HSPs. Heat shock proteins (HSPs) play a crucial role in thermotolerance and aiding in protecting cells from harmful insults of stressors. HSPs are involved in essential cellular functions such as protein folding, eliminating misfolded proteins, apoptosis, and modulating cell signaling. The stress response to various environmental insults has been extensively studied in organisms from prokaryotes to higher organisms. The responses of organisms to various environmental stressors rely on the intensity and threshold of the stress stimuli, which vary among organisms and cellular contexts. Studies on heat shock proteins have primarily focused on HSP70, HSP90, HSP60, small HSPs, and ubiquitin, along with their applications in human biology. The current review highlighted a comprehensive mechanism of heat shock response and explores the function of heat shock proteins in stress management, as well as their potential as therapeutic agents and diagnostic markers for various diseases.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Tausif YM, Thekkekkara D, Sai TE, Jahagirdar V, Arjun HR, Meheronnisha SK, Babu A, Banerjee A. Heat shock protein paradigms in cancer progression: future therapeutic perspectives. 3 Biotech 2024; 14:96. [PMID: 38449709 PMCID: PMC10912419 DOI: 10.1007/s13205-024-03951-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/28/2024] [Indexed: 03/08/2024] Open
Abstract
Heat-shock proteins (HSPs), also known as stress proteins, are ubiquitously present in all forms of life. They play pivotal roles in protein folding and unfolding, the formation of multiprotein complexes, the transportation and sorting of proteins into their designated subcellular compartments, the regulation of the cell cycle, and signalling processes. These HSPs encompass HSP27, HSP40, HSP70, HSP60, and HSP90, each contributing to various cellular functions. In the context of cancer, HSPs exert influence by either inhibiting or activating diverse signalling pathways, thereby impacting growth, differentiation, and cell division. This article offers an extensive exploration of the functions of HSPs within the realms of pharmacology and cancer biology. HSPs are believed to play substantial roles in the mechanisms underlying the initiation and progression of cancer. They hold promise as valuable clinical markers for cancer diagnosis, potential targets for therapeutic interventions, and indicators of disease progression. In times of cellular stress, HSPs function as molecular chaperones, safeguarding the structural and functional integrity of proteins and aiding in their proper folding. Moreover, HSPs play a crucial role in cancer growth, by regulating processes such as angiogenesis, cell proliferation, migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Y. Mohammed Tausif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Thummuru Ekshita Sai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Vaishnavi Jahagirdar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - H. R. Arjun
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - S. K. Meheronnisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Amrita Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Aniruddha Banerjee
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| |
Collapse
|
7
|
Melnik TN, Majorina MA, Vorobeva DE, Nagibina GS, Veselova VR, Glukhova KA, Pak MA, Ivankov DN, Uversky VN, Melnik BS. Design of stable circular permutants of the GroEL chaperone apical domain. Cell Commun Signal 2024; 22:90. [PMID: 38303060 PMCID: PMC10836027 DOI: 10.1186/s12964-023-01426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
Enhancing protein stability holds paramount significance in biotechnology, therapeutics, and the food industry. Circular permutations offer a distinctive avenue for manipulating protein stability while keeping intra-protein interactions intact. Amidst the creation of circular permutants, determining the optimal placement of the new N- and C-termini stands as a pivotal, albeit largely unexplored, endeavor. In this study, we employed PONDR-FIT's predictions of disorder propensity to guide the design of circular permutants for the GroEL apical domain (residues 191-345). Our underlying hypothesis posited that a higher predicted disorder value would correspond to reduced stability in the circular permutants, owing to the increased likelihood of fluctuations in the novel N- and C-termini. To substantiate this hypothesis, we engineered six circular permutants, positioning glycines within the loops as locations for the new N- and C-termini. We demonstrated the validity of our hypothesis along the set of the designed circular permutants, as supported by measurements of melting temperatures by circular dichroism and differential scanning microcalorimetry. Consequently, we propose a novel computational methodology that rationalizes the design of circular permutants with projected stability. Video Abstract.
Collapse
Affiliation(s)
- Tatiana N Melnik
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Maria A Majorina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Daria E Vorobeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Galina S Nagibina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Victoria R Veselova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Ksenia A Glukhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaja Str. 3, Puschino, Moscow Region, 142290, Russia
| | - Marina A Pak
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow, 121205, Russia
| | - Dmitry N Ivankov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow, 121205, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Bogdan S Melnik
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia.
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
8
|
Romero-Romero ML, Garcia-Seisdedos H. Agglomeration: when folded proteins clump together. Biophys Rev 2023; 15:1987-2003. [PMID: 38192350 PMCID: PMC10771401 DOI: 10.1007/s12551-023-01172-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024] Open
Abstract
Protein self-association is a widespread phenomenon that results in the formation of multimeric protein structures with critical roles in cellular processes. Protein self-association can lead to finite protein complexes or open-ended, and potentially, infinite structures. This review explores the concept of protein agglomeration, a process that results from the infinite self-assembly of folded proteins. We highlight its differences from other better-described processes with similar macroscopic features, such as aggregation and liquid-liquid phase separation. We review the sequence, structural, and biophysical factors influencing protein agglomeration. Lastly, we briefly discuss the implications of agglomeration in evolution, disease, and aging. Overall, this review highlights the need to study protein agglomeration for a better understanding of cellular processes.
Collapse
Affiliation(s)
- M. L. Romero-Romero
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology, Dresden, Germany
| | - H. Garcia-Seisdedos
- Department of Structural and Molecular Biology, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
9
|
Piplani B, Kumar CMS, Lund PA, Chaudhuri TK. Mycobacterial chaperonins in cellular proteostasis: Evidence for chaperone function of Cpn60.1 and Cpn60.2-mediated protein folding. Mol Microbiol 2023; 120:210-223. [PMID: 37350285 PMCID: PMC10952152 DOI: 10.1111/mmi.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Mycobacterium tuberculosis encodes two chaperonin proteins, MtbCpn60.1 and MtbCpn60.2, that share substantial sequence similarity with the Escherichia coli chaperonin, GroEL. However, unlike GroEL, MtbCpn60.1 and MtbCpn60.2 purify as lower-order oligomers. Previous studies have shown that MtbCpn60.2 can functionally replace GroEL in E. coli, while the function of MtbCpn60.1 remained an enigma. Here, we demonstrate the molecular chaperone function of MtbCpn60.1 and MtbCpn60.2, by probing their ability to assist the folding of obligate chaperonin clients, DapA, FtsE and MetK, in an E. coli strain depleted of endogenous GroEL. We show that both MtbCpn60.1 and MtbCpn60.2 support cell survival and cell division by assisting the folding of DapA and FtsE, but only MtbCpn60.2 completely rescues GroEL-depleted E. coli cells. We also show that, unlike MtbCpn60.2, MtbCpn60.1 has limited ability to support cell growth and proliferation and assist the folding of MetK. Our findings suggest that the client pools of GroEL and MtbCpn60.2 overlap substantially, while MtbCpn60.1 folds only a small subset of GroEL clients. We conclude that the differences between MtbCpn60.1 and MtbCpn60.2 may be a consequence of their intrinsic sequence features, which affect their thermostability, efficiency, clientomes and modes of action.
Collapse
Affiliation(s)
- Bakul Piplani
- Kusuma School of Biological SciencesIndian Institute of Technology DelhiIndia
| | - C. M. Santosh Kumar
- School of BiosciencesUniversity of BirminghamBirmingham
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - Peter A. Lund
- School of BiosciencesUniversity of BirminghamBirmingham
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - Tapan K. Chaudhuri
- Kusuma School of Biological SciencesIndian Institute of Technology DelhiIndia
| |
Collapse
|
10
|
Walker T, Sun HM, Gunnels T, Wysocki V, Laganowsky A, Rye H, Russell D. Dissecting the Thermodynamics of ATP Binding to GroEL One Nucleotide at a Time. ACS CENTRAL SCIENCE 2023; 9:466-475. [PMID: 36968544 PMCID: PMC10037461 DOI: 10.1021/acscentsci.2c01065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 06/18/2023]
Abstract
Variable-temperature electrospray ionization (vT-ESI) native mass spectrometry (nMS) is used to determine the thermodynamics for stepwise binding of up to 14 ATP molecules to the 801 kDa GroEL tetradecamer chaperonin complex. Detailed analysis reveals strong enthalpy-entropy compensation (EEC) for the ATP binding events leading to formation of GroEL-ATP7 and GroEL-ATP14 complexes. The observed variations in EEC and stepwise free energy changes of specific ATP binding are consistent with the well-established nested cooperativity model describing GroEL-ATP interactions, viz., intraring positive cooperativity and inter-ring negative cooperativity (Dyachenko A.; Proc. Natl. Acad. Sci. U.S.A.2013, 110, 7235-7239). Entropy-driven ATP binding is to be expected for ligand-induced conformational changes of the GroEL tetradecamer, though the magnitude of the entropy change suggests that reorganization of GroEL-hydrating water molecules and/or expulsion of water from the GroEL cavity may also play key roles. The capability for determining complete thermodynamic signatures (ΔG, ΔH, and -TΔS) for individual ligand binding reactions for the large, nearly megadalton GroEL complex expands our fundamental view of chaperonin functional chemistry. Moreover, this work and related studies of protein-ligand interactions illustrate important new capabilities of vT-ESI-nMS for thermodynamic studies of protein interactions with ligands and other molecules such as proteins and drugs.
