1
|
Yadav V, Mishra R, Das P, Arya R. Cut homeodomain transcription factor is a novel regulator of growth and morphogenesis of cortex glia niche around neural cells. Genetics 2024; 226:iyad173. [PMID: 37751321 PMCID: PMC11491519 DOI: 10.1093/genetics/iyad173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Cortex glia in Drosophila central nervous system form a niche around neural cells for necessary signals to establish cross talk with their surroundings. These cells grow and expand their thin processes around neural cell bodies. Although essential for the development and function of the nervous system, how these cells make extensive and intricate connected networks remains largely unknown. In this study, we show that Cut, a homeodomain transcription factor, directly regulates the fate of the cortex glia, impacting neural stem cell (NSC) homeostasis. Focusing on the thoracic ventral nerve cord, we found that Cut is required for the normal growth and development of cortex glia and timely increase in DNA content through endocycle to later divide via acytokinetic mitosis. Knockdown of Cut in cortex glia significantly reduces the growth of cellular processes, the network around NSCs, and their progeny's cell bodies. Conversely, overexpression of Cut induces overall growth of the main processes at the expense of side ones. Whereas the Cut knockdown slows down the timely increase of DNA, the Cut overexpression results in a significant increase in nuclear size and volume and a 3-fold increase in DNA content of cortex glia. Further, we note that constitutively high Cut also interfered with nuclei separation during acytokinetic mitosis. Since the cortex glia form syncytial networks around neural cells, the finding identifies Cut as a novel regulator of glial growth and variant cell cycles to support a functional nervous system.
Collapse
Affiliation(s)
- Vaishali Yadav
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ramkrishna Mishra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Papri Das
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Arya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Polanska MA, Kirchhoff T, Dircksen H, Hansson BS, Harzsch S. Functional morphology of the primary olfactory centers in the brain of the hermit crab Coenobita clypeatus (Anomala, Coenobitidae). Cell Tissue Res 2020; 380:449-467. [PMID: 32242250 PMCID: PMC7242284 DOI: 10.1007/s00441-020-03199-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/03/2020] [Indexed: 11/07/2022]
Abstract
Terrestrial hermit crabs of the genus Coenobita display strong behavioral responses to volatile odors and are attracted by chemical cues of various potential food sources. Several aspects of their sense of aerial olfaction have been explored in recent years including behavioral aspects and structure of their peripheral and central olfactory pathway. Here, we use classical histological methods and immunohistochemistry against the neuropeptides orcokinin and allatostatin as well as synaptic proteins and serotonin to provide insights into the functional organization of their primary olfactory centers in the brain, the paired olfactory lobes. Our results show that orcokinin is present in the axons of olfactory sensory neurons, which target the olfactory lobe. Orcokinin is also present in a population of local olfactory interneurons, which may relay lateral inhibition across the array of olfactory glomeruli within the lobes. Extensive lateral connections of the glomeruli were also visualized using the histological silver impregnation method according to Holmes-Blest. This technique also revealed the structural organization of the output pathway of the olfactory system, the olfactory projection neurons, the axons of which target the lateral protocerebrum. Within the lobes, the course of their axons seems to be reorganized in an axon-sorting zone before they exit the system. Together with previous results, we combine our findings into a model on the functional organization of the olfactory system in these animals.
Collapse
Affiliation(s)
- Marta A Polanska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Tina Kirchhoff
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, University of Greifswald, Soldmannstrasse 23, 17498, Greifswald, Germany
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, University of Greifswald, Soldmannstrasse 23, 17498, Greifswald, Germany.
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
3
|
Batelli S, Kremer M, Jung C, Gaul U. Application of MultiColor FlpOut Technique to Study High Resolution Single Cell Morphologies and Cell Interactions of Glia in Drosophila. J Vis Exp 2017. [PMID: 29155714 DOI: 10.3791/56177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cells display different morphologies and complex anatomical relationships. How do cells interact with their neighbors? Do the interactions differ between cell types or even within a given type? What kinds of spatial rules do they follow? The answers to such fundamental questions in vivo have been hampered so far by a lack of tools for high resolution single cell labeling. Here, a detailed protocol to target single cells with a MultiColor FlpOut (MCFO) technique is provided. This method relies on three differently tagged reporters (HA, FLAG and V5) under UAS control that are kept silent by a transcriptional terminator flanked by two FRT sites (FRT-stop-FRT). A heat shock pulse induces the expression of a heat shock-induced Flp recombinase, which randomly removes the FRT-stop-FRT cassettes in individual cells: expression occurs only in cells that also express a GAL4 driver. This leads to an array of differently colored cells of a given cell type that allows the visualization of individual cell morphologies at high resolution. As an example, the MCFO technique can be combined with specific glial GAL4 drivers to visualize the morphologies of the different glial subtypes in the adult Drosophila brain.
