1
|
Meng X, Du W, Sun Z. Fine particulate matter‑induced cardiac developmental toxicity (Review). Exp Ther Med 2025; 29:6. [PMID: 39534282 PMCID: PMC11552469 DOI: 10.3892/etm.2024.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Fine particulate matter (PM2.5) has become an important risk factor threatening human health. Epidemiological and toxicological investigations have revealed that PM2.5 not only leads to cardiovascular dysfunction, but it also gives rise to various adverse health effects on the human body, such as cardiovascular and cerebrovascular diseases, cancers, neurodevelopmental disorders, depression and autism. PM2.5 is able to penetrate both respiratory and placental barriers, thereby resulting in negative effects on fetal development. A large body of epidemiological evidences has suggested that gestational exposure to PM2.5 increases the incidence of congenital diseases in offspring, including congenital heart defects. In addition, animal model studies have revealed that gestational exposure to PM2.5 can disrupt normal heart development in offspring, although the potential molecular mechanisms have yet to be fully elucidated. The aim of the present review was to provide a brief overview of what is currently known regarding the molecular mechanisms underlying cardiac developmental toxicity in offspring induced by gestational exposure to PM2.5.
Collapse
Affiliation(s)
- Xiangjiang Meng
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| | - Weiyuan Du
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| | - Zongli Sun
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| |
Collapse
|
2
|
Ramadan WS, Alseksek RK, Mouffak S, Talaat IM, Saber-Ayad MM, Menon V, Ilce BY, El-Awady R. Impact of HDAC6-mediated progesterone receptor expression on the response of breast cancer cells to hormonal therapy. Eur J Pharmacol 2024; 983:177001. [PMID: 39284403 DOI: 10.1016/j.ejphar.2024.177001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Modulation of estrogen receptor (ER) and progesterone receptor (PR) expression, as well as their emerging functional crosstalk, remains a potential approach for enhancing the response to hormonal therapy in breast cancer. Aberrant epigenetic alterations induced by histone deacetylases (HDACs) were massively implicated in dysregulating the function of hormone receptors in breast cancer. Although much is known about the regulation of ER signaling by HDAC, the precise role of HDAC in modulating the expression of PR and its impact on the outcomes of hormonal therapy is poorly defined. Here, we demonstrate the involvement of HDAC6 in regulating PR expression in breast cancer cells. The correlation between HDAC6 and hormone receptors was investigated in patients' tissues by immunohistochemistry (n = 80) and publicly available data (n = 3260) from breast cancer patients. We explored the effect of modulating the expression of HDAC6 as well as its catalytic inhibition on the level of hormone receptors by a variety of molecular analyses, including Western blot, immunofluorescence, Real-time PCR, RNA-seq analysis and chromatin immunoprecipitation. Based on our in-silico and immunohistochemistry analyses, HDAC6 levels were negatively correlated with PR status in breast cancer tissues. The downregulation of HDAC6 enhanced the expression of PR-B in hormone receptor-positive and triple-negative breast cancer (TNBC) cells. The selective targeting of HDAC6 by tubacin resulted in the enrichment of the H3K9 acetylation mark at the PGR-B gene promoter region and enhanced the expression of PR-B. Additionally, transcriptomic analysis of tubacin-treated cells revealed enhanced activity of acetyltransferase and growth factor signaling pathways, along with the enrichment of transcription factors involved in the transcriptional activity of ER, underscoring the crucial role of HDAC6 in regulating hormone receptors. Notably, the addition of HDAC6 inhibitor potentiated the effects of anti-ER and anti-PR drugs mainly in TNBC cells. Together, these data highlight the role of HDAC6 in regulating PR expression and provide a promising therapeutic approach for boosting breast cancer sensitivity to hormonal therapy.
Collapse
Affiliation(s)
- Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Rahma K Alseksek
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University City Road, Sharjah, 27272, United Arab Emirates
| | - Soraya Mouffak
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Clinical Sciences Department, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, Champollion Street, Alexandria, 21131, Egypt
| | - Maha M Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Clinical Sciences Department, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Burcu Yener Ilce
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University City Road, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
3
|
Thomas SS, Abhinand K, Menon AM, Nair BG, Kumar GB, Arun KB, Edison LK, Madhavan A. Epigenetic Mechanisms Induced by Mycobacterium tuberculosis to Promote Its Survival in the Host. Int J Mol Sci 2024; 25:11801. [PMID: 39519352 PMCID: PMC11546203 DOI: 10.3390/ijms252111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis caused by the obligate intracellular pathogen, Mycobacterium tuberculosis, is one among the prime causes of death worldwide. An urgent remedy against tuberculosis is of paramount importance in the current scenario. However, the complex nature of this appalling disease contributes to the limitations of existing medications. The quest for better treatment approaches is driving the research in the field of host epigenomics forward in context with tuberculosis. The interplay between various host epigenetic factors and the pathogen is under investigation. A comprehensive understanding of how Mycobacterium tuberculosis orchestrates such epigenetic factors and favors its survival within the host is in increasing demand. The modifications beneficial to the pathogen are reversible and possess the potential to be better targets for various therapeutic approaches. The mechanisms, including histone modifications, DNA methylation, and miRNA modification, are being explored for their impact on pathogenesis. In this article, we are deciphering the role of mycobacterial epigenetic regulators on various strategies like cytokine expression, macrophage polarization, autophagy, and apoptosis, along with a glimpse of the potential of host-directed therapies.
Collapse
Affiliation(s)
- Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Kuniyil Abhinand
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Arjun M. Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Geetha B. Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - K. B. Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India
| | - Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| |
Collapse
|
4
|
Luo S, Yue M, Wang D, Lu Y, Wu Q, Jiang J. Breaking the barrier: Epigenetic strategies to combat platinum resistance in colorectal cancer. Drug Resist Updat 2024; 77:101152. [PMID: 39369466 DOI: 10.1016/j.drup.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Platinum-based drugs, such as cisplatin and oxaliplatin, are frontline chemotherapy for CRC, effective in both monotherapy and combination regimens. However, the clinical efficacy of these treatments is often undermined by the development of drug resistance, a significant obstacle in cancer therapy. In recent years, epigenetic alterations have been recognized as key players in the acquisition of resistance to platinum drugs. Targeting these dysregulated epigenetic mechanisms with small molecules represents a promising therapeutic strategy. This review explores the complex relationship between epigenetic changes and platinum resistance in CRC, highlighting current epigenetic therapies and their effectiveness in countering resistance mechanisms. By elucidating the epigenetic underpinnings of platinum resistance, this review aims to contribute to ongoing efforts to improve treatment outcomes for CRC patients.
Collapse
Affiliation(s)
- Shiwen Luo
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ming Yue
- Department of Pharmacy, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Dequan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yukang Lu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
Liu Y, Xun W, Zhao T, Huang M, Sun L, Wen G, Kang X, Wang J, Han T. Interplay between acetylation and ubiquitination controls PSAT1 protein stability in lung adenocarcinoma. Commun Biol 2024; 7:1365. [PMID: 39433916 PMCID: PMC11494179 DOI: 10.1038/s42003-024-07051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Serine is essential to maintain maximal growth and proliferation of cancer cells by providing adequate intermediate metabolites and energy. Phosphoserine aminotransferase 1 (PSAT1) is a key enzyme in de novo serine synthesis. However, little is known about the mechanisms underlying PSAT1 degradation. We found that acetylation was the switch that regulated the degradation of PSAT1 in lung adenocarcinoma (LUAD). Deacetylation of PSAT1 on Lys51 by histone deacetylase 7 (HDAC7) enhanced the interaction between PSAT1 and the deubiquitinase ubiquitin-specific processing protease 14 (USP14), leading to the deubiquitination and stabilization of PSAT1; while acetylation of PSAT1 promoted its interaction with the E3 ligase ubiquitination factor E4B (UBE4B), leading to proteasomal degradation. Acetylation of PSAT1 on Lys51 regulated serine metabolism and tumor proliferation in LUAD. Thus, acetylation and ubiquitination cooperatively regulated the protein homeostasis of PSAT1. In conclusion, our study reveals a key regulatory mechanism for maintaining PSAT1 protein homeostasis in LUAD.
Collapse
Affiliation(s)
- Yuhan Liu
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenze Xun
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Menglin Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Longhua Sun
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China
| | - Guilan Wen
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiuhua Kang
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Tianyu Han
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China.
