1
|
Landers VD, Thomas M, Isom CM, Karki D, Sokoloski KJ. Capsid protein mediated evasion of IRAK1-dependent signalling is essential to Sindbis virus neuroinvasion and virulence in mice. Emerg Microbes Infect 2024; 13:2300452. [PMID: 38164715 PMCID: PMC10773654 DOI: 10.1080/22221751.2023.2300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
ABSTRACTAlphaviruses are arthropod-borne, single-stranded positive-sense RNA viruses that are recognized as rapidly emerging pathogens. Despite being exquisitely sensitive to the effects of the innate immune response alphaviruses can readily replicate, disseminate, and induce pathogenesis in immunologically competent hosts. Nonetheless, how alphaviruses evade the induction of an innate immune response prior to viral gene expression, or in non-permissive infections, is unknown. Previously we reported the identification of a novel host/pathogen interaction between the viral Capsid (CP) protein and the host IRAK1 protein. The CP/IRAK1 interaction was determined to negatively impact IRAK1-dependent PAMP detection in vitro, however, the precise importance of the CP/IRAK1 interaction to alphaviral infection remained unknown. Here we detail the identification of the CP/IRAK1 interaction determinants of the Sindbis virus (SINV) CP protein and examine the importance of the interaction to alphaviral infection and pathogenesis in vivo using an interaction deficient mutant of the model neurotropic strain of SINV. Importantly, these interaction determinants are highly conserved across multiple Old-World alphaviruses, including Ross River virus (RRV), Mayaro virus (MAYV), Chikungunya virus (CHIKV), and Semliki Forest virus (SFV). In the absence of a functional CP/IRAK1 interaction, SINV replication is significantly restricted and fails to disseminate from the primary site of inoculation due to the induction of a robust type-I Interferon response. Altogether these data indicate that the evasion of IRAK1-dependent signalling is critical to overcoming the host innate immune response and the in vivo data presented here demonstrate the importance of the CP/IRAK1 interaction to neurovirulence and pathogenesis.
Collapse
Affiliation(s)
- V Douglas Landers
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Milton Thomas
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| |
Collapse
|
2
|
Schneider AM, Feehan RP, Sennett ML, Wills CA, Garner C, Cong Z, Billingsley EM, Flamm AF, Shantz LM, Nelson AM. TLR3 activation mediates partial epithelial-to-mesenchymal transition in human keratinocytes. Life Sci Alliance 2024; 7:e202402777. [PMID: 39348939 PMCID: PMC11443013 DOI: 10.26508/lsa.202402777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024] Open
Abstract
TLR3 is expressed in human skin and keratinocytes, and given its varied role in skin inflammation, development, and regeneration, we sought to determine the cellular response in normal human keratinocytes to TLR3 activation. We investigated this mechanism by treating primary human keratinocytes with both UVB, an endogenous and physiologic TLR3 activator, and poly(I:C), a synthetic and selective TLR3 ligand. TLR3 activation with either UVB or poly(I:C) altered keratinocyte morphology, coinciding with the key features of epithelial-to-mesenchymal transition: increased epithelial-to-mesenchymal transition gene expression, enhanced migration, and increased invasion properties. These results confirm and extend previous studies demonstrating that in addition to its classical role in the innate immune response, TLR3 signaling also regulates stem cell-like properties and developmental programs.
Collapse
Affiliation(s)
- Andrea M Schneider
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Robert P Feehan
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Mackenzie L Sennett
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Carson A Wills
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Charlotte Garner
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Zhaoyuan Cong
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | | | - Alexandra F Flamm
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Lisa M Shantz
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Amanda M Nelson
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
3
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
4
|
Rhodes VL, Waterhouse RM, Michel K. The Molecular Toll Pathway Repertoire in Anopheline Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612760. [PMID: 39345384 PMCID: PMC11429875 DOI: 10.1101/2024.09.12.612760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the An. gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles.
Collapse
Affiliation(s)
- Victoria L. Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Biology Department, Missouri Southern University, Joplin, MO 64801, USA
| | | | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Liu J, Chen W, Situ J, Li J, Chen J, Lai M, Huang F, Li B. BmToll9-1 Is a Positive Regulator of the Immune Response in the Silkworm Bombyx mori. INSECTS 2024; 15:643. [PMID: 39336611 PMCID: PMC11432072 DOI: 10.3390/insects15090643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Toll receptors are involved in the development and innate immunity of insects. BmToll9-1 is an important immune receptor in the Toll pathway. Previous studies have focused on its role as a receptor in immune response. In this study, we aimed to investigate the role of BmToll9-1 as a regulator in the immune response. The expression profiles demonstrated that BmToll9-1 was predominantly expressed in the midgut. RNA interference (RNAi) of BmToll9-1 was found to be effective in the midgut via the injection of dsRNA, which resulted in smaller and lighter larvae and cocoons. Most signaling genes in the Toll pathway and downstream effector genes were downregulated after the RNAi of BmToll9-1. The hemolymph from BmToll9-1-silenced larvae showed decreased antibacterial activity against Escherichia coli, either in growth curve or inhibition zone experiments. The above results indicate that BmToll9-1 might be positively involved in the immune pathway of silkworm. As a positive regulator, BmToll9-1 might function mainly in the gut to maintain microbial homeostasis to regulate the growth of silkworms. Silencing of BmToll9-1 downregulates the signaling genes in the Toll pathway and antimicrobial peptide (AMP) production, resulting in decreased antibacterial activity in the hemolymph.
Collapse
Affiliation(s)
- Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Weijian Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jinrong Situ
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiaxuan Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiahua Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Minchun Lai
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fengyi Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baoqi Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
6
|
Zhou H, Huang Y, Jia C, Pang Y, Liu L, Xu Y, Jin P, Qian J, Ma F. NF-κB factors cooperate with Su(Hw)/E4F1 to balance Drosophila/human immune responses via modulating dynamic expression of miR-210. Nucleic Acids Res 2024; 52:6906-6927. [PMID: 38742642 PMCID: PMC11229355 DOI: 10.1093/nar/gkae394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
MicroRNAs (miRNAs) play crucial regulatory roles in controlling immune responses, but their dynamic expression mechanisms are poorly understood. Here, we firstly confirm that the conserved miRNA miR-210 negatively regulates innate immune responses of Drosophila and human via targeting Toll and TLR6, respectively. Secondly, our findings demonstrate that the expression of miR-210 is dynamically regulated by NF-κB factor Dorsal in immune response of Drosophila Toll pathway. Thirdly, we find that Dorsal-mediated transcriptional inhibition of miR-210 is dependent on the transcriptional repressor Su(Hw). Mechanistically, Dorsal interacts with Su(Hw) to modulate cooperatively the dynamic expression of miR-210 in a time- and dose-dependent manner, thereby controlling the strength of Drosophila Toll immune response and maintaining immune homeostasis. Fourthly, we reveal a similar mechanism in human cells, where NF-κB/RelA cooperates with E4F1 to regulate the dynamic expression of hsa-miR-210 in the TLR immune response. Overall, our study reveals a conservative regulatory mechanism that maintains animal innate immune homeostasis and provides new insights into the dynamic regulation of miRNA expression in immune response.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Institute of Laboratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Chaolong Jia
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Yujia Pang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Institute of Laboratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Yina Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, Jiangsu, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
7
|
Jia D, Luo G, Guan H, Yu T, Sun X, Du Y, Wang Y, Chen H, Wei T. Arboviruses antagonize insect Toll antiviral immune signaling to facilitate the coexistence of viruses with their vectors. PLoS Pathog 2024; 20:e1012318. [PMID: 38865374 PMCID: PMC11198909 DOI: 10.1371/journal.ppat.1012318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/25/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Many plant arboviruses are persistently transmitted by piercing-sucking insect vectors. However, it remains largely unknown how conserved insect Toll immune response exerts antiviral activity and how plant viruses antagonize it to facilitate persistent viral transmission. Here, we discover that southern rice black-streaked dwarf virus (SRBSDV), a devastating planthopper-transmitted rice reovirus, activates the upstream Toll receptors expression but suppresses the downstream MyD88-Dorsal-defensin cascade, resulting in the attenuation of insect Toll immune response. Toll pathway-induced the small antibacterial peptide defensin directly interacts with viral major outer capsid protein P10 and thus binds to viral particles, finally blocking effective viral infection in planthopper vector. Furthermore, viral tubular protein P7-1 directly interacts with and promotes RING E3 ubiquitin ligase-mediated ubiquitinated degradation of Toll pathway adaptor protein MyD88 through the 26 proteasome pathway, finally suppressing antiviral defensin production. This virus-mediated attenuation of Toll antiviral immune response to express antiviral defensin ensures persistent virus infection without causing evident fitness costs for the insects. E3 ubiquitin ligase also is directly involved in the assembly of virus-induced tubules constructed by P7-1 to facilitate viral spread in planthopper vector, thereby acting as a pro-viral factor. Together, we uncover a previously unknown mechanism used by plant arboviruses to suppress Toll immune response through the ubiquitinated degradation of the conserved adaptor protein MyD88, thereby facilitating the coexistence of arboviruses with their vectors in nature.