Collapse
Affiliation(s)
- Sara Batelli
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich
| | - Malte Kremer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich; Janelia Farm Research Campus, Howard Hughes Medical Institute
| | - Christophe Jung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich
| | - Ulrike Gaul
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich;
| |
Collapse
|
4
|
Kremer MC, Jung C, Batelli S, Rubin GM, Gaul U. The glia of the adult Drosophila nervous system. Glia 2017; 65:606-638. [PMID: 28133822 PMCID: PMC5324652 DOI: 10.1002/glia.23115] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022]
Abstract
Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606–638
Collapse
Affiliation(s)
- Malte C Kremer
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany.,Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, Virginia
| | - Christophe Jung
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany
| | - Sara Batelli
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, Virginia
| | - Ulrike Gaul
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
5
|
Rybak J, Talarico G, Ruiz S, Arnold C, Cantera R, Hansson BS. Synaptic circuitry of identified neurons in the antennal lobe of Drosophila melanogaster. J Comp Neurol 2016; 524:1920-56. [PMID: 26780543 PMCID: PMC6680330 DOI: 10.1002/cne.23966] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 11/09/2022]
Abstract
In Drosophila melanogaster olfactory sensory neurons (OSNs) establish synapses with projection neurons (PNs) and local interneurons within antennal lobe (AL) glomeruli. Substantial knowledge regarding this circuitry has been obtained by functional studies, whereas ultrastructural evidence of synaptic contacts is scarce. To fill this gap, we studied serial sections of three glomeruli using electron microscopy. Ectopic expression of a membrane-bound peroxidase allowed us to map synaptic sites along PN dendrites. Our data prove for the first time that each of the three major types of AL neurons is both pre- and postsynaptic to the other two types, as previously indicated by functional studies. PN dendrites carry a large proportion of output synapses, with approximately one output per every three input synapses. Detailed reconstructions of PN dendrites showed that these synapses are distributed unevenly, with input and output sites partially segregated along a proximal-distal gradient and the thinnest branches carrying solely input synapses. Moreover, our data indicate synapse clustering, as we found evidence of dendritic tiling of PN dendrites. PN output synapses exhibited T-shaped presynaptic densities, mostly arranged as tetrads. In contrast, output synapses from putative OSNs showed elongated presynaptic densities in which the T-bar platform was supported by several pedestals and contacted as many as 20 postsynaptic profiles. We also discovered synaptic contacts between the putative OSNs. The average synaptic density in the glomerular neuropil was about two synapses/µm(3) . These results are discussed with regard to current models of olfactory glomerular microcircuits across species.
Collapse
Affiliation(s)
- Jürgen Rybak
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical Ecology07745JenaGermany
| | - Giovanni Talarico
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical Ecology07745JenaGermany
| | - Santiago Ruiz
- Clemente Estable Institute of Biological Research11600 MontevideoUruguay
| | - Christopher Arnold
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical Ecology07745JenaGermany
| | - Rafael Cantera
- Clemente Estable Institute of Biological Research11600 MontevideoUruguay
- Zoology DepartmentStockholm University10691StockholmSweden
| | - Bill S. Hansson
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical Ecology07745JenaGermany
| |
Collapse
|
6
|
Mizeracka K, Heiman MG. The many glia of a tiny nematode: studying glial diversity using Caenorhabditis elegans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:151-60. [PMID: 25611728 DOI: 10.1002/wdev.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/20/2014] [Accepted: 12/02/2014] [Indexed: 11/06/2022]
Abstract
UNLABELLED Glia constitute a major, understudied population of cells in the nervous system. Currently, it is appreciated that these cells exhibit vast morphological, functional, and molecular diversity, but our understanding of glial biology is limited. Some key unanswered questions include how glial diversity is generated during development and what functions distinct glial subtypes serve in the mature nervous system. The nematode Caenorhabditis elegans contains a defined set of glia, which have clear morphological and molecular differences, and thus provides a simplified model for understanding glial diversity. In addition, recent experiments suggest that the molecular mechanisms underlying the generation of glial diversity in C. elegans are conserved with those in mammals. In this review, we summarize the surprising diversity of glial subtypes present in this simple organism, and highlight current thinking about what roles they perform in the nervous system. We emphasize how genetic approaches may be used to identify the mechanistic origins of glial diversity, which is key to understanding how glia function in health and disease. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Karolina Mizeracka
- Division of Genetics, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
7
|
Gibson NJ, Tolbert LP, Oland LA. Activation of glial FGFRs is essential in glial migration, proliferation, and survival and in glia-neuron signaling during olfactory system development. PLoS One 2012; 7:e33828. [PMID: 22493675 PMCID: PMC3320908 DOI: 10.1371/journal.pone.0033828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 02/22/2012] [Indexed: 11/18/2022] Open