Collapse
Affiliation(s)
- Thomas Walker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - He Mirabel Sun
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Tiffany Gunnels
- Department
of Biochemistry & Biophysics, Texas
A&M University, College
Station, Texas 77843, United States
| | - Vicki Wysocki
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Arthur Laganowsky
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hays Rye
- Department
of Biochemistry & Biophysics, Texas
A&M University, College
Station, Texas 77843, United States
| | - David Russell
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Boshoff A. Chaperonin: Co-chaperonin Interactions. Subcell Biochem 2023; 101:213-246. [PMID: 36520309 DOI: 10.1007/978-3-031-14740-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
12
|
Hereditary spastic paraplegia SPG13 mutation increases structural stability and ATPase activity of human mitochondrial chaperonin. Sci Rep 2022; 12:18321. [PMID: 36316435 PMCID: PMC9622745 DOI: 10.1038/s41598-022-21993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022] Open
Abstract
Human mitochondrial chaperonin mHsp60 is broadly associated with various human health conditions and the V72I mutation in mHsp60 causes a form of hereditary spastic paraplegia, a neurodegenerative disease. The main function of mHsp60 is to assist folding of mitochondrial proteins in an ATP-dependent manner. In this study, we unexpectedly found that mutant mHsp60V72I was more stable structurally and more active in the ATPase activity than the wildtype. Analysis of our recently solved cryo-EM structure of mHsp60 revealed allosteric roles of V72I in structural stability and ATPase activity, which were supported by studies including those using the V72A mutation. Despite with the increases in structural stability and ATPase activity, mHsp60V72I was less efficient in folding malate dehydrogenase, a putative mHsp60 substrate protein in mitochondria and also commonly used in chaperonin studies. In addition, although mHsp60V72I along with its cochaperonin mHsp10 was able to substitute the E. coli chaperonin system in supporting cell growth under normal temperature of 37 °C, it was unable under heat shock temperature of 42 °C. Our results support the importance of structural dynamics and an optimal ATP turnover that mHsp60 has evolved for its function and physiology. We propose that unproductive energy utilization, or hyperactive ATPase activity and compromised folding function, not mutually exclusive, are responsible for the V72I pathology in neurodegenerative disease.
Collapse
|
13
|
Li Y, Zhang R, Wang C, Forouhar F, Clarke OB, Vorobiev S, Singh S, Montelione GT, Szyperski T, Xu Y, Hunt JF. Oligomeric interactions maintain active-site structure in a noncooperative enzyme family. EMBO J 2022; 41:e108368. [PMID: 35801308 DOI: 10.15252/embj.2021108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/09/2022] Open
Abstract
The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo-EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active-site structure in one such class of proteins, the short-chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active-site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure-stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity-enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.
Collapse
Affiliation(s)
- Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chi Wang
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Cryo-Electron Microscopy Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Farhad Forouhar
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics and Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Vorobiev
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Shikha Singh
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Department of Chemistry & Chemical Biology and Center for Biotechnology & Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - John F Hunt
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Kleiner D, Shapiro Tuchman Z, Shmulevich F, Shahar A, Zarivach R, Kosloff M, Bershtein S. Evolution of homo-oligomerization of methionine S-adenosyltransferases is replete with structure-function constrains. Protein Sci 2022; 31:e4352. [PMID: 35762725 PMCID: PMC9202080 DOI: 10.1002/pro.4352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
Abstract
Homomers are prevalent in bacterial proteomes, particularly among core metabolic enzymes. Homomerization is often key to function and regulation, and interfaces that facilitate the formation of homomeric enzymes are subject to intense evolutionary change. However, our understanding of the molecular mechanisms that drive evolutionary variation in homomeric complexes is still lacking. How is the diversification of protein interfaces linked to variation in functional regulation and structural integrity of homomeric complexes? To address this question, we studied quaternary structure evolution of bacterial methionine S-adenosyltransferases (MATs)-dihedral homotetramers formed along a large and conserved dimeric interface harboring two active sites, and a small, recently evolved, interdimeric interface. Here, we show that diversity in the physicochemical properties of small interfaces is directly linked to variability in the kinetic stability of MAT quaternary complexes and in modes of their functional regulation. Specifically, hydrophobic interactions within the small interface of Escherichia coli MAT render the functional homotetramer kinetically stable yet impose severe aggregation constraints on complex assembly. These constraints are alleviated by electrostatic interactions that accelerate dimer-dimer assembly. In contrast, Neisseria gonorrhoeae MAT adopts a nonfunctional dimeric state due to the low hydrophobicity of its small interface and the high flexibility of its active site loops, which perturbs small interface integrity. Remarkably, in the presence of methionine and ATP, N. gonorrhoeae MAT undergoes substrate-induced assembly into a functional tetrameric state. We suggest that evolution acts on the interdimeric interfaces of MATs to tailor the regulation of their activity and stability to unique organismal needs.
Collapse
Affiliation(s)
- Daniel Kleiner
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Ziva Shapiro Tuchman
- The Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Fannia Shmulevich
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Anat Shahar
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Raz Zarivach
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Macromolecular Crystallography and Cryo‐EM Research Center, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Shimon Bershtein
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
15
|
Sivinski J, Ngo D, Zerio CJ, Ambrose AJ, Watson ER, Kaneko LK, Kostelic MM, Stevens M, Ray AM, Park Y, Wu C, Marty MT, Hoang QQ, Zhang DD, Lander GC, Johnson SM, Chapman E. Allosteric differences dictate GroEL complementation of E. coli. FASEB J 2022; 36:e22198. [PMID: 35199390 PMCID: PMC8887798 DOI: 10.1096/fj.202101708rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.
Collapse
Affiliation(s)
- Jared Sivinski
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Duc Ngo
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Christopher J. Zerio
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Andrew J. Ambrose
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Edmond R. Watson
- Department of Integrative Structural and Computational
Biology, Scripps Research, La Jolla, CA, USA
| | - Lynn K. Kaneko
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Marius M. Kostelic
- The University of Arizona, Department of Chemistry and
Biochemistry, Tucson, AZ 85721
| | - Mckayla Stevens
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Yangshin Park
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202,Stark Neurosciences Research Institute, Indiana University
School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202,Department of Neurology, Indiana University School of
Medicine. 635 Barnhill Drive, Indianapolis, IN 46202
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520
| | - Michael T. Marty
- The University of Arizona, Department of Chemistry and
Biochemistry, Tucson, AZ 85721
| | - Quyen Q. Hoang
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202,Stark Neurosciences Research Institute, Indiana University
School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202,Department of Neurology, Indiana University School of
Medicine. 635 Barnhill Drive, Indianapolis, IN 46202
| | - Donna D. Zhang
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational
Biology, Scripps Research, La Jolla, CA, USA
| | - Steven M. Johnson
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721,Corresponding author
, Phone: 520-626-2741
| |
Collapse
|
16
|
Kumar A, Jernigan RL. Ligand Binding Introduces Significant Allosteric Shifts in the Locations of Protein Fluctuations. Front Mol Biosci 2021; 8:733148. [PMID: 34540902 PMCID: PMC8440829 DOI: 10.3389/fmolb.2021.733148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Allostery is usually considered to be a mechanism for transmission of signals associated with physical or dynamic changes in some part of a protein. Here, we investigate the changes in fluctuations across the protein upon ligand binding based on the fluctuations computed with elastic network models. These results suggest that binding reduces the fluctuations at the binding site but increases fluctuations at remote sites, but not to fully compensating extents. If there were complete conservation of entropy, then only the enthalpies of binding would matter and not the entropies; however this does not appear to be the case. Experimental evidence also suggests that energies and entropies of binding can compensate but that the extent of compensation varies widely from case to case. Our results do however always show transmission of an allosteric signal to distant locations where the fluctuations are increased. These fluctuations could be used to compute entropies to improve evaluations of the thermodynamics of binding. We also show the allosteric relationship between peptide binding in the GroEL trans-ring that leads directly to the release of GroES from the GroEL-GroES cis-ring. This finding provides an example of how calculating these changes to protein dynamics induced by the binding of an allosteric ligand can regulate protein function and mechanism.