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Xiao T, Chen Z, Xie Y, Yang C, Wu J, Gao L. Histone deacetylase inhibitors: targeting epigenetic regulation in the treatment of acute leukemia. Ther Adv Hematol 2024; 15:20406207241283277. [PMID: 39421716 PMCID: PMC11483798 DOI: 10.1177/20406207241283277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
Acute leukemia (AL) is a rare yet perilous malignancy. Currently, the primary treatment for AL involves combination chemotherapy as the cornerstone of comprehensive measures, alongside hematopoietic stem cell transplantation as a radical approach. However, despite these interventions, mortality rates remain high, particularly among refractory/recurrent patients or elderly individuals with a poor prognosis. Acetylation, a form of epigenetic regulation, has emerged as a promising therapeutic avenue for treating AL. Recent studies have highlighted the potential of acetylation regulation as a novel treatment pathway. Histone deacetylase inhibitors (HDACis) play a pivotal role in modulating the differentiation and development of tumor cells through diverse pathways, simultaneously impacting the maturation and function of lymphocytes. HDACis demonstrate promise in enhancing survival rates and achieving a complete response in both acute myeloid leukemia and acute T-lymphoblastic leukemia patients. This article provides a comprehensive review of the advancements in HDACi therapy for AL, shedding light on its potential implications for clinical practice.
Collapse
Affiliation(s)
- Tong Xiao
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhigang Chen
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yutong Xie
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chao Yang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junhong Wu
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lei Gao
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, China
| |
Collapse
|
7
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
8
|
Ray P, Sedigh A, Confeld M, Alhalhooly L, Iduoku K, Casanola-Martin GM, Pham-The H, Rasulev B, Choi Y, Yang Z, Mallik S, Quadir M. Design and evaluation of nanoscale materials with programmed responsivity towards epigenetic enzymes. J Mater Chem B 2024; 12:9905-9920. [PMID: 39021201 DOI: 10.1039/d4tb00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly(acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. The hydrodynamic diameters of particles were typically withing the range of 108-190 nm, depending on degree of acetylation of the hydrophobic block. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We also demonstrated the biocompatibility and cellular effects of these materials in the context of drug delivery in different types of anticancer cell lines, such as MIA PaCa-2, PANC-1, cancer like stem cells (CSCs), and non-cancerous HPNE cells. We observed that the release of a model drug (such as a STAT3 pathway inhibitor, Napabucasin) can be loaded into these nanoparticles, with >90% of the dosage can be released over 3 h under the influence of HDAC8 enzyme in a controlled fashion. Further, we conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Abbas Sedigh
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Matthew Confeld
- Deapartment of Physics, North Dakota State University, Fargo, ND 58102, USA
| | - Lina Alhalhooly
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Kweeni Iduoku
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Gerardo M Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Hai Pham-The
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Yongki Choi
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Zhongyu Yang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
9
|
Shin Y. Histone Tail Cleavage as a Mechanism for Epigenetic Regulation. Int J Mol Sci 2024; 25:10789. [PMID: 39409117 PMCID: PMC11477362 DOI: 10.3390/ijms251910789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Histones are essential for DNA packaging and undergo post-translational modifications that significantly influence gene regulation. Among these modifications, histone tail cleavage has recently garnered attention despite being less explored. Cleavage by various proteases impacts processes such as stem cell differentiation, aging, infection, and inflammation, though the mechanisms remain unclear. This review delves into recent insights on histone proteolytic cleavage and its epigenetic significance, highlighting how chromatin, which serves as a dynamic scaffold, responds to signals through histone modification, replacement, and ATP-dependent remodeling. Specifically, histone tail cleavage is linked to critical cellular processes such as granulocyte differentiation, viral infection, aging, yeast sporulation, and cancer development. Although the exact mechanisms connecting histone cleavage to gene expression are still emerging, it is clear that this process represents a novel epigenetic transcriptional mechanism intertwined with chromatin dynamics. This review explores known histone tail cleavage events, the proteolytic enzymes involved, their impact on gene expression, and future research directions in this evolving field.
Collapse
Affiliation(s)
- Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Ye L, Kuang W, Zhang L, Lin Y, Zhang Y, Sun X, Cui R. Functional Characterization of the Histone Acetyltransferase FcElp3 in Lotus Rhizome Rot-Causing Fungus Fusarium commune. PHYTOPATHOLOGY 2024; 114:2300-2309. [PMID: 39007807 DOI: 10.1094/phyto-01-24-0017-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Fusarium commune is the main pathogen of lotus rhizome rot, which causes the wilt of many plants. Histone acetyltransferase plays a critical part in the growth and virulence of fungi. In the present study, we identified an FcElp3 in F. commune homologous to histone acetyltransferase Elp3. We further constructed a mutant strain of F. commune to determine the function of FcElp3 in fungal growth and pathogenicity. The results showed that the deletion of FcElp3 resulted in reduced mycelial growth and sporulation. Compared with the wild type, the ΔFcElp3 strain showed more tolerance to osmotic stress and cell wall stress responses but was highly sensitive to oxidative stress. The subcellular localization results indicated that FcElp3 was distributed in both the cytoplasm and nucleus. Western blotting showed that FcElp3 was important for acetylation of H3K14 and H4K8. RNA sequencing analysis showed significant transcriptional changes in the ΔFcElp3 mutant, with 3,098 genes upregulated and 5,770 genes downregulated. Peroxisome was the most significantly enriched metabolic pathway for downregulated genes. This led to a significant decrease in the expression of the core transcription factor Fcap1 involved in the oxidative stress response. Pathogenicity tests revealed that the ΔFcElp3 mutant's pathogenicity on lotus was significantly decreased. Together, these findings clearly demonstrated that FcElp3 was involved in fungal growth, development, stress response, and pathogenicity via the direct regulation of multiple target genes.
Collapse
Affiliation(s)
- Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| |
Collapse
|
11
|
Almirón A, Lorenz V, Doná F, Varayoud J, Milesi MM. Epigenetic alteration of uterine Leukemia Inhibitory Factor gene after glyphosate or a glyphosate-based herbicide exposure in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104564. [PMID: 39277068 DOI: 10.1016/j.etap.2024.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Glyphosate-based herbicides (GBHs) or its active ingredient, glyphosate (Gly), induce implantation failure in rats. We aimed to elucidate a mechanism of action of these compounds assessing the transcriptional and epigenetic status of the receptivity marker, leukemia inhibitory factor (Lif) gene. F0 rats were orally exposed to GBH or Gly at 3.8 or 3.9 mg Gly/kg/day, respectively, from gestational day (GD) 9 until weaning. F1 females were mated and uterine samples collected at GD5. Methylation-sensitive restriction enzymes (MSRE) sites and transcription factors were in silico predicted in regulatory regions of Lif gene. DNA methylation status and histone modifications (histone 3 and 4 acetylation (H3Ac and H4Ac) and H3 lysine-27-trimethylation (H3K27me3)) were assessed. GBH and Gly decreased Lif mRNA levels and caused DNA hypermethylation. GBH increased H3Ac levels, whereas Gly reduced them; both compounds enhanced H3K27me3 levels. Finally, both GBH and Gly induced similar epigenetic alterations in the regulatory regions of Lif.
Collapse
Affiliation(s)
- Ailín Almirón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Florencia Doná
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina.
| |
Collapse
|
12
|
Zhou X, Fan Y, Zhu X, Zhao R, He J, Li P, Shang S, Goodrich J, Zhu JK, Zhang CJ. SANT proteins modulate gene expression by coordinating histone H3KAc and Khib levels and regulate plant heat tolerance. PLANT PHYSIOLOGY 2024; 196:902-915. [PMID: 38888999 DOI: 10.1093/plphys/kiae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Histone post-translational modifications (PTMs), such as acetylation and recently identified lysine 2-hydroxyisobutyrylation (Khib), act as active epigenomic marks in plants. SANT domain-containing proteins SANT1, SANT2, SANT3, and SANT4 (SANT1/2/3/4), derived from PIF/Harbinger transposases, form a complex with HISTONE DEACETYLASE 6 (HDA6) to regulate gene expression via histone deacetylation. However, whether SANT1/2/3/4 coordinates different types of PTMs to regulate transcription and mediate responses to specific stresses in plants remains unclear. Here, in addition to modulating histone deacetylation, we found that SANT1/2/3/4 proteins acted like HDA6 or HDA9 in regulating the removal of histone Khib in Arabidopsis (Arabidopsis thaliana). Histone H3 lysine acetylation (H3KAc) and histone Khib were coordinated by SANT1/2/3/4 to regulate gene expression, with H3KAc playing a predominant role and Khib acting complementarily to H3KAc. SANT1/2/3/4 mutation significantly increased the expression of heat-inducible genes with concurrent change of H3KAc levels under normal and heat stress conditions, resulting in enhanced thermotolerance. This study revealed the critical roles of Harbinger transposon-derived SANT domain-containing proteins in transcriptional regulation by coordinating different types of histone PTMs and in the regulation of plant thermotolerance by mediating histone acetylation modification.
