1
|
Víteček J, Vítečková Wünschová A, Thalerová S, Gulati S, Kubala L, Capandová M, Hampl A, Robert Mikulík. Factors influencing the efficacy of recombinant tissue plasminogen activator: Implications for ischemic stroke treatment. PLoS One 2024; 19:e0302269. [PMID: 38843177 PMCID: PMC11156348 DOI: 10.1371/journal.pone.0302269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/31/2024] [Indexed: 06/09/2024] Open
Abstract
Intravenous thrombolysis with a recombinant tissue plasminogen activator (rt-PA) is the first-line treatment of acute ischemic stroke. However, successful recanalization is relatively low and the underlying processes are not completely understood. The goal was to provide insights into clinically important factors potentially limiting rt-PA efficacy such as clot size, rt-PA concentration, clot age and also rt-PA in combination with heparin anticoagulant. We established a static in vitro thrombolytic model based on red blood cell (RBC) dominant clots prepared using spontaneous clotting from the blood of healthy donors. Thrombolysis was determined by clot mass loss and by RBC release. The rt-PA became increasingly less efficient for clots larger than 50 μl at a clinically relevant concentration of 1.3 mg/l. A tenfold decrease or increase in concentration induced only a 2-fold decrease or increase in clot degradation. Clot age did not affect rt-PA-induced thrombolysis but 2-hours-old clots were degraded more readily due to higher activity of spontaneous thrombolysis, as compared to 5-hours-old clots. Finally, heparin (50 and 100 IU/ml) did not influence the rt-PA-induced thrombolysis. Our study provided in vitro evidence for a clot size threshold: clots larger than 50 μl are hard to degrade by rt-PA. Increasing rt-PA concentration provided limited thrombolytic efficacy improvement, whereas heparin addition had no effect. However, the higher susceptibility of younger clots to thrombolysis may prompt a shortened time from the onset of stroke to rt-PA treatment.
Collapse
Affiliation(s)
- Jan Víteček
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
- Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Andrea Vítečková Wünschová
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sandra Thalerová
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
- Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sumeet Gulati
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
- Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Lukáš Kubala
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
- Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Michaela Capandová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Robert Mikulík
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
2
|
Ngwenya T, Grundlingh D, Ngoepe MN. Influence of vortical structures on fibrin clot formation in cerebral aneurysms: A two-dimensional computational study. J Biomech 2024; 165:111994. [PMID: 38394954 DOI: 10.1016/j.jbiomech.2024.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Thrombosis is an important contributor to cerebral aneurysm growth and progression. A number of sophisticated multiscale and multiphase in silico models have been developed with a view towards interventional planning. Many of these models are able to account for clotting outcomes, but do not provide detailed insight into the role of flow during clot development. In this study, we present idealised, two-dimensional in silico cerebral fibrin clot model based on computational fluid dynamics (CFD), biochemical modelling and variable porosity, permeability, and diffusivity. The model captures fibrin clot growth in cerebral aneurysms over a period at least 1000 s in five different geometries. The fibrin clot growth results were compared to an experiment presented in literature. The biochemistry was found to be more sensitive to mesh size compared to the haemodynamics, while larger timesteps overpredicted clot size in pulsatile flow. When variable diffusivity was used, the predicted clot size was 25.4% lesser than that with constant diffusivity. The predicted clot size in pulsatile flow was 14.6% greater than in plug flow. Different vortex modes were observed in plug and pulsatile flow; the latter presented smaller intermediate modes where the main vortex was smaller and less likely to disrupt the growing fibrin clot. Furthermore, smaller vortex modes were seen to support fibrin clot propagation across geometries. The model clearly demonstrates how the growing fibrin clot alters vortical structures within the aneurysm sac and how this changing flow, in turn, shapes the growing fibrin clot.
Collapse
Affiliation(s)
- Tinashe Ngwenya
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, South Africa; Department of Mechanical Engineering, University of Cape Town, South Africa
| | - Divan Grundlingh
- Department of Mechanical Engineering, University of Cape Town, South Africa
| | - Malebogo N Ngoepe
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, South Africa; Department of Mechanical Engineering, University of Cape Town, South Africa.
| |
Collapse
|
3
|
Wang K, Armour CH, Gibbs RGJ, Xu XY. A numerical study of the effect of thrombus breakdown on predicted thrombus formation and growth. Biomech Model Mechanobiol 2024; 23:61-71. [PMID: 37566172 PMCID: PMC10901920 DOI: 10.1007/s10237-023-01757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023]
Abstract
Thrombosis is a complex biological process which involves many biochemical reactions and is influenced by blood flow. Various computational models have been developed to simulate natural thrombosis in diseases such as aortic dissection (AD), and device-induced thrombosis in blood-contacting biomedical devices. While most hemodynamics-based models consider the role of low shear stress in the initiation and growth of thrombus, they often ignore the effect of thrombus breakdown induced by elevated shear stress. In this study, a new shear stress-induced thrombus breakdown function is proposed and implemented in our previously published thrombosis model. The performance of the refined model is assessed by quantitative comparison with experimental data on thrombus formation in a backward-facing step geometry, and qualitative comparison with in vivo data obtained from an AD patient. Our results show that incorporating thrombus breakdown improves accuracy in predicted thrombus volume and captures the same pattern of thrombus evolution as measured experimentally and in vivo. In the backward-facing step geometry, thrombus breakdown impedes growth over the step and downstream, allowing a stable thrombus to be reached more quickly. Moreover, the predicted thrombus volume, height and length are in better agreement with the experimental measurements compared to the original model which does not consider thrombus breakdown. In the patient-specific AD, the refined model outperforms the original model in predicting the extent and location of thrombosis. In conclusion, the effect of thrombus breakdown is not negligible and should be included in computational models of thrombosis.
Collapse
Affiliation(s)
- Kaihong Wang
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Chlöe H Armour
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Richard G J Gibbs
- Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare National Health Service Trust, Imperial College London, London, UK
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
4
|
Ghasemi SH, Ahmadian MT, Assempour A. Computational modeling of blood clot lysis considering the effect of vessel wall and pulsatile blood flow. Phys Rev E 2023; 108:034403. [PMID: 37849169 DOI: 10.1103/physreve.108.034403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 10/19/2023]
Abstract
Stroke is one of the major causes of global death, which can occur due to blockage in a blood vessel by a clot. The immediate dissolving of the clot is essential to restore the blood flow and prevent tissue necrosis. Clot dissolution can be achieved via thrombolytic therapy using plasminogen activators. In this study, a clot dissolution model is developed for a three-dimensional patient-specific carotid artery that investigates the effect of different vessel wall models on clot dissolution. The lysis pattern of the clot and hemodynamics of blood flow are evaluated using three different models of the vessel wall, namely, rigid, linear elastic, and Mooney-Rivlin hyperelastic. The effect of flow condition is considered by solving the Navier-Stokes equations for the free flow domain and the Brinkman equation for the clot domain with the same pressure and velocity fields. This will result in continuous pressure and velocity over the interfaces of the free flow and clot domains. The blood inflow is assumed to be pulsatile. In addition, the species transport driven by diffusion and convection is considered to be different in the porous medium and plasma. The obtained results show that in all models, the starting time of clot volume decrease is almost the same and the clot starts dissolving from the inner curvature of the artery. However, in the hyperelastic model, dissolving the clot takes longer compared to the other two models. By monitoring the vessel wall deformation, the exact time of vessel recanalization is determined.
Collapse
Affiliation(s)
| | | | - Ahmad Assempour
- School of Mechanical Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
5
|
Zeng Z, Christodoulides A, Alves NJ. Real-time tracking of fibrinolysis under constant wall shear and various pulsatile flows in an in-vitro thrombolysis model. Bioeng Transl Med 2023; 8:e10511. [PMID: 37206217 PMCID: PMC10189439 DOI: 10.1002/btm2.10511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 05/21/2023] Open
Abstract
A great need exists for the development of a more representative in-vitro model to efficiently screen novel thrombolytic therapies. We herein report the design, validation, and characterization of a highly reproducible, physiological scale, flowing clot lysis platform with real-time fibrinolysis monitoring to screen thrombolytic drugs utilizing a fluorescein isothiocyanate (FITC)-labeled clot analog. Using this Real-Time Fluorometric Flowing Fibrinolysis assay (RT-FluFF assay), a tPa-dependent degree of thrombolysis was observed both via clot mass loss as well as fluorometrically monitored release of FITC-labeled fibrin degradation products. Percent clot mass loss ranged from 33.6% to 85.9% with fluorescence release rates of 0.53 to 1.17 RFU/min in 40 and 1000 ng/mL tPa conditions, respectively. The platform is easily adapted to produce pulsatile flows. Hemodynamics of human main pulmonary artery were mimicked through matching dimensionless flow parameters calculated using clinical data. Increasing pressure amplitude range (4-40 mmHg) results in a 20% increase of fibrinolysis at 1000 ng/mL tPA. Increasing shear flow rate (205-913 s-1) significantly increases fibrinolysis and mechanical digestion. These findings suggest pulsatile level affects thrombolytic drug activities and the proposed in-vitro clot model offers a versatile testing platform for thrombolytic drug screening.
Collapse
Affiliation(s)
- Ziqian Zeng
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Alexei Christodoulides
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Nathan J. Alves
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
6
|
Li Y, Li Y, Prince E, Weitz JI, Panyukov S, Ramachandran A, Rubinstein M, Kumacheva E. Fibrous hydrogels under biaxial confinement. Nat Commun 2022; 13:3264. [PMID: 35672320 PMCID: PMC9174476 DOI: 10.1038/s41467-022-30980-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
Confinement of fibrous hydrogels in narrow capillaries is of great importance in biological and biomedical systems. Stretching and uniaxial compression of fibrous hydrogels have been extensively studied; however, their response to biaxial confinement in capillaries remains unexplored. Here, we show experimentally and theoretically that due to the asymmetry in the mechanical properties of the constituent filaments that are soft upon compression and stiff upon extension, filamentous gels respond to confinement in a qualitatively different manner than flexible-strand gels. Under strong confinement, fibrous gels exhibit a weak elongation and an asymptotic decrease to zero of their biaxial Poisson's ratio, which results in strong gel densification and a weak flux of liquid through the gel. These results shed light on the resistance of strained occlusive clots to lysis with therapeutic agents and stimulate the development of effective endovascular plugs from gels with fibrous structures for stopping vascular bleeding or suppressing blood supply to tumors.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Yunfeng Li
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON, M5S 3H6, Canada
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Elisabeth Prince
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON, M5S 3H6, Canada
- Department of Chemistry, Massachusetts Institute of Technology, 88 Ames Street, Apartment 306, Cambridge, MA, 02142, USA
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street East, Hamilton, L8L 2 × 2, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Sergey Panyukov
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, 53 Leninskiy Prospekt, Moscow, 119991, Russian Federation
| | - Arun Ramachandran
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
- Department of Physics, Duke University, Durham, NC, 27708, USA.
- World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
| | - Eugenia Kumacheva
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON, M5S 3H6, Canada.