Abstract
Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
8
|
Stork T, Bernardos R, Freeman MR. Analysis of glial cell development and function in Drosophila. Cold Spring Harb Protoc 2012; 2012:1-17. [PMID: 22194269 DOI: 10.1101/pdb.top067587] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glial cells are the most abundant cell type in our brains, yet we understand very little about their development and function. An accumulating body of work over the last decade has revealed that glia are critical regulators of nervous system development, function, and health. Based on morphological and molecular criteria, glia in Drosophila melanogaster are very similar to their mammalian counterparts, suggesting that a detailed investigation of fly glia has the potential to add greatly to our understanding of fundamental aspects of glial cell biology. In this article, we provide an overview of the subtypes of glial cells found in Drosophila and discuss our current understanding of their functions, the development of a subset of well-defined glial lineages, and the molecular-genetic tools available for manipulating glial subtypes in vivo.
Collapse
|
9
|
Abstract
The evolutionary origins of glia are lost in time, as soft tissues rarely leave behind fossil footprints, and any molecular footprints they might have been left we have yet to decipher. Nevertheless, because of the growing realization of the importance glia plays in the development and functioning of the nervous system, lessons we can draw about commonalities among different taxa (including vertebrates) brought about either from a common origin, or from common adaptational pressures, shed light on the roles glia play in all nervous systems. The Acoelomorpha, primitive interstitial flatworms with very simple cellular organization and currently at the base of the bilaterian phylogeny, possess glia-like cells. If they indeed represent the ancestors of all other Bilateria, then it is possible that all glias derive from a common ancestor. However, basal taxa lacking convincing glia are found in most major phyletic lines: urochordates, hemichordates, bryozoans, rotifers, and basal platyhelminths. With deep phylogenies currently in flux, it is equally possible that glia in several lines had different origins. If developmental patterns are any indication, glia evolved from ectodermal cells, possibly from a mobile lineage, and even possibly independently in different regions of the body. As to what functions might have brought about the evolution of glia, by-product removal, structural support, phagocytic needs, developmental programming, and circuit modulation may be the more likely. Explaining possible cases of glial loss is more difficult, as once evolved, glia appears to keep inventing new functions, giving it continued value even after the original generative need becomes obsolete. Among all the uncertainties regarding the origin of glia, one thing is certain: that our ideas about those origins will change with every rearrangement in deep phylogeny and with continued advances in invertebrate molecular and developmental areas.
Collapse
Affiliation(s)
- Daniel K Hartline
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
10
|
Mangin JM, Gallo V. The curious case of NG2 cells: transient trend or game changer? ASN Neuro 2011; 3:e00052. [PMID: 21288204 PMCID: PMC3052864 DOI: 10.1042/an20110001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/03/2011] [Indexed: 11/17/2022] Open
Abstract
It has been 10 years since the seminal work of Dwight Bergles and collaborators demonstrated that NG2 (nerve/glial antigen 2)-expressing oligodendrocyte progenitor cells (NG2 cells) receive functional glutamatergic synapses from neurons (Bergles et al., 2000), contradicting the old dogma that only neurons possess the complex and specialized molecular machinery necessary to receive synapses. While this surprising discovery may have been initially shunned as a novelty item of undefined functional significance, the study of neuron-to-NG2 cell neurotransmission has since become a very active and exciting field of research. Many laboratories have now confirmed and extended the initial discovery, showing for example that NG2 cells can also receive inhibitory GABAergic synapses (Lin and Bergles, 2004) or that neuron-to-NG2 cell synaptic transmission is a rather ubiquitous phenomenon that has been observed in all brain areas explored so far, including white matter tracts (Kukley et al., 2007; Ziskin et al., 2007; Etxeberria et al., 2010). Thus, while still being in its infancy, this field of research has already brought many surprising and interesting discoveries, and has become part of a continuously growing effort in neuroscience to re-evaluate the long underestimated role of glial cells in brain function (Barres, 2008). However, this area of research is now reaching an important milestone and its long-term significance will be defined by its ability to uncover the still elusive function of NG2 cells and their synapses in the brain, rather than by its sensational but transient successes at upsetting the old order established by neuronal physiology. To participate in the effort to facilitate such a transition, here we propose a critical review of the latest findings in the field of NG2 cell physiology--discussing how they inform us on the possible function(s) of NG2 cells in the brain--and we present some personal views on new directions the field could benefit from in order to achieve lasting significance.