Collapse
Affiliation(s)
- Ambuj Kumar
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Robert L Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Structural basis for the structural dynamics of human mitochondrial chaperonin mHsp60. Sci Rep 2021; 11:14809. [PMID: 34285302 PMCID: PMC8292379 DOI: 10.1038/s41598-021-94236-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Human mitochondrial chaperonin mHsp60 is essential for mitochondrial function by assisting folding of mitochondrial proteins. Unlike the double-ring bacterial GroEL, mHsp60 exists as a heptameric ring that is unstable and dissociates to subunits. The structural dynamics has been implicated for a unique mechanism of mHsp60. We purified active heptameric mHsp60, and determined a cryo-EM structure of mHsp60 heptamer at 3.4 Å. Of the three domains, the equatorial domains contribute most to the inter-subunit interactions, which include a four-stranded β sheet. Our structural comparison with GroEL shows that mHsp60 contains several unique sequences that directly decrease the sidechain interactions around the β sheet and indirectly shorten β strands by disengaging the backbones of the flanking residues from hydrogen bonding in the β strand conformation. The decreased inter-subunit interactions result in a small inter-subunit interface in mHsp60 compared to GroEL, providing a structural basis for the dynamics of mHsp60 subunit association. Importantly, the unique sequences are conserved among higher eukaryotic mitochondrial chaperonins, suggesting the importance of structural dynamics for eukaryotic chaperonins. Our structural comparison with the single-ring mHsp60-mHsp10 shows that upon mHsp10 binding the shortened inter-subunit β sheet is restored and the overall inter-subunit interface of mHsp60 increases drastically. Our structural basis for the mHsp10 induced stabilization of mHsp60 subunit interaction is consistent with the literature that mHsp10 stabilizes mHsp60 quaternary structure. Together, our studies provide structural bases for structural dynamics of the mHsp60 heptamer and for the stabilizing effect of mHsp10 on mHsp60 subunit association.
Collapse
|
18
|
Yu P, Wang X, Ma J, Zhang Q, Chen Q. Chaperone-assisted soluble expression and characterization of chitinase chiZJ408 in Escherichia coli BL21 and the chitin degradation by recombinant enzyme. Prep Biochem Biotechnol 2021; 52:273-282. [PMID: 34110982 DOI: 10.1080/10826068.2021.1934698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The chaperone-assisted soluble expression and characterization of high molecular weight chitinase chiZJ408 in Escherichia coli BL21 were investigated. Chitin degradation products by chitinase chiZJ408 were analyzed. The results indicated that the introduction of the chaperone GroELS promoted the correct folding of chitinase chiZJ408 and increased its soluble expression by 14.9% (p < 0.05) in E. coli BL21. The optimal pH and temperature of chitinase chiZJ408 were respectively 6.0 and 50 °C. Chitinase chiZJ408 was stable at pHs of 4.0 ∼ 7.0 and at below 40 °C. Mg2+and Ca2+ had a significant impact on improving the activity of chitinase chiZJ408. Chitinase chiZJ408 was demonstrated to be exochitinase that cleaved the β-1,4-glycosidic bond of the chitin chain to generate only N,N'-diacetylchitobiose. This study broadens our understanding of chitinase and provides a basis for solving the problem of inclusion body formed by long fragment gene expression in E. coli.
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Xinxin Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Jian Ma
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
20
|
Duport C, Madeira JP, Farjad M, Alpha-Bazin B, Armengaud J. Methionine Sulfoxide Reductases Contribute to Anaerobic Fermentative Metabolism in Bacillus cereus. Antioxidants (Basel) 2021; 10:antiox10050819. [PMID: 34065610 PMCID: PMC8161402 DOI: 10.3390/antiox10050819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Reversible oxidation of methionine to methionine sulfoxide (Met(O)) is a common posttranslational modification occurring on proteins in all organisms under oxic conditions. Protein-bound Met(O) is reduced by methionine sulfoxide reductases, which thus play a significant antioxidant role. The facultative anaerobe Bacillus cereus produces two methionine sulfoxide reductases: MsrA and MsrAB. MsrAB has been shown to play a crucial physiological role under oxic conditions, but little is known about the role of MsrA. Here, we examined the antioxidant role of both MsrAB and MrsA under fermentative anoxic conditions, which are generally reported to elicit little endogenous oxidant stress. We created single- and double-mutant Δmsr strains. Compared to the wild-type and ΔmsrAB mutant, single- (ΔmsrA) and double- (ΔmsrAΔmsrAB) mutants accumulated higher levels of Met(O) proteins, and their cellular and extracellular Met(O) proteomes were altered. The growth capacity and motility of mutant strains was limited, and their energy metabolism was altered. MsrA therefore appears to play a major physiological role compared to MsrAB, placing methionine sulfoxides at the center of the B. cereus antioxidant system under anoxic fermentative conditions.
Collapse
Affiliation(s)
- Catherine Duport
- Département de Biologie, Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France; (J.-P.M.); (M.F.)
- Correspondence: ; Tel.: +33-432-722-507
| | - Jean-Paul Madeira
- Département de Biologie, Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France; (J.-P.M.); (M.F.)
| | - Mahsa Farjad
- Département de Biologie, Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France; (J.-P.M.); (M.F.)
| | - Béatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France; (B.A.-B.); (J.A.)
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France; (B.A.-B.); (J.A.)
| |
Collapse
|
21
|
Shinobu A, Kobayashi C, Matsunaga Y, Sugita Y. Coarse-Grained Modeling of Multiple Pathways in Conformational Transitions of Multi-Domain Proteins. J Chem Inf Model 2021; 61:2427-2443. [PMID: 33956432 DOI: 10.1021/acs.jcim.1c00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large-scale conformational transitions in multi-domain proteins are often essential for their functions. To investigate the transitions, it is necessary to explore multiple potential pathways, which involve different intermediate structures. Here, we present a multi-basin (MB) coarse-grained (CG) structure-based Go̅ model for describing transitions in proteins with more than two moving domains. This model is an extension of our dual-basin Go̅ model in which system-dependent parameters are determined systematically using the multistate Bennett acceptance ratio method. In the MB Go̅ model for multi-domain proteins, we assume that intermediate structures may have partial inter-domain native contacts. This approach allows us to search multiple transition pathways that involve distinct intermediate structures using the CG molecular dynamics (MD) simulations. We apply this scheme to an enzyme, adenylate kinase (AdK), which has three major domains and can move along two different pathways. Using the optimized mixing parameters for each pathway, AdK shows frequent transitions between the Open, Closed, and the intermediate basins and samples a wide variety of conformations within each basin. The explored multiple transition pathways could be compared with experimental data and examined in more detail by atomistic MD simulations.
Collapse
Affiliation(s)
- Ai Shinobu
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Matsunaga
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Nagaraju M, Kumar A, Jalaja N, Rao DM, Kishor PBK. Functional Exploration of Chaperonin (HSP60/10) Family Genes and their Abiotic Stress-induced Expression Patterns in Sorghum bicolor. Curr Genomics 2021; 22:137-152. [PMID: 34220300 PMCID: PMC8188580 DOI: 10.2174/1389202922666210324154336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
Background Sorghum, the C4 dry-land cereal, important for food, fodder, feed and fuel, is a model crop for abiotic stress tolerance with smaller genome size, genetic diversity, and bio-energy traits. The heat shock proteins/chaperonin 60s (HSP60/Cpn60s) assist the plastid proteins, and participate in the folding and aggregation of proteins. However, the functions of HSP60s in abiotic stress tolerance in Sorghum remain unclear. Methods Genome-wide screening and in silico characterization of SbHSP60s were carried out along with tissue and stress-specific expression analysis. Results A total of 36 HSP60 genes were identified in Sorghum bicolor. They were subdivided into 2 groups, the HSP60 and HSP10 co-chaperonins encoded by 30 and 6 genes, respectively. The genes are distributed on all the chromosomes, chromosome 1 being the hot spot with 9 genes. All the HSP60s were found hydrophilic and highly unstable. The HSP60 genes showed a large number of introns, the majority of them with more than 10. Among the 12 paralogs, only 1 was tandem and the remaining 11 segmental, indicating their role in the expansion of SbHSP60s. Majority of the SbHSP60 genes expressed uniformly in leaf while a moderate expression was observed in the root tissues, with the highest expression displayed by SbHSP60-1. From expression analysis, SbHSP60-3 for drought, SbHSP60-9 for salt, SbHSP60-9 and 24 for heat and SbHSP60-3, 9 and SbHSP10-2 have been found implicated for cold stress tolerance and appeared as the key regulatory genes. Conclusion This work paves the way for the utilization of chaperonin family genes for achieving abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- M Nagaraju
- Department of Genetics, Osmania University, Hyderabad 500 007, India.,Biochemistry Division, National Institute of Nutrition (ICMR), Hyderabad 500 007, India
| | - Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Silk Park, Prem Nagar, Dehradun 248 007, India
| | - N Jalaja
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - D Manohar Rao
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| |
Collapse
|
23
|
Koculi E, Thirumalai D. Retardation of Folding Rates of Substrate Proteins in the Nanocage of GroEL. Biochemistry 2021; 60:460-464. [PMID: 33464880 DOI: 10.1021/acs.biochem.0c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Escherichia coli ATP-consuming chaperonin machinery, a complex between GroEL and GroES, has evolved to facilitate folding of substrate proteins (SPs) that cannot do so spontaneously. A series of kinetic experiments show that the SPs are encapsulated in the GroEL/ES nanocage for a short duration. If confinement of the SPs is the mechanism by which GroEL/ES facilitates folding, it follows that the assisted folding rate, relative to the bulk value, should always be enhanced. Here, we show that this is not the case for the folding of rhodanese in the presence of the full machinery of GroEL/ES and ATP. The assisted folding rate of rhodanese decreases. On the basis of our finding and those reported in other studies, we suggest that the ATP-consuming chaperonin machinery has evolved to optimize the product of the folding rate and the yield of the folded SPs on the biological time scale. Neither the rate nor the yield is separately maximized.