Collapse
Affiliation(s)
- Xishi Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yujin Fan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Xiying Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Ruihua Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Junna He
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Justin Goodrich
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518000, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100000, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
13
|
Inge M, Miller R, Hook H, Bray D, Keenan J, Zhao R, Gilmore T, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. Nucleic Acids Res 2024; 52:10276-10296. [PMID: 39166482 PMCID: PMC11417405 DOI: 10.1093/nar/gkae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here, we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced histone 3 lysine 27 acetylation (H3K27ac). Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data support clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- Melissa M Inge
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Rebekah Miller
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - David Bray
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Jessica L Keenan
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Rose Zhao
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
14
|
Liu SX, Harris AC, Gewirtz JC. How life events may confer vulnerability to addiction: the role of epigenetics. Front Mol Neurosci 2024; 17:1462769. [PMID: 39359689 PMCID: PMC11446245 DOI: 10.3389/fnmol.2024.1462769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Substance use disorder (SUD) represents a large and growing global health problem. Despite the strong addictive potency of drugs of abuse, only a minority of those exposed develop SUDs. While certain life experiences (e.g., childhood trauma) may increase subsequent vulnerability to SUDs, mechanisms underlying these effects are not yet well understood. Given the chronic and relapsing nature of SUDs, and the length of time that can elapse between prior life events and subsequent drug exposure, changes in SUD vulnerability almost certainly involve long-term epigenetic dysregulation. To validate this idea, functional effects of specific epigenetic modifications in brain regions mediating reinforcement learning (e.g., nucleus accumbens, prefrontal cortex) have been investigated in a variety of animal models of SUDs. In addition, the effects of epigenetic modifications produced by prior life experiences on subsequent SUD vulnerability have been studied, but mostly in a correlational manner. Here, we review how epigenetic mechanisms impact SUD-related behavior in animal models and summarize our understanding of the relationships among life experiences, epigenetic regulation, and future vulnerability to SUDs. Despite variations in study design, epigenetic modifications that most consistently affect SUD-related behavior are those that produce predominantly unidirectional effects on gene regulation, such as DNA methylation and histone phosphorylation. Evidence explicitly linking environmentally induced epigenetic modifications to subsequent SUD-related behavior is surprisingly sparse. We conclude by offering several directions for future research to begin to address this critical research gap.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Andrew C Harris
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
15
|
Jaroniec CP. Structural and dynamic studies of chromatin by solid-state NMR spectroscopy. Curr Opin Struct Biol 2024; 89:102921. [PMID: 39293192 DOI: 10.1016/j.sbi.2024.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Chromatin is a complex of DNA with histone proteins organized into nucleosomes that regulates genome accessibility and controls transcription, replication and repair by dynamically switching between open and compact states as a function of different parameters including histone post-translational modifications and interactions with chromatin modulators. Continuing advances in structural biology techniques including X-ray crystallography, cryo-electron microscopy and nuclear magnetic resonance (NMR) spectroscopy have facilitated studies of chromatin systems, in spite of challenges posed by their large size and dynamic nature, yielding important functional and mechanistic insights. In this review we highlight recent applications of magic angle spinning solid-state NMR - an emerging technique that is uniquely-suited toward providing atomistic information for rigid and flexible regions within biomacromolecular assemblies - to detailed characterization of structure, conformational dynamics and interactions for histone core and tail domains in condensed nucleosomes and oligonucleosome arrays mimicking chromatin at high densities characteristic of the cellular environment.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
16
|
Seo H, Hirota K, Ohta K. Molecular mechanisms of avian immunoglobulin gene diversification and prospect for industrial applications. Front Immunol 2024; 15:1453833. [PMID: 39346918 PMCID: PMC11427246 DOI: 10.3389/fimmu.2024.1453833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Poultry immunoglobulin genes undergo diversification through homologous recombination (HR) and somatic hypermutation (SHM). Most animals share a similar system in immunoglobulin diversification, with the rare exception that human and murine immunoglobulin genes diversify through V(D)J recombination. Poultry possesses only one functional variable gene for each immunoglobulin heavy (HC) and light chains (LC), with clusters of non-productive pseudogenes upstream. During the B cell development, the functional variable gene is overwritten by sequences from the pseudo-variable genes via a process known as gene conversion (GC), a kind of HR. Point mutations caused in the functional variable gene also contribute to immunoglobulin diversification. This review discusses the latest findings on the molecular mechanisms of antibody gene diversification in poultry, using chickens as a model. Additionally, it will outline how these basic research findings have recently been applied especially in the medical field.
Collapse
Affiliation(s)
- Hidetaka Seo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
18
|
Manna I, De Benedittis S, Porro D. A Comprehensive Examination of the Role of Epigenetic Factors in Multiple Sclerosis. Int J Mol Sci 2024; 25:8921. [PMID: 39201606 PMCID: PMC11355011 DOI: 10.3390/ijms25168921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
According to various research, the risk of multiple sclerosis (MS) is strongly influenced by genetic variations. Population, familial, and molecular studies provide strong empirical support for a polygenic pattern of inheritance, mainly due to relatively common allelic variants in the general population. The strongest MS susceptibility locus, which was unmistakably identified in tested populations, is the major histocompatibility complex on chromosome 6p21.3. However, the effect of a given predisposing variant remains modest, so there is the possibility that multiple gene-gene and/or gene-environment interactions could significantly increase the contribution of specific variants to the overall genetic risk. Furthermore, as is known, susceptibility genes can be subject to epigenetic modifications, which greatly increase the complexity of MS heritability. Investigating epigenetic and environmental factors can provide new opportunities for the molecular basis of the MS, which shows complicated pathogenesis. Although studies of epigenetic changes in MS only began in the last decade, a growing body of literature suggests that these may be involved in the development of MS. Here, we summarize recent studies regarding epigenetic changes related to MS initiation and progression. Furthermore, we discuss how current studies address important clinical questions and how future studies could be used in clinical practice.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Bioimaging and Complex Biological Systems (IBSBC), National Research Council (CNR), Section of Catanzaro, 88100 Catanzaro, Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR) Cosenza, 88100 Catanzaro, Italy
| | - Danilo Porro
- Institute of Bioimaging and Complex Biological Systems (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy
| |
Collapse
|
19
|
Lin YY, Müller P, Karagianni E, Hepp N, Mueller-Planitz F, Vanderlinden W, Lipfert J. Epigenetic Histone Modifications H3K36me3 and H4K5/8/12/16ac Induce Open Polynucleosome Conformations via Different Mechanisms. J Mol Biol 2024; 436:168671. [PMID: 38908785 DOI: 10.1016/j.jmb.2024.168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Nucleosomes are the basic compaction unit of chromatin and nucleosome structure and their higher-order assemblies regulate genome accessibility. Many post-translational modifications alter nucleosome dynamics, nucleosome-nucleosome interactions, and ultimately chromatin structure and gene expression. Here, we investigate the role of two post-translational modifications associated with actively transcribed regions, H3K36me3 and H4K5/8/12/16ac, in the contexts of tri-nucleosome arrays that provide a tractable model system for quantitative single-molecule analysis, while enabling us to probe nucleosome-nucleosome interactions. Direct visualization by AFM imaging reveals that H3K36me3 and H4K5/8/12/16ac nucleosomes adopt significantly more open and loose conformations than unmodified nucleosomes. Similarly, magnetic tweezers force spectroscopy shows a reduction in DNA outer turn wrapping and nucleosome-nucleosome interactions for the modified nucleosomes. The results suggest that for H3K36me3 the increased breathing and outer DNA turn unwrapping seen in mononucleosomes propagates to more open conformations in nucleosome arrays. In contrast, the even more open structures of H4K5/8/12/16ac nucleosome arrays do not appear to derive from the dynamics of the constituent mononucleosomes, but are driven by reduced nucleosome-nucleosome interactions, suggesting that stacking interactions can overrule DNA breathing of individual nucleosomes. We anticipate that our methodology will be broadly applicable to reveal the influence of other post-translational modifications and to observe the activity of nucleosome remodelers.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Peter Müller
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Evdoxia Karagianni
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Nicola Hepp
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Current address: Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Felix Mueller-Planitz
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands; School of Physics and Astronomy, University of Edinburg, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom.