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.
| |
Collapse
|
7
|
Chen D, Liu P, Liu Y, Wang Z, Zhou Y, Jiang L, Yuan C, Li Y, Lin W, Huang M. A Clot-Homing Near-Infrared Probe for In Vivo Imaging of Murine Thromboembolic Models. Adv Healthc Mater 2022; 11:e2102213. [PMID: 34994110 DOI: 10.1002/adhm.202102213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Direct thrombus imaging contributes to early detection of thrombosis, and animal models with clinical relevance are vital in the development of new thrombolytics. Here, a facile clot-homing strategy is developed based on the finding that blood clot is negatively charged. Positively charged pentalysine moiety is coupled with phthalocyanine-based fluorophore , and its applications in murine thromboembolic models are described. The probe efficiently stains the cryosection of intracranial thrombi retrieved from patients with cardioembolic stroke. In vitro, the fibrin-rich clot is labeled by the probe at sub-nanomolar concentration. The probe-labeled clot is formed into microparticles (1-5 µm) and intravenously injected into mice for pulmonary embolism modeling. In vivo imaging demonstrates fast accumulation and retention of fluorescent clot microparticles in pulmonary vessels. Recombinant tissue-type plasminogen activator (rtPA) administration greatly reduces near-infrared signal in the lungs in a time-dependent manner. This probe is also tested in a stroke model. Middle cerebral artery is occluded by autologous thrombi formed under electric stimulation. In vivo imaging shows that the probe efficiently homes to thrombus at early stage. Hence, this probe has great potential in real-time imaging of thromboembolism in clinically relevant models, promoting bench-to-bedside translation. This clot-homing principle can be used in other applications.
Collapse
Affiliation(s)
- Dan Chen
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Peiwen Liu
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Yurong Liu
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Zhiyou Wang
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Yang Zhou
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Longguang Jiang
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Cai Yuan
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Yongkun Li
- Department of Neurology Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University No. 134 Dong Street Fuzhou Fujian 350001 P. R. China
| | - Wei Lin
- Fujian Institute of integrated traditional Chinese and Western Medicine Fujian University of Traditionial Chinese Medicine No. 1 Qiuyang Road, Minhou District Fuzhou 350122 P. R. China
| | - Mingdong Huang
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| |
Collapse
|
8
|
Nikitin D, Mican J, Toul M, Bednar D, Peskova M, Kittova P, Thalerova S, Vitecek J, Damborsky J, Mikulik R, Fleishman SJ, Prokop Z, Marek M. Computer-aided engineering of staphylokinase toward enhanced affinity and selectivity for plasmin. Comput Struct Biotechnol J 2022; 20:1366-1377. [PMID: 35386102 PMCID: PMC8941168 DOI: 10.1016/j.csbj.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/15/2022] Open
Abstract
Cardio- and cerebrovascular diseases are leading causes of death and disability, resulting in one of the highest socio-economic burdens of any disease type. The discovery of bacterial and human plasminogen activators and their use as thrombolytic drugs have revolutionized treatment of these pathologies. Fibrin-specific agents have an advantage over non-specific factors because of lower rates of deleterious side effects. Specifically, staphylokinase (SAK) is a pharmacologically attractive indirect plasminogen activator protein of bacterial origin that forms stoichiometric noncovalent complexes with plasmin, promoting the conversion of plasminogen into plasmin. Here we report a computer-assisted re-design of the molecular surface of SAK to increase its affinity for plasmin. A set of computationally designed SAK mutants was produced recombinantly and biochemically characterized. Screening revealed a pharmacologically interesting SAK mutant with ∼7-fold enhanced affinity toward plasmin, ∼10-fold improved plasmin selectivity and moderately higher plasmin-generating efficiency in vitro. Collectively, the results obtained provide a framework for SAK engineering using computational affinity-design that could pave the way to next-generation of effective, highly selective, and less toxic thrombolytics.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Mican
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Neurology Department, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Toul
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Bednar
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michaela Peskova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Patricia Kittova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Sandra Thalerova
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Vitecek
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
- Neurology Department, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Robert Mikulik
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Neurology Department, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | | | - Zbynek Prokop
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Marek
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Disharoon D, Trewyn BG, Herson PS, Marr DW, Neeves KB. Breaking the fibrinolytic speed limit with microwheel co-delivery of tissue plasminogen activator and plasminogen. J Thromb Haemost 2022; 20:486-497. [PMID: 34882946 PMCID: PMC8792280 DOI: 10.1111/jth.15617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND To reestablish blood flow in vessels occluded by clots, tissue plasminogen activator (tPA) can be used; however, its efficacy is limited by transport to and into a clot and by the depletion of its substrate, plasminogen. OBJECTIVES To overcome these rate limitations, a platform was designed to co-deliver tPA and plasminogen based on microwheels (µwheels), wheel-like assemblies of superparamagnetic colloidal beads that roll along surfaces at high speeds. METHODS The biochemical speed limit was determined by measuring fibrinolysis of plasma clots at varying concentrations of tPA (10-800 nM) and plasminogen (1-6 µM). Biotinylated magnetic mesoporous silica nanoparticles were synthesized and bound to streptavidin-coated superparamagnetic beads to make studded beads. Studded beads were loaded with plasminogen and tPA was immobilized on their surface. Plasminogen release and tPA activity were measured on the studded beads. Studded beads were assembled into µwheels with rotating magnetic fields and fibrinolysis of plasma clots was measured in a microfluidic device. RESULTS The biochemical speed limit for plasma clots was ~15 µm/min. Plasminogen-loaded, tPA-immobilized µwheels lyse plasma clots at rates comparableto the biochemical speed limit. With the addition of a corkscrew motion, µwheels penetrate clots, thereby exceeding the biochemical speed limit (~20 µm/min) and achieving lysis rates 40-fold higher than 50 nM tPA. CONCLUSIONS Co-delivery of an immobilized enzyme and its substrate via a microbot capable of mechanical work has the potential to target and rapidly lyse clots that are inaccessible by mechanical thrombectomy devices or recalcitrant to systemic tPA delivery.
Collapse
Affiliation(s)
- Dante Disharoon
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Brian G. Trewyn
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States
| | - Paco S. Herson
- Department of Anesthesiology, University of Colorado Denver ∣ Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver ∣ Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
10
|
Bevan S, Longstaff C. Is it possible to make a common reference standard for D-dimer measurements? Communication from the ISTH SSC Subcommittee on Fibrinolysis. J Thromb Haemost 2022; 20:498-507. [PMID: 34653304 PMCID: PMC9299488 DOI: 10.1111/jth.15555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND D-dimer antigen is a heterogeneous mixture of fibrin degradation products that when present at high levels in plasma indicate ongoing coagulation and fibrinolysis. The heterogeneous nature of the target D-dimer antigen and the variety of assay systems means that it is difficult to compare results from different methods. OBJECTIVES To identify a universally agreed D-dimer standard that could help harmonize results from different methods. METHODS A pool of patient plasma with high D-dimer levels was freeze-dried and investigated as a long-term World Health Organization international standard for D-dimer. Fibrin degradation products from clot lysis reactions were also freeze-dried in various formulations and investigated in commutability studies with patient plasma. RESULTS Problems of instability of D-dimer plasma emerged suggesting loss of reactivity after freeze-drying and storage at -20°C of 10%-18% per year. Freeze-dried fibrin degradation products added to plasma were also unstable, but the sugar trehalose was found to improve stability. However, this preparation was not suitable as a standard in widely used assay platforms. Previous studies suggest fibrin degradation products are prone to structural rearrangements and amyloid formation, which may explain the instability of candidate D-dimer standards. CONCLUSIONS The known difficulties of D-dimer standardization are compounded by instability of D-dimer antigen after freeze-drying, described in this report. Fibrin degradation products added to plasma and stabilized by trehalose are not suitable as a standard for D-dimer measurement harmonization. Trehalose stabilization of pooled patient plasma containing high D-dimer levels may produce a useful standard, but this requires confirmation.
Collapse
Affiliation(s)
- Sally Bevan
- Biotherapeutics DivisionNational Institute for Biological Standards and ControlSouth MimmsUK
| | - Colin Longstaff
- Biotherapeutics DivisionNational Institute for Biological Standards and ControlSouth MimmsUK
| |
Collapse
|
11
|
Structure of shear-induced platelet aggregated clot formed in an in vitro arterial thrombosis model. Blood Adv 2022; 6:2872-2883. [PMID: 35086138 PMCID: PMC9092419 DOI: 10.1182/bloodadvances.2021006248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
The structure of occlusive arterial thrombi is described in this paper. Macroscopic thrombi are made from whole blood in a collagen-coated, large-scale stenosis with high shear flow conditions similar to an atherosclerotic artery. The millimeter-sized thrombi are harvested for histology and scanning electron microscopy. Histological images showed 3 distinctive structures of the thrombus. A) The upstream region showed string-like platelet aggregates growing out from the wall to protrude into the central lumen, while RBCs were trapped between the strings. The strings were >10x as long as they were wide and reached out to join the strings from the opposite wall. B) Near the apex, the platelet strings coalesced into a dense mass with microchannels that effectively occludes the lumen. C) In the expansion region, the thrombus ended abruptly with an annulus of free blood in the flow separation zone. Scanning electron microscopy showed dense clusters of spherical platelets upstream and downstream, with amorphous platelets in the occluded throat consistent with prior activation. The total clot is estimated to contain 1.23 billion platelets with pores on the order of 10-100 microns. The results reveal a complex structure of arterial thrombi that grow from their tips under high shear stress to bridge the 2.5 mm lumen quickly with VWF-platelet strings. The occlusion leaves many microchannels that allow some flow through the bulk of the thrombus. This architecture can create occlusion or hemostasis rapidly with minimal material, yet remain porous for potential delivery of lytic agents to the core of the thrombus.
Collapse
|
12
|
Multiphysics Modelling and Simulation of Thrombolysis via Activated Platelet-Targeted Nanomedicine. Pharm Res 2022; 39:41-56. [PMID: 35044591 PMCID: PMC8837543 DOI: 10.1007/s11095-021-03161-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/22/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated. METHODS The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV. RESULTS Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots. CONCLUSIONS Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.
Collapse
|
13
|
Petkantchin R, Padmos R, Boudjeltia KZ, Raynaud F, Chopard B. Thrombolysis: Observations and numerical models. J Biomech 2021; 132:110902. [PMID: 34998180 DOI: 10.1016/j.jbiomech.2021.110902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
This perspective paper considers thrombolysis in the context of ischemic strokes, intending to build eventually a numerical model capable of simulating the thrombolytic treatment and predicting patient outcomes. Numerical modeling is a scientific methodology based on an abstraction of a system but requires understanding their spatio-temporal interactions. However, although important, the current knowledge on thrombolysis is fragmented in contributions from which it is difficult to obtain a complete picture of the process, especially in a clinically relevant setup. This paper discusses, from a general point of view, how to develop a numerical model to describe the evolution of a patient clot under the action of a thrombolytic drug. We will present critical, yet fundamental, open questions that have emerged during this elaboration and discuss original experimental observations that challenge some of our current knowledge of thrombolysis.