Collapse
Affiliation(s)
- Eda Koculi
- Department of Biology, Johns Hopkins University, 144 Mudd Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
24
|
Stevens M, Howe C, Ray AM, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E, Johnson SM. Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs. Bioorg Med Chem 2020; 28:115710. [PMID: 33007545 PMCID: PMC7914298 DOI: 10.1016/j.bmc.2020.115710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023]
Abstract
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.
Collapse
Affiliation(s)
- Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Chris Howe
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Yangshin Park
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Quyen Q Hoang
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
25
|
Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B 2020; 10:1904-1925. [PMID: 33163343 PMCID: PMC7606112 DOI: 10.1016/j.apsb.2020.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Modulation of protein fate decision and protein homeostasis plays a significant role in altering the protein level, which acts as an orientation to develop drugs with new mechanisms. The molecular chaperones exert significant biological functions on modulation of protein fate decision and protein homeostasis under constantly changing environmental conditions through extensive protein–protein interactions (PPIs) with their client proteins. With the help of molecular chaperone machinery, the processes of protein folding, trafficking, quality control and degradation of client proteins could be arranged properly. The core members of molecular chaperones, including heat shock proteins (HSPs) family and their co-chaperones, are emerging as potential drug targets since they are involved in numerous disease conditions. Development of small molecule modulators targeting not only chaperones themselves but also the PPIs among chaperones, co-chaperones and clients is attracting more and more attention. These modulators are widely used as chemical tools to study chaperone networks as well as potential drug candidates for a broader set of diseases. Here, we reviewed the key checkpoints of molecular chaperone machinery HSPs as well as their co-chaperones to discuss the small molecules targeting on them for modulation of protein fate decision.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| |
Collapse
|
26
|
A novel function of
Mycobacterium tuberculosis
chaperonin paralog GroEL1 in copper homeostasis. FEBS Lett 2020; 594:3305-3323. [DOI: 10.1002/1873-3468.13906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
|
27
|
Abstract
The single gene, single protein, single function hypothesis is increasingly becoming obsolete. Numerous studies have demonstrated that individual proteins can moonlight, meaning they can have multiple functions based on their cellular or developmental context. In this review, we discuss moonlighting proteins, highlighting the biological pathways where this phenomenon may be particularly relevant. In addition, we combine genetic, cell biological, and evolutionary perspectives so that we can better understand how, when, and why moonlighting proteins may take on multiple roles.
Collapse
Affiliation(s)
- Nadia Singh
- Department of Biology, University of Oregon, Eugene, Oregon 97403, USA;
| | - Needhi Bhalla
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
28
|
TCP1γ Subunit Is Indispensable for Growth and Infectivity of Leishmania donovani. Antimicrob Agents Chemother 2020; 64:AAC.00669-20. [PMID: 32457112 DOI: 10.1128/aac.00669-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/18/2020] [Indexed: 01/20/2023] Open
Abstract
T-complex protein-1 (TCP1) is a ubiquitous group II chaperonin and is known to fold various proteins, such as actin and tubulin. In Leishmania donovani, the γ subunit of TCP1 (LdTCP1γ) has been cloned and characterized. It forms a high-molecular-weight homo-oligomeric complex that performs ATP-dependent protein folding. In the present study, we evaluated the essentiality of the LdTCP1γ gene. Gene replacement studies indicated that LdTCP1γ is essential for parasite survival. The LdTCP1γ single-allele-replacement mutants exhibited slowed growth and decreased infectivity in mouse macrophages compared to the growth and infectivity of the wild-type parasites. Modulation of LdTCP1γ expression in promastigotes also modulated cell cycle progression. Suramin, an antitrypanosomal drug, not only inhibited the luciferase refolding activity of the recombinant LdTCP1γ (rLdTCP1γ) homo-oligomeric complex but also exhibited potential antileishmanial efficacy both in vitro and in vivo The interaction of suramin and LdTCP1γ was further validated by isothermal titration calorimetry. The study suggests LdTCP1γ as a potential drug target and also provides a framework for the development of a new class of drugs.
Collapse
|
29
|
Caruso Bavisotto C, Alberti G, Vitale AM, Paladino L, Campanella C, Rappa F, Gorska M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Hsp60 Post-translational Modifications: Functional and Pathological Consequences. Front Mol Biosci 2020; 7:95. [PMID: 32582761 PMCID: PMC7289027 DOI: 10.3389/fmolb.2020.00095] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Hsp60 is a chaperone belonging to the Chaperonins of Group I and typically functions inside mitochondria in which, together with the co-chaperonin Hsp10, maintains protein homeostasis. In addition to this canonical role, Hsp60 plays many others beyond the mitochondria, for instance in the cytosol, plasma-cell membrane, extracellular space, and body fluids. These non-canonical functions include participation in inflammation, autoimmunity, carcinogenesis, cell replication, and other cellular events in health and disease. Thus, Hsp60 is a multifaceted molecule with a wide range of cellular and tissue locations and functions, which is noteworthy because there is only one hsp60 gene. The question is by what mechanism this protein can become multifaceted. Likely, one factor contributing to this diversity is post-translational modification (PTM). The amino acid sequence of Hsp60 contains many potential phosphorylation sites, and other PTMs are possible such as O-GlcNAcylation, nitration, acetylation, S-nitrosylation, citrullination, oxidation, and ubiquitination. The effect of some of these PTMs on Hsp60 functions have been examined, for instance phosphorylation has been implicated in sperm capacitation, docking of H2B and microtubule-associated proteins, mitochondrial dysfunction, tumor invasiveness, and delay or facilitation of apoptosis. Nitration was found to affect the stability of the mitochondrial permeability transition pore, to inhibit folding ability, and to perturb insulin secretion. Hyperacetylation was associated with mitochondrial failure; S-nitrosylation has an impact on mitochondrial stability and endothelial integrity; citrullination can be pro-apoptotic; oxidation has a role in the response to cellular injury and in cell migration; and ubiquitination regulates interaction with the ubiquitin-proteasome system. Future research ought to determine which PTM causes which variations in the Hsp60 molecular properties and functions, and which of them are pathogenic, causing chaperonopathies. This is an important topic considering the number of acquired Hsp60 chaperonopathies already cataloged, many of which are serious diseases without efficacious treatment.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giusi Alberti
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Alessandra Maria Vitale
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Letizia Paladino
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Claudia Campanella
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
OsCpn60β1 is Essential for Chloroplast Development in Rice ( Oryza sativa L.). Int J Mol Sci 2020; 21:ijms21114023. [PMID: 32512821 PMCID: PMC7313468 DOI: 10.3390/ijms21114023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/03/2023] Open
Abstract
The chaperonin 60 (Cpn60) protein is of great importance to plants due to its involvement in modulating the folding of numerous chloroplast protein polypeptides. In chloroplasts, Cpn60 is differentiated into two subunit types—Cpn60α and Cpn60β and the rice genome encodes three α and three β plastid chaperonin subunits. However, the functions of Cpn60 family members in rice were poorly understood. In order to investigate the molecular mechanism of OsCpn60β1, we attempted to disrupt the OsCpn60β1 gene by CRISPR/Cas9-mediated targeted mutagenesis in this study. We succeeded in the production of homozygous OsCpn60β1 knockout rice plants. The OsCpn60β1 mutant displayed a striking albino leaf phenotype and was seedling lethal. Electron microscopy observation demonstrated that chloroplasts were severely disrupted in the OsCpn60β1 mutant. In addition, OsCpn60β1 was located in the chloroplast and OsCpn60β1 is constitutively expressed in various tissues particularly in the green tissues. The label-free qualitative proteomics showed that photosynthesis-related pathways and ribosomal pathways were significantly inhibited in OsCpn60β1 mutants. These results indicate that OsCpn60β1 is essential for chloroplast development in rice.