Collapse
Affiliation(s)
- Dongsheng Jia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guozhong Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Heran Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tingting Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinyan Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yu Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yiheng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Carpenter S, O'Neill LAJ. From periphery to center stage: 50 years of advancements in innate immunity. Cell 2024; 187:2030-2051. [PMID: 38670064 PMCID: PMC11060700 DOI: 10.1016/j.cell.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Susan Carpenter
- University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Yang J, Zhang X, Li Y, Yang N, Luo J, He T, Xing Y. Inhibition of TLR4/NF-κB pathway and endoplasmic reticulum stress by overexpressed S100A4 ameliorates retinal ischemia-reperfusion injury of mice. Mol Neurobiol 2024; 61:2228-2240. [PMID: 37872355 DOI: 10.1007/s12035-023-03709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Retinal ischemia exists in various ischemic retinopathies including glaucoma, contributing to the death of retinal neurons. Calcium binding protein S100A4 is important in tumors, and our previous study found that S100A4 protects retinal ganglion cells (RGCs) against retinal ischemia-reperfusion (I/R) injury. This study was aimed to further discuss the neuroprotection and mechanisms of S100A4 in retinal I/R of mice. The rAAV-EF1α-s100a4-EGFP-WPRE or rAAV-EF1α-EGFP-WPRE-Pa was injected intravitreally 4 weeks before I/R. S100A4, molecules in TLR4 signaling pathway and endoplasmic reticulum (ER) stress branches, inflammatory molecules, and surviving RGCs and cholinergic amacrine (ChAT) cells were determined by quantitative PCR, western blot, or immunofluorescent staining. The apoptosis and necrosis of retinal neurons induced by I/R were inhibited by overexpressed S100A4. RGCs, ChAT cells, and the retinal function were preserved by S100A4 overexpressing 7 days after I/R. Mechanistically, the beneficial effects of S100A4 may be mediated by inhibiting the activation of TLR4 signaling pathway and alleviating ER stress, leading to the attenuation of inflammatory response of the retina after I/R. Our findings indicated that S100A4 has neuroprotective effect against retinal I/R injury, and promoting S100A4 expression may be an effective strategy to inhibit retinal neurons from degeneration in ischemic retinopathy.
Collapse
Affiliation(s)
- Jiayi Yang
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao Zhang
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Li
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Yang
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinyuan Luo
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao He
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yiqiao Xing
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Mpamhanga CD, Kounatidis I. The utility of Drosophila melanogaster as a fungal infection model. Front Immunol 2024; 15:1349027. [PMID: 38550600 PMCID: PMC10973011 DOI: 10.3389/fimmu.2024.1349027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Invasive fungal diseases have profound effects upon human health and are on increase globally. The World Health Organization (WHO) in 2022 published the fungal priority list calling for improved public health interventions and advance research. Drosophila melanogaster presents an excellent model system to dissect host-pathogen interactions and has been proved valuable to study immunopathogenesis of fungal diseases. In this review we highlight the recent advances in fungal-Drosophila interplay with an emphasis on the recently published WHO's fungal priority list and we focus on available tools and technologies.
Collapse
Affiliation(s)
- Chengetai D Mpamhanga
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Ilias Kounatidis
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
11
|
Fu Q, Liu Q, Zhang R, Chen J, Guo H, Ming Z, Yu F, Zheng H. Large-scale analysis of the N-terminal regulatory elements of the kinase domain in plant Receptor-like kinase family. BMC PLANT BIOLOGY 2024; 24:174. [PMID: 38443815 PMCID: PMC10916322 DOI: 10.1186/s12870-024-04846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND The N-terminal regulatory element (NRE) of Receptor-like kinases (RLKs), consisting of the juxtamembrane segment in receptor kinases (RKs) and the N-terminal extension segment in RLCKs, is a crucial component that regulates the activities of these proteins. However, the features and functions of the NRE have remained largely unexplored. Herein, we comprehensively analyze 510,233 NRE sequences in RLKs from 528 plant species, using information theory and data mining techniques to unravel their common characteristics and diversity. We also use recombinant RKs to investigate the function of the NRE in vitro. RESULTS Our findings indicate that the majority of NRE segments are around 40-80 amino acids in length and feature a serine-rich region and a 14-amino-acid consensus sequence, 'FSYEELEKAT[D/N]NF[S/D]', which contains a characteristic α-helix and ST motif that connects to the core kinase domain. This conserved signature sequence is capable of suppressing FERONIA's kinase activity. A motif discovery algorithm identifies 29 motifs with highly conserved phosphorylation sites in RK and RLCK classes, especially the motif 'VGPWKpTGLpSGQLQKAFVTGVP' in LRR-VI-2 class. Phosphorylation of an NRE motif in an LRR-VI-2 member, MDIS1, modulates the auto-phosphorylation of its co-receptor, MIK1, indicating the potential role of NRE as a 'kinase switch' in RLK activation. Furthermore, the characterization of phosphorylatable NRE motifs improves the accuracy of predicting phosphorylatable sites. CONCLUSIONS Our study provides a comprehensive dataset to investigate NRE segments from individual RLKs and enhances our understanding of the underlying mechanisms of RLK signal transduction and kinase activation processes in plant adaptation.
Collapse
Affiliation(s)
- Qiong Fu
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China
| | - Qian Liu
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China
| | - Rensen Zhang
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China
| | - Jia Chen
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China
| | - Hengchang Guo
- Shenzhen H-Great Optoelectronic Co. Ltd, Shenzhen, 518110, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Feng Yu
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China.
| | - Heping Zheng
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China.
| |
Collapse
|
12
|
Wei Z, Zhang M, Chen Y, Hu H, Zhao X, Zheng Y, Tran NT, Feng H, Zeng C, Li S. Spätzle maintains homeostasis of hemolymph microbiota in Scylla paramamosain through Toll2. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109385. [PMID: 38242262 DOI: 10.1016/j.fsi.2024.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The Toll pathway is crucial for innate immune responses in organisms (including Drosophila and mammals). The Spätzle protein outside of cells acts as a ligand for Toll receptors, enabling the transfer of signals from outside the cell to the inside. However, the function of Spätzle in the immune system of mud crab (Scylla paramamosain) remains unclear. This research discovered a novel Spätzle gene (Sp-Spz) in mud crab, which showed extensive expression in all the tissues that were examined. The RNA interference exhibited the correlation between Sp-Spz and the anti-lipopolysaccharide factors (ALFs). Knockdown of Sp-Spz decreased the expression of Sp-Toll2 but not Sp-Toll1. In Drosophila Schneider 2 cells, Sp-Spz was found interacted with Sp-Toll2. Moreover, the depletion of Sp-Spz caused the separation of hepatic lobules from the basement membrane, resulting in the disruption of the structural coherence of hepatopancreatic cells. Additionally, the knockdown of Sp-Spz resulted in changes to the composition of the hemolymph microbiota, specifically affecting the proportions of different phylum and family levels. The findings indicated that Sp-Spz may promote the synthesis of ALFs via Sp-Toll2, thereby influencing the homeostasis of microbiota in the hemolymph. In this study, novel insights into mud crab immunity are provided.
Collapse
Affiliation(s)
- Zibo Wei
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hang Hu
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xinshan Zhao
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yuqing Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Haipeng Feng
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
| | - Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China.
| |
Collapse
|
13
|
Critchlow JT, Prakash A, Zhong KY, Tate AT. Mapping the functional form of the trade-off between infection resistance and reproductive fitness under dysregulated immune signaling. PLoS Pathog 2024; 20:e1012049. [PMID: 38408106 PMCID: PMC10919860 DOI: 10.1371/journal.ppat.1012049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/07/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Immune responses benefit organismal fitness by clearing parasites but also exact costs associated with immunopathology and energetic investment. Hosts manage these costs by tightly regulating the induction of immune signaling to curtail excessive responses and restore homeostasis. Despite the theoretical importance of turning off the immune response to mitigate these costs, experimentally connecting variation in the negative regulation of immune responses to organismal fitness remains a frontier in evolutionary immunology. In this study, we used a dose-response approach to manipulate the RNAi-mediated knockdown efficiency of cactus (IκBα), a central regulator of Toll pathway signal transduction in flour beetles (Tribolium castaneum). By titrating cactus activity across four distinct levels, we derived the shape of the relationship between immune response investment and traits associated with host fitness, including infection susceptibility, lifespan, fecundity, body mass, and gut homeostasis. Cactus knock-down increased the overall magnitude of inducible immune responses and delayed their resolution in a dsRNA dose-dependent manner, promoting survival and resistance following bacterial infection. However, these benefits were counterbalanced by dsRNA dose-dependent costs to lifespan, fecundity, body mass, and gut integrity. Our results allowed us to move beyond the qualitative identification of a trade-off between immune investment and fitness to actually derive its functional form. This approach paves the way to quantitatively compare the evolution and impact of distinct regulatory elements on life-history trade-offs and fitness, filling a crucial gap in our conceptual and theoretical models of immune signaling network evolution and the maintenance of natural variation in immune systems.
Collapse
Affiliation(s)
- Justin T Critchlow
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Katherine Y Zhong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
14
|
Kloc M, Halasa M, Kubiak JZ, Ghobrial RM. Invertebrate Immunity, Natural Transplantation Immunity, Somatic and Germ Cell Parasitism, and Transposon Defense. Int J Mol Sci 2024; 25:1072. [PMID: 38256145 PMCID: PMC10815962 DOI: 10.3390/ijms25021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
While the vertebrate immune system consists of innate and adaptive branches, invertebrates only have innate immunity. This feature makes them an ideal model system for studying the cellular and molecular mechanisms of innate immunity sensu stricto without reciprocal interferences from adaptive immunity. Although invertebrate immunity is evolutionarily older and a precursor of vertebrate immunity, it is far from simple. Despite lacking lymphocytes and functional immunoglobulin, the invertebrate immune system has many sophisticated mechanisms and features, such as long-term immune memory, which, for decades, have been exclusively attributed to adaptive immunity. In this review, we describe the cellular and molecular aspects of invertebrate immunity, including the epigenetic foundation of innate memory, the transgenerational inheritance of immunity, genetic immunity against invading transposons, the mechanisms of self-recognition, natural transplantation, and germ/somatic cell parasitism.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland;
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| | - Rafik M. Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
15
|
Burghardt E, Rakijas J, Tyagi A, Majumder P, Olson BJSC, McDonald JA. Transcriptome analysis reveals temporally regulated genetic networks during Drosophila border cell collective migration. BMC Genomics 2023; 24:728. [PMID: 38041052 PMCID: PMC10693066 DOI: 10.1186/s12864-023-09839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Collective cell migration underlies many essential processes, including sculpting organs during embryogenesis, wound healing in the adult, and metastasis of cancer cells. At mid-oogenesis, Drosophila border cells undergo collective migration. Border cells round up into a small group at the pre-migration stage, detach from the epithelium and undergo a dynamic and highly regulated migration at the mid-migration stage, and stop at the oocyte, their final destination, at the post-migration stage. While specific genes that promote cell signaling, polarization of the cluster, formation of protrusions, and cell-cell adhesion are known to regulate border cell migration, there may be additional genes that promote these distinct active phases of border cell migration. Therefore, we sought to identify genes whose expression patterns changed during border cell migration. RESULTS We performed RNA-sequencing on border cells isolated at pre-, mid-, and post-migration stages. We report that 1,729 transcripts, in nine co-expression gene clusters, are temporally and differentially expressed across the three migration stages. Gene ontology analyses and constructed protein-protein interaction networks identified genes expected to function in collective migration, such as regulators of the cytoskeleton, adhesion, and tissue morphogenesis, but also uncovered a notable enrichment of genes involved in immune signaling, ribosome biogenesis, and stress responses. Finally, we validated the in vivo expression and function of a subset of identified genes in border cells. CONCLUSIONS Overall, our results identified differentially and temporally expressed genetic networks that may facilitate the efficient development and migration of border cells. The genes identified here represent a wealth of new candidates to investigate the molecular nature of dynamic collective cell migrations in developing tissues.