| | - Jan Lipfert
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands.
| |
Collapse
|
20
|
Zhang X, Lu M, An H. Lysine acetylproteome analysis reveals the lysine acetylation in developing fruit and a key acetylated protein involved in sucrose accumulation in Rosa roxburghii Tratt. J Proteomics 2024; 305:105248. [PMID: 38964538 DOI: 10.1016/j.jprot.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Lysine acetylation is a common post-translational modification of proteins in plants. Rosa roxburghii Tratt. is an economically important fruit tree known for its high nutritional value. However, the characteristics of acetylome-related proteins during fruit development in this crop remain unknown. This study aimed to explore the global acetylproteome of R. roxburghii fruit to identify key lysine-acetylated proteins associated with its quality traits. A total of 4280 acetylated proteins were identified, among them, 981 proteins exhibited differential acetylation (DA) while 19 proteins showed increased acetylation level consistently on individual sites. Functional classification revealed that these DA proteins were primarily associated with central metabolic pathways, carbohydrate metabolism, terpenoids and polyketides metabolism, lipid metabolism, and amino acid metabolism, highlighting the importance of lysine acetylation in fruit quality formation. Notably, the most significant up-regulated acetylation occurred in sucrose synthase (SuS1), a key enzyme in sucrose biosynthesis. Enzyme assays, RNA-seq and proteome analysis indicated that SuS activity, which was independent of its transcriptome and proteome level, may be enhanced by up-acetylation, ultimately increasing sucrose accumulation. Thus, these findings offer a better understanding of the global acetylproteome of R. roxburghii fruit, while also uncover a novel mechanism of acetylated SuS-mediated in sucrose metabolism in plant. SIGNIFICANCE: Rosa roxburghii Tratt. is an important horticultural crop whose commercial value is closely linked to its fruit quality. Acetylation modification is a post-translational mechanism observed in plants, which regulates the physiological functions and metabolic fluxes involved in various biological processes. The regulatory mechanism of lysine acetylation in the fruit quality formation in perennial woody plants has not been fully elucidated, while most of the research has primarily focused on annual crops. Therefore, this study, for the first time, uses Rosaceae fruits as the research material to elucidate the regulatory role of lysine-acetylated proteins in fruit development, identify key metabolic processes influencing fruit quality formation, and provide valuable insights for cultivation strategies.
Collapse
Affiliation(s)
- Xue Zhang
- College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China
| | - Min Lu
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China
| | - Huaming An
- College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
21
|
Yiu B, Robbins N, Cowen LE. Interdisciplinary approaches for the discovery of novel antifungals. Trends Mol Med 2024; 30:723-735. [PMID: 38777733 DOI: 10.1016/j.molmed.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Pathogenic fungi are an increasing public health concern. The emergence of antifungal resistance coupled with the scarce antifungal arsenal highlights the need for novel therapeutics. Fortunately, the past few years have witnessed breakthroughs in antifungal development. Here, we discuss pivotal interdisciplinary approaches for the discovery of novel compounds with efficacy against diverse fungal pathogens. We highlight breakthroughs in improving current antifungal scaffolds, as well as the utility of compound combinations to extend the lifespan of antifungals. Finally, we describe efforts to refine candidate chemical scaffolds by leveraging structure-guided approaches, and the use of functional genomics to expand our knowledge of druggable antifungal targets. Overall, we emphasize the importance of interdisciplinary collaborations in the endeavor to develop innovative antifungal strategies.
Collapse
Affiliation(s)
- Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada.
| |
Collapse
|
22
|
Xu J, Wang JY, Huang P, Liu ZH, Wang YX, Zhang RZ, Ma HM, Zhou BY, Ni XY, Xiong CR, Xia CM. Schistosomicidal effects of histone acetyltransferase inhibitors against Schistosoma japonicum juveniles and adult worms in vitro. PLoS Negl Trop Dis 2024; 18:e0012428. [PMID: 39159234 PMCID: PMC11361729 DOI: 10.1371/journal.pntd.0012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/29/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Schistosomiasis is a relatively neglected parasitic disease that afflicts more than 250 million people worldwide, for which the control strategy relies mainly on mass treatment with the only available drug, praziquantel (PZQ). This approach is not sustainable and is a priority for developing novel drug candidates for the treatment and control of schistosomiasis. METHODOLOGYS/PRINCIPAL FINDINGS In our previous study, we found that DW-3-15, a kind of PZQ derivative, could significantly downregulate the expression of the histone acetyltransferase of Schistosoma japonicum (SjHAT). In this study, several commercially available HAT inhibitors, A485, C646 and curcumin were screened in vitro to verify their antischistosomal activities against S. japonicum juveniles and adults. Parasitological studies and scanning electron microscopy were used to study the primary action characteristics of HAT inhibitors in vitro. Quantitative real-time PCR was employed to detect the mRNA level of SjHAT after treatment with different HAT inhibitors. Our results demonstrated that curcumin was the most effective inhibitor against both juveniles and adults of S. japonicum, and its schistosomicidal effects were time- and dose dependent. However, A485 and C646 had limited antischistosomal activity. Scanning electron microscopy demonstrated that in comparison with DW-3-15, curcumin caused similar tegumental changes in male adult worms. Furthermore, both curcumin and DW-3-15 significantly decreased the SjHAT mRNA level, and curcumin dose-dependently reduced the SjHAT expression level in female, male and juvenile worms. CONCLUSIONS Among the three commercially available HATs, curcumin was the most potent against schistosomes. Both curcumin and our patent compound DW-3-15 markedly downregulated the expression of SjHAT, indicating that SjHAT may be a potential therapeutic target for developing novel antischistosomal drug candidates.
Collapse
Affiliation(s)
- Jing Xu
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Suzhou Medical College, Soochow University, Suzhou City, P. R. China
| | - Jing-Yi Wang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Ping Huang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Zi-Hao Liu
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Yu-Xin Wang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Run-Ze Zhang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Hui-Min Ma
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Bi-Yue Zhou
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Xiao-Yan Ni
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Chun-Rong Xiong
- Jiangsu Institute of Parasitic Diseases, Wuxi City, P. R. China
| | - Chao-Ming Xia
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Suzhou Medical College, Soochow University, Suzhou City, P. R. China
| |
Collapse
|
23
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. HDAC inhibitors as a potential therapy for chemotherapy-induced neuropathic pain. Inflammopharmacology 2024; 32:2153-2175. [PMID: 38761314 DOI: 10.1007/s10787-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
24
|
Zhang X, Zhou Y, Liu Y, Li B, Tian S, Zhang Z. Research Progress on the Mechanism and Function of Histone Acetylation Regulating the Interaction between Pathogenic Fungi and Plant Hosts. J Fungi (Basel) 2024; 10:522. [PMID: 39194848 DOI: 10.3390/jof10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Histone acetylation is a crucial epigenetic modification, one that holds the key to regulating gene expression by meticulously modulating the conformation of chromatin. Most histone acetylation enzymes (HATs) and deacetylation enzymes (HDACs) in fungi were originally discovered in yeast. The functions and mechanisms of HATs and HDACs in yeast that have been documented offer us an excellent entry point for gaining insights into these two types of enzymes. In the interaction between plants and pathogenic fungi, histone acetylation assumes a critical role, governing fungal pathogenicity and plant immunity. This review paper delves deep into the recent advancements in understanding how histone acetylation shapes the interaction between plants and fungi. It explores how this epigenetic modification influences the intricate balance of power between these two kingdoms of life, highlighting the intricate network of interactions and the subtle shifts in these interactions that can lead to either mutual coexistence or hostile confrontation.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
25
|
Hui SE, Westlund KN. Role of HDAC5 Epigenetics in Chronic Craniofacial Neuropathic Pain. Int J Mol Sci 2024; 25:6889. [PMID: 38999998 PMCID: PMC11241576 DOI: 10.3390/ijms25136889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
The information provided from the papers reviewed here about the role of epigenetics in chronic craniofacial neuropathic pain is critically important because epigenetic dysregulation during the development and maintenance of chronic neuropathic pain is not yet well characterized, particularly for craniofacial pain. We have noted that gene expression changes reported vary depending on the nerve injury model and the reported sample collection time point. At a truly chronic timepoint of 10 weeks in our model of chronic neuropathic pain, functional groupings of genes examined include those potentially contributing to anti-inflammation, nerve repair/regeneration, and nociception. Genes altered after treatment with the epigenetic modulator LMK235 are discussed. All of these differentials are key in working toward the development of diagnosis-targeted therapeutics and likely for the timing of when the treatment is provided. The emphasis on the relevance of time post-injury is reiterated here.