Collapse
Affiliation(s)
- Remy Petkantchin
- Scientific and Parallel Computing Group, Computer Science Department, University of Geneva, Switzerland.
| | - Raymond Padmos
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, The Netherlands
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, CHU de Charleroi, Belgium
| | - Franck Raynaud
- Scientific and Parallel Computing Group, Computer Science Department, University of Geneva, Switzerland
| | - Bastien Chopard
- Scientific and Parallel Computing Group, Computer Science Department, University of Geneva, Switzerland
| |
Collapse
|
14
|
Zeng Z, Nallan Chakravarthula T, Muralidharan C, Hall A, Linnemann AK, Alves NJ. Fluorescently conjugated annular fibrin clot for multiplexed real-time digestion analysis. J Mater Chem B 2021; 9:9295-9307. [PMID: 34698753 DOI: 10.1039/d1tb02088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Impaired fibrinolysis has long been considered as a risk factor for venous thromboembolism. Fibrin clots formed at physiological concentrations are promising substrates for monitoring fibrinolytic performance as they offer clot microstructures resembling in vivo. Here we introduce a fluorescently labeled fibrin clot lysis assay which leverages a unique annular clot geometry assayed using a microplate reader. A physiologically relevant fibrin clotting formulation was explored to achieve high assay sensitivity while minimizing labeling impact as fluorescence isothiocyanate (FITC)-fibrin(ogen) conjugations significantly affect both fibrin polymerization and fibrinolysis. Clot characteristics were examined using thromboelastography (TEG), turbidity, scanning electron microscopy, and confocal microscopy. Sample fibrinolytic activities at varying plasmin, plasminogen, and tissue plasminogen activator (tPA) concentrations were assessed in the present study and results were compared to an S2251 chromogenic assay. The optimized physiologically relevant clot substrate showed minimal reporter-conjugation impact with nearly physiological clot properties. The assay demonstrated good reproducibility, wide working range, kinetic read ability, low limit of detection, and the capability to distinguish fibrin binding-related lytic performance. In combination with its ease for multiplexing, it also has applications as a convenient platform for assessing patient fibrinolytic potential and screening thrombolytic drug activities in personalized medical applications.
Collapse
Affiliation(s)
- Ziqian Zeng
- Department of Emergency Medicine, Indiana University School of Medicine, 635 Barnhill Dr Rm. 2063, Indianapolis, IN 46202, USA. .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Tanmaye Nallan Chakravarthula
- Department of Emergency Medicine, Indiana University School of Medicine, 635 Barnhill Dr Rm. 2063, Indianapolis, IN 46202, USA. .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Charanya Muralidharan
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abigail Hall
- Department of Emergency Medicine, Indiana University School of Medicine, 635 Barnhill Dr Rm. 2063, Indianapolis, IN 46202, USA.
| | - Amelia K Linnemann
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nathan J Alves
- Department of Emergency Medicine, Indiana University School of Medicine, 635 Barnhill Dr Rm. 2063, Indianapolis, IN 46202, USA. .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Thalerová S, Pešková M, Kittová P, Gulati S, Víteček J, Kubala L, Mikulík R. Effect of Apixaban Pretreatment on Alteplase-Induced Thrombolysis: An In Vitro Study. Front Pharmacol 2021; 12:740930. [PMID: 34603054 PMCID: PMC8479181 DOI: 10.3389/fphar.2021.740930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Benefit of thrombolytic therapy in patients with acute stroke, who are on anticoagulant treatment, is not well addressed. The aim of this study was to investigate whether apixaban can modify the thrombolytic efficacy of alteplase in vitro. Static and flow models and two variants of red blood cell (RBC) dominant clots, with and without apixaban, were used. Clots were prepared from the blood of healthy human donors and subsequently exposed to alteplase treatment. Apixaban and alteplase were used in clinically relevant concentrations. Clot lysis in the static model was determined both by clot weight and spectrophotometric determination of RBC release. Clot lysis in the flow model was determined by measuring recanalization time, clot length and spectrophotometric determination of RBC release. In the static model, clots without apixaban; compared to those with apixaban had alteplase-induced mass loss 54 ± 8% vs. 53 ± 8%, p = 1.00; RBC release 0.14 ± 0.04 vs. 0.12 ± 0.04, p = 0.14, respectively. Very similar results were obtained if plasma was used instead of physiological buffered saline as the incubation medium. In the flow model, clot lysis without apixaban; compared to those with apixaban was as follows: recanalization time 107 ± 46 min vs. 127 ± 31 min, p = 1.00; recanalization frequency 90 ± 22% vs. 90 ± 22%, p = 1.00; clot volume reduction 32 ± 15% vs. 34 ± 10%, p = 1.00; RBC release 0.029 ± 0.007 vs. 0.022 ± 0.007, p = 0.16, respectively. Apixaban had no positive effect on alteplase-induced thrombolysis in both the in vitro static and flow models. Our data support current clinical practice, such that thrombolysis is contraindicated in stroke treatment for patients who have been treated with anticoagulants.
Collapse
Affiliation(s)
- Sandra Thalerová
- Neurology Department, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Michaela Pešková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Patrícia Kittová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Sumeet Gulati
- Neurology Department, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Jan Víteček
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,Center of Biomolecular and Cell Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,Center of Biomolecular and Cell Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Robert Mikulík
- Neurology Department, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
16
|
Huang Y, Gu B, Salles-Crawley II, Taylor KA, Yu L, Ren J, Liu X, Emerson M, Longstaff C, Hughes AD, Thom SA, Xu XY, Chen R. Fibrinogen-mimicking, multiarm nanovesicles for human thrombus-specific delivery of tissue plasminogen activator and targeted thrombolytic therapy. SCIENCE ADVANCES 2021; 7:7/23/eabf9033. [PMID: 34078604 PMCID: PMC8172176 DOI: 10.1126/sciadv.abf9033] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/14/2021] [Indexed: 05/03/2023]
Abstract
Clinical use of tissue plasminogen activator (tPA) in thrombolytic therapy is limited by its short circulation time and hemorrhagic side effects. Inspired by fibrinogen binding to activated platelets, we report a fibrinogen-mimicking, multiarm nanovesicle for thrombus-specific tPA delivery and targeted thrombolysis. This biomimetic system is based on the lipid nanovesicle coated with polyethylene glycol (PEG) terminally conjugated with a cyclic RGD (cRGD) peptide. Our experiments with human blood demonstrated its highly selective binding to activated platelets and efficient tPA release at a thrombus site under both static and physiological flow conditions. Its clot dissolution time in a microfluidic system was comparable to that of free tPA. Furthermore, we report a purpose-built computational model capable of simulating targeted thrombolysis of the tPA-loaded nanovesicle and with a potential in predicting the dynamics of thrombolysis in physiologically realistic scenarios. This combined experimental and computational work presents a promising platform for development of thrombolytic nanomedicines.
Collapse
Affiliation(s)
- Yu Huang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Boram Gu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
- School of Chemical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Kirk A Taylor
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Li Yu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Jie Ren
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Xuhan Liu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Michael Emerson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Colin Longstaff
- Biotherapeutics Section, National Institute for Biological Standards and Control, South Mimms, Herts, UK
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Simon A Thom
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
17
|
Jarai BM, Stillman Z, Bomb K, Kloxin AM, Fromen CA. Biomaterials-Based Opportunities to Engineer the Pulmonary Host Immune Response in COVID-19. ACS Biomater Sci Eng 2021; 7:1742-1764. [PMID: 33356134 PMCID: PMC7784663 DOI: 10.1021/acsbiomaterials.0c01287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic caused by the global spread of the SARS-CoV-2 virus has led to a staggering number of deaths worldwide and significantly increased burden on healthcare as nations scramble to find mitigation strategies. While significant progress has been made in COVID-19 diagnostics and therapeutics, effective prevention and treatment options remain scarce. Because of the potential for the SARS-CoV-2 infections to cause systemic inflammation and multiple organ failure, it is imperative for the scientific community to evaluate therapeutic options aimed at modulating the causative host immune responses to prevent subsequent systemic complications. Harnessing decades of expertise in the use of natural and synthetic materials for biomedical applications, the biomaterials community has the potential to play an especially instrumental role in developing new strategies or repurposing existing tools to prevent or treat complications resulting from the COVID-19 pathology. Leveraging microparticle- and nanoparticle-based technology, especially in pulmonary delivery, biomaterials have demonstrated the ability to effectively modulate inflammation and may be well-suited for resolving SARS-CoV-2-induced effects. Here, we provide an overview of the SARS-CoV-2 virus infection and highlight current understanding of the host's pulmonary immune response and its contributions to disease severity and systemic inflammation. Comparing to frontline COVID-19 therapeutic options, we highlight the most significant untapped opportunities in immune engineering of the host response using biomaterials and particle technology, which have the potential to improve outcomes for COVID-19 patients, and identify areas needed for future investigations. We hope that this work will prompt preclinical and clinical investigations of promising biomaterials-based treatments to introduce new options for COVID-19 patients.
Collapse
Affiliation(s)
- Bader M. Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
18
|
Teeraratkul C, Irwin Z, Shadden SC, Mukherjee D. Computational investigation of blood flow and flow-mediated transport in arterial thrombus neighborhood. Biomech Model Mechanobiol 2021; 20:701-715. [PMID: 33438148 DOI: 10.1007/s10237-020-01411-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
Abstract
A pathologically formed blood clot or thrombus is central to major cardiovascular diseases like heart attack and stroke. Detailed quantitative evaluation of flow and flow-mediated transport processes in the thrombus neighborhood within large artery hemodynamics is crucial for understanding disease progression and assessing treatment efficacy. This, however, remains a challenging task owing to the complexity of pulsatile viscous flow interactions with arbitrary shape and heterogeneous microstructure of realistic thrombi. Here, we address this challenge by conducting a systematic parametric simulation-based study on characterizing unsteady hemodynamics and flow-mediated transport in the neighborhood of an arterial thrombus. We use a hybrid particle-continuum-based finite element approach to handle arbitrary thrombus shape and microstructural variations. Results from a cohort of 50 different unsteady flow scenarios are presented, including unsteady vortical structures, pressure gradient across the thrombus boundary, finite time Lyapunov exponents, and dynamic coherent structures that organize advective transport. We clearly illustrate the combined influence of three key parameters-thrombus shape, microstructure, and extent of wall disease-in terms of: (a) determining hemodynamic features in the thrombus neighborhood and (b) governing the balance between advection, permeation, and diffusion to regulate transport processes in the thrombus neighborhood.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America
| | - Zachariah Irwin
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California, Berkeley, United States of America
| | - Debanjan Mukherjee
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America.
| |
Collapse
|
19
|
Purification and characterization of non-enzymatic glycoprotein (NEGp) from flax seed buffer extract that exhibits anticoagulant and antiplatelet activity. Int J Biol Macromol 2020; 163:317-326. [PMID: 32629053 DOI: 10.1016/j.ijbiomac.2020.06.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022]
Abstract
The current study deals with the purification and characterization of non-enzymatic glycoprotein (NEGp) from flax seed buffer extract. Sephadex G-100 and DEAE-A25 column chromatography techniques were employed to isolate NEGp. NEGp showed single sharp band at 29 kDa region on 10% SDS-PAGE, and under reduced and non-reduced conditions revealed its monomeric nature. Besides, NEGp taken up the PAS stain at 29 kDa region reveals the presence of carbohydrate moiety. Purity of NEGp was adjudged by RP-HPLC, as it revealed a single sharp peak at the retention time of 3.4 min. The exact molecular mass of NEGp was found to be 26 kDa which was confirmed by MALDI-TOF. Circular di-chromism spectra of NEGp showed 12.0% α-helix, 24.3% α-helix turn and 63.7% random coils without beta pleated sheets. NEGp was found to exhibit anticoagulant activity by extending clotting time of both platelet rich plasma and platelet poor plasma from control 240 s to 1800 s and 280 s to 2100 s respectively at the concentration of 8 μg. NEGp inhibited the agonists such as ADP, epinephrine and arachidonic acid induced platelet aggregation in washed platelets. The percentage of inhibition was found to be 70%, 80% and 60% respectively. While, it did not interfere in thrombin, PAF and collagen induced platelet aggregation. NEGp did not hydrolyse RBC membrane, devoid of haemorrhagic and edema inducing properties in experimental mice.