Collapse
|
31
|
Abstract
Mitochondria are essential organelles in eukaryotes. Most mitochondrial proteins are encoded by the nuclear genome and translated in the cytosol. Nuclear-encoded mitochondrial proteins need to be imported, processed, folded, and assembled into their functional states. To maintain protein homeostasis (proteostasis), mitochondria are equipped with a distinct set of quality control machineries. Deficiencies in such systems lead to mitochondrial dysfunction, which is a hallmark of aging and many human diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. In this review, we discuss the unique challenges and solutions of proteostasis in mitochondria. The import machinery coordinates with mitochondrial proteases and chaperones to maintain the mitochondrial proteome. Moreover, mitochondrial proteostasis depends on cytosolic protein quality control mechanisms during crises. In turn, mitochondria facilitate cytosolic proteostasis. Increasing evidence suggests that enhancing mitochondrial proteostasis may hold therapeutic potential to protect against protein aggregation-associated cellular defects.
Collapse
Affiliation(s)
- Linhao Ruan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yuhao Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xi Zhang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Alexis Tomaszewski
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Joshua T McNamara
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
32
|
Role of HSP60/HSP10 in Lung Cancer: Simple Biomarkers or Leading Actors? JOURNAL OF ONCOLOGY 2020; 2020:4701868. [PMID: 32318107 PMCID: PMC7149434 DOI: 10.1155/2020/4701868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Cancers are one of the major challenges faced by modern medicine both because of their impact in terms of the amount of cases and of the ineffectiveness of therapies used today. A concrete support to the fight against them can be found in the analysis and understanding of the molecular mechanisms involving molecular chaperones. In particular, HSP60 and HSP10 seem to play an important role in carcinogenesis, supporting tumours in their proliferation, survival, and metastasis. Efforts must be directed toward finding ways to eliminate or block this "mistaken" chaperone. Therefore, the scientific community must develop therapeutic strategies that consider HSP60 and HSP10 as the possible target of an anti-tumoural treatment and not only as diagnostic biomarkers, since they contribute to the evolution of pre-cancerous respiratory pathologies in lung tumours. HSP60 acts at the mitochondrial, cytoplasmic, and extracellular levels in the development of cancer pathologies. The molecular mechanisms in which these chaperones are involved concern cell survival, the restoration of a condition of absence of replicative senescence, the promotion of pro-inflammatory environments, and an increase in the ability to form metastases. In this review, we will also present examples of interactions between HSP60 and HSP10 and different molecules and ways to exploit this knowledge in anticancer therapies for lung tumours. In order to improve not only chances for an earlier diagnosis but also treatments for patients suffering from this type of disease, chaperones must be considered as key agents in carcinogenesis and primary targets in therapeutics.
Collapse
|
33
|
Xu C, Tang L, Liang Y, Jiao S, Yu H, Luo H. Novel Chaperones RrGroEL and RrGroES for Activity and Stability Enhancement of Nitrilase in Escherichia coli and Rhodococcus ruber. Molecules 2020; 25:E1002. [PMID: 32102340 PMCID: PMC7070999 DOI: 10.3390/molecules25041002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
For large-scale bioproduction, thermal stability is a crucial property for most industrial enzymes. A new method to improve both the thermal stability and activity of enzymes is of great significance. In this work, the novel chaperones RrGroEL and RrGroES from Rhodococcus ruber, a nontypical actinomycete with high organic solvent tolerance, were evaluated and applied for thermal stability and activity enhancement of a model enzyme, nitrilase. Two expression strategies, namely, fusion expression and co-expression, were compared in two different hosts, E. coli and R. ruber. In the E. coli host, fusion expression of nitrilase with either RrGroES or RrGroEL significantly enhanced nitrilase thermal stability (4.8-fold and 10.6-fold, respectively) but at the expense of enzyme activity (32-47% reduction). The co-expression strategy was applied in R. ruber via either a plasmid-only or genome-plus-plasmid method. Through integration of the nitrilase gene into the R. ruber genome at the site of nitrile hydratase (NHase) gene via CRISPR/Cas9 technology and overexpression of RrGroES or RrGroEL with a plasmid, the engineered strains R. ruber TH3 dNHase::RrNit (pNV18.1-Pami-RrNit-Pami-RrGroES) and TH3 dNHase::RrNit (pNV18.1-Pami-RrNit-Pami-RrGroEL) were constructed and showed remarkably enhanced nitrilase activity and thermal stability. In particular, the RrGroEL and nitrilase co-expressing mutant showed the best performance, with nitrilase activity and thermal stability 1.3- and 8.4-fold greater than that of the control TH3 (pNV18.1-Pami-RrNit), respectively. These findings are of great value for production of diverse chemicals using free bacterial cells as biocatalysts.
Collapse
Affiliation(s)
- Chunmeng Xu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China; (C.X.); (L.T.); (Y.L.); (S.J.)
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lingjun Tang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China; (C.X.); (L.T.); (Y.L.); (S.J.)
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Youxiang Liang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China; (C.X.); (L.T.); (Y.L.); (S.J.)
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Song Jiao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China; (C.X.); (L.T.); (Y.L.); (S.J.)
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Huimin Yu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China; (C.X.); (L.T.); (Y.L.); (S.J.)
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Hui Luo
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
34
|
Thirumalai D, Lorimer GH, Hyeon C. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Sci 2019; 29:360-377. [PMID: 31800116 DOI: 10.1002/pro.3795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
Molecular chaperones are ATP-consuming machines, which facilitate the folding of proteins and RNA molecules that are kinetically trapped in misfolded states. Unassisted folding occurs by the kinetic partitioning mechanism according to which folding to the native state, with low probability as well as misfolding to one of the many metastable states, with high probability, occur rapidly. GroEL is an all-purpose stochastic machine that assists misfolded substrate proteins to fold. The RNA chaperones such as CYT-19, which are ATP-consuming enzymes, help the folding of ribozymes that get trapped in metastable states for long times. GroEL does not interact with the folded proteins but CYT-19 disrupts both the folded and misfolded ribozymes. The structures of GroEL and RNA chaperones are strikingly different. Despite these differences, the iterative annealing mechanism (IAM) quantitatively explains all the available experimental data for assisted folding of proteins and ribozymes. Driven by ATP binding and hydrolysis and GroES binding, GroEL undergoes a catalytic cycle during which it samples three allosteric states, T (apo), R (ATP bound), and R″ (ADP bound). Analyses of the experimental data show that the efficiency of the GroEL-GroES machinery and mutants is determined by the resetting rate k R ″ → T , which is largest for the wild-type (WT) GroEL. Generalized IAM accurately predicts the folding kinetics of Tetrahymena ribozyme and its variants. Chaperones maximize the product of the folding rate and the steady-state native state fold by driving the substrates out of equilibrium. Neither the absolute yield nor the folding rate is optimized.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - George H Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
35
|
von der Heydt AC, McLeish TCB. How proteins' negative cooperativity emerges from entropic optimisation of versatile collective fluctuations. J Chem Phys 2019; 151:215101. [PMID: 31822099 DOI: 10.1063/1.5123741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The fact that allostery, a nonlocal signaling between distant binding sites, can arise mainly from the entropy balance of collective thermal modes, without conformational changes, is by now well known. However, the propensity to generate negative cooperativity is still unclear. Starting from an elastic-network picture of small protein complexes, in which effector binding is modeled by locally altering interaction strengths in lieu of adding a node-spring pair, we elucidate mechanisms particularly for such negative cooperativity. The approach via a few coupled harmonic oscillators with internal elastic strengths allows us to trace individual eigenmodes, their frequencies, and their statistical weights through successive bindings. We find that the alteration of the oscillators' couplings is paramount to covering both signs of allostery. Binding-modified couplings create a rich set of eigenmodes individually for each binding state, modes inaccessible to an ensemble of noninteracting units. The associated shifts of collective-mode frequencies, nonuniform with respect to modes and binding states, result in an enhanced optimizability, reflected by a subtle phase map of allosteric behaviors.