Collapse
Affiliation(s)
- Emily Burghardt
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Jessica Rakijas
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Antariksh Tyagi
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Pralay Majumder
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India
| | - Bradley J S C Olson
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA.
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA.
| |
Collapse
|
16
|
Gandhi A, Oelmüller R. Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses. Int J Mol Sci 2023; 24:14762. [PMID: 37834209 PMCID: PMC10573068 DOI: 10.3390/ijms241914762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany;
| |
Collapse
|
17
|
Critchlow JT, Prakash A, Zhong KY, Tate AT. Mapping the functional form of the trade-off between infection resistance and reproductive fitness under dysregulated immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552815. [PMID: 37645726 PMCID: PMC10461925 DOI: 10.1101/2023.08.10.552815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune responses benefit organismal fitness by clearing parasites but also exact costs associated with immunopathology and energetic investment. Hosts manage these costs by tightly regulating the induction of immune signaling to curtail excessive responses and restore homeostasis. Despite the theoretical importance of turning off the immune response to mitigate these costs, experimentally connecting variation in the negative regulation of immune responses to organismal fitness remains a frontier in evolutionary immunology. In this study, we used a dose-response approach to manipulate the RNAi-mediated knockdown efficiency of cactus (IκBα), a central regulator of Toll pathway signal transduction in flour beetles (Tribolium castaneum). By titrating cactus activity along a continuous gradient, we derived the shape of the relationship between immune response investment and traits associated with host fitness, including infection susceptibility, lifespan, fecundity, body mass, and gut homeostasis. Cactus knock-down increased the overall magintude of inducible immune responses and delayed their resolution in a dsRNA dose-dependent manner, promoting survival and resistance following bacterial infection. However, these benefits were counterbalanced by dsRNA dose-dependent costs to lifespan, fecundity, body mass, and gut integrity. Our results allowed us to move beyond the qualitative identification of a trade-off between immune investment and fitness to actually derive its functional form. This approach paves the way to quantitatively compare the evolution and impact of distinct regulatory elements on life-history trade-offs and fitness, filling a crucial gap in our conceptual and theoretical models of immune signaling network evolution and the maintenance of natural variation in immune systems.
Collapse
Affiliation(s)
- Justin T. Critchlow
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Katherine Y. Zhong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ann T. Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
18
|
Brock KE, Cooper RL. The Effects of Doxapram Blocking the Response of Gram-Negative Bacterial Toxin (LPS) at Glutamatergic Synapses. BIOLOGY 2023; 12:1046. [PMID: 37626932 PMCID: PMC10451348 DOI: 10.3390/biology12081046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Lipopolysaccharides (LPS) associated with Gram-negative bacteria are one factor responsible for triggering the mammalian immune response. Blocking the action of LPS is key to reducing its downstream effects. However, the direct action of LPS on cells is not yet fully addressed. LPS can have rapid, direct effects on cells in the absence of a systemic immune response. Recent studies have shown that doxapram, a blocker of a subset of K2P channels, also blocks the acute actions of LPS. Doxapram was evaluated to determine if such action also occurs at glutamatergic synapses in which it is known that LPS can increase synaptic transmission. Doxapram at 5 mM first enhanced synaptic transmission, then reduced synaptic response, while 10 mM rapidly blocked transmission. Doxapram at 5 mM blocked the excitatory response induced by LPS. Enhancing synaptic transmission with LPS and then applying LPS combined with doxapram also resulted in retarding the response of LPS. It is possible doxapram and LPS are mediated via a similar receptor or cellular responses. The potential of designing pharmacological compounds with a similar structure to doxapram and determining the binding of such compounds can aid in addressing the acute, direct actions by LPS on cells.
Collapse
Affiliation(s)
| | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA;
| |
Collapse
|
19
|
Lee JM, Yeo SG, Jung SY, Jung J, Kim SS, Yoo MC, Rim HS, Min HK, Kim SH, Park DC. Expression and Role of Toll-like Receptors in Facial Nerve Regeneration after Facial Nerve Injury. Int J Mol Sci 2023; 24:11245. [PMID: 37511005 PMCID: PMC10379409 DOI: 10.3390/ijms241411245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Facial nerve palsy directly impacts the quality of life, with patients with facial nerve palsy showing increased rates of depression and limitations in social activities. Although facial nerve palsy is not life-threatening, it can devastate the emotional and social lives of affected individuals. Hence, improving the prognosis of patients with this condition is of vital importance. The prognosis of patients with facial nerve palsy is determined by the cause of the disease, the degree of damage, and the treatment provided. The facial nerve can be easily damaged by middle ear and temporal bone surgery, trauma or infection, and tumors of the peripheral facial nerve or tumors surrounding the nerve secondary to systemic disease. In addition, idiopathic, acquired immunodeficiency syndrome and autoimmune diseases may damage the facial nerve. The treatment used for facial paralysis depends on the cause. Treatment of facial nerve amputation injury varies depending on the degree of facial nerve damage, comorbidities, and duration of injury. Recently, interest has increased in Toll-like receptors (TLRs) related to innate immune responses, as these receptors are known to be related to nerve regeneration. In addition to innate immune cells, both neurons and glia of the central nervous system (CNS) and peripheral nervous system (PNS) express TLRs. A comprehensive literature review was conducted to assess the expression and role of TLRs in peripheral nerve injury and subsequent regeneration. Studies conducted on rats and mice have demonstrated the expression of TLR1-13. Among these, TLR2-5 and TLR7 have received the most research attention in relation to facial nerve degeneration and regeneration. TLR10, TLR11, and TLR13 increase during compression injury of the facial nerve, whereas during cutting injury, TLR1-5, TLR8, and TLR10-13 increase, indicating that these TLRs are involved in the degeneration and regeneration of the facial nerve following each type of injury. Inadequate TLR expression or absence of TLR responses can hinder regeneration after facial nerve damage. Animal studies suggest that TLRs play an important role in facial nerve degeneration and regeneration.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Su Young Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Myongji Hospital, Hanyang University College of Medicine, Goyang 04763, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University Hospital, Seoul 05278, Republic of Korea
| | - Hwa Sung Rim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Hye Kyu Min
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Dong Choon Park
- Department of Obstetrics and Gynecology, St. Vincent's Hospital, The Catholic University of Korea, Suwon 442723, Republic of Korea
| |
Collapse
|
20
|
Atkinson NS. The Role of Toll and Nonnuclear NF-κB Signaling in the Response to Alcohol. Cells 2023; 12:1508. [PMID: 37296629 PMCID: PMC10252657 DOI: 10.3390/cells12111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
An understanding of neuroimmune signaling has become central to a description of how alcohol causes addiction and how it damages people with an AUD. It is well known that the neuroimmune system influences neural activity via changes in gene expression. This review discusses the roles played by CNS Toll-like receptor (TLR) signaling in the response to alcohol. Also discussed are observations in Drosophila that show how TLR signaling pathways can be co-opted by the nervous system and potentially shape behavior to a far greater extent and in ways different than generally recognized. For example, in Drosophila, TLRs substitute for neurotrophin receptors and an NF-κB at the end of a TLR pathway influences alcohol responsivity by acting non-genomically.
Collapse
Affiliation(s)
- Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
21
|
Brock KE, Elliott ER, Abul-Khoudoud MO, Cooper RL. The effects of Gram-positive and Gram-negative bacterial toxins (LTA & LPS) on cardiac function in Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104518. [PMID: 37119936 DOI: 10.1016/j.jinsphys.2023.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The effects of Gram negative and positive bacterial sepsis depend on the type of toxins released, such as lipopolysaccharides (LPS) or lipoteichoic acid (LTA). Previous studies show LPS to rapidly hyperpolarize larval Drosophila skeletal muscle, followed by desensitization and return to baseline. In larvae, heart rate increased then decreased with exposure to LPS. However, responses to LTA, as well as the combination of LTA and LPS, on the larval Drosophila heart have not been previously examined. This study examined the effects of LTA and a cocktail of LTA and LPS on heart rate. The combined effects were examined by first treating with either LTA or LPS only, and then with the cocktail. The results showed a rapid increase in heart rate upon LTA application, followed by a gradual decline over time. When applying LTA followed by the cocktail, an increase in the rate occurred. However, if LPS was applied before the cocktail, the rate continued declining. These responses indicate the receptors or cellular cascades responsible for controlling heart rate within seconds and the rapid desensitization are affected by LTA or LPS and a combination of the two. The mechanisms for rapid changes which are not regulated by gene expression by exposure to LTA or LPS or associated bacterial peptidoglycans have yet to be identified in cardiac tissues of any organism.