Collapse
|
20
|
Yang A, Qiao B, Strohm EM, Cao J, Wang Z, Yuan X, Luo Y, Sun Y. Thrombin-responsive engineered nanoexcavator with full-thickness infiltration capability for pharmaceutical-free deep venous thrombosis theranostics. Biomater Sci 2020; 8:4545-4558. [PMID: 32671366 DOI: 10.1039/d0bm00917b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although nanotechnology has shown great promise for treating multiple vascular diseases in recent years, simultaneous noninvasive detection and efficient dissolution of deep venous thrombosis (DVT) still remains challenging. In particular, long blockage areas and large thrombus thicknesses in DVT cause enormous difficulties for site-specific deep-seated thrombus theranostics. Therefore, based on the unique components of DVT, the novel concept of a thrombin-responsive full-thickness infiltration nonpharmaceutical nanoplatform for DVT theranostics is proposed here. The penetration depth is innovatively enhanced with efficient targeting and accumulation in the whole thrombi. Herein, we report a thrombin-responsive phase-transition liposome incorporating a liquid perfluoropentane (PFP) core and modified with two binding peptides, activatable cell-penetrating peptide (ACPP) and fibrin-binding ligand (FTP), which contribute to efficient liposome targeting and accumulation within the thrombi. This targeted nanoplatform is constructed to dig out the thrombus with the assistance of low-intensity focused ultrasound (LIFU), performing the destructive function of an excavator via an acoustic droplet vaporization effect (acting as a "nanoexcavator" system), which can activate and vaporize into microbubbles to enhance LIFU efficacy. The resulting microbubbles enable real-time monitoring of the therapeutic process with ultrasound imaging and high performance photoacoustic imaging after loading DIR. This non-invasive nonpharmaceutical thrombolytic strategy is an improvement over existing clinical methods without systemic side effects.
Collapse
Affiliation(s)
- Anyu Yang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cone SJ, Fuquay AT, Litofsky JM, Dement TC, Carolan CA, Hudson NE. Inherent fibrin fiber tension propels mechanisms of network clearance during fibrinolysis. Acta Biomater 2020; 107:164-177. [PMID: 32105833 PMCID: PMC7160043 DOI: 10.1016/j.actbio.2020.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 11/21/2022]
Abstract
Proper wound healing necessitates both coagulation (the formation of a blood clot) and fibrinolysis (the dissolution of a blood clot). A thrombus resistant to clot dissolution can obstruct blood flow, leading to vascular pathologies. This study seeks to understand the mechanisms by which individual fibrin fibers, the main structural component of blood clots, are cleared from a local volume during fibrinolysis. We observed 2-D fibrin networks during lysis by plasmin, recording the clearance of each individual fiber. We found that, in addition to transverse cleavage of fibers, there were multiple other pathways by which clot dissolution occurred, including fiber bundling, buckling, and collapsing. These processes are all influenced by the concentration of plasmin utilized in lysis. The network fiber density influenced the kinetics and distribution of these pathways. Individual cleavage events often resulted in large morphological changes in network structure, suggesting that the inherent tension in fibers played a role in fiber clearance. Using images before and after a cleavage event to measure fiber lengths, we estimated that fibers are strained ~23% beyond their equilibrium length during polymerization. To understand the role of fiber tension in fibrinolysis we modeled network clearance under differing amounts of fiber polymerized strain (prestrain). The comparison of experimental and model data indicated that fibrin tension enables 35% more network clearance due to network rearrangements after individual cleavage events than would occur if fibers polymerized in a non-tensed state. Our results highlight many characteristics and mechanisms of fibrin breakdown, which have implications on future fibrin studies, our understanding of the fibrinolytic process, and the development of thrombolytic therapies. STATEMENT OF SIGNIFICANCE: Fibrin fibers serve as the main structural element of blood clots. They polymerize under tension and have remarkable extensibility and elasticity. After the cessation of wound healing, fibrin must be cleared from the vasculature by the enzyme plasmin in order to resume normal blood flow: a process called fibrinolysis. In this study we investigate the mechanisms that regulate the clearance of individual fibrin fibers during fibrinolysis. We show that the inherent tension in fibers enhances the action of plasmin because every fiber cleavage event results in a redistribution of the network tension. This network re-equilibration causes fibers to buckle, bundle, and even collapse, leading to a more rapid fiber clearance than plasmin alone could provide.
Collapse
Affiliation(s)
- Sean J Cone
- Department of Physics, East Carolina University; 1000 E 5(th) St, Greenville, NC 27858, United States
| | - Andrew T Fuquay
- Medical Physics Graduate Program, Duke University; DUMC 2729, 2424 Erwin Rd Suite 101, Durham, NC 27705, USA
| | - Justin M Litofsky
- Department of Physics, East Carolina University; 1000 E 5(th) St, Greenville, NC 27858, United States
| | - Taylor C Dement
- Department of Physics, East Carolina University; 1000 E 5(th) St, Greenville, NC 27858, United States
| | - Christopher A Carolan
- Department of Mathematics, East Carolina University; 1000 E 5(th) St, Greenville, NC 27858, United States
| | - Nathan E Hudson
- Department of Physics, East Carolina University; 1000 E 5(th) St, Greenville, NC 27858, United States.
| |
Collapse
|
22
|
Rusch R, Trentmann J, Hummitzsch L, Rusch M, Aludin S, Haneya A, Albrecht M, Schäfer JP, Puehler T, Cremer J, Berndt R. Feasibility of a circulation model for the assessment of endovascular recanalization procedures and periprocedural thromboembolism in-vitro. Sci Rep 2019; 9:17356. [PMID: 31757980 PMCID: PMC6874641 DOI: 10.1038/s41598-019-53607-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022] Open
Abstract
Aim of this study was to establish a simple and highly reproducible physiological circulation model to investigate endovascular device performance. The developed circulation model included a pneumatically driven pulsatile pump to generate a flow rate of 2.7 L/min at 70 beats per minute. Sections from the superficial femoral arteries were used in order to simulate device/tissue interaction and a filter was integrated to analyze periinterventional thromboembolism of white, red and mixed thrombi. The working fluid (3 L) was a crystalloid solution constantly tempered at 36.5 °C. To evaluate the model, aspiration thrombectomy, stent-implantation and thrombectomy with the Fogarty catheter were performed. Usability of the model was measured by the System Usability Scale (SUS) – Score. Histological specimens were prepared and analyzed postinterventional to quantify tissue/device interaction. Moreover, micro- and macroembolism were evaluated for each thrombus entity and each device. Results were tested for normality using the D’Agostino-Pearson test. Statistical comparisons of two groups were performed using the Student’s t-test. All devices were able to remove the occlusions after a maximum of 2 attempts. First-pass-recanalization was not fully achieved for aspiration thrombectomy of mixed thrombi (90.6%), aspiration thrombectomy of red thrombi (84.4%) and stent-implantation in occlusions of red thrombi (92.2%). Most micro- and macroembolism were observed using the Fogarty catheter and after stent-implantation in occlusions of white thrombi. Histological examinations revealed a significant reduction of the vascular layers suggesting vascular damage after use of the Fogarty catheter (327.3 ± 3.5 μm vs. 440.6 ± 3.9 μm; p = 0.026). Analysis of SUS rendered a mean SUS-Score of 80.4 which corresponds to an excellent user acceptability of the model. In conclusion, we describe a stable, easy to handle and reproducible physiological circulation model for the simulation of endovascular thrombectomy including device performance and thromboembolism.
Collapse
Affiliation(s)
- René Rusch
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany.
| | - Jens Trentmann
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Melanie Rusch
- Department of Orthopedics and Trauma Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Schekeb Aludin
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Assad Haneya
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Jost Philipp Schäfer
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Thomas Puehler
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
23
|
Di Meglio L, Desilles JP, Ollivier V, Nomenjanahary MS, Di Meglio S, Deschildre C, Loyau S, Olivot JM, Blanc R, Piotin M, Bouton MC, Michel JB, Jandrot-Perrus M, Ho-Tin-Noé B, Mazighi M. Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology 2019; 93:e1686-e1698. [PMID: 31541014 DOI: 10.1212/wnl.0000000000008395] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Thrombi responsible for large vessel occlusion (LVO) in the setting of acute ischemic stroke (AIS) are characterized by a low recanalization rate after IV thrombolysis. To test whether AIS thrombi have inherent common features that limit their susceptibility to thrombolysis, we analyzed the composition and ultrastructural organization of AIS thrombi causing LVO. METHODS A total of 199 endovascular thrombectomy-retrieved thrombi were analyzed by immunohistology and scanning electron microscopy (SEM) and subjected to ex vivo thrombolysis assay. The relationship between thrombus organization and thrombolysis resistance was further investigated in vitro using thrombus produced by recalcification of citrated whole blood. RESULTS SEM and immunohistology analyses revealed that, although AIS thrombus composition and organization was highly heterogeneous, AIS thrombi shared a common remarkable structural feature in the form of an outer shell made of densely compacted thrombus components including fibrin, von Willebrand factor, and aggregated platelets. In vitro thrombosis experiments using human blood indicated that platelets were essential to the formation of the thrombus outer shell. Finally, in both AIS and in vitro thrombi, the thrombus outer shell showed a decreased susceptibility to tissue plasminogen activator-mediated thrombolysis as compared to the thrombus inner core. INTERPRETATION Irrespective of their etiology and despite their heterogeneity, intracranial thrombi causing LVO have a core shell structure that influences their susceptibility to thrombolysis.