Collapse
Affiliation(s)
- Alice C von der Heydt
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Tom C B McLeish
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
36
|
Rho Y, Kim JH, Min B, Jin KS. Chemically Denatured Structures of Porcine Pepsin using Small-Angle X-ray Scattering. Polymers (Basel) 2019; 11:polym11122104. [PMID: 31847418 PMCID: PMC6961028 DOI: 10.3390/polym11122104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
Porcine pepsin is a gastric aspartic proteinase that reportedly plays a pivotal role in the digestive process of many vertebrates. We have investigated the three-dimensional (3D) structure and conformational transition of porcine pepsin in solution over a wide range of denaturant urea concentrations (0–10 M) using Raman spectroscopy and small-angle X-ray scattering. Furthermore, 3D GASBOR ab initio structural models, which provide an adequate conformational description of pepsin under varying denatured conditions, were successfully constructed. It was shown that pepsin molecules retain native conformation at 0–5 M urea, undergo partial denaturation at 6 M urea, and display a strongly unfolded conformation at 7–10 M urea. According to the resulting GASBOR solution models, we identified an intermediate pepsin conformation that was dominant during the early stage of denaturation. We believe that the structural evidence presented here provides useful insights into the relationship between enzymatic activity and conformation of porcine pepsin at different states of denaturation.
Collapse
Affiliation(s)
- Yecheol Rho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
| | - Jun Ha Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-Gu, Pohang, Kyungbuk 37673, Korea; (J.H.K.); (B.M.)
| | - Byoungseok Min
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-Gu, Pohang, Kyungbuk 37673, Korea; (J.H.K.); (B.M.)
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-Gu, Pohang, Kyungbuk 37673, Korea; (J.H.K.); (B.M.)
- Correspondence: ; Tel.: +82-54-279-1573; Fax: +82-54-279-1599
| |
Collapse
|
37
|
Stevens M, Abdeen S, Salim N, Ray AM, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E, Johnson SM. HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules. Bioorg Med Chem Lett 2019; 29:1106-1112. [PMID: 30852084 DOI: 10.1016/j.bmcl.2019.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/08/2023]
Abstract
All living organisms contain a unique class of molecular chaperones called 60 kDa heat shock proteins (HSP60 - also known as GroEL in bacteria). While some organisms contain more than one HSP60 or GroEL isoform, at least one isoform has always proven to be essential. Because of this, we have been investigating targeting HSP60 and GroEL chaperonin systems as an antibiotic strategy. Our initial studies focused on applying this antibiotic strategy for treating African sleeping sickness (caused by Trypanosoma brucei parasites) and drug-resistant bacterial infections (in particular Methicillin-resistant Staphylococcus aureus - MRSA). Intriguingly, during our studies we found that three known antibiotics - suramin, closantel, and rafoxanide - were potent inhibitors of bacterial GroEL and human HSP60 chaperonin systems. These findings prompted us to explore what other approved drugs, natural products, and known bioactive molecules might also inhibit HSP60 and GroEL chaperonin systems. Initial high-throughput screening of 3680 approved drugs, natural products, and known bioactives identified 161 hit inhibitors of the Escherichia coli GroEL chaperonin system (4.3% hit rate). From a purchased subset of 60 hits, 29 compounds (48%) re-confirmed as selective GroEL inhibitors in our assays, all of which were nearly equipotent against human HSP60. These findings illuminate the notion that targeting chaperonin systems might be a more common occurrence than we previously appreciated. Future studies are needed to determine if the in vivo modes of action of these approved drugs, natural products, and known bioactive molecules are related to GroEL and HSP60 inhibition.
Collapse
Affiliation(s)
- Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Sanofar Abdeen
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Nilshad Salim
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Yangshin Park
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Quyen Q Hoang
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
38
|
Yang B, Adams DJ, Marlow M, Zelzer M. Surface-Mediated Supramolecular Self-Assembly of Protein, Peptide, and Nucleoside Derivatives: From Surface Design to the Underlying Mechanism and Tailored Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15109-15125. [PMID: 30032622 DOI: 10.1021/acs.langmuir.8b01165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Among the many parameters that have been explored to exercise control over self-assembly processes, the influence of surface properties on self-assembly has been recognized as important but has received considerably less attention than other factors. This is particularly true for biomolecule-derived self-assembling molecules such as protein, peptide, and nucleobase derivatives. Because of their relevance to biomaterial and drug delivery applications, interest in these materials is increasing. As the formation of supramolecular structures from these biomolecule derivatives inevitably brings them into contact with the surfaces of surrounding materials, understanding and controlling the impact of the properties of these surfaces on the self-assembly process are important. In this feature article, we present an overview of the different surface parameters that have been used and studied for the direction of the self-assembly of protein, peptide, and nucleoside-based molecules. The current mechanistic understanding of these processes will be discussed, and potential applications of surface-mediated self-assembly will be outlined.
Collapse
Affiliation(s)
- Bin Yang
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Maria Marlow
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| | - Mischa Zelzer
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| |
Collapse
|
39
|
Kunkle T, Abdeen S, Salim N, Ray AM, Stevens M, Ambrose AJ, Victorino J, Park Y, Hoang QQ, Chapman E, Johnson SM. Hydroxybiphenylamide GroEL/ES Inhibitors Are Potent Antibacterials against Planktonic and Biofilm Forms of Staphylococcus aureus. J Med Chem 2018; 61:10651-10664. [PMID: 30392371 DOI: 10.1021/acs.jmedchem.8b01293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently reported the identification of a GroEL/ES inhibitor (1, N-(4-(benzo[ d]thiazol-2-ylthio)-3-chlorophenyl)-3,5-dibromo-2-hydroxybenzamide) that exhibited in vitro antibacterial effects against Staphylococcus aureus comparable to vancomycin, an antibiotic of last resort. To follow up, we have synthesized 43 compound 1 analogs to determine the most effective functional groups of the scaffold for inhibiting GroEL/ES and killing bacteria. Our results identified that the benzothiazole and hydroxyl groups are important for inhibiting GroEL/ES-mediated folding functions, with the hydroxyl essential for antibacterial effects. Several analogs exhibited >50-fold selectivity indices between antibacterial efficacy and cytotoxicity to human liver and kidney cells in cell culture. We found that MRSA was not able to easily generate acute resistance to lead inhibitors in a gain-of-resistance assay and that lead inhibitors were able to permeate through established S. aureus biofilms and maintain their bactericidal effects.
Collapse
Affiliation(s)
- Trent Kunkle
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Sanofar Abdeen
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Nilshad Salim
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Anne-Marie Ray
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Mckayla Stevens
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , 1703 E. Mabel Street , P.O. Box 210207, Tucson , Arizona 85721 , United States
| | - José Victorino
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Yangshin Park
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States.,Stark Neurosciences Research Institute , Indiana University School of Medicine , 320 W. 15th Street, Suite 414 , Indianapolis , Indiana 46202 , United States.,Department of Neurology , Indiana University School of Medicine . 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Quyen Q Hoang
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States.,Stark Neurosciences Research Institute , Indiana University School of Medicine , 320 W. 15th Street, Suite 414 , Indianapolis , Indiana 46202 , United States.,Department of Neurology , Indiana University School of Medicine . 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , 1703 E. Mabel Street , P.O. Box 210207, Tucson , Arizona 85721 , United States
| | - Steven M Johnson
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| |
Collapse
|
40
|
Abdeen S, Kunkle T, Salim N, Ray AM, Mammadova N, Summers C, Stevens M, Ambrose AJ, Park Y, Schultz PG, Horwich AL, Hoang QQ, Chapman E, Johnson SM. Sulfonamido-2-arylbenzoxazole GroEL/ES Inhibitors as Potent Antibacterials against Methicillin-Resistant Staphylococcus aureus (MRSA). J Med Chem 2018; 61:7345-7357. [PMID: 30060666 DOI: 10.1021/acs.jmedchem.8b00989] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extending from a study we recently published examining the antitrypanosomal effects of a series of GroEL/ES inhibitors based on a pseudosymmetrical bis-sulfonamido-2-phenylbenzoxazole scaffold, here, we report the antibiotic effects of asymmetric analogs of this scaffold against a panel of bacteria known as the ESKAPE pathogens ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). While GroEL/ES inhibitors were largely ineffective against K. pneumoniae, A. baumannii, P. aeruginosa, and E. cloacae (Gram-negative bacteria), many analogs were potent inhibitors of E. faecium and S. aureus proliferation (Gram-positive bacteria, EC50 values of the most potent analogs were in the 1-2 μM range). Furthermore, even though some compounds inhibit human HSP60/10 biochemical functions in vitro (IC50 values in the 1-10 μM range), many of these exhibited moderate to low cytotoxicity to human liver and kidney cells (CC50 values > 20 μM).