Collapse
Affiliation(s)
- Kaitlyn E Brock
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Elizabeth R Elliott
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
22
|
Ali Mohammadie Kojour M, Jang HA, Lee YS, Jo YH, Han YS. Innate Immune Response of TmToll-3 Following Systemic Microbial Infection in Tenebrio molitor. Int J Mol Sci 2023; 24:ijms24076751. [PMID: 37047723 PMCID: PMC10095136 DOI: 10.3390/ijms24076751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Although Toll-like receptors have been widely identified and functionally characterized in mammalian models and Drosophila, the immunological function of these receptors in other insects remains unclear. Here, we explored the relevant innate immune response of Tenebrio molitor (T. molitor) Toll-3 against Gram-negative bacteria, Gram-positive bacteria, and fungal infections. Our findings indicated that TmToll-3 expression was mainly induced by Candida albicans infections in the fat bodies, gut, Malpighian tubules, and hemolymph of young T. molitor larvae. Surprisingly, Escherichia coli systemic infection caused mortality after TmToll-3 knockdown via RNA interference (RNAi) injection, which was not observed in the control group. Further analyses indicated that in the absence of TmToll-3, the final effector of the Toll signaling pathway, antimicrobial peptide (AMP) genes and relevant transcription factors were significantly downregulated after E. coli challenge. Our results indicated that the expression of almost all AMP genes was suppressed in silenced individuals, whereas the expression of relevant genes was positively regulated after fungal injection. Therefore, this study revealed the immunological involvement of TmToll-3 in T. molitor in response to systematic infections.
Collapse
Affiliation(s)
- Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ho Am Jang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yong Hun Jo
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
23
|
Chen D, Lan X, Huang X, Huang J, Zhou X, Miao Z, Ma Y, Goto A, Ji S, Hoffmann JA. Single Cell Analysis of the Fate of Injected Oncogenic RasV12 Cells in Adult Wild Type Drosophila. J Innate Immun 2023; 15:442-467. [PMID: 36996781 PMCID: PMC10066352 DOI: 10.1159/000529096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023] Open
Abstract
We have injected dish-cultured oncogenic RasV12 cells into adult male flies and analyzed by single cell transcriptomics their destiny within the host after 11 days. We identified in the preinjection samples and in the 11-day postinjection samples in all 16 clusters of cells, of which 5 disappeared during the experiment in the host. The other cell clusters expanded and expressed genes involved in the regulation of cell cycle, metabolism, and development. In addition, three clusters expressed genes related to inflammation and defense. Predominant among these were genes coding for phagocytosis and/or characteristic for plasmatocytes (the fly equivalent of macrophages). A pilot experiment indicated that the injection into flies of oncogenic cells, in which two of most strongly expressed genes had been previously silenced by RNA interference, into flies resulted in a dramatic reduction of their proliferation in the host flies as compared to controls. As we have shown earlier, the proliferation of the injected oncogenic cells in the adult flies is a hallmark of the disease and induces a wave of transcriptions in the experimental flies. We hypothesize that this results from a bitter dialogue between the injected cells and the host, while the experiments presented here should contribute to deciphering this dialogue.
Collapse
Affiliation(s)
- Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiao Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jieqing Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Zhou
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Miao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yuting Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Akira Goto
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
| | - Shanming Ji
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
| | - Jules A. Hoffmann
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
- University of Strasbourg Institute for Advanced Study, Strasbourg, France
| |
Collapse
|
24
|
Ni M, Zhang Y, Zheng J, Cui Z. HSP40 mediated TLR-Dorsal-AMPs pathway in Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108536. [PMID: 36639068 DOI: 10.1016/j.fsi.2023.108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Heat shock protein 40 (HSP40) is a kind of molecular chaperone involved in various immune responses. However, the exact roles of HSP40 in immune defense against bacteria remain largely unclear. In this study, the activation function of a type Ⅰ HSP40 from Portunus trituberculatus (PtHSP40-Ⅰ) in the TLR pathway was investigated. The results showed that PtHSP40-Ⅰ can bind to lipopolysaccharide (LPS) and peptidoglycan (PGN). The PtHSP40-Ⅰ also exhibited binding activity toward the extracellular leucine-rich repeat (LRR) domain of Toll-like receptor (TLR). Moreover, the PtHSP40-Ⅰ could promote the transcription factor Dorsal translocated from cytoplasm into the nucleus in hemocytes and participated in regulating the expression of anti-lipopolysaccharide factor (ALF) and crustin. These findings provided insights into the activation mechanisms of TLR pathway mediated by HSP40 and offered basic theory of disease control in P. trituberculatus aquaculture.
Collapse
Affiliation(s)
- Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
25
|
Zhan F, Li Y, Shi F, Lu Z, Yang M, Li Q, Lin L, Qin Z. Transcriptome analysis of Macrobrachium rosenbergii hemocytes reveals in-depth insights into the immune response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108533. [PMID: 36639067 DOI: 10.1016/j.fsi.2023.108533] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Macrobrachium rosenbergii as one of the common freshwater prawn species in Southeast Asia, which breeding industry is seriously threatened by vibriosis and causes high mortality. In this study, the RNA-seq was employed for assessing the M. rosenbergii hemocytes transcriptomes following Vibrio parahaemolyticus challenge. After challenge for 6 h (h), there were overall 1849 DEGs or differentially expressed genes, including 1542 up-regulated and 307 down-regulated genes, and there was a total of 1048 DEGs, including 510 up-regulated genes and 538 down-regulated genes, after challenge for 12 h. Mitogen-activated protein kinase (MAPK) immune-related pathways, Toll, immune deficiency (IMD), and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) were among the immune pathways where a lot of the DEGs were connected. The expression patterns of 18 chosen immune-related genes were examined utilizing qRT-PCR or quantitative real-time polymerase chain reaction, which revealed that the V. parahaemolyticus infection activated the M. rosenbergii's immune response. Permutational multivariate analysis of variance (PERMANOVA) showed that V. parahaemolyticus infection modulated immune regulation and apoptosis pathways. The gathered information provided new insight into M. rosenbergii's immunity and suggested a novel approach to fight against bacterial infection.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
26
|
Sakakibara Y, Yamashiro R, Chikamatsu S, Hirota Y, Tsubokawa Y, Nishijima R, Takei K, Sekiya M, Iijima KM. Drosophila Toll-9 is induced by aging and neurodegeneration to modulate stress signaling and its deficiency exacerbates tau-mediated neurodegeneration. iScience 2023; 26:105968. [PMID: 36718365 PMCID: PMC9883205 DOI: 10.1016/j.isci.2023.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Drosophila Toll-9 is most closely related to mammalian Toll-like receptors; however, physiological functions of Toll-9 remain elusive. We examined the roles of Toll-9 in fly brains in aging and neurodegeneration. Toll-9 mRNA levels were increased in aged fly heads accompanied by activation of nuclear factor-kappa B (NF-kB) and stress-activated protein kinase (SAPK) signaling, and many of these changes were modulated by Toll-9 in glial cells. The loss of Toll-9 did not affect lifespan or brain integrity, whereas it exacerbated hydrogen peroxide-induced lethality. Toll-9 expression was also induced by nerve injury but did not affect acute stress response or glial engulfment activity, suggesting Toll-9 may modulate subsequent neurodegeneration. In a fly tauopathy model, Toll-9 deficiency enhanced neurodegeneration and disease-related tau phosphorylation with reduced SAPK activity, and blocking SAPK enhanced tau phosphorylation and neurodegeneration. In sum, Toll-9 is induced upon aging and nerve injury and affects neurodegeneration by modulating stress kinase signaling.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Risa Yamashiro
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Sachie Chikamatsu
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Reseach Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoko Tsubokawa
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan,Corresponding author
| | - Koichi M. Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan,Corresponding author
| |
Collapse
|
27
|
Cai Q, Guo H, Fang R, Hua Y, Zhu Y, Zheng X, Yan J, Wang J, Hu Y, Zhang C, Zhang C, Duan R, Kong F, Zhang S, Chen D, Ji S. A Toll-dependent Bre1/Rad6-cact feedback loop in controlling host innate immune response. Cell Rep 2022; 41:111795. [PMID: 36516751 DOI: 10.1016/j.celrep.2022.111795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
The Toll signaling pathway was initially identified for its involvement in the control of early embryogenesis. It was later shown to be also part of a major innate immune pathway controlling the expression of anti-microbial peptides in many eukaryotes including humans; cactus, the essential negative regulator of this pathway in flies, was found to be induced in parallel to the Toll-dependent activation process during immune defenses. We were interested in the mechanisms of this dual effect and provide here evidence that upon pathogenic stimuli, dorsal, one of the transcription factors of the fly Toll pathway, can induce the expression of the E3 ligase Bre1. We further show that Bre1 complexes with the E2 Rad6 to mono-ubiquitinate histone H2B and to promote the transcription of cactus to achieve homeostasis of the Toll immune response. Our studies characterize a Toll signal-dependent regulatory machinery in governing the Toll pathway in Drosophila.
Collapse
Affiliation(s)
- Qingshuang Cai
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Rong Fang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yongzhi Hua
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yangyang Zhu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xianrui Zheng
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Jing Yan
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jiale Wang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yixuan Hu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Chuchu Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Chao Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Renjie Duan
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Fanrui Kong
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shikun Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
28
|
Zhuang Y, Li Q, Cao C, Tang XS, Wang NA, Yuan K, Zhong GF. Bovine lactoferricin on non-specific immunity of giant freshwater prawns, Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2022; 131:891-897. [PMID: 36334700 DOI: 10.1016/j.fsi.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the effects of dietary Bovine lactoferricin (LFcinB) on the growth performance and non-specific immunity in Macrobrachium rosenbergii. Five experimental diets were 1.0‰ Bovine lactoferricin (LCB1); 1.5‰ Bovine lactoferricin (LCB1.5); 2.0‰ Bovine lactoferricin (LCB2); 2.5‰ Bovine lactoferricin (LCB2.5); the control group, basal diet without Bovine lactoferricin. A total of 600 prawns were randomly assigned to 5 groups in triplicate in 15 tanks for an 8-week feeding trial. The results showed the final weight, weight gain rate, specific growth rate and survival rate of prawns in the treatment groups were significantly improved versus the control (P < 0.05). The feed conversion ratio was reduced significantly in treatment groups compared to the control (P < 0.05). Compared with the control, alkaline phosphatase (AKP), acid phosphatase (ACP), lysozyme (LZM), catalase (CAT), superoxide dismutase (SOD) activities in the hepatopancreas of the treatment groups were significantly enhanced, and malondialdehyde (MDA) content was reduced significantly (P < 0.05). Compared with the control, the relative expression levels of AKP, ACP, LZM, CAT, SOD, Hsp70, peroxiredoxin-5, Toll, dorsal and relish genes were significantly higher among treatment groups, except for the AKP gene in the LCB1 group and the Hsp70 gene in the LCB1.5 group (P < 0.05). Compared with the control, the relative expression levels of TOR, 4E-BP, eIF4E1α and eIF4E2 genes were significantly enhanced in the LCB1.5 group (P < 0.05). When resistance against Vibrio parahaemolyticus in prawn is considered, higher doses of Bovine lactoferricin show better antibacterial ability. The present study indicated that dietary Bovine lactoferricin could significantly improve the growth performance and improve the antioxidative status of M. rosenbergii. The suitable addition level is 1.5 g/kg. LFcinB has great potential as a new feed additive without the threat of drug resistance.