Collapse
Affiliation(s)
- Lucas Di Meglio
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Jean-Philippe Desilles
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Véronique Ollivier
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Mialitiana Solo Nomenjanahary
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Sara Di Meglio
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Catherine Deschildre
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Stéphane Loyau
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Jean-Marc Olivot
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Raphaël Blanc
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Michel Piotin
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Marie-Christine Bouton
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Jean-Baptiste Michel
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Martine Jandrot-Perrus
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| | - Benoît Ho-Tin-Noé
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France.
| | - Mikael Mazighi
- From U1148 Institut National de la Santé et de la Recherche Médicale (INSERM) (L.D.M., J.-P.D., V.O., M.S.N., S.D.M., C.D., S.L., M.-C.B., J.-B.M., M.J.-P., B.H.-T.-N., M.M.), Laboratory of Vascular Translational Science, Sorbonne Paris Cité, Université Paris Diderot; Department of Interventional Neuroradiology (J.-P.D., R.B., M.P., M.M.), Rothschild Foundation Hospital, Paris; and Toulouse University Medical Center (J.-M.O.), France
| |
Collapse
|
24
|
Polyacrylic acid-coated nanoparticles loaded with recombinant tissue plasminogen activator for the treatment of mice with ischemic stroke. Biochem Biophys Res Commun 2019; 516:565-570. [DOI: 10.1016/j.bbrc.2019.06.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022]
|
25
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
26
|
Gu B, Piebalgs A, Huang Y, Longstaff C, Hughes AD, Chen R, Thom SA, Xu XY. Mathematical Modelling of Intravenous Thrombolysis in Acute Ischaemic stroke: Effects of Dose Regimens on Levels of Fibrinolytic Proteins and Clot Lysis Time. Pharmaceutics 2019; 11:E111. [PMID: 30866489 PMCID: PMC6471481 DOI: 10.3390/pharmaceutics11030111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
Thrombolytic therapy is one of the medical procedures in the treatment of acute ischaemic stroke (AIS), whereby the tissue plasminogen activator (tPA) is intravenously administered to dissolve the obstructive blood clot. The treatment of AIS by thrombolysis can sometimes be ineffective and it can cause serious complications, such as intracranial haemorrhage (ICH). In this study, we propose an efficient mathematical modelling approach that can be used to evaluate the therapeutic efficacy and safety of thrombolysis in various clinically relevant scenarios. Our model combines the pharmacokinetics and pharmacodynamics of tPA with local clot lysis dynamics. By varying the drug dose, bolus-infusion delay time, and bolus-infusion ratio, with the FDA approved dosing protocol serving as a reference, we have used the model to simulate 13 dose regimens. Simulation results are compared for temporal concentrations of fibrinolytic proteins in plasma and the time that is taken to achieve recanalisation. Our results show that high infusion rates can cause the rapid degradation of plasma fibrinogen, indicative of increased risk for ICH, but they do not necessarily lead to fast recanalisation. In addition, a bolus-infusion delay results in an immediate drop in plasma tPA concentration, which prolongs the time to achieve recanalisation. Therefore, an optimal administration regimen should be sought by keeping the tPA level sufficiently high throughout the treatment and maximising the lysis rate while also limiting the degradation of fibrinogen in systemic plasma. This can be achieved through model-based optimisation in the future.
Collapse
Affiliation(s)
- Boram Gu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Andris Piebalgs
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Yu Huang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Colin Longstaff
- Biotherapeutics Section, National Institute for Biological Standards and Control, South Mimms, Hertfordshire EN6 3QG, UK.
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK.
- MRC Unit for Lifelong Health and Ageing at University College London, London WC1B 5JU, UK.
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Simon A Thom
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, London W12 0NN, UK.
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
27
|
Brass LF, Tomaiuolo M, Welsh J, Poventud-Fuentes I, Zhu L, Diamond SL, Stalker TJ. Hemostatic Thrombus Formation in Flowing Blood. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00020-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Chitsaz A, Nejat A, Nouri R. Three-Dimensional Numerical Simulations of Aspiration Process: Evaluation of Two Penumbra Aspiration Catheters Performance. Artif Organs 2018; 42:E406-E419. [PMID: 30444047 DOI: 10.1111/aor.13300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/05/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022]
Abstract
Acute ischemic stroke (AIS) is the leading cause of mortality and disability worldwide. AIS occur while cerebral arteries become blocked by embolism or thrombosis. Aspiration thrombectomy is a promising interventional device to extract massive clots from occluded cerebral arteries. The aim of this article is to develop a computer-aided method to clarify the performance of aspiration catheter and identify the risks of aspiration for each specific AIS patient. In order to simulate the aspiration process, a three-dimensional fluid-structure interaction (FSI) method was developed. The blood clot was modeled as a porous media which composed of viscoelastic fibrin networks. The finite element method (FEM) was implemented to compute the blood flow dynamics in the simplified cerebral vessel. The introduced clot model was validated by comparing the numerical results with experimental data. Furthermore, the analytical solution of the flow through the partially porous pipe was considered to validate FEM. In this research, the performance of two model of the Penumbra aspiration catheter-4MAX and 5MAX-were were compared at three distinct suction pressures. The aspiration ratio of the clot, aspiration time, amount of free fragments, wall shear stress (WSS), and extracted volume of the blood were calculated to evaluate catheters performance. At suction pressure -50 kPa, the aspiration ratio of 5MAX catheter reached 86.58% within 1.36 s. However, in 4MAX case, aspiration ratio of 76.41% was achieved within 1.39. Also, 5MAX catheter created 6.11% fewer free fragments in comparison to 4MAX. Hence, the possibility of distal embolization of 4MAX model was greater. However, the risk of vessel wall rupture was higher in 5MAX by considering mean WSS.
Collapse
Affiliation(s)
- Alireza Chitsaz
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Nejat
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Reza Nouri
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
Piebalgs A, Gu B, Roi D, Lobotesis K, Thom S, Xu XY. Computational Simulations of Thrombolytic Therapy in Acute Ischaemic Stroke. Sci Rep 2018; 8:15810. [PMID: 30361673 PMCID: PMC6202379 DOI: 10.1038/s41598-018-34082-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/10/2018] [Indexed: 11/09/2022] Open
Abstract
Ischaemic stroke can occur when an artery to the brain is blocked by a blood clot. The use of thrombolytic agents, such as tissue plasminogen activator (tPA), to dissolve the occluding clot is limited by the risk of intracerebral haemorrhage (ICH), a known side effect associated with tPA. We developed a computational thrombolysis model for a 3D patient-specific artery coupled with a compartmental model for temporal concentrations of tPA and lysis proteins during intravenous infusion of tPA, in order to evaluate the effects of tPA dose on the efficacy of thrombolytic therapy and the risk of ICH. The model was applied to a 3-mm-long fibrin clot with two different fibrin fibre radii in the middle cerebral artery (MCA) - a setting relevant to ischaemic stroke, and results for different tPA dose levels and fibrin fibre radii were compared. Our simulation results showed that clot lysis was accelerated at higher tPA doses at the expense of a substantial increase in the risk of ICH. It was also found that a fine clot with a smaller fibre radius dissolved much slowly than a coarse clot due to a slower tPA penetration into the clots.
Collapse
Affiliation(s)
- Andris Piebalgs
- Faculty of Engineering, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Boram Gu
- Faculty of Engineering, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Dylan Roi
- Imaging Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, W6 8RF, United Kingdom
| | - Kyriakos Lobotesis
- Imaging Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, W6 8RF, United Kingdom
| | - Simon Thom
- Faculty of Medicine, National Heart & Lung Institute, Hammersmith Campus, Imperial College London, London, W12 0NN, United Kingdom
| | - Xiao Yun Xu
- Faculty of Engineering, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
30
|
Hu J, Huang S, Zhu L, Huang W, Zhao Y, Jin K, ZhuGe Q. Tissue Plasminogen Activator-Porous Magnetic Microrods for Targeted Thrombolytic Therapy after Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32988-32997. [PMID: 30192506 DOI: 10.1021/acsami.8b09423] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tissue plasminogen activator (tPA) is the only FDA approved thrombolytic drug for acute ischemic stroke but concerns regarding its limitations remain. Here, we developed a new strategy by incorporating tPA into porous magnetic iron oxide (Fe3O4)-microrods (tPA-MRs) for targeted thrombolytic therapy in ischemic stroke induced by distal middle cerebral artery occlusion. We showed that intra-arterial injection of tPA-MRs could target the cerebral blood clot in vivo under the guidance of an external magnet, where tPA was subsequently released at the site of embolism. When applied with an external rotating magnetic field, rotating tPA-MRs significantly improved not only the mass transport of the tPA-clot reaction, but also mechanically disrupted the clot network, which thus increased clot interaction and penetration of tPA. Importantly, intravenously injected MRs could be discharged from the kidney, and the function of liver and kidney were not damaged at different durations after administration of tPA-MRs. Our data suggest that tPA-MRs overcome the limitations of thrombolytic therapy with tPA alone, which may be not only just for the treatment of ischemic stroke but also have majorly impact on other thrombotic diseases.
Collapse
Affiliation(s)
- Jiangnan Hu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
- Department of Pharmacology and Neuroscience , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Shengwei Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Lu Zhu
- College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Weijie Huang
- Department of Physics and Astronomy , University of Georgia , Athens , Georgia 30602 , United States
| | - Yiping Zhao
- Department of Physics and Astronomy , University of Georgia , Athens , Georgia 30602 , United States
| | - Kunlin Jin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
- Department of Pharmacology and Neuroscience , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine , Xuanwu Hospital , Capital Medical University , Beijing , 100053 , China
| | - Qichuan ZhuGe
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
31
|
Kaesmacher J, Mosimann PJ, Giarrusso M, El-Koussy M, Zibold F, Piechowiak E, Dobrocky T, Meier R, Jung S, Bellwald S, Arnold M, Mordasini P, Fischer U, Gralla J. Multivessel Occlusion in Patients Subjected to Thrombectomy: Prevalence, Associated Factors, and Clinical Implications. Stroke 2018; 49:1355-1362. [PMID: 29769241 DOI: 10.1161/strokeaha.118.021276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Patients with embolic large-vessel occlusion may present with additional coincidental acute occlusions within or distant from the involved territory, referred to as multivessel occlusion (MVO). Purpose of this study was to assess prevalence of MVO, associated factors, and clinical relevance in patients undergoing endovascular stroke treatment. METHODS Image data of consecutive endovascular candidates (n=720) with direct access to angiography were extracted from a prospective registry. Prevalence of MVO was assessed with multimodal magnetic resonance imaging/computed tomography and confirmed by intra-arterial angiography. Explorative analysis of associated factors and clinical relevance was evaluated using multivariable logistic regression including variables with P<0.15 in univariate comparison. Good functional outcome was defined as modified Rankin Scale score ≤2 at day 90. RESULTS MVO was present in 10.7% of patients (95% confidence interval [CI], 6.4%-13.0%). Two, 3, and 4 concomitant occlusions were found in 80.5%, 16.9%, and 2.6% of MVO cases, respectively. Detection rate on initial radiological report was 54.5%. Downstream MVO was present in around one third of MVO (n=27/77, 35.1%), whereas all other MVO (n=50/77, 64.9%) occurred in different territories. Independent factors related to MVO were statin treatment (adjusted odds ratio [aOR], 0.477; 95% CI, 0.276-0.827), higher systolic blood pressure (aOR per mm Hg increase, 1.014; 95% CI, 1.005-1.023), and primary occlusion site M2 (aOR, 1.870; 95% CI, 1.103-3.170). MVO was related to lower rates of successful reperfusion (aOR, 0.549; 95% CI, 0.316-0.953) and lower rates of good functional outcome (aOR, 0.437; 95% CI, 0.207-0.923). CONCLUSIONS Every tenth patient subjected to angiography for endovascular stroke treatment experienced MVO in our series, and only half were prospectively identified on preinterventional diagnostic imaging. Patients with MVO had higher baseline systolic blood pressure and were less often medicated with statins, an observation that warrants external validation and evaluation regarding causality. Occurrence of MVO has implication for treatment decisions, negatively affects endovascular treatment success, and is predictive of worse clinical outcome.