Collapse
Affiliation(s)
- Sanofar Abdeen
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Trent Kunkle
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Nilshad Salim
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Anne-Marie Ray
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Najiba Mammadova
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Corey Summers
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Mckayla Stevens
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Andrew J Ambrose
- College of Pharmacy, Department of Pharmacology and Toxicology , The University of Arizona , 1703 East Mabel Street , P.O. Box 210207, Tucson , Arizona 85721 , United States
| | - Yangshin Park
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States.,Stark Neurosciences Research Institute , Indiana University School of Medicine , 320 West 15th Street, Suite 414 , Indianapolis , Indiana 46202 , United States.,Department of Neurology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Peter G Schultz
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Arthur L Horwich
- HHMI, Department of Genetics, Yale School of Medicine , Boyer Center for Molecular Medicine , 295 Congress Avenue , New Haven , Connecticut 06510 , United States
| | - Quyen Q Hoang
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States.,Stark Neurosciences Research Institute , Indiana University School of Medicine , 320 West 15th Street, Suite 414 , Indianapolis , Indiana 46202 , United States.,Department of Neurology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology , The University of Arizona , 1703 East Mabel Street , P.O. Box 210207, Tucson , Arizona 85721 , United States
| | - Steven M Johnson
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| |
Collapse
|
41
|
Britti E, Delaspre F, Feldman A, Osborne M, Greif H, Tamarit J, Ros J. Frataxin-deficient neurons and mice models of Friedreich ataxia are improved by TAT-MTScs-FXN treatment. J Cell Mol Med 2018; 22:834-848. [PMID: 28980774 PMCID: PMC5783845 DOI: 10.1111/jcmm.13365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
Abstract
Friedreich ataxia (FA) is a rare disease caused by deficiency of frataxin, a mitochondrial protein. As there is no cure available for this disease, many strategies have been developed to reduce the deleterious effects of such deficiency. One of these approaches is based on delivering frataxin to the tissues by coupling the protein to trans-activator of transcription (TAT) peptides, which enables cell membranes crossing. In this study, we tested the efficiency of TAT-MTScs-FXN fusion protein to decrease neurodegeneration markers on frataxin-depleted neurons obtained from dorsal root ganglia (DRG), one of the most affected tissues. In mice models of the disease, we tested the ability of TAT-MTScs-FXN to penetrate the mitochondria and its effect on lifespan. In DRG neurons, treatment with TAT-MTScs-FXN increased cell survival, decreased neurite degeneration and reduced apoptotic markers, such as α-fodrin cleavage and caspase 9 activation. Also, we show that heat-shock protein 60 (HSP60), a molecular chaperone targeted to mitochondria, suffered an impaired processing in frataxin-deficient neurons that was relieved by TAT-MTScs-FXN addition. In mice models of the disease, administration of TAT-MTScs-FXN was able to reach muscle mitochondria, restore the activity of the succinate dehydrogenase and produce a significant lifespan increase. These results support the use of TAT-MTScs-FXN as a treatment for Friedreich ataxia.
Collapse
Affiliation(s)
- Elena Britti
- Departament de Ciències Mèdiques BàsiquesIRBLleidaUniversitat de LleidaLleidaSpain
| | - Fabien Delaspre
- Departament de Ciències Mèdiques BàsiquesIRBLleidaUniversitat de LleidaLleidaSpain
| | | | | | | | - Jordi Tamarit
- Departament de Ciències Mèdiques BàsiquesIRBLleidaUniversitat de LleidaLleidaSpain
| | - Joaquim Ros
- Departament de Ciències Mèdiques BàsiquesIRBLleidaUniversitat de LleidaLleidaSpain
| |
Collapse
|
42
|
Zhao Q, Liu C. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis. Front Mol Biosci 2018; 4:98. [PMID: 29404339 PMCID: PMC5780408 DOI: 10.3389/fmolb.2017.00098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/28/2017] [Indexed: 11/13/2022] Open
Abstract
Group I chaperonins are large cylindrical-shaped nano-machines that function as a central hub in the protein quality control system in the bacterial cytosol, mitochondria and chloroplasts. In chloroplasts, proteins newly synthesized by chloroplast ribosomes, unfolded by diverse stresses, or translocated from the cytosol run the risk of aberrant folding and aggregation. The chloroplast chaperonin system assists these proteins in folding into their native states. A widely known protein folded by chloroplast chaperonin is the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), an enzyme responsible for the fixation of inorganic CO2 into organic carbohydrates during photosynthesis. Chloroplast chaperonin was initially identified as a Rubisco-binding protein. All photosynthetic eucaryotes genomes encode multiple chaperonin genes which can be divided into α and β subtypes. Unlike the homo-oligomeric chaperonins from bacteria and mitochondria, chloroplast chaperonins are more complex and exists as intricate hetero-oligomers containing both subtypes. The Group I chaperonin requires proper interaction with a detachable lid-like co-chaperonin in the presence of ATP and Mg2+ for substrate encapsulation and conformational transition. Besides the typical Cpn10-like co-chaperonin, a unique co-chaperonin consisting of two tandem Cpn10-like domains joined head-to-tail exists in chloroplasts. Since chloroplasts were proposed as sensors to various environmental stresses, this diversified chloroplast chaperonin system has the potential to adapt to complex conditions by accommodating specific substrates or through regulation at both the transcriptional and post-translational levels. In this review, we discuss recent progress on the unique structure and function of the chloroplast chaperonin system based on model organisms Chlamydomonas reinhardtii and Arabidopsis thaliana. Knowledge of the chloroplast chaperonin system may ultimately lead to successful reconstitution of eukaryotic Rubisco in vitro.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Nusrat S, Khan RH. Exploration of ligand-induced protein conformational alteration, aggregate formation, and its inhibition: A biophysical insight. Prep Biochem Biotechnol 2018; 48:43-56. [PMID: 29106330 DOI: 10.1080/10826068.2017.1387561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The association of protein aggregates with plentiful human diseases has fascinated studies regarding the biophysical characterization of protein misfolding and ultimately their aggregate formation mechanism. Protein-ligand interaction, their mechanism, conformational changes by ligands, and protein aggregate formation have been studied upon exploiting experimental techniques and computational methodologies. Such studies for the exploration of ligand-induced conformational changes in protein, misfolding and aggregation, has confirmed drastic progresses in the study of aggregate formation pathways. This review comprises of an inclusive description of contemporary experimental techniques as well as theoretical improvements in the interpretation of the conformational properties of protein. We have also discussed various factors responsible for the microenvironment change around protein that sequentially causes amyloidoses. Biophysical techniques and cell-based assays to gain comprehensive understandings of protein-ligand interaction, protein folding, and aggregation pathways have also been described. The promising therapeutic methods used to inhibit the protein fibrillogenesis have also been discussed.
Collapse
Affiliation(s)
- Saima Nusrat
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| | - Rizwan Hasan Khan
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| |
Collapse
|
44
|
Lee S, Wang C, Liu H, Xiong J, Jiji R, Hong X, Yan X, Chen Z, Hammel M, Wang Y, Dai S, Wang J, Jiang C, Zhang G. Hydrogen bonds are a primary driving force for de novo protein folding. Acta Crystallogr D Struct Biol 2017; 73:955-969. [PMID: 29199976 PMCID: PMC5713874 DOI: 10.1107/s2059798317015303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 01/09/2023] Open
Abstract
The protein-folding mechanism remains a major puzzle in life science. Purified soluble activation-induced cytidine deaminase (AID) is one of the most difficult proteins to obtain. Starting from inclusion bodies containing a C-terminally truncated version of AID (residues 1-153; AID153), an optimized in vitro folding procedure was derived to obtain large amounts of AID153, which led to crystals with good quality and to final structural determination. Interestingly, it was found that the final refolding yield of the protein is proline residue-dependent. The difference in the distribution of cis and trans configurations of proline residues in the protein after complete denaturation is a major determining factor of the final yield. A point mutation of one of four proline residues to an asparagine led to a near-doubling of the yield of refolded protein after complete denaturation. It was concluded that the driving force behind protein folding could not overcome the cis-to-trans proline isomerization, or vice versa, during the protein-folding process. Furthermore, it was found that successful refolding of proteins optimally occurs at high pH values, which may mimic protein folding in vivo. It was found that high pH values could induce the polarization of peptide bonds, which may trigger the formation of protein secondary structures through hydrogen bonds. It is proposed that a hydrophobic environment coupled with negative charges is essential for protein folding. Combined with our earlier discoveries on protein-unfolding mechanisms, it is proposed that hydrogen bonds are a primary driving force for de novo protein folding.