Collapse
Affiliation(s)
- Yi Zhuang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qi Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Cong Cao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang-Shan Tang
- Zhejiang Hangzhou Tiao Wang Biological Technology Co., Ltd., Hangzhou, 310015, China
| | - Nu-An Wang
- South China Agricultural University, Guangzhou, 510640, China
| | - Kun Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Guo-Fang Zhong
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.
| |
Collapse
|
29
|
Lu MY, Chtarbanova S. The role of micro RNAs (miRNAs) in the regulation of Drosophila melanogaster's innate immunity. Fly (Austin) 2022; 16:382-396. [PMID: 36412256 PMCID: PMC9683055 DOI: 10.1080/19336934.2022.2149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs ~19-22 nt long which post-transcriptionally regulate gene expression. Their ability to exhibit dynamic expression patterns coupled with their wide variety of targets allows miRNAs to regulate many processes, including the innate immune response of Drosophila melanogaster. Recent studies have identified miRNAs in Drosophila which are differentially expressed during infection with different pathogens as well as miRNAs that may affect immune signalling when differentially expressed. This review provides an overview of miRNAswhich have been identified to play a role in the immune response of Drosophila through targeting of the Toll and IMD signalling pathways and other immune processes. It will also explore the role of miRNAs in fine-tuning the immune response in Drosophila and highlight current gaps in knowledge regarding the role of miRNAs in immunity and areas for further research.
Collapse
Affiliation(s)
- Max Yang Lu
- Department of Biological Sciences, the University of Alabama, Tuscaloosa, AL, USA
| | - Stanislava Chtarbanova
- Department of Biological Sciences, the University of Alabama, Tuscaloosa, AL, USA,Center for Convergent Bioscience & Medicine, University of Alabama, Tuscaloosa, AL, USA,Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA,CONTACT Stanislava Chtarbanova Department of Biological Sciences, the University of Alabama, 300, Hackberry Ln, Tuscaloosa, AL-35487, USA
| |
Collapse
|
30
|
Cerqueira de Araujo A, Josse T, Sibut V, Urabe M, Asadullah A, Barbe V, Nakai M, Huguet E, Periquet G, Drezen JM. Chelonus inanitus bracovirus encodes lineage-specific proteins and truncated immune IκB-like factors. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bracoviruses and ichnoviruses are endogenous viruses of parasitic wasps that produce particles containing virulence genes expressed in host tissues and necessary for parasitism success. In the case of bracoviruses the particles are produced by conserved genes of nudiviral origin integrated permanently in the wasp genome, whereas the virulence genes can strikingly differ depending on the wasp lineage. To date most data obtained on bracoviruses concerned species from the braconid subfamily of Microgastrinae. To gain a broader view on the diversity of virulence genes we sequenced the genome packaged in the particles of Chelonus inanitus bracovirus (CiBV) produced by a wasp belonging to a different subfamily: the Cheloninae. These are egg-larval parasitoids, which means that they oviposit into the host egg and the wasp larvae then develop within the larval stages of the host. We found that most of CiBV virulence genes belong to families that are specific to Cheloninae. As other bracoviruses and ichnoviruses however, CiBV encode v-ank genes encoding truncated versions of the immune cactus/IκB factor, which suggests these proteins might play a key role in host–parasite interactions involving domesticated endogenous viruses. We found that the structures of CiBV V-ANKs are different from those previously reported. Phylogenetic analysis supports the hypothesis that they may originate from a cactus/IκB immune gene from the wasp genome acquired by the bracovirus. However, their evolutionary history is different from that shared by other V-ANKs, whose common origin probably reflects horizontal gene transfer events of virus sequences between braconid and ichneumonid wasps.
Collapse
Affiliation(s)
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Vonick Sibut
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Mariko Urabe
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Azam Asadullah
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Madoka Nakai
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Georges Periquet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| |
Collapse
|
31
|
Choi B, Park WR, Kim YJ, Mun S, Park SJ, Jeong JH, Choi HS, Kim DK. Nuclear receptor estrogen-related receptor modulates antimicrobial peptide expression for host innate immunity in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103816. [PMID: 35926689 DOI: 10.1016/j.ibmb.2022.103816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial peptides (AMPs) are core components of innate immunity to protect insects against microbial infections. Nuclear receptors (NRs) are ligand-dependent transcription factors that can regulate the expression of genes critical for insect development including molting and metamorphosis. However, the role of NRs in host innate immune response to microbial infection remains poorly understood in Tribolium castaneum (T. castaneum). Here, we show that estrogen-related receptor (ERR), an insect ortholog of the mammalian ERR family of NRs, is a novel transcriptional regulator of AMP genes for innate immune response of T. castaneum. Tribolium ERR (TcERR) expression was induced by immune deficiency (IMD)-Relish signaling in response to infection by Escherichia coli (E. coli), a Gram-negative bacterium, as demonstrated in TcIMD-deficient beetles. Interestingly, genome-wide transcriptome analysis of TcERR-deficient old larvae using RNA-sequencing analysis showed that TcERR expression was positively correlated with gene transcription levels of AMPs including attacins, defensins, and coleoptericin. Moreover, chromatin immunoprecipitation analysis revealed that TcERR could directly bind to ERR-response elements on promoters of genes encoding defensin3 and coleoptericin, critical for innate immune response of T. castaneum. Finally, TcERR-deficient old larvae infected with E. coli displayed enhanced bacterial load and significantly less host survival. These findings suggest that TcERR can coordinate transcriptional regulation of AMPs and host innate immune response to bacterial infection.
Collapse
Affiliation(s)
- Byungyoon Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Republic of Korea.
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
32
|
Alejandro AD, Lilia JP, Jesús MB, Henry RM. The IMD and Toll canonical immune pathways of Triatoma pallidipennis are preferentially activated by Gram-negative and Gram-positive bacteria, respectively, but cross-activation also occurs. Parasit Vectors 2022; 15:256. [PMID: 35821152 PMCID: PMC9277830 DOI: 10.1186/s13071-022-05363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) participate in the humoral immune response of insects eliminating invasive microorganisms. The immune deficiency pathway (IMD) and Toll are the main pathways by which the synthesis of these molecules is regulated in response to Gram-negative (IMD pathway) or Gram-positive (Toll pathway) bacteria. Various pattern-recognition receptors (PRRs) participate in the recognition of microorganisms, such as pgrp-lc and toll, which trigger signaling cascades and activate NF-κB family transcription factors, such as relish, that translocate to the cell nucleus, mainly in the fat body, inducing AMP gene transcription. METHODS T. pallidipennis inhibited in Tppgrp-lc, Tptoll, and Tprelish were challenged with E. coli and M. luteus to analyze the expression of AMPs transcripts in the fat body and to execute survival assays. RESULTS In this work we investigated the participation of the pgrp-lc and toll receptor genes and the relish transcription factor (designated as Tppgrp-lc, Tptoll, and Tprelish), in the transcriptional regulation of defensin B, prolixicin, and lysozyme B in Triatoma pallidipennis, one of the main vectors of Chagas disease. AMP transcript abundance was higher in the fat body of blood-fed than non-fed bugs. Challenge with Escherichia coli or Micrococcus luteus induced differential increases in AMP transcripts. Additionally, silencing of Tppgrp-lc, Tptoll, and Tprelish resulted in reduced AMP transcription and survival of bugs after a bacterial challenge. CONCLUSIONS Our findings demonstrated that the IMD and Toll pathways in T. pallidipennis preferentially respond to Gram-negative and Gram-positive bacteria, respectively, by increasing the expression of AMP transcripts, but cross-induction also occurs.
Collapse
Affiliation(s)
- Alvarado-Delgado Alejandro
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| | - Juárez-Palma Lilia
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| | - Maritinez-Bartneche Jesús
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| | - Rodriguez Mario Henry
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| |
Collapse
|
33
|
Hegde S, Sreejan A, Gadgil CJ, Ratnaparkhi GS. SUMOylation of Dorsal attenuates Toll/NF-κB signaling. Genetics 2022; 221:iyac081. [PMID: 35567478 PMCID: PMC9252280 DOI: 10.1093/genetics/iyac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
In Drosophila, Toll/NF-κB signaling plays key roles in both animal development and in host defense. The activation, intensity, and kinetics of Toll signaling are regulated by posttranslational modifications such as phosphorylation, SUMOylation, or ubiquitination that target multiple proteins in the Toll/NF-κB cascade. Here, we have generated a CRISPR-Cas9 edited Dorsal (DL) variant that is SUMO conjugation resistant. Intriguingly, embryos laid by dlSCR mothers overcome dl haploinsufficiency and complete the developmental program. This ability appears to be a result of higher transcriptional activation by DLSCR. In contrast, SUMOylation dampens DL transcriptional activation, ultimately conferring robustness to the dorso-ventral program. In the larval immune response, dlSCR animals show an increase in crystal cell numbers, stronger activation of humoral defense genes, and high cactus levels. A mathematical model that evaluates the contribution of the small fraction of SUMOylated DL (1-5%) suggests that it acts to block transcriptional activation, which is driven primarily by DL that is not SUMO conjugated. Our findings define SUMO conjugation as an important regulator of the Toll signaling cascade, in both development and host defense. Our results broadly suggest that SUMO attenuates DL at the level of transcriptional activation. Furthermore, we hypothesize that SUMO conjugation of DL may be part of a Ubc9-dependent mechanism that restrains Toll/NF-κB signaling.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research, Pune 411008, India
| | - Ashley Sreejan
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
| | - Chetan J Gadgil
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
- CSIR—Institute of Genomics and Integrative Biology, New Delhi 110020, India
| | | |
Collapse
|
34
|
Jang HA, Kojour MAM, Patnaik BB, Han YS, Jo YH. Current Status of Immune Deficiency Pathway in Tenebrio molitor Innate Immunity. Front Immunol 2022; 13:906192. [PMID: 35860244 PMCID: PMC9292131 DOI: 10.3389/fimmu.2022.906192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Yellow mealworm (Tenebrio molitor) is a highly beneficial beetle that serves as an excellent source of edible protein as well as a practical study model. Therefore, studying its immune system is important. Like in other insects, the innate immune response effected through antimicrobial peptides production provides the most critical defense armory in T. molitor. Immune deficiency (Imd) signaling is one of the major pathways involved in the humoral innate immune response in this beetle. However, the nature of the molecules involved in the signaling cascade of the Imd pathway, from recognition to the production of final effectors, and their mechanism of action are yet to be elucidated in T. molitor model. In this review, we present a general overview of the current literature available on the Imd signaling pathway and its identified interaction partners in T. molitor.