Collapse
Affiliation(s)
- Johannes Kaesmacher
- From the University Institute of Diagnostic and Interventional Neuroradiology (J.K., P.J.M., M.E.-K., F.Z., E.P., T.D., S.B., P.M., J.G.).,Department of Neurology (J.K., M.G., S.J., S.B., M.A., U.F.)
| | - Pascal J Mosimann
- From the University Institute of Diagnostic and Interventional Neuroradiology (J.K., P.J.M., M.E.-K., F.Z., E.P., T.D., S.B., P.M., J.G.)
| | | | - Marwan El-Koussy
- From the University Institute of Diagnostic and Interventional Neuroradiology (J.K., P.J.M., M.E.-K., F.Z., E.P., T.D., S.B., P.M., J.G.)
| | - Felix Zibold
- From the University Institute of Diagnostic and Interventional Neuroradiology (J.K., P.J.M., M.E.-K., F.Z., E.P., T.D., S.B., P.M., J.G.)
| | - Eike Piechowiak
- From the University Institute of Diagnostic and Interventional Neuroradiology (J.K., P.J.M., M.E.-K., F.Z., E.P., T.D., S.B., P.M., J.G.)
| | - Tomas Dobrocky
- From the University Institute of Diagnostic and Interventional Neuroradiology (J.K., P.J.M., M.E.-K., F.Z., E.P., T.D., S.B., P.M., J.G.)
| | - Raphael Meier
- Support Center for Advanced Neuroimaging (R.M.), University of Bern, Inselspital, Switzerland
| | - Simon Jung
- Department of Neurology (J.K., M.G., S.J., S.B., M.A., U.F.)
| | - Sebastian Bellwald
- From the University Institute of Diagnostic and Interventional Neuroradiology (J.K., P.J.M., M.E.-K., F.Z., E.P., T.D., S.B., P.M., J.G.).,Department of Neurology (J.K., M.G., S.J., S.B., M.A., U.F.)
| | - Marcel Arnold
- Department of Neurology (J.K., M.G., S.J., S.B., M.A., U.F.)
| | - Pasquale Mordasini
- From the University Institute of Diagnostic and Interventional Neuroradiology (J.K., P.J.M., M.E.-K., F.Z., E.P., T.D., S.B., P.M., J.G.)
| | - Urs Fischer
- Department of Neurology (J.K., M.G., S.J., S.B., M.A., U.F.)
| | - Jan Gralla
- From the University Institute of Diagnostic and Interventional Neuroradiology (J.K., P.J.M., M.E.-K., F.Z., E.P., T.D., S.B., P.M., J.G.)
| |
Collapse
|
32
|
Gessmann J, Seybold D, Ayami F, Peter E, Baecker H, Schildhauer TA, Köller M. Peripheral Blood Plasma Clot as a Local Antimicrobial Drug Delivery Matrix. Tissue Eng Part A 2018; 24:809-818. [DOI: 10.1089/ten.tea.2017.0319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jan Gessmann
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Department of Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Dominik Seybold
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Department of Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Fahim Ayami
- Department of Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Elvira Peter
- Department of Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Hinnerk Baecker
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Thomas Armin Schildhauer
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Manfred Köller
- Department of Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
33
|
Ngoepe MN, Frangi AF, Byrne JV, Ventikos Y. Thrombosis in Cerebral Aneurysms and the Computational Modeling Thereof: A Review. Front Physiol 2018; 9:306. [PMID: 29670533 PMCID: PMC5893827 DOI: 10.3389/fphys.2018.00306] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/13/2018] [Indexed: 01/26/2023] Open
Abstract
Thrombosis is a condition closely related to cerebral aneurysms and controlled thrombosis is the main purpose of endovascular embolization treatment. The mechanisms governing thrombus initiation and evolution in cerebral aneurysms have not been fully elucidated and this presents challenges for interventional planning. Significant effort has been directed towards developing computational methods aimed at streamlining the interventional planning process for unruptured cerebral aneurysm treatment. Included in these methods are computational models of thrombus development following endovascular device placement. The main challenge with developing computational models for thrombosis in disease cases is that there exists a wide body of literature that addresses various aspects of the clotting process, but it may not be obvious what information is of direct consequence for what modeling purpose (e.g., for understanding the effect of endovascular therapies). The aim of this review is to present the information so it will be of benefit to the community attempting to model cerebral aneurysm thrombosis for interventional planning purposes, in a simplified yet appropriate manner. The paper begins by explaining current understanding of physiological coagulation and highlights the documented distinctions between the physiological process and cerebral aneurysm thrombosis. Clinical observations of thrombosis following endovascular device placement are then presented. This is followed by a section detailing the demands placed on computational models developed for interventional planning. Finally, existing computational models of thrombosis are presented. This last section begins with description and discussion of physiological computational clotting models, as they are of immense value in understanding how to construct a general computational model of clotting. This is then followed by a review of computational models of clotting in cerebral aneurysms, specifically. Even though some progress has been made towards computational predictions of thrombosis following device placement in cerebral aneurysms, many gaps still remain. Answering the key questions will require the combined efforts of the clinical, experimental and computational communities.
Collapse
Affiliation(s)
- Malebogo N Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Cape Town, South Africa.,Centre for High Performance Computing, Council for Scientific and Industrial Research, Cape Town, South Africa.,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Alejandro F Frangi
- Center for Computational Imaging and Simulation Technologies in Biomedicine, University of Sheffield, Sheffield, United Kingdom
| | - James V Byrne
- Department of Neuroradiology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Yiannis Ventikos
- UCL Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
34
|
Menichini C, Cheng Z, Gibbs RG, Xu XY. A computational model for false lumen thrombosis in type B aortic dissection following thoracic endovascular repair. J Biomech 2018; 66:36-43. [DOI: 10.1016/j.jbiomech.2017.10.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/28/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
35
|
Menichini C, Cheng Z, Gibbs RGJ, Xu XY. Predicting false lumen thrombosis in patient-specific models of aortic dissection. J R Soc Interface 2017; 13:rsif.2016.0759. [PMID: 27807275 PMCID: PMC5134025 DOI: 10.1098/rsif.2016.0759] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/11/2016] [Indexed: 01/03/2023] Open
Abstract
Aortic dissection causes splitting of the aortic wall layers, allowing blood to enter a ‘false lumen’ (FL). For type B dissection, a significant predictor of patient outcomes is patency or thrombosis of the FL. Yet, no methods are currently available to assess the chances of FL thrombosis. In this study, we present a new computational model that is capable of predicting thrombus formation, growth and its effects on blood flow under physiological conditions. Predictions of thrombus formation and growth are based on fluid shear rate, residence time and platelet distribution, which are evaluated through convection–diffusion–reaction transport equations. The model is applied to a patient-specific type B dissection for which multiple follow-up scans are available. The predicted thrombus formation and growth patterns are in good qualitative agreement with clinical data, demonstrating the potential applicability of the model in predicting FL thrombosis for individual patients. Our results show that the extent and location of thrombosis are strongly influenced by aortic dissection geometry that may change over time. The high computational efficiency of our model makes it feasible for clinical applications. By predicting which aortic dissection patient is more likely to develop FL thrombosis, the model has great potential to be used as part of a clinical decision-making tool to assess the need for early endovascular intervention for individual dissection patients.
Collapse
Affiliation(s)
- Claudia Menichini
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Zhuo Cheng
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Richard G J Gibbs
- Department of Surgery and Cancer, St Marys Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
36
|
Tasci TO, Disharoon D, Schoeman RM, Rana K, Herson PS, Marr DWM, Neeves KB. Enhanced Fibrinolysis with Magnetically Powered Colloidal Microwheels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700954. [PMID: 28719063 PMCID: PMC7927958 DOI: 10.1002/smll.201700954] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/16/2017] [Indexed: 05/19/2023]
Abstract
Thrombi that occlude blood vessels can be resolved with fibrinolytic agents that degrade fibrin, the polymer that forms between and around platelets to provide mechanical stability. Fibrinolysis rates however are often constrained by transport-limited delivery to and penetration of fibrinolytics into the thrombus. Here, these limitations are overcome with colloidal microwheel (µwheel) assemblies functionalized with the fibrinolytic tissue-type plasminogen activator (tPA) that assemble, rotate, translate, and eventually disassemble via applied magnetic fields. These microwheels lead to rapid fibrinolysis by delivering a high local concentration of tPA to induce surface lysis and, by taking advantage of corkscrew motion, mechanically penetrating into fibrin gels and platelet-rich thrombi to initiate bulk degradation. Fibrinolysis of plasma-derived fibrin gels by tPA-microwheels is fivefold faster than with 1 µg mL-1 tPA. µWheels following corkscrew trajectories can also penetrate through 100 µm sized platelet-rich thrombi formed in a microfluidic model of hemostasis in ≈5 min. This unique combination of surface and bulk dissolution mechanisms with mechanical action yields a targeted fibrinolysis strategy that could be significantly faster than approaches relying on diffusion alone, making it well-suited for occlusions in small or penetrating vessels not accessible to catheter-based removal.