Collapse
Affiliation(s)
- Schuyler Lee
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Chao Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Haolin Liu
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Jian Xiong
- Department of Chemistry, University of Missouri, Columbus, Mississippi, USA
| | - Renee Jiji
- Department of Chemistry, University of Missouri, Columbus, Mississippi, USA
| | - Xia Hong
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Xiaoxue Yan
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Zhangguo Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yang Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Shaodong Dai
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Jing Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Chengyu Jiang
- Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100005, People’s Republic of China
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| |
Collapse
|
45
|
An YJ, Rowland SE, Na JH, Spigolon D, Hong SK, Yoon YJ, Lee JH, Robb FT, Cha SS. Structural and mechanistic characterization of an archaeal-like chaperonin from a thermophilic bacterium. Nat Commun 2017; 8:827. [PMID: 29018216 PMCID: PMC5635000 DOI: 10.1038/s41467-017-00980-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
The chaperonins (CPNs) are megadalton sized hollow complexes with two cavities that open and close to encapsulate non-native proteins. CPNs are assigned to two sequence-related groups that have distinct allosteric mechanisms. In Group I CPNs a detachable co-chaperone, GroES, closes the chambers whereas in Group II a built-in lid closes the chambers. Group I CPNs have a bacterial ancestry, whereas Group II CPNs are archaeal in origin. Here we describe open and closed crystal structures representing a new phylogenetic branch of CPNs. These Group III CPNs are divergent in sequence and structure from extant CPNs, but are closed by a built-in lid like Group II CPNs. A nucleotide-sensing loop, present in both Group I and Group II CPNs, is notably absent. We identified inter-ring pivot joints that articulate during ring closure. These Group III CPNs likely represent a relic from the ancestral CPN that formed distinct bacterial and archaeal branches. Chaperonins (CPNs) are ATP-dependent protein-folding machines. Here the authors present the open and closed crystal structures of a Group III CPN from the thermophilic bacterium Carboxydothermus hydrogenoformans, discuss its mechanism and structurally compare it with Group I and II CPNs.
Collapse
Affiliation(s)
- Young Jun An
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Sara E Rowland
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA
| | - Jung-Hyun Na
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dario Spigolon
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA
| | - Seung Kon Hong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Frank T Robb
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA. .,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA.
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
46
|
Protein aggregation: From background to inhibition strategies. Int J Biol Macromol 2017; 103:208-219. [DOI: 10.1016/j.ijbiomac.2017.05.048] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/01/2023]
|
47
|
Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci 2017; 18:ijms18091978. [PMID: 28914774 PMCID: PMC5618627 DOI: 10.3390/ijms18091978] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large family of chaperones that are involved in protein folding and maturation of a variety of "client" proteins protecting them from degradation, oxidative stress, hypoxia, and thermal stress. Hence, they are significant regulators of cellular proliferation, differentiation and strongly implicated in the molecular orchestration of cancer development and progression as many of their clients are well established oncoproteins in multiple tumor types. Interestingly, tumor cells are more HSP chaperonage-dependent than normal cells for proliferation and survival because the oncoproteins in cancer cells are often misfolded and require augmented chaperonage activity for correction. This led to the development of several inhibitors of HSP90 and other HSPs that have shown promise both preclinically and clinically in the treatment of cancer. In this article, we comprehensively review the roles of some of the important HSPs in cancer, and how targeting them could be efficacious, especially when traditional cancer therapies fail.
Collapse
|
48
|
Creating the Functional Single-Ring GroEL-GroES Chaperonin Systems via Modulating GroEL-GroES Interaction. Sci Rep 2017; 7:9710. [PMID: 28852160 PMCID: PMC5575113 DOI: 10.1038/s41598-017-10499-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/09/2017] [Indexed: 11/08/2022] Open
Abstract
Chaperonin and cochaperonin, represented by E. coli GroEL and GroES, are essential molecular chaperones for protein folding. The double-ring assembly of GroEL is required to function with GroES, and a single-ring GroEL variant GroELSR forms a stable complex with GroES, arresting the chaperoning reaction cycle. GroES I25 interacts with GroEL; however, mutations of I25 abolish GroES-GroEL interaction due to the seven-fold mutational amplification in heptameric GroES. To weaken GroELSR-GroES interaction in a controlled manner, we used groES 7, a gene linking seven copies of groES, to incorporate I25 mutations in selected GroES modules in GroES7. We generated GroES7 variants with different numbers of GroESI25A or GroESI25D modules and different arrangements of the mutated modules, and biochemically characterized their interactions with GroELSR. GroES7 variants with two mutated modules participated in GroELSR-mediated protein folding in vitro. GroES7 variants with two or three mutated modules collaborated with GroELSR to perform chaperone function in vivo: three GroES7 variants functioned with GroELSR under both normal and heat-shock conditions. Our studies on functional single-ring bacterial chaperonin systems are informative to the single-ring human mitochondrial chaperonin mtHsp60-mtHsp10, and will provide insights into how the double-ring bacterial system has evolved to the single-ring mtHsp60-mtHsp10.
Collapse
|
49
|
Ashraf R, Muhammad MA, Rashid N, Akhtar M. Cloning and characterization of thermostable GroEL/GroES homologues from Geobacillus thermopakistaniensis and their applications in protein folding. J Biotechnol 2017; 254:9-16. [PMID: 28583821 DOI: 10.1016/j.jbiotec.2017.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
The chaperonin genes encoding GroELGt (ESU72018) and GroESGt (ESU72017), homologues of bacterial GroEL and GroES, from Geobacillus thermopakistaniensis were cloned and expressed in Escherichia coli. The purified gene products possessed the ATPase activity similar to other bacterial and eukaryal counterparts. Recombinant GroELGt and GroESGt were able to refold the denatured insoluble aggregates of α-amylase from Bacillus licheniformis into soluble and active form. Furthermore, GroELGt and GroESGt successfully enhanced the thermostability of porcine heart malate dehydrogenase. Expression of GroELGt gene in E. coli cells enhanced the thermotolerance of the host. Furthermore, soluble production of recombinant alcohol dehydrogenase from Bacillus subtilis strain R5 in E. coli, initially produced as insoluble aggregates, was achieved by co-expressing the gene with GroELGt. Our results implied that GroELGt could assist folding of nascent protein in E. coli with the help of host co-chaperonin without requiring additional ATP. This system can be used for soluble production of recombinant proteins which otherwise are produced in insoluble form in E. coli. To the best of our knowledge this is the first report on functional characterization and applications of chaperonins from genus Geobacillus.
Collapse
Affiliation(s)
- Raza Ashraf
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Muhammad Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan; School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK
| |
Collapse
|
50
|
Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins. J Bacteriol 2017; 199:JB.00844-16. [PMID: 28396349 DOI: 10.1128/jb.00844-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/01/2017] [Indexed: 02/01/2023] Open
Abstract
Chaperonins are essential for cellular growth under normal and stressful conditions and consequently represent one of the most conserved and ancient protein classes. The paradigm Escherichia coli chaperonin, EcGroEL, and its cochaperonin, EcGroES, assist in the folding of proteins via an ATP-dependent mechanism. In addition to the presence of groEL and groES homologs, groEL paralogs are found in many bacteria, including pathogens, and have evolved poorly understood species-specific functions. Chlamydia spp., which are obligate intracellular bacteria, have reduced genomes that nonetheless contain three groEL genes, Chlamydia groEL (ChgroEL), ChgroEL2, and ChgroEL3 We hypothesized that ChGroEL is the bona fide chaperonin and that the paralogs perform novel Chlamydia-specific functions. To test our hypothesis, we investigated the biochemical properties of ChGroEL and its cochaperonin, ChGroES, and queried the in vivo essentiality of the three ChgroEL genes through targeted mutagenesis in Chlamydia trachomatis ChGroEL hydrolyzed ATP at a rate 25% of that of EcGroEL and bound with high affinity to ChGroES, and the ChGroEL-ChGroES complex could refold malate dehydrogenase (MDH). The chlamydial ChGroEL was selective for its cognate cochaperonin, ChGroES, while EcGroEL could function with both EcGroES and ChGroES. A P35T ChGroES mutant (ChGroESP35T) reduced ChGroEL-ChGroES interactions and MDH folding activities but was tolerated by EcGroEL. Both ChGroEL-ChGroES and EcGroEL-ChGroESP35T could complement an EcGroEL-EcGroES mutant. Finally, we successfully inactivated both paralogs but not ChgroEL, leading to minor growth defects in cell culture that were not exacerbated by heat stress. Collectively, our results support novel functions for the paralogs and solidify ChGroEL as a bona fide chaperonin that is biochemically distinct from EcGroEL.IMPORTANCEChlamydia is an important cause of human diseases, including pneumonia, sexually transmitted infections, and trachoma. The chlamydial chaperonin ChGroEL and chaperonin paralog ChGroEL2 have been associated with survival under stress conditions, and ChGroEL is linked with immunopathology elicited by chlamydial infections. However, their exact roles in bacterial survival and disease remain unclear. Our results further substantiate the hypotheses that ChGroEL is the primary chlamydial chaperonin and that the paralogs play specialized roles during infection. Furthermore, ChGroEL and the mitochondrial GroEL only functioned with their cochaperonin, in contrast to the promiscuous nature of GroEL from E. coli and Helicobacter pylori, which might indicate a divergent evolution of GroEL during the transition from a free-living organism to an obligate intracellular lifestyle.
Collapse
|