Collapse
Affiliation(s)
| | - Karin N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
26
|
Zhang X, Shan J, Wang J, Zhang Y, Yang F, Liu B, Zhang L, Li G, Wang R. Comprehensive Proteome and Acetylome Analysis of Needle Senescence in Larix gmelinii. Int J Mol Sci 2024; 25:6824. [PMID: 38999933 PMCID: PMC11241215 DOI: 10.3390/ijms25136824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Leaf senescence is essential for the growth and development of deciduous trees in the next season. Larix gmelinii, a deciduous coniferous tree, exhibits its most distinctive feature by turning yellow in the autumn and eventually shedding its leaves, resulting in significant changes in its appearance during the fall. Lysine acetylation plays an important role in diverse cellular processes; however, limited knowledge is available regarding acetylations in the needle senescence of L. gmelinii. In this study, the proteomics and acetylated modification omics of two phenotypic leaves, yellow and green (senescent and non-senescent) needles, were analyzed before autumn defoliation. In total, 5022 proteins and 4469 unique acetylation sites in 2414 lysine acylated proteins were identified, and this resulted in the discovery of 1335 differentially expressed proteins (DEPs) and 605 differentially expressed acetylated proteins (DAPs) in yellow versus green needles. There are significant differences between the proteome and acetylome; only 269 proteins were found to be DEP and DAP, of which 136 proteins were consistently expressed in both the DEP and DAP, 91 proteins were upregulated, and 45 proteins were down-regulated. The DEPs participate in the metabolism of starch and sucrose, while the DAPs are involved in glycolysis and the tricarboxylic acid cycle. Among them, DEPs underwent significant changes in glycolysis and citric acid cycling. Most of the enzymes involved in glycolysis and the citrate cycle were acetylated. DAPs were down-regulated in glycolysis and up-regulated in the citrate cycle. In all, the results of this study reveal the important role of lysine acetylation in the senescence of L. gmelinii needles and provide a new perspective for understanding the molecular mechanism of leaf senescence and tree seasonal growth.
Collapse
Affiliation(s)
- Xuting Zhang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinyuan Shan
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jiaxiu Wang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanxia Zhang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Feiyun Yang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Liu
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lifeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Guojing Li
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruigang Wang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
27
|
Manav N, Jit BP, Kataria B, Sharma A. Cellular and epigenetic perspective of protein stability and its implications in the biological system. Epigenomics 2024; 16:879-900. [PMID: 38884355 PMCID: PMC11370918 DOI: 10.1080/17501911.2024.2351788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Protein stability is a fundamental prerequisite in both experimental and therapeutic applications. Current advancements in high throughput experimental techniques and functional ontology approaches have elucidated that impairment in the structure and stability of proteins is intricately associated with the cause and cure of several diseases. Therefore, it is paramount to deeply understand the physical and molecular confounding factors governing the stability of proteins. In this review article, we comprehensively investigated the evolution of protein stability, examining its emergence over time, its relationship with organizational aspects and the experimental methods used to understand it. Furthermore, we have also emphasized the role of Epigenetics and its interplay with post-translational modifications (PTMs) in regulating the stability of proteins.
Collapse
Affiliation(s)
- Nisha Manav
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
| | - Babita Kataria
- Department of Medical Oncology, National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, 124105, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
- Department of Biochemistry, National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, 124105, India
| |
Collapse
|
28
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
29
|
Liebner T, Kilic S, Walter J, Aibara H, Narita T, Choudhary C. Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription. Nat Commun 2024; 15:4962. [PMID: 38862536 PMCID: PMC11166988 DOI: 10.1038/s41467-024-49370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription. However, the extent to which transcription shapes the global protein acetylation landscapes is not known. Here, we show that global protein acetylation remains virtually unaltered after acute transcription inhibition. Transcription inhibition ablates the co-transcriptionally occurring ubiquitylation of H2BK120 but does not reduce histone acetylation. The combined inhibition of transcription and CBP/p300 further demonstrates that acetyltransferases remain active and continue to acetylate histones independently of transcription. Together, these results show that histone acetylation is not a mere consequence of transcription; acetyltransferase recruitment and activation are uncoupled from the act of transcription, and histone and non-histone protein acetylation are sustained in the absence of ongoing transcription.
Collapse
Affiliation(s)
- Tim Liebner
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Sinan Kilic
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jonas Walter
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Hitoshi Aibara
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
30
|
Liu B, He Y, Wu X, Lin Z, Ma J, Qiu Y, Xiang Y, Kong F, Lai F, Pal M, Wang P, Ming J, Zhang B, Wang Q, Wu J, Xia W, Shen W, Na J, Torres-Padilla ME, Li J, Xie W. Mapping putative enhancers in mouse oocytes and early embryos reveals TCF3/12 as key folliculogenesis regulators. Nat Cell Biol 2024; 26:962-974. [PMID: 38839978 DOI: 10.1038/s41556-024-01422-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.
Collapse
Affiliation(s)
- Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China
| | - Xiaotong Wu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jing Ma
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
| | - Peizhe Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Ming
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jingyi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weikun Xia
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weimin Shen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | | | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
31
|
Cánepa ET, Berardino BG. Epigenetic mechanisms linking early-life adversities and mental health. Biochem J 2024; 481:615-642. [PMID: 38722301 DOI: 10.1042/bcj20230306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/15/2024]
Abstract
Early-life adversities, whether prenatal or postnatal exposure, have been linked to adverse mental health outcomes later in life increasing the risk of several psychiatric disorders. Research on its neurobiological consequences demonstrated an association between exposure to adversities and persistent alterations in the structure, function, and connectivity of the brain. Consistent evidence supports the idea that regulation of gene expression through epigenetic mechanisms are involved in embedding the impact of early-life experiences in the genome and mediate between social environments and later behavioral phenotypes. In addition, studies from rodent models and humans suggest that these experiences and the acquired risk factors can be transmitted through epigenetic mechanisms to offspring and the following generations potentially contributing to a cycle of disease or disease risk. However, one of the important aspects of epigenetic mechanisms, unlike genetic sequences that are fixed and unchangeable, is that although the epigenetic markings are long-lasting, they are nevertheless potentially reversible. In this review, we summarize our current understanding of the epigenetic mechanisms involved in the mental health consequences derived from early-life exposure to malnutrition, maltreatment and poverty, adversities with huge and pervasive impact on mental health. We also discuss the evidence about transgenerational epigenetic inheritance in mammals and experimental data suggesting that suitable social and pharmacological interventions could reverse adverse epigenetic modifications induced by early-life negative social experiences. In this regard, these studies must be accompanied by efforts to determine the causes that promote these adversities and that result in health inequity in the population.
Collapse
Affiliation(s)
- Eduardo T Cánepa
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| |
Collapse
|
32
|
Hao H, Lian Y, Ren C, Yang S, Zhao M, Bo T, Xu J, Wang W. RebL1 is required for macronuclear structure stability and gametogenesis in Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:183-197. [PMID: 38827131 PMCID: PMC11136921 DOI: 10.1007/s42995-024-00219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/01/2024] [Indexed: 06/04/2024]
Abstract
Histone modification and nucleosome assembly play important roles in chromatin-related processes. Histone chaperones form different complexes and coordinate histone transportation and assembly. Various histone chaperone complexes have been identified in different organisms. The ciliate protozoa (ciliates) have various chromatin structures and different nuclear morphology. However, histone chaperone components and functions of different subunits remain unclear in ciliates. Tetrahymema thermophila contains a transcriptionally active macronucleus (MAC) and a transcriptionally inactive micronucleus (MIC) which exhibit multiple replication and various chromatin remodeling progresses during vegetative growth and sexual developmental stages. Here, we found histone chaperone RebL1 not only localized evenly in the transcriptionally active MAC but also dynamically changed in the MIC during vegetative growth and sexual developmental stages. REBL1 knockdown inhibited cellular proliferation. The macronuclear morphology became bigger in growing mutants. The abnormal macronuclear structure also occurred in the starvation stage. Furthermore, micronuclear meiosis was disturbed during sexual development, leading to a failure to generate new gametic nuclei. RebL1 potentially interacted with various factors involved in histone-modifying complexes and chromatin remodeling complexes in different developmental stages. REBL1 knockdown affected expression levels of the genes involved in chromatin organization and transcription. Taken together, RebL1 plays a vital role in maintaining macronuclear structure stability and gametogenesis in T. thermophila. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00219-z.