Collapse
Affiliation(s)
- Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Bharat Bhusan Patnaik
- Post Graduate (PG) Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, India
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- *Correspondence: Yong Hun Jo,
| |
Collapse
|
35
|
Umetsu D. Cell mechanics and cell-cell recognition controls by Toll-like receptors in tissue morphogenesis and homeostasis. Fly (Austin) 2022; 16:233-247. [PMID: 35579305 PMCID: PMC9116419 DOI: 10.1080/19336934.2022.2074783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Signal transduction by the Toll-like receptors (TLRs) is conserved and essential for innate immunity in metazoans. The founding member of the TLR family, Drosophila Toll-1, was initially identified for its role in dorsoventral axis formation in early embryogenesis. The Drosophila genome encodes nine TLRs that display dynamic expression patterns during development, suggesting their involvement in tissue morphogenesis and homeostasis. Recent progress on the developmental functions of TLRs beyond dorsoventral patterning has revealed not only their diverse functions in various biological processes, but also unprecedented molecular mechanisms in directly regulating cell mechanics and cell-cell recognition independent of the canonical signal transduction pathway involving transcriptional regulation of target genes. In this review, I feature and discuss the non-immune functions of TLRs in the control of epithelial tissue homeostasis, tissue morphogenesis, and cell-cell recognition between cell populations with different cell identities.
Collapse
Affiliation(s)
- Daiki Umetsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
36
|
Lusk JB, Chua EHZ, Kaur P, Sung ICH, Lim WK, Lam VYM, Harmston N, Tolwinski NS. A non-canonical Raf function is required for dorsal-ventral patterning during Drosophila embryogenesis. Sci Rep 2022; 12:7684. [PMID: 35538124 PMCID: PMC9090920 DOI: 10.1038/s41598-022-11699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Proper embryonic development requires directional axes to pattern cells into embryonic structures. In Drosophila, spatially discrete expression of transcription factors determines the anterior to posterior organization of the early embryo, while the Toll and TGFβ signalling pathways determine the early dorsal to ventral pattern. Embryonic MAPK/ERK signaling contributes to both anterior to posterior patterning in the terminal regions and to dorsal to ventral patterning during oogenesis and embryonic stages. Here we describe a novel loss of function mutation in the Raf kinase gene, which leads to loss of ventral cell fates as seen through the loss of the ventral furrow, the absence of Dorsal/NFκB nuclear localization, the absence of mesoderm determinants Twist and Snail, and the expansion of TGFβ. Gene expression analysis showed cells adopting ectodermal fates much like loss of Toll signaling. Our results combine novel mutants, live imaging, optogenetics and transcriptomics to establish a novel role for Raf, that appears to be independent of the MAPK cascade, in embryonic patterning.
Collapse
Affiliation(s)
- Jay B Lusk
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Prameet Kaur
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Wen Kin Lim
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Nicholas S Tolwinski
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore.
- Yale-NUS College Research Labs @ E6, E6, 5 Engineering Drive 1, #04-02, Singapore, 117608, Singapore.
| |
Collapse
|
37
|
Zhang X, Shi J, Sun Y, Wang Y, Zhang Z. The potential role of eyestalk in the immunity of Litopenaeus vannamei to Vibrio parahaemolyticus infection II. From the perspective of long non-coding RNA. FISH & SHELLFISH IMMUNOLOGY 2022; 124:300-312. [PMID: 35398223 DOI: 10.1016/j.fsi.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been linked to immunological modulation. Unfortunately, little is known about the processes of immune control in shrimp. In crustaceans such as Litopenaeus vannamei, a prominent aquaculture species, the X-organ-sinus gland complex (XO-SG) in the eyestalk is an essential neuroendocrine regulatory organ. Eyestalk ablation is commonly employed in aquaculture to accelerate ovarian maturation in shrimp. It does, however, have a negative impact on the shrimps' immunocompetence and causes death. As a result, we used RNA-seq to profile the transcriptomes of L. vannamei hemocytes infected with Vibrio parahaemolyticus after the eyestalk ablation. Following strict transcript screening procedures, 2307 lncRNAs were identified from L. vannamei hemocytes in this study. Pearson correlation analysis was finally used to uncover 535 DElncRNAs and 1566 DEmRNA targets. According to the Venn diagram analysis, 326 non-eyestalk regulatory lncRNAs (NElncRNAs) with a target of 1014 non-eyestalk regulatory genes (NEmRNAs), 47 eyestalk negative regulatory lncRNAs (ENRlncRNAs) with a target of 95 eyestalk negative regulatory genes (ENRmRNAs), and 162 eyestalk positive regulatory lncRNAs (EPRlncRNAs) with a target of 457 eyestalk positive regulatory genes (EPRmRNAs) were screened. The bioinformatics analysis revealed that lncRNAs were associated with Axon regeneration, Rap1 signaling pathway, Thyroid hormone signaling pathway, TGF-beta signaling pathway, and PI3K-Akt signaling pathway, implying that lncRNAs may play a role in the regulation of the neuroendocrine-immune (NEI) system. Furthermore, several lncRNAs targeting HSP70, YWHAZ, FER2, HIF1α, and Notch were discovered and verified by qRT-PCR. These findings showed that regulation of lncRNAs in hemocytes which were controlled by the eyestalk might be one of the impact variables in controlling the differential expression of mRNAs associated with immune response in L. vannamei infected with V. parahaemolyticus.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Jialong Shi
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulong Sun
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
38
|
Moure UAE, Tan T, Sha L, Lu X, Shao Z, Yang G, Wang Y, Cui H. Advances in the Immune Regulatory Role of Non-Coding RNAs (miRNAs and lncRNAs) in Insect-Pathogen Interactions. Front Immunol 2022; 13:856457. [PMID: 35464405 PMCID: PMC9020863 DOI: 10.3389/fimmu.2022.856457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Insects are by far the most abundant and diverse living organisms on earth and are frequently prone to microbial attacks. In other to counteract and overcome microbial invasions, insects have in an evolutionary way conserved and developed immune defense mechanisms such as Toll, immune deficiency (Imd), and JAK/STAT signaling pathways leading to the expression of antimicrobial peptides. These pathways have accessory immune effector mechanisms, such as phagocytosis, encapsulation, melanization, nodulation, RNA interference (RNAi), lysis, autophagy, and apoptosis. However, pathogens evolved strategies that circumvent host immune response following infections, which may have helped insects further sophisticate their immune response mechanisms. The involvement of ncRNAs in insect immunity is undeniable, and several excellent studies or reviews have investigated and described their roles in various insects. However, the functional analyses of ncRNAs in insects upon pathogen attacks are not exhaustive as novel ncRNAs are being increasingly discovered in those organisms. This article gives an overview of the main insect signaling pathways and effector mechanisms activated by pathogen invaders and summarizes the latest findings of the immune modulation role of both insect- and pathogen-encoded ncRNAs, especially miRNAs and lncRNAs during insect–pathogen crosstalk.
Collapse
Affiliation(s)
- Ulrich Aymard Ekomi Moure
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Medical Research Institute, Southwest University, Chongqing, China
| | - Tingshan Tan
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Lin Sha
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoqin Lu
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Zhi Shao
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Guang Yang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Yi Wang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Department of Gastrointestinal Surgery, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
39
|
Sharma J, Kumar N, Mittal P, Chakrabarti R. Evaluation of UV-B protective properties of leaves and seeds of Achyranthes aspera in Asian catfish Clarias batrachus (Linn.). Photochem Photobiol Sci 2022; 21:1341-1356. [PMID: 35403962 DOI: 10.1007/s43630-022-00222-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 01/16/2023]
Abstract
The ultraviolet-B (UV-B) radiation is harmful to the aquatic organisms. The UV-B protective properties of leaves and seeds of herb Achyranthes aspera were evaluated in Clarias batrachus. Fish were fed with four diets-EFL1, EFL2 containing 0.25 and 0.5% leaves, EFS containing 0.5% seeds and control, CF. After 83 days of feeding, fish were exposed to UV-B (157 µW/cm2) for 7 days at the rate of 15 min/day. One batch of fish in each treatment was kept unexposed. Significantly higher final weight was found in EFS followed by EFL2 and EFL1 treatments. It was higher in unexposed fish compared to the exposed ones. Among exposed fish, significantly higher lysozyme was found in EFS and myeloperoxidase in EFS and EFL2 compared to others. Nitric oxide synthase and superoxide dismutase levels were significantly higher in liver and head kidney of EFS diet fed fish compared to others. Thiobarbituric acid reactive substances (TBARS) and carbonyl protein levels were minimum in EFS followed by EFL2. The independent sample t-test showed that nitric oxide synthase was significantly higher and myeloperoxidase and TBARS levels were significantly lower in unexposed group compared to the exposed fish in respective treatment. There were up-regulations of TNF-α, iNOS, NF-kB, BAX, Cytochrome c, SOD-c, Caspase 3, Caspase 9, BCL2 in liver and head kidney of leaves and seeds incorporated diets fed fish compared to control. Supplementation of A. aspera seeds and leaves at 0.5% level in diets gave UV-B protection to the fish.