Collapse
Affiliation(s)
- Tonguc O Tasci
- Chemical and Biological Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA
| | - Dante Disharoon
- Chemical and Biological Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA
| | - Rogier M Schoeman
- Chemical and Biological Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA
| | - Kuldeepsinh Rana
- Chemical and Biological Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado School of Medicine, 12800 East 19th Ave., Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado School of Medicine, 12800 East 19th Ave., Aurora, CO, 80045, USA
| | - David W M Marr
- Chemical and Biological Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA
| | - Keith B Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA
- Department of Pediatrics, University of Colorado School of Medicine, 12800 East 19th Ave., Aurora, CO, 80045, USA
| |
Collapse
|
37
|
Zamanlu M, Farhoudi M, Eskandani M, Mahmoudi J, Barar J, Rafi M, Omidi Y. Recent advances in targeted delivery of tissue plasminogen activator for enhanced thrombolysis in ischaemic stroke. J Drug Target 2017; 26:95-109. [PMID: 28796540 DOI: 10.1080/1061186x.2017.1365874] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue plasminogen activator (tPA) is the only FDA approved medical treatment for the ischaemic stroke. However, it associates with some inevitable limitations, including: short therapeutic window, extremely short half-life and low penetration in large clots. Systemic administration may lead to complications such as haemorrhagic conversion in the brain and relapse in the form of re-occlusion. Furthermore, ultrasound has been utilised in combination with contrast agents, echogenic liposome, microspheres or nanoparticles (NPs) carrying tPA for improving thrombolysis - an approach that has resulted in slight improvement of tPA delivery and facilitated thrombolysis. Most of these delivery systems are able to extend the circulating half-life and clot penetration of tPA. Various technologies employed for ameliorated thrombolytic therapy are in different phases, some are in final steps for clinical applications while some others are under investigations for their safety and efficacy in human cases. Here, recent progresses on the thrombolytic therapy using novel nano- and micro-systems incorporating tPA are articulated. Of these, liposomes and microspheres, polymeric NPs and magnetic nanoparticles (MNPs) are discussed. Key technologies implemented for efficient delivery of tPA and advanced thrombolytic therapy and their advantages/disadvantages are further expressed.
Collapse
Affiliation(s)
- Masumeh Zamanlu
- a Neurosciences Research Center (NSRC), Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Farhoudi
- a Neurosciences Research Center (NSRC), Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Morteza Eskandani
- b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Javad Mahmoudi
- a Neurosciences Research Center (NSRC), Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Jaleh Barar
- b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Pharmaceutics, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Rafi
- d Department of Neurology, Sidney Kimmel College of Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Yadollah Omidi
- b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Pharmaceutics, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
38
|
Bannish BE, Chernysh IN, Keener JP, Fogelson AL, Weisel JW. Molecular and Physical Mechanisms of Fibrinolysis and Thrombolysis from Mathematical Modeling and Experiments. Sci Rep 2017; 7:6914. [PMID: 28785035 PMCID: PMC5547096 DOI: 10.1038/s41598-017-06383-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022] Open
Abstract
Despite the common use of thrombolytic drugs, especially in stroke treatment, there are many conflicting studies on factors affecting fibrinolysis. Because of the complexity of the fibrinolytic system, mathematical models closely tied with experiments can be used to understand relationships within the system. When tPA is introduced at the clot or thrombus edge, lysis proceeds as a front. We developed a multiscale model of fibrinolysis that includes the main chemical reactions: the microscale model represents a single fiber cross-section; the macroscale model represents a three-dimensional fibrin clot. The model successfully simulates the spatial and temporal locations of all components and elucidates how lysis rates are determined by the interplay between the number of tPA molecules in the system and clot structure. We used the model to identify kinetic conditions necessary for fibrinolysis to proceed as a front. We found that plasmin regulates the local concentration of tPA through forced unbinding via degradation of fibrin and tPA release. The mechanism of action of tPA is affected by the number of molecules present with respect to fibrin fibers. The physical mechanism of plasmin action (crawling) and avoidance of inhibition is defined. Many of these new findings have significant implications for thrombolytic treatment.
Collapse
Affiliation(s)
- Brittany E Bannish
- University of Central Oklahoma, Department of Mathematics and Statistics, Edmond, OK, 73034, USA.
| | - Irina N Chernysh
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA, 19104, USA
| | - James P Keener
- University of Utah, Departments of Mathematics and Bioengineering, Salt Lake City, UT, 84112-0090, USA
| | - Aaron L Fogelson
- University of Utah, Departments of Mathematics and Bioengineering, Salt Lake City, UT, 84112-0090, USA
| | - John W Weisel
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA, 19104, USA
| |
Collapse
|
39
|
Activated Monocytes Enhance Platelet-Driven Contraction of Blood Clots via Tissue Factor Expression. Sci Rep 2017; 7:5149. [PMID: 28698680 PMCID: PMC5506001 DOI: 10.1038/s41598-017-05601-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/31/2017] [Indexed: 01/13/2023] Open
Abstract
Platelet-driven reduction in blood clot volume (clot contraction or retraction) has been implicated to play a role in hemostasis and thrombosis. Although these processes are often linked with inflammation, the role of inflammatory cells in contraction of blood clots and thrombi has not been investigated. The aim of this work was to study the influence of activated monocytes on clot contraction. The effects of monocytes were evaluated using a quantitative optical tracking methodology to follow volume changes in a blood clot formed in vitro. When a physiologically relevant number of isolated human monocytes pre-activated with phorbol-12-myristate-13-acetate (PMA) were added back into whole blood, the extent and rate of clot contraction were increased compared to addition of non-activated cells. Inhibition of tissue factor expression or its inactivation on the surface of PMA-treated monocytes reduced the extent and rate of clot contraction back to control levels with non-activated monocytes. On the contrary, addition of tissue factor enhanced clot contraction, mimicking the effects of tissue factor expressed on the activated monocytes. These data suggest that the inflammatory cells through their expression of tissue factor can directly affect hemostasis and thrombosis by modulating the size and density of intra- and extravascular clots and thrombi.
Collapse
|
40
|
Mancia L, Vlaisavljevich E, Xu Z, Johnsen E. Predicting Tissue Susceptibility to Mechanical Cavitation Damage in Therapeutic Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1421-1440. [PMID: 28408061 DOI: 10.1016/j.ultrasmedbio.2017.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 05/25/2023]
Abstract
Histotripsy is a developing focused ultrasound procedure that uses cavitation bubbles to mechanically homogenize soft tissue. To better understand the mechanics of tissue damage, a numerical model of single-bubble dynamics was used to calculate stress, strain and strain rate fields produced by a cavitation bubble exposed to a tensile histotripsy pulse. The explosive bubble growth and its subsequent collapse were found to depend on the properties of the surrounding material and on the histotripsy pulse. Stresses far greater than gigapascals were observed close to the bubble wall, but attenuated by four to six orders of magnitude within 50 μm from the bubble wall, with at least two orders of magnitude attenuation occurring within the first 10 μm from the bubble. Elastic stresses were found to dominate close to the bubble wall, whereas viscous stresses tended to persist farther into the surroundings. A non-dimensional parameter combining tissue, waveform and bubble properties was identified that dictates the dominant stress (viscous vs. elastic) as a function of distance from the bubble nucleus. In a cycle of bubble growth and collapse, characteristic times at which mechanical damage is likely to occur and dominant mechanisms acting at each time were identified.
Collapse
Affiliation(s)
- Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Hudson NE. Biophysical Mechanisms Mediating Fibrin Fiber Lysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2748340. [PMID: 28630861 PMCID: PMC5467299 DOI: 10.1155/2017/2748340] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/30/2017] [Indexed: 01/19/2023]
Abstract
The formation and dissolution of blood clots is both a biochemical and a biomechanical process. While much of the chemistry has been worked out for both processes, the influence of biophysical properties is less well understood. This review considers the impact of several structural and mechanical parameters on lytic rates of fibrin fibers. The influences of fiber and network architecture, fiber strain, FXIIIa cross-linking, and particle transport phenomena will be assessed. The importance of the mechanical aspects of fibrinolysis is emphasized, and future research avenues are discussed.
Collapse
Affiliation(s)
- Nathan E. Hudson
- Department of Physics, East Carolina University, N304 Howell Science Complex, Greenville, NC 27858, USA
| |
Collapse
|
42
|
Kim DE, Kim JY, Schellingerhout D, Ryu JH, Lee SK, Jeon S, Lee JS, Kim J, Jang HJ, Park JE, Kim EJ, Kwon IC, Ahn CH, Nahrendorf M, Kim K. Quantitative Imaging of Cerebral Thromboemboli In Vivo. Stroke 2017; 48:1376-1385. [DOI: 10.1161/strokeaha.117.016511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 01/21/2023]
Abstract
Background and Purpose—
Quantitative imaging for the noninvasive assessment of thrombolysis is needed to advance basic and clinical thrombosis-related research and tailor tissue-type plasminogen activator (tPA) treatment for stroke patients. We quantified the evolution of cerebral thromboemboli using fibrin-targeted glycol chitosan–coated gold nanoparticles and microcomputed tomography, with/without tPA therapy.
Methods—
We injected thrombi into the distal internal carotid artery in mice (n=50). Fifty-five minutes later, we injected fibrin-targeted glycol chitosan–coated gold nanoparticles, and 5 minutes after that, we treated animals with tPA or not (25 mg/kg). We acquired serial microcomputed tomography images for 24 hours posttreatment.
Results—
Thrombus burden at baseline was 784×10
3
±59×10
3
μm
2
for the tPA group (n=42) and 655×10
3
±103×10
3
μm
2
for the saline group (n=8;
P
=0.37). Thrombus shrinkage began at 0.5 to 1 hour after tPA therapy, with a maximum initial rate of change at 4603±957 μm
2
/min. The rate of change lowered to ≈61% level of the initial in hours 1 to 2, followed by ≈29% and ≈1% in hours 2 to 3 and 3 to 24, respectively. Thus, 85% of total thrombolysis over 24 hours (≈500 μm
2
, equivalent to 64% of the baseline thrombus burden) occurred within the first 3 hours of treatment. Thrombus burden at 24 hours could be predicted at around 1.5 to 2 hours. Saline treatment was not associated with significant changes in the thrombus burden. Infarct size was smaller in the tPA group versus saline group (18.1±2.3 versus 45.8±3.3 mm
2
;
P
<0.01). Infarct size correlated to final thrombus burden (
r
=0.71;
P
<0.01). Time to thrombolysis, completeness of thrombolysis, and tPA therapy were independent predictors of infarct size.
Conclusions—
Thromboembolic burden and the efficacy of tPA therapy can be assessed serially, noninvasively, and quantitatively using high-resolution microcomputed tomography and a fibrin-binding nanoparticle imaging agent.
Collapse
Affiliation(s)
- Dong-Eog Kim
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Jeong-Yeon Kim
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Dawid Schellingerhout
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Ju Hee Ryu
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Su-Kyoung Lee
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Sangmin Jeon
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Ji Sung Lee
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Jiwon Kim
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Hee Jeong Jang
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Jung E. Park
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Eo Jin Kim
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Ick Chan Kwon
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Cheol-Hee Ahn
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Matthias Nahrendorf
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Kwangmeyung Kim
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| |
Collapse
|
43
|
Abstract
The systems analysis of thrombosis seeks to quantitatively predict blood function in a given vascular wall and hemodynamic context. Relevant to both venous and arterial thrombosis, a Blood Systems Biology approach should provide metrics for rate and molecular mechanisms of clot growth, thrombotic risk, pharmacological response, and utility of new therapeutic targets. As a rapidly created multicellular aggregate with a polymerized fibrin matrix, blood clots result from hundreds of unique reactions within and around platelets propagating in space and time under hemodynamic conditions. Coronary artery thrombosis is dominated by atherosclerotic plaque rupture, complex pulsatile flows through stenotic regions producing high wall shear stresses, and plaque-derived tissue factor driving thrombin production. In contrast, venous thrombosis is dominated by stasis or depressed flows, endothelial inflammation, white blood cell-derived tissue factor, and ample red blood cell incorporation. By imaging vessels, patient-specific assessment using computational fluid dynamics provides an estimate of local hemodynamics and fractional flow reserve. High-dimensional ex vivo phenotyping of platelet and coagulation can now power multiscale computer simulations at the subcellular to cellular to whole vessel scale of heart attacks or strokes. In addition, an integrated systems biology approach can rank safety and efficacy metrics of various pharmacological interventions or clinical trial designs.