Collapse
Affiliation(s)
- Huijuan Hao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Yinjie Lian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Chenhui Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Sitong Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Min Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
- School of Life Science, Shanxi University, Taiyuan, 030006 China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
- Shanxi Key Laboratory of Biotechnology, Taiyuan, 030006 China
| |
Collapse
|
33
|
Junaid MD, Chaudhry UK, Şanlı BA, Gökçe AF, Öztürk ZN. A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants. Funct Integr Genomics 2024; 24:74. [PMID: 38600306 DOI: 10.1007/s10142-024-01354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.
Collapse
Affiliation(s)
- Muhammad Daniyal Junaid
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey.
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
- Pakistan Environmental Protection Agency, Ministry of Climate Change & Environmental Coordination, Islamabad, Pakistan
| | - Beyazıt Abdurrahman Şanlı
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Ali Fuat Gökçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Zahide Neslihan Öztürk
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| |
Collapse
|
34
|
Hu S, Chapski DJ, Gehred ND, Kimball TH, Gromova T, Flores A, Rowat AC, Chen J, Packard RRS, Olszewski E, Davis J, Rau CD, McKinsey TA, Rosa-Garrido M, Vondriska TM. Histone H1.0 couples cellular mechanical behaviors to chromatin structure. NATURE CARDIOVASCULAR RESEARCH 2024; 3:441-459. [PMID: 38765203 PMCID: PMC11101354 DOI: 10.1038/s44161-024-00460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 03/06/2024] [Indexed: 05/21/2024]
Abstract
Tuning of genome structure and function is accomplished by chromatin-binding proteins, which determine the transcriptome and phenotype of the cell. Here we investigate how communication between extracellular stress and chromatin structure may regulate cellular mechanical behaviors. We demonstrate that histone H1.0, which compacts nucleosomes into higher-order chromatin fibers, controls genome organization and cellular stress response. We show that histone H1.0 has privileged expression in fibroblasts across tissue types and that its expression is necessary and sufficient to induce myofibroblast activation. Depletion of histone H1.0 prevents cytokine-induced fibroblast contraction, proliferation and migration via inhibition of a transcriptome comprising extracellular matrix, cytoskeletal and contractile genes, through a process that involves locus-specific H3K27 acetylation. Transient depletion of histone H1.0 in vivo prevents fibrosis in cardiac muscle. These findings identify an unexpected role of linker histones to orchestrate cellular mechanical behaviors, directly coupling force generation, nuclear organization and gene transcription.
Collapse
Affiliation(s)
- Shuaishuai Hu
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Douglas J. Chapski
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Natalie D. Gehred
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Todd H. Kimball
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Tatiana Gromova
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Angelina Flores
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Junjie Chen
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - René R. Sevag Packard
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Christoph D. Rau
- Department of Genetics and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Thomas M. Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| |
Collapse
|
35
|
Inge MM, Miller R, Hook H, Bray D, Keenan JL, Zhao R, Gilmore TD, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588333. [PMID: 38617258 PMCID: PMC11014505 DOI: 10.1101/2024.04.05.588333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced H3K27ac. Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data supports clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- M M Inge
- Department of Biology, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - R Miller
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - H Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - D Bray
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - J L Keenan
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - R Zhao
- Department of Biology, Boston University, Boston, MA, USA
| | - T D Gilmore
- Department of Biology, Boston University, Boston, MA, USA
| | - T Siggers
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
36
|
Munir M, Embry A, Doench JG, Heaton NS, Wilen CB, Orchard RC. Genome-wide CRISPR activation screen identifies JADE3 as an antiviral activator of NF-kB-dependent IFITM3 expression. J Biol Chem 2024; 300:107153. [PMID: 38462163 PMCID: PMC11001640 DOI: 10.1016/j.jbc.2024.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.
Collapse
Affiliation(s)
- Moiz Munir
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aaron Embry
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Craig B Wilen
- Department of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert C Orchard
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
37
|
Leonardo Silvestre H, Asensio JL, Blundell TL, Bastida A, Bolanos-Garcia VM. Functional and structural characterisation of RimL from Bacillus cereus, a new N α-acetyltransferase of ribosomal proteins that was wrongly assigned as an aminoglycosyltransferase. Int J Biol Macromol 2024; 263:130348. [PMID: 38395274 DOI: 10.1016/j.ijbiomac.2024.130348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Enzymes of the GNAT (GCN5-relate N-acetyltransferases) superfamily are important regulators of cell growth and development. They are functionally diverse and share low amino acid sequence identity, making functional annotation difficult. In this study, we report the function and structure of a new ribosomal enzyme, Nα-acetyl transferase from Bacillus cereus (RimLBC), a protein that was previously wrongly annotated as an aminoglycosyltransferase. Firstly, extensive comparative amino acid sequence analyses suggested RimLBC belongs to a cluster of proteins mediating acetylation of the ribosomal protein L7/L12. To assess if this was the case, several well established substrates of aminoglycosyltransferases were screened. The results of these studies did not support an aminoglycoside acetylating function for RimLBC. To gain further insight into RimLBC biological role, a series of studies that included MALDI-TOF, isothermal titration calorimetry, NMR, X-ray protein crystallography, and site-directed mutagenesis confirmed RimLBC affinity for Acetyl-CoA and that the ribosomal protein L7/L12 is a substrate of RimLBC. Last, we advance a mechanistic model of RimLBC mode of recognition of its protein substrates. Taken together, our studies confirmed RimLBC as a new ribosomal Nα-acetyltransferase and provide structural and functional insights into substrate recognition by Nα-acetyltransferases and protein acetylation in bacteria.
Collapse
Affiliation(s)
- H Leonardo Silvestre
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - J L Asensio
- Departamento de Química Bio-orgánica, IQOG, Spanish National Research Council, C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - T L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - A Bastida
- Departamento de Química Bio-orgánica, IQOG, Spanish National Research Council, C/ Juan de la Cierva 3, E-28006 Madrid, Spain.
| | - V M Bolanos-Garcia
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom; Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom.
| |
Collapse
|
38
|
Meng L, Wu B, OuYang L, Peng R, Chen Y, Tang Z, Zhang M, Xu T, Wang Y, Lu S, Jing X, Fu S. Electroacupuncture regulates histone acetylation of Bcl-2 and Caspase-3 genes to improve ischemic stroke injury. Heliyon 2024; 10:e27045. [PMID: 38500994 PMCID: PMC10945129 DOI: 10.1016/j.heliyon.2024.e27045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/16/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background Imbalances between Bcl-2 and caspase-3 are significant evidence of apoptosis, which is considered an influential factor in rapidly occurring neuronal cell death and the decline of neurological function after stroke. Studies have shown that acupuncture can reduce poststroke brain cell damage via either an increase in Bcl-2 or a reduction in caspase-3 exposure. The current study aimed to investigate whether acupuncture could modulate Bcl-2 and caspase-3 expression through histone acetylation modifications, which could potentially serve as a neuroprotective mechanism. Methods This study used TTC staining, Nissl staining, Clark neurological system score, and Evans Blue (EB) extravasation to evaluate neurological damage following stroke. The expression of Bcl-2/caspase-3 mRNA was detected by real-time fluorescence quantification of PCR (real-time PCR), whereas the protein expression levels of Bcl-2, Bax, caspase-3, and cleaved caspase-3 were assessed using western blotting. TUNEL staining of the ischemic cortical neurons determined apoptosis in the ischemic cortex. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities, along with the protein performance of AceH3, H3K9ace, and H3K27ace, were detected to evaluate the degree of histone acetylation. The acetylation enrichment levels of H3K9 and K3K27 in the Bcl-2/caspase-3 gene were assessed using Chromatin Immunoprecipitation (ChIP) assay. Results Our data demonstrated that electroacupuncture (EA) exerts a significant neuroprotective effect in middle cerebral artery occlusion (MCAO) rats, as evidenced by a reduction in infarct volume, neuronal damage, Blood-Brain Barrier (BBB) disruption, and decreased apoptosis of ischemic cortical neurons. EA treatment can promote the mRNA and protein expression of the Bcl-2 gene in the ischemic brain while reducing the mRNA and protein expression levels of caspase-3 and effectively decreasing the protein expression levels of Bax and cleaved caspase-3. More importantly, EA treatment enhanced the level of histone acetylation, including Ace-H3, H3K9ace, and H3K27ace, significantly enhanced the occupancy of H3K9ace/H3K27ace at the Bcl-2 promoter, and reduced the enrichment of H3K9ace and H3K27ace at the caspase-3 promoter. However, the Histone Acetyltransferase inhibitor (HATi) treatment reversed these effects. Conclusions Our data demonstrated that EA mediated the expression levels of Bcl-2 and caspase-3 in MCAO rats by regulating the occupancy of acetylated H3K9/H3K27 at the promoters of these two genes, thus exerting a cerebral protective effect in ischemic reperfusion (I/R) injury.