Collapse
Affiliation(s)
- JaiGopal Sharma
- Department of Biotechnology, Delhi Technological University, Bawana Road, Delhi, 110042, India
| | - Neelesh Kumar
- Department of Biotechnology, Delhi Technological University, Bawana Road, Delhi, 110042, India
| | - Prabhat Mittal
- Satyawati College (Evening), University of Delhi, Ashok Vihar, Phase-III, Delhi, 110052, India
| | - Rina Chakrabarti
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
40
|
Ali Mohammadie Kojour M, Edosa TT, Jang HA, Keshavarz M, Jo YH, Han YS. Critical Roles of Spätzle5 in Antimicrobial Peptide Production Against Escherichia coli in Tenebrio molitor Malpighian Tubules. Front Immunol 2022; 12:760475. [PMID: 34975850 PMCID: PMC8717915 DOI: 10.3389/fimmu.2021.760475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
The dimeric cytokine ligand Spätzle (Spz) is responsible for Toll pathway activation and antimicrobial peptide (AMP) production upon pathogen challenge in Tenebrio molitor. Here, we indicated that TmSpz5 has a functional role in response to bacterial infections. We showed that the highest expression of TmSpz5 is induced by Candida albicans. However, TmSpz5 knockdown reduced larval survival against Escherichia coli and Staphylococcus aureus. To evaluate the molecular mechanism underlying the observed survival differences, the role of TmSpz5 in AMP production was examined by RNA interference and microbial injection. T. molitor AMPs that are active against Gram-negative and -positive bacteria, including Tmtenecins, Tmattacins, Tmcoleoptericins, Tmtaumatin-like-proteins, and Tmcecropin-2, were significantly downregulated by TmSpz-5 RNAi in the Malpighian tubules (MTs) following a challenge with E. coli and S. aureus. However, upon infection with C. albicans the mRNA levels of most AMPs in the dsTmSpz5-injected group were similar to those in the control groups. Likewise, the expression of the transcription factors NF-κB, TmDorX2, and TmRelish were noticeably suppressed in the MTs of TmSpz5-silenced larvae. Moreover, E. coli-infected TmSpz5 knockdown larvae showed decreased antimicrobial activity in the MTs and hindgut compared with the control group. These results demonstrate that TmSpz5 has a defined role in T. molitor innate immunity by regulating AMP expression in MTs in response to E. coli.
Collapse
Affiliation(s)
- Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Tariku Tesfaye Edosa
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea.,Ethiopian Institute of Agricultural Research, Ambo Agricultural Research Center, Ambo, Ethiopia
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Maryam Keshavarz
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea.,Department of Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
41
|
Zhang X, Shi J, Sun Y, Wang Y, Zhang Z. The potential role of eyestalk in the immunity of Litopenaeus vannamei to Vibrio infection. FISH & SHELLFISH IMMUNOLOGY 2022; 121:62-73. [PMID: 34998096 DOI: 10.1016/j.fsi.2021.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The X-organ-sinus gland complex (XO-SG) in the eyestalk is an important neuroendocrine regulatory organ of crustaceans such as Litopenaeus vannamei, a prominent aquaculture species. The current study found significant changes in the enzyme activities of ALP, ACP, and T-SOD of hepatopancreatic in response to Vibrio parahaemolyticus exposure following eyestalk ablation, indicating that they were all involved in the immunological regulation of shrimps against V. parahaemolyticus infection. A total of 52,656 unigenes were obtained after RNA-Seq, with an average length of 1036 bp and an N50 of 1847 bp. Subsequently, 1899 eyestalk positive regulation genes (EPRGs), 745 eyestalk negative regulation genes (ENRGs), and 2077 non-eyestalk regulatory genes (NEGs) were identified. KEGG analysis of EPRGs revealed that eyestalk ablation might activate the neuroendocrine-immune (NEI) system. The RNA-Seq data were validated using quantitative real-time PCR (qRT-PCR). The findings suggested that eyestalk ablation might affect the expression of genes involved in the prophenoloxidase-activating system, the TLR signaling pathway, and numerous other immune-related genes in L. vannamei. All of these findings revealed that the eyestalk might have a role in the immune response of L. vannamei. The genes and pathways discovered in this study will help to elucidate the molecular mechanisms of hemocytes' immune response to V. parahaemolyticus following eyestalk ablation in shrimp, as well as provide the framework for building crustacean immunity theory.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Jialong Shi
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulong Sun
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
42
|
Expression and Function of Toll Pathway Components in the Early Development of the Wasp Nasonia vitripennis. J Dev Biol 2022; 10:jdb10010007. [PMID: 35225961 PMCID: PMC8883978 DOI: 10.3390/jdb10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/22/2022] Open
Abstract
The Toll signaling pathway is the main source of embryonic DV polarity in the fly Drosophila melanogaster. This pathway appears to have been co-opted from an ancestral innate immunity system within the insects and has been deployed in different ways among insect taxa. Here we report the expression and function of homologs of the important components of the D. melanogaster Toll pathway in the wasp Nasonia vitripennis. We found homologs for all the components; many components had one or more additional paralogs in the wasp relative the fly. We also found significant deviations in expression patterns of N. vitripennis homologs. Finally, we provide some preliminary functional analyses of the N. vitripennis homologs, where we find a mixture of conservation and divergence of function.
Collapse
|
43
|
Ding X, Li Z, Lin G, Li W, Xue L. Toll-7 promotes tumour growth and invasion in Drosophila. Cell Prolif 2022; 55:e13188. [PMID: 35050535 PMCID: PMC8828261 DOI: 10.1111/cpr.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives Drosophila melanogaster has become an excellent model organism to explore the genetic mechanisms underlying tumour progression. Here, by using well‐established Drosophila tumour models, we identified Toll‐7 as a novel regulator of tumour growth and invasion. Materials and methods Transgenic flies and genetic epistasis analysis were used. All flies were raised on a standard cornmeal and agar medium at 25°C unless otherwise indicated. Immunostaining and RT‐qPCR were performed by standard procedures. Images were taken by OLYMPUS BX51 microscope and Zeiss LSM 880 confocal microscope. Adobe Photoshop 2020 and Zeiss Zen were used to analyse the images. All results were presented in Scatter plots or Column bar graphs created by GraphPad Prism 8.0. Results Loss of Toll‐7 suppresses RasV12/lgl−/−‐induced tumour growth and invasion, as well as cell polarity disruption‐induced invasive cell migration, whereas expression of a constitutively active allele of Toll‐7 is sufficient to promote tumorous growth and cell migration. In addition, the Egr‐JNK signalling is necessary and sufficient for Toll‐7‐induced invasive cell migration. Mechanistically, Toll‐7 facilitates the endocytosis of Egr, which is known to activate JNK in the early endosomes. Moreover, Toll‐7 activates the EGFR‐Ras signalling, which cooperates with the Egr‐JNK signalling to promote Yki‐mediated cell proliferation and tissue overgrowth. Finally, Toll‐7 is necessary and sufficient for the proper maintenance of EGFR protein level. Conclusions Our findings characterized Toll‐7 as a proto‐oncogene that promotes tumour growth and invasion in Drosophila, which shed light on the pro‐tumour function of mammalian Toll‐like receptors (TLRs).
Collapse
Affiliation(s)
- Xiang Ding
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhuojie Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China.,Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
44
|
Liu M, Gao Q, Sun C, Liu B, Liu X, Zhou Q, Zheng X, Xu P, Liu B. Effects of dietary tea tree oil on the growth, physiological and non-specific immunity response in the giant freshwater prawn (Macrobrachium rosenbergii) under high ammonia stress. FISH & SHELLFISH IMMUNOLOGY 2022; 120:458-469. [PMID: 34929307 DOI: 10.1016/j.fsi.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the effects of dietary tea tree oil (TTO) on the performance, intestinal antioxidant capacity, and non-specific immunity after ammonia nitrogen stress in Macrobrachium rosenbergii. Six experimental diets were formulated with 0, 25, 50, 100, 200, 400 mg/kg TTO, respectively. A total of 900 prawns (average initial weight, 0.39 ± 0.01 g) were randomly assigned to 6 groups in triplicate in 18 tanks. After an 8-week feeding trial, 20 prawns from each tank were changed with 20 mg/L ammonia stress for 24 h. The results showed that 100 mg/kg TTO significantly increased prawns performance and survival rate compared with the control group. Moreover, 100 and 200 mg/kg TTO significantly improved intestinal antioxidant capabilities by increasing SOD enzyme activities and decreasing MDA levels. In addition, the prawns fed with 100 mg/kg TTO diet showed the highest survival rate under ammonia stress. After ammonia stress, the group of 100 mg/kg TTO significantly improved antioxidant capacity by increasing hemolymph respiratory burst activity, as well as intestinal anti-superoxide anion activity and SOD. Coincidentally, 100 mg/kg TTO significantly upregulated the intestinal relative expression of antioxidant-related genes (peroxiredoxin-5). Further, it was found that 100 mg/kg TTO activated the toll-dorsal pathway in prawns, which performed the similar function as the classic NF-κB pathway by upregulating the TNF-α and IL-1. Finally, 100 mg/kg TTO increased the levels of iNOS activities and NO contents after ammonia stress and enhanced non-specific immunity. The results indicated that 100 mg/kg TTO could significantly improve the M. rosenbergii performance, antioxidant capacity and ammonia stress resistance. We suggested that the mechanisms may be attributed to that TTO enhanced the antioxidant capacity and non-specific immunity of M. rosenbergii via the NF-κB signal pathway.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fishery, Huzhou, 313001, PR China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xin Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.