Collapse
Affiliation(s)
- Scott L Diamond
- From the Department of Chemical Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia.
| |
Collapse
|
44
|
Malfroy Camine V, Terrier A, Pioletti DP. Micromotion-induced peri-prosthetic fluid flow around a cementless femoral stem. Comput Methods Biomech Biomed Engin 2017; 20:730-736. [PMID: 28271719 DOI: 10.1080/10255842.2017.1296954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Micromotion-induced interstitial fluid flow at the bone-implant interface has been proposed to play an important role in aseptic loosening of cementless implants. High fluid velocities are thought to promote aseptic loosening through activation of osteoclasts, shear stress induced control of mesenchymal stem cells differentiation, or transport of molecules. In this study, our objectives were to characterize and quantify micromotion-induced fluid flow around a cementless femoral stem using finite element modeling. With a 2D model of the bone-implant interface and full-factorial design, we first evaluated the relative influence of material properties, and bone-implant micromotion and gap on fluid velocity. Transverse sections around a femoral stem were built from computed tomography images, while boundary conditions were obtained from experimental measurements on the same femur. In a second step, a 3D model was built from the same data-set to estimate the shear stress experienced by cells hosted in the peri-implant tissues. The full-factorial design analysis showed that local micromotion had the most influence on peak fluid velocity at the interface. Remarkable variations in fluid velocity were observed in the macrostructures at the surface of the implant in the 2D transverse sections of the stem. The 3D model predicted peak fluid velocities extending up to 2.2 mm/s in the granulation tissue and to 3.9 mm/s in the trabecular bone. Peak shear stresses on the cells hosted in these tissues ranged from 0.1 to 12.5 Pa. These results offer insight into mechanical stimuli encountered at the bone-implant interface.
Collapse
Affiliation(s)
- Valérie Malfroy Camine
- a Laboratory of Biomechanical Orthopedics , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Alexandre Terrier
- a Laboratory of Biomechanical Orthopedics , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Dominique P Pioletti
- a Laboratory of Biomechanical Orthopedics , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| |
Collapse
|
45
|
Development of a new catheter prototype for laser thrombolysis under guidance of optical coherence tomography (OCT): validation of feasibility and efficacy in a preclinical model. J Thromb Thrombolysis 2017; 43:352-360. [DOI: 10.1007/s11239-016-1470-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Brass LF, Diamond SL. Transport physics and biorheology in the setting of hemostasis and thrombosis. J Thromb Haemost 2016; 14:906-17. [PMID: 26848552 PMCID: PMC4870125 DOI: 10.1111/jth.13280] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 02/02/2023]
Abstract
The biophysics of blood flow can dictate the function of molecules and cells in the vasculature with consequent effects on hemostasis, thrombosis, embolism, and fibrinolysis. Flow and transport dynamics are distinct for (i) hemostasis vs. thrombosis and (ii) venous vs. arterial episodes. Intraclot transport changes dramatically the moment hemostasis is achieved or the moment a thrombus becomes fully occlusive. With platelet concentrations that are 50- to 200-fold greater than platelet-rich plasma, clots formed under flow have a different composition and structure compared with blood clotted statically in a tube. The platelet-rich, core/shell architecture is a prominent feature of self-limiting hemostatic clots formed under flow. Importantly, a critical threshold concentration of surface tissue factor is required for fibrin generation under flow. Once initiated by wall-derived tissue factor, thrombin generation and its spatial propagation within a clot can be modulated by γ'-fibrinogen incorporated into fibrin, engageability of activated factor (FIXa)/activated FVIIIa tenase within the clot, platelet-derived polyphosphate, transclot permeation, and reduction of porosity via platelet retraction. Fibrin imparts tremendous strength to a thrombus to resist embolism up to wall shear stresses of 2400 dyne cm(-2) . Extreme flows, as found in severe vessel stenosis or in mechanical assist devices, can cause von Willebrand factor self-association into massive fibers along with shear-induced platelet activation. Pathological von Willebrand factor fibers are A Disintegrin And Metalloprotease with ThromboSpondin-1 domain 13 resistant but are a substrate for fibrin generation due to FXIIa capture. Recently, microfluidic technologies have enhanced the ability to interrogate blood in the context of stenotic flows, acquired von Willebrand disease, hemophilia, traumatic bleeding, and drug action.
Collapse
Affiliation(s)
- Lawrence F. Brass
- Departments of Medicine and Systems Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott L. Diamond
- Departments of Medicine and Systems Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medicine and Engineering, Department of Chemical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Ngoepe MN, Ventikos Y. Computational modelling of clot development in patient-specific cerebral aneurysm cases. J Thromb Haemost 2016; 14:262-72. [PMID: 26662678 DOI: 10.1111/jth.13220] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 11/25/2015] [Indexed: 08/31/2023]
Abstract
UNLABELLED ESSENTIALS: Clotting in cerebral aneurysms is a process that can either stabilize the aneurysm or lead to rupture. A patient-specific computational model capable of predicting cerebral aneurysm thrombosis is presented. The different clotting outcomes highlight the importance of personalization of treatment. Once validated, the model can be used to tailor treatment and to clarify clotting processes in aneurysms. BACKGROUND In cerebral aneurysms, clotting can either stabilize the aneurysm sac via aneurysm occlusion, or it can have a detrimental effect by giving rise to embolic occlusion. OBJECTIVE The work presented in this study details the development of an in silico model that combines all the salient, clinically relevant features of cerebral aneurysm clotting. A comprehensive computational model of clotting that accounts for biochemical complexity coupled with three-dimensional hemodynamics in image-derived patient aneurysms and in the presence of virtually implanted interventional devices is presented. METHODS The model is developed and presented in two stages. First, a two-dimensional computational model of clotting is presented for an idealized geometry. This enables verification of the methods with existing, physiological data before the pathological state is considered. This model is used to compare the results predicted by two different underlying biochemical cascades. The two-dimensional model is then extended to image-derived, three-dimensional aneurysmal topologies by incorporating level set methods, demonstrating the potential use of this model. RESULTS AND CONCLUSION As a proof of concept, comparisons are then made between treated and untreated aneurysms. The prediction of different clotting outcomes for different patients demonstrates that with further development, refinement and validation, this methodology could be used for patient-specific interventional planning.
Collapse
Affiliation(s)
- M N Ngoepe
- Institute of Biomedical Engineering and Department of Engineering Science, University of Oxford, Oxford, UK
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Rosebank, Cape Town, South Africa
- Centre for High Performance Computing, CSIR, Rosebank, Cape Town, South Africa
| | - Y Ventikos
- UCL Mechanical Engineering, University College London, London, UK
| |
Collapse
|
48
|
Kim JY, Ryu JH, Schellingerhout D, Sun IC, Lee SK, Jeon S, Kim J, Kwon IC, Nahrendorf M, Ahn CH, Kim K, Kim DE. Direct Imaging of Cerebral Thromboemboli Using Computed Tomography and Fibrin-targeted Gold Nanoparticles. Am J Cancer Res 2015. [PMID: 26199648 PMCID: PMC4508499 DOI: 10.7150/thno.11679] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Computed tomography (CT) is the current standard for time-critical decision-making in stroke patients, informing decisions on thrombolytic therapy with tissue plasminogen activator (tPA), which has a narrow therapeutic index. We aimed to develop a CT-based method to directly visualize cerebrovascular thrombi and guide thrombolytic therapy. Glycol-chitosan-coated gold nanoparticles (GC-AuNPs) were synthesized and conjugated to fibrin-targeting peptides, forming fib-GC-AuNP. This targeted imaging agent and non-targeted control agent were characterized in vitro and in vivo in C57Bl/6 mice (n = 107) with FeCl3-induced carotid thrombosis and/or embolic ischemic stroke. Fibrin-binding capacity was superior with fib-GC-AuNPs compared to GC-AuNPs, with thrombi visualized as high density on microCT (mCT). mCT imaging using fib-GC-AuNP allowed the prompt detection and quantification of cerebral thrombi, and monitoring of tPA-mediated thrombolytic effect, which reflected histological stroke outcome. Furthermore, recurrent thrombosis could be diagnosed by mCT without further nanoparticle administration for up to 3 weeks. fib-GC-AuNP-based direct cerebral thrombus imaging greatly enhance the value and information obtainable by regular CT, has multiple uses in basic / translational vascular research, and will likely allow personalized thrombolytic therapy in clinic by a) optimizing tPA-dosing to match thrombus burden, b) enabling the rational triage of patients to more radical therapies such as endovascular clot-retrieval, and c) potentially serving as a theranostic platform for targeted delivery of concurrent thrombolysis.
Collapse
|
49
|
Ninh C, Iftikhar A, Cramer M, Bettinger CJ. Diffusion-Reaction Models of Genipin Incorporation into Fibrin Networks. J Mater Chem B 2015; 3:4607-4615. [PMID: 30271605 DOI: 10.1039/c4tb02025a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Genipin is a naturally derived small molecule that crosslinks compounds containing primary amines including many natural biopolymers. A diffusion-reaction model to predict the rates of delivery and incorporation of genipin into fibrin networks is presented. Genipin crosslink formation within fibrin hydrogels is a multi-step process that requires genipin diffusion and reaction with primary amines in hydrated networks. The reaction rate of genipin into fibrin gels was measured via spectroscopy while the rate of marginal crosslink formation was measured by rheology. Covalent coupling between genipin and primary amines in fibrin gels obeys second-order kinetics in genipin concentration with an effective activation energy of -71.9 ± 3.2 kJ-mol-1. Genipin diffusion-reaction within fibrin gels exhibits Thiele moduli between 0.02-0.28, which suggests that the systems studied herein are reaction-limited. Genipin-crosslinked fibrin clots are resistant to fibrinolytic degradation as measured by rheology. Finally, active genipin can be delivered from poly(D,L-lactide-co-glycolide) matrices to gels at rates that are comparable to the characteristic rate of incorporation in fibrin networks. Taken together, this work establishes a quantitative framework to engineer controlled release systems for genipin delivery into protein-based hydrogel networks.
Collapse
Affiliation(s)
- Chi Ninh
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Aimon Iftikhar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Madeline Cramer
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Christopher J Bettinger
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
50
|
Khramchenkov E, Khramchenkov M. Numerical Simulation of Rheological, Chemical and Hydromechanical Processes of Thrombolysis. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1742-6596/602/1/012042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|