Collapse
Affiliation(s)
| | | | - Ling OuYang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rou Peng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yonglin Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhijuan Tang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tanqing Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
39
|
Kaizuka T, Suzuki T, Kishi N, Tamada K, Kilimann MW, Ueyama T, Watanabe M, Shimogori T, Okano H, Dohmae N, Takumi T. Remodeling of the postsynaptic proteome in male mice and marmosets during synapse development. Nat Commun 2024; 15:2496. [PMID: 38548776 PMCID: PMC10979008 DOI: 10.1038/s41467-024-46529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Postsynaptic proteins play crucial roles in synaptic function and plasticity. During brain development, alterations in synaptic number, shape, and stability occur, known as synapse maturation. However, the postsynaptic protein composition changes during development are not fully understood. Here, we show the trajectory of the postsynaptic proteome in developing male mice and common marmosets. Proteomic analysis of mice at 2, 3, 6, and 12 weeks of age shows that proteins involved in synaptogenesis are differentially expressed during this period. Analysis of published transcriptome datasets shows that the changes in postsynaptic protein composition in the mouse brain after 2 weeks of age correlate with gene expression changes. Proteomic analysis of marmosets at 0, 2, 3, 6, and 24 months of age show that the changes in the marmoset brain can be categorized into two parts: the first 2 months and after that. The changes observed in the first 2 months are similar to those in the mouse brain between 2 and 12 weeks of age. The changes observed in marmoset after 2 months old include differential expression of synaptogenesis-related molecules, which hardly overlap with that in mice. Our results provide a comprehensive proteomic resource that underlies developmental synapse maturation in rodents and primates.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Noriyuki Kishi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan
| | - Manfred W Kilimann
- Max Planck Institute for Experimental Medicine, Göttingen, 37075, Germany
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Kita, Sapporo, 060-8638, Japan
| | | | - Hideyuki Okano
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8585, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, 650-0047, Japan.
| |
Collapse
|
40
|
Ray P, Sedigh A, Confeld M, Alhalhooly L, Iduoku K, Casanola-Martin GM, Pham-The H, Rasulev B, Choi Y, Yang Z, Mallik S, Quadir M. Design and Evaluation of Nanoscale Materials with Programmed Responsivity towards Epigenetic Enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.585429. [PMID: 38586020 PMCID: PMC10996597 DOI: 10.1101/2024.03.26.585429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly (acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We further demonstrated the biocompatibility and cellular effects of these materials and conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.
Collapse
|
41
|
Fan S, Kong C, Zhou R, Zheng X, Ren D, Yin Z. Protein Post-Translational Modifications Based on Proteomics: A Potential Regulatory Role in Animal Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6077-6088. [PMID: 38501450 DOI: 10.1021/acs.jafc.3c08332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, β-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230013, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
42
|
Yang Z, Du J, Tan X, Zhang H, Li L, Li Y, Wei Z, Xu Z, Lu Y, Chen J, Sun Z. Histone deacetylase OsHDA706 orchestrates rice broad-spectrum antiviral immunity and is impeded by a viral effector. Cell Rep 2024; 43:113838. [PMID: 38386554 DOI: 10.1016/j.celrep.2024.113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Lysine acetylation is a dynamic post-translational modification of proteins. Extensive studies have revealed that the acetylation modulated by histone acetyltransferases and histone deacetylases (HDACs) plays a crucial role in regulating protein function. However, there has been limited focus on how HDACs regulate jasmonic acid (JA) biosynthesis in plants. Here, we uncover that the protein stability of OsLOX14, a critical enzyme involved in JA biosynthesis, is regulated by a histone deacetylase, OsHDA706, and is hindered by a viral protein. Our results show that OsHDA706 deacetylates OsLOX14 and enhances the stability of OsLOX14, leading to JA accumulation and an improved broad-spectrum rice antiviral defense. Furthermore, we found that the viral protein P2, encoded by the destructive rice stripe virus, disrupts the association of OsHDA706-OsLOX14, promoting viral infection. Overall, our findings reveal how HDAC manipulates the interplay of deacetylation and protein stability of a JA biosynthetic enzyme to enhance plant antiviral responses.
Collapse
Affiliation(s)
- Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Juan Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
43
|
Emerson FJ, Chiu C, Lin LY, Riedel CG, Zhu M, Lee SS. The chromatin factors SET-26 and HCF-1 oppose the histone deacetylase HDA-1 in longevity and gene regulation in C. elegans. Nat Commun 2024; 15:2320. [PMID: 38485937 PMCID: PMC10940595 DOI: 10.1038/s41467-024-46510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
SET-26, HCF-1, and HDA-1 are highly conserved chromatin factors with key roles in development and aging. Here we present mechanistic insights into how these factors regulate gene expression and modulate longevity in C. elegans. We show that SET-26 and HCF-1 cooperate to regulate a common set of genes, and both antagonize the histone deacetylase HDA-1 to limit longevity. HCF-1 localization at chromatin is largely dependent on functional SET-26, whereas SET-26 is only minorly affected by loss of HCF-1, suggesting that SET-26 could recruit HCF-1 to chromatin. HDA-1 opposes SET-26 and HCF-1 on the regulation of a subset of their common target genes and in longevity. Our findings suggest that SET-26, HCF-1, and HDA-1 comprise a mechanism to fine-tune gene expression and longevity and likely have important implications for the mechanistic understanding of how these factors function in diverse organisms, particularly in aging biology.