| |
Collapse
|
45
|
Abstract
Toll-like receptors were discovered as proteins playing a crucial role in the dorsoventral patterning during embryonic development in the Drosophila melanogaster (D. melanogaster) almost 40 years ago. Subsequently, further research also showed a role of the Toll protein or Toll receptor in the recognition of Gram-positive bacterial and fungal pathogens infecting D. melanogaster. In 1997, the human homolog was reported and the receptor was named the Toll-like receptor 4 (TLR4) that recognizes lipopolysaccharide (LPS) of the Gram-negative bacteria as a pathogen-associated molecular pattern (PAMP). Identification of TLR4 in humans filled the long existing gap in the field of infection and immunity, addressing the mystery surrounding the recognition of foreign pathogens/microbes by the immune system. It is now known that mammals (mice and humans) express 13 different TLRs that are expressed on the outer cell membrane or intracellularly, and which recognize different PAMPs or microbe-associated molecular patterns (MAMPs) and death/damage-associated molecular patterns (DAMPs) to initiate the protective immune response. However, their dysregulation generates profound and prolonged pro-inflammatory immune responses responsible for different inflammatory and immune-mediated diseases. This chapter provides an overview of TLRs in the control of the immune response, their association with different diseases, including TLR single nucleotide polymorphisms (SNPs), interactions with microRNAs (miRs), use in drug development and vaccine design, and expansion in neurosciences to include pain, addiction, metabolism, reproduction, and wound healing.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - James E Barrett
- Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Neural Sciences, Centre for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Järvelä-Stölting M, Vesala L, Maasdorp MK, Ciantar J, Rämet M, Valanne S. Proteasome α6 Subunit Negatively Regulates the JAK/STAT Pathway and Blood Cell Activation in Drosophila melanogaster. Front Immunol 2021; 12:729631. [PMID: 35003057 PMCID: PMC8727353 DOI: 10.3389/fimmu.2021.729631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
JAK/STAT signaling regulates central biological functions such as development, cell differentiation and immune responses. In Drosophila, misregulated JAK/STAT signaling in blood cells (hemocytes) induces their aberrant activation. Using mass spectrometry to analyze proteins associated with a negative regulator of the JAK/STAT pathway, and by performing a genome-wide RNAi screen, we identified several components of the proteasome complex as negative regulators of JAK/STAT signaling in Drosophila. A selected proteasome component, Prosα6, was studied further. In S2 cells, Prosα6 silencing decreased the amount of the known negative regulator of the pathway, ET, leading to enhanced expression of a JAK/STAT pathway reporter gene. Silencing of Prosα6 in vivo resulted in activation of the JAK/STAT pathway, leading to the formation of lamellocytes, a specific hemocyte type indicative of hemocyte activation. This hemocyte phenotype could be partially rescued by simultaneous knockdown of either the Drosophila STAT transcription factor, or MAPKK in the JNK-pathway. Our results suggest a role for the proteasome complex components in the JAK/STAT pathway in Drosophila blood cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matthew K. Maasdorp
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Susanna Valanne
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- *Correspondence: Susanna Valanne,
| |
Collapse
|
47
|
Zhou H, Ni J, Wu S, Ma F, Jin P, Li S. lncRNA-CR46018 positively regulates the Drosophila Toll immune response by interacting with Dif/Dorsal. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104183. [PMID: 34174242 DOI: 10.1016/j.dci.2021.104183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The Toll signaling pathway is highly conserved from insects to mammals. Drosophila is a model species that is commonly used to study innate immunity. Although many studies have assessed protein-coding genes that regulate the Toll pathway, it is unclear whether long noncoding RNAs (lncRNAs) play regulatory roles in the Toll pathway. Here, we evaluated the expression of the lncRNA CR46018 in Drosophila. Our results showed that this lncRNA was significantly overexpressed after infection of Drosophila with Micrococcus luteus. A CR46018-overexpressing Drosophila strain was then constructed; we expected that CR46018 overexpression would enhance the expression of various antimicrobial peptides downstream of the Toll pathway, regardless of infection with M. luteus. RNA-seq analysis of CR46018-overexpressing Drosophila after infection with M. luteus showed that upregulated genes were mainly enriched in Toll and Imd signaling pathways. Moreover, bioinformatics predictions and RNA-immunoprecipitation experiments showed that CR46018 interacted with the transcription factors Dif and Dorsal to enhance the Toll pathway. During gram-positive bacterial infection, flies overexpressing CR46018 showed favorable survival compared with flies in the control group. Overall, our current work not only reveals a new immune regulatory factor, lncRNA-CR46018, and explores its potential regulatory model, but also provides a new perspective for the effect of immune disorders on the survival of Drosophila melanogaster.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Jiajia Ni
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Shengjie Li
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China.
| |
Collapse
|
48
|
Nüsslein-Volhard C. The Toll gene in Drosophila pattern formation. Trends Genet 2021; 38:231-245. [PMID: 34649739 DOI: 10.1016/j.tig.2021.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) play a crucial role in innate immunity in animals. Their discovery was rewarded a Nobel Prize to Jules Hoffmann and Bruce Beutler in 2011. The name Toll stems from a Drosophila mutant that was isolated in 1980 by Eric Wieschaus and myself as a byproduct of our screen for segmentation genes in Drosophila for which we received the Nobel Prize in 1995. It was named Toll due to its amazing dominant phenotype displayed in embryos from Toll/+ females. The analysis of Toll by Kathryn Anderson in my laboratory in Tübingen and subsequently in her own laboratory in Berkeley singled out Toll as a central component of the complex pathway regulating dorsoventral polarity and pattern of the Drosophila embryo. The Drosophila Toll story provides a striking example for the value of curiosity-driven research in providing fundamental insights that later gain strong impact on applied medical research.
Collapse
Affiliation(s)
- Christiane Nüsslein-Volhard
- Max-Planck-Institute for Developmental Biology, Tübingen, BW 72076, Germany; Dedicated to the memory of Kathryn Anderson (1952-2020).
| |
Collapse
|
49
|
Identification of Core Genes of Toll-like Receptor Pathway from Lymantria dispar and Induced Expression upon Immune Stimulant. INSECTS 2021; 12:insects12090827. [PMID: 34564267 PMCID: PMC8469855 DOI: 10.3390/insects12090827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
The gypsy moth, Lymantria dispar, is a polyphagous forest pest worldwide. The baculovirus, Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) is a natural pathogen of L. dispar. The Toll-like receptors (TLR) pathway plays a crucial role in both innate and adaptive immunity in animals. However, The TLR pathway and its underlying immune mechanism against baculovirus in L. dispar have not been explored. In this study, eleven TLRs and five downstream TLR pathway components were identified and characterized from L. dispar. Structural analysis indicated that intracellular Toll/interleukin-1 receptor (TIR) domains of LdTLRs and LdMyD88 contained three conserved motifs, and the 3D structures of TIR domains of LdTLRs possessed similar patterns in components arrangement and spatial conformation. The TLR proteins of L. dispar were placed into five monophyletic groups based on the phylogenetic analysis. LdTLR1, 2, 5, 6, 7, 8 and all identified downstream TLR pathway factors were highly induced upon LdMNPV infection, indicating that the TLR pathway of L. dispar was activated and might play a role in the immune response to LdMNPV infection. Collectively, these results help elucidate the crucial role of the TLR pathway in the immune response of L. dispar against LdMNPV, and offer a foundation for further understanding of innate immunity of the pest.
Collapse
|
50
|
Lima LF, Torres AQ, Jardim R, Mesquita RD, Schama R. Evolution of Toll, Spatzle and MyD88 in insects: the problem of the Diptera bias. BMC Genomics 2021; 22:562. [PMID: 34289811 PMCID: PMC8296651 DOI: 10.1186/s12864-021-07886-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Arthropoda, the most numerous and diverse metazoan phylum, has species in many habitats where they encounter various microorganisms and, as a result, mechanisms for pathogen recognition and elimination have evolved. The Toll pathway, involved in the innate immune system, was first described as part of the developmental pathway for dorsal-ventral differentiation in Drosophila. Its later discovery in vertebrates suggested that this system was extremely conserved. However, there is variation in presence/absence, copy number and sequence divergence in various genes along the pathway. As most studies have only focused on Diptera, for a comprehensive and accurate homology-based approach it is important to understand gene function in a number of different species and, in a group as diverse as insects, the use of species belonging to different taxonomic groups is essential. RESULTS We evaluated the diversity of Toll pathway gene families in 39 Arthropod genomes, encompassing 13 different Insect Orders. Through computational methods, we shed some light into the evolution and functional annotation of protein families involved in the Toll pathway innate immune response. Our data indicates that: 1) intracellular proteins of the Toll pathway show mostly species-specific expansions; 2) the different Toll subfamilies seem to have distinct evolutionary backgrounds; 3) patterns of gene expansion observed in the Toll phylogenetic tree indicate that homology based methods of functional inference might not be accurate for some subfamilies; 4) Spatzle subfamilies are highly divergent and also pose a problem for homology based inference; 5) Spatzle subfamilies should not be analyzed together in the same phylogenetic framework; 6) network analyses seem to be a good first step in inferring functional groups in these cases. We specifically show that understanding Drosophila's Toll functions might not indicate the same function in other species. CONCLUSIONS Our results show the importance of using species representing the different orders to better understand insect gene content, origin and evolution. More specifically, in intracellular Toll pathway gene families the presence of orthologues has important implications for homology based functional inference. Also, the different evolutionary backgrounds of Toll gene subfamilies should be taken into consideration when functional studies are performed, especially for TOLL9, TOLL, TOLL2_7, and the new TOLL10 clade. The presence of Diptera specific clades or the ones lacking Diptera species show the importance of overcoming the Diptera bias when performing functional characterization of Toll pathways.
Collapse
Affiliation(s)
- Letícia Ferreira Lima
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - André Quintanilha Torres
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael Dias Mesquita
- Laboratório de Bioinformática, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Rio de Janeiro, Brazil
| | - Renata Schama
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Rio de Janeiro, Brazil.
| |
Collapse
|