Collapse
Affiliation(s)
- Felicity J Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Caitlin Chiu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Laura Y Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ming Zhu
- National Institute of Biological Sciences, Beijing, China
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
44
|
Yi SJ, Lim J, Kim K. Exploring epigenetic strategies for the treatment of osteoporosis. Mol Biol Rep 2024; 51:398. [PMID: 38453825 DOI: 10.1007/s11033-024-09353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The worldwide trend toward an aging population has resulted in a higher incidence of chronic conditions, such as osteoporosis. Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mass and increased fracture risk, encompasses primary and secondary forms, each with distinct etiologies. Mechanistically, osteoporosis involves an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Current pharmacological interventions for osteoporosis, such as bisphosphonates, denosumab, and teriparatide, aim to modulate bone turnover and preserve bone density. Hormone replacement therapy and lifestyle modifications are also recommended to manage the condition. While current medications offer therapeutic options, they are not devoid of limitations. Recent studies have highlighted the importance of epigenetic mechanisms, including DNA methylation and histone modifications, in regulating gene expression during bone remodeling. The use of epigenetic drugs, or epidrugs, to target these mechanisms offers a promising avenue for therapeutic intervention in osteoporosis. In this review, we comprehensively examine the recent advancements in the application of epidrugs for treating osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jaeho Lim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
45
|
Yolcu S, Skorupa M, Uras ME, Mazur J, Ozyiğit II. Genome-wide identification, phylogenetic classification of histone acetyltransferase genes, and their expression analysis in sugar beet (Beta vulgaris L.) under salt stress. PLANTA 2024; 259:85. [PMID: 38448714 PMCID: PMC10917867 DOI: 10.1007/s00425-024-04361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
MAIN CONCLUSION This study identified seven histone acetyltransferase-encoding genes (HATs) from Beta vulgaris L. (sugar beet) genome through bioinformatics tools and analyzed their expression profiles under salt stress. Sugar beet HATs are phylogenetically divided into four families: GNAT, MYST, CBP, and TAFII250. The BvHAT genes were differentially transcribed in leaves, stems, and roots of B. vulgaris salt-resistant (Casino) and -sensitive (Bravo) cultivars under salt stress. Histone acetylation is regulated by histone acetyltransferases (HATs), which catalyze ɛ-amino bond formation between lysine residues and acetyl groups with a cofactor, acetyl-CoA. Even though the HATs are known to participate in stress response and development in model plants, little is known about the functions of HATs in crops. In sugar beet (Beta vulgaris L.), they have not yet been identified and characterized. Here, an in silico analysis of the HAT gene family in sugar beet was performed, and their expression patterns in leaves, stems, and roots of B. vulgaris were analyzed under salt stress. Salt-resistant (Casino) and -sensitive (Bravo) beet cultivars were used for gene expression assays. Seven HATs were identified from sugar beet genome, and named BvHAG1, BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2, and BvHAF1. The HAT proteins were divided into 4 groups including MYST, GNAT (GCN5, HAT1, ELP3), CBP and TAFII250. Analysis of cis-acting elements indicated that the BvHAT genes might be involved in hormonal regulation, light response, plant development, and abiotic stress response. The BvHAT genes were differentially expressed in leaves, stems, and roots under control and 300 mM NaCl. In roots of B. vulgaris cv. Bravo, the BvHAG1, BvHAG2, BvHAG4, BvHAF1, and BvHAC1 genes were dramatically expressed after 7 and 14 days of salt stress. Interestingly, the BvHAC2 gene was not expressed under both control and stress conditions. However, the expression of BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2 genes showed a significant increase in response to salt stress in the roots of cv. Casino. This study provides new insights into the potential roles of histone acetyltransferases in sugar beet.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Türkiye.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Mehmet Emin Uras
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Haliç University, 34060, Istanbul, Türkiye
| | - Justyna Mazur
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Ibrahim Ilker Ozyiğit
- Faculty of Science, Department of Biology, Marmara University, 34722, Istanbul, Türkiye
| |
Collapse
|
46
|
Das A, Giri AK, Bhattacharjee P. Targeting 'histone mark': Advanced approaches in epigenetic regulation of telomere dynamics in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195007. [PMID: 38237857 DOI: 10.1016/j.bbagrm.2024.195007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India; Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
47
|
Novara ME, Di Martino E, Stephens B, Nayrouz M, Vitulo P, Carollo A, Provenzani A. Future Perspectives of Pulmonary Arterial Hypertension: A Review of Novel Pipeline Treatments and Indications. Drugs R D 2024; 24:13-28. [PMID: 38514585 PMCID: PMC11035521 DOI: 10.1007/s40268-024-00453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/23/2024] Open
Abstract
Pulmonary arterial hypertension is characterized by elevated blood pressure and pathological changes in the pulmonary arterioles, leading to the development of right-heart failure and potentially fatal outcomes if left untreated. This review aims to provide an overview of novel drugs or formulations and new drug indications for pulmonary arterial hypertension that are currently in phases II-III of randomized controlled trials, and describe the rationale for the use of these targeted therapies, as well as their efficacy, safety profile, and impact on quality of life and survival. The literature research was conducted using data from ClinicalTrials.gov for the period between 1 January 2016 up to 31 December 2022. The population of interest includes individuals aged ≥ 18 years who have been diagnosed with pulmonary arterial hypertension. The review selection criteria included trials with recruiting, enrolling by invitation, active, terminated or completed status in 2022 and 2023. A total of 24 studies were selected for evaluation based on the inclusion and exclusion criteria. This review summarizes the updated information from randomized clinical trials involving novel therapies for pulmonary arterial hypertension. However, larger clinical trials are required to validate their clinical safety and effects. In the future, clinicians should choose therapies based on the patient's individual situation and requirements when developing treatment strategies.
Collapse
Affiliation(s)
- Maria Eugenia Novara
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Enrica Di Martino
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Brandon Stephens
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mary Nayrouz
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Patrizio Vitulo
- Pneumology Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Anna Carollo
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Alessio Provenzani
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy.
| |
Collapse
|
48
|
Haga-Yamanaka S, Nunez-Flores R, Scott CA, Perry S, Chen ST, Pontrello C, Nair MG, Ray A. Plasticity of gene expression in the nervous system by exposure to environmental odorants that inhibit HDACs. eLife 2024; 12:RP86823. [PMID: 38411140 PMCID: PMC10942631 DOI: 10.7554/elife.86823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Eukaryotes respond to secreted metabolites from the microbiome. However, little is known about the effects of exposure to volatiles emitted by microbes or in the environment that we are exposed to over longer durations. Using Drosophila melanogaster, we evaluated a yeast-emitted volatile, diacetyl, found at high levels around fermenting fruits where they spend long periods of time. Exposure to the diacetyl molecules in headspace alters gene expression in the antenna. In vitro experiments demonstrated that diacetyl and structurally related volatiles inhibited conserved histone deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure caused modulation of gene expression in the mouse brain, therefore showing potential as a neuro-therapeutic. Using two separate disease models previously known to be responsive to HDAC inhibitors, we evaluated the physiological effects of volatile exposure. Diacetyl exposure halted proliferation of a neuroblastoma cell line in culture. Exposure to diacetyl vapors slowed progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression, and physiology in animals.
Collapse
Affiliation(s)
- Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
| | - Rogelio Nunez-Flores
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
- Division of Biomedical Sciences, University of CaliforniaRiversideUnited States
| | - Christi A Scott
- Cell, Molecular and Developmental Biology Program, University of CaliforniaRiversideUnited States
| | - Sarah Perry
- Genetics, Genomics and Bioinformatics Program, University of CaliforniaRiversideUnited States
| | - Stephanie Turner Chen
- Cell, Molecular and Developmental Biology Program, University of CaliforniaRiversideUnited States
| | - Crystal Pontrello
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
| | - Meera G Nair
- Division of Biomedical Sciences, University of CaliforniaRiversideUnited States
| | - Anandasankar Ray
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
- Cell, Molecular and Developmental Biology Program, University of CaliforniaRiversideUnited States
- Genetics, Genomics and Bioinformatics Program, University of CaliforniaRiversideUnited States
| |
Collapse
|
49
|
Xue R, Guo R, Li Q, Lin T, Wu Z, Gao N, Wu F, Tong L, Zeng R, Song Y, Wang J. Rice responds to Spodoptera frugiperda infestation via epigenetic regulation of H3K9ac in the jasmonic acid signaling and phenylpropanoid biosynthesis pathways. PLANT CELL REPORTS 2024; 43:78. [PMID: 38393406 DOI: 10.1007/s00299-024-03160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
KEY MESSAGE This study provided important insights into the complex epigenetic regulatory of H3K9ac-modified genes involved in the jasmonic acid signaling and phenylpropanoid biosynthesis pathways of rice in response to Spodoptera frugiperda infestation. Physiological and molecular mechanisms underlying plant responses to insect herbivores have been well studied, while epigenetic modifications such as histone acetylation and their potential regulation at the genomic level of hidden genes remain largely unknown. Histone 3 lysine 9 acetylation (H3K9ac) is an epigenetic marker widely distributed in plants that can activate gene transcription. In this study, we provided the genome-wide profiles of H3K9ac in rice (Oryza sativa) infested by fall armyworm (Spodoptera frugiperda, FAW) using CUT&Tag-seq and RNA-seq. There were 3269 and 4609 up-regulated genes identified in plants infested by FAW larvae for 3 h and 12 h, respectively, which were mainly enriched in alpha-linolenic acid and phenylpropanoid pathways according to transcriptomic analysis. In addition, CUT&Tag-seq analysis revealed increased H3K9ac in FAW-infested plants, and there were 422 and 543 up-regulated genes enriched with H3K9ac observed at 3 h and 12 h after FAW feeding, respectively. Genes with increased H3K9ac were mainly enriched in the transcription start site (TSS), suggesting that H3K9ac is related to gene transcription. Integrative analysis of both RNA-seq and CUT&Tag-seq data showed that up-expressed genes with H3K9ac enrichment were mainly involved in the jasmonic acid (JA) and phenylpropanoid pathways. Particularly, two spermidine hydroxycinnamoyl transferase genes SHT1 and SHT2 involved in phenolamide biosynthesis were highly modified by H3K9ac in FAW-infested plants. Furthermore, the Ossht1 and Ossht2 transgenic lines exhibited decreased resistance against FAW larvae. Our findings suggest that rice responds to insect herbivory via H3K9ac epigenetic regulation in the JA signaling and phenolamide biosynthesis pathways.
Collapse
Affiliation(s)
- Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Ruiqing Guo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Qing Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Tianhuang Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zicha Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Ning Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Fei Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Lu Tong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
50
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|