Collapse
Key Words
- α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (ampar)
- nerve/glial antigen 2 (ng2) cells
- neuron
- oligodendrocyte progenitor cell (opc)
- postsynaptic density (psd)
- ampar, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor
- cnp-gfp, c-type natriuretic peptide-green fluorescent protein
- cns, central nervous system
- egfp, enhanced green fluorescent protein
- epsc, excitatory postsynaptic current
- gaba, γ-aminobutyric acid
- gabaar, gaba type a receptor
- ltp, long-term potentiation
- mbp, maltose-binding protein
- ng2, nerve/glial antigen 2
- nmdar, n-methyl-d-aspartate receptor
- ol, oligodendrocyte lineage
- opc, oligodendrocyte progenitor cell
- pdgfrα, platelet-derived growth factor receptor α
- psd, postsynaptic density
- scp, schwann cell progenitor
Collapse
Affiliation(s)
- Jean-Marie Mangin
- Center for Neuroscience Research, Childrens National Medical Center, Washington, DC 20010, USA.
| | | |
Collapse
|
11
|
Oland LA, Tolbert LP. Roles of glial cells in neural circuit formation: insights from research in insects. Glia 2010; 59:1273-95. [PMID: 21732424 DOI: 10.1002/glia.21096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Investigators over the years have noted many striking similarities in the structural organization and function of neural circuits in higher invertebrates and vertebrates. In more recent years, the discovery of similarities in the cellular and molecular mechanisms that guide development of these circuits has driven a revolution in our understanding of neural development. Cellular mechanisms discovered to underlie axon pathfinding in grasshoppers have guided productive studies in mammals. Genes discovered to play key roles in the patterning of the fruitfly's central nervous system have subsequently been found to play key roles in mice. The diversity of invertebrate species offers to investigators numerous opportunities to conduct experiments that are harder or impossible to do in vertebrate species, but that are likely to shed light on mechanisms at play in developing vertebrate nervous systems. These experiments elucidate the broad suite of cellular and molecular interactions that have the potential to influence neural circuit formation across species. Here we focus on what is known about roles for glial cells in some of the important steps in neural circuit formation in experimentally advantageous insect species. These steps include axon pathfinding and matching to targets, dendritic patterning, and the sculpting of synaptic neuropils. A consistent theme is that glial cells interact with neurons in two-way, reciprocal interactions. We emphasize the impact of studies performed in insects and explore how insect nervous systems might best be exploited next as scientists seek to understand in yet deeper detail the full repertory of functions of glia in development.
Collapse
Affiliation(s)
- Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | |
Collapse
|
12
|
Eriksson BJ, Stollewerk A. The morphological and molecular processes of onychophoran brain development show unique features that are neither comparable to insects nor to chelicerates. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:478-490. [PMID: 20696271 DOI: 10.1016/j.asd.2010.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/25/2010] [Accepted: 07/27/2010] [Indexed: 05/29/2023]
Abstract
The phylogenetic position of onychophorans is still being debated; however, most phylogenies suggest that onychophorans are a sister group to the arthropods. Here we have analysed neurogenesis in the brain of the onychophoran Euperipatoides kanangrensis. We show that the development of the onychophoran brain is considerably different from arthropods. Neural precursors seem to be generated at random positions rather than in distinct spatio-temporal domains as has been shown in insects and chelicerates. The different mode of neural precursor formation is reflected in the homogenous expression of the proneural and neurogenic genes. Furthermore, the morphogenetic events that generate the three-dimensional structure of the onychophoran brain are significantly different from arthropods. Despite the different mode of neural precursor formation in insects and chelicerates (neuroblasts versus neural precursor groups), brain neurogenesis shares more similarities in these arthropods as compared to the onychophoran. Our data show that the developmental processes that generate the brain have considerably diverged in onychophorans and arthropods.
Collapse
Affiliation(s)
- Bo Joakim Eriksson
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK.
| | | |
Collapse
|
13
|
Glial remodeling during metamorphosis influences the stabilization of motor neuron branches in Drosophila. Dev Biol 2010; 340:344-54. [PMID: 20079727 DOI: 10.1016/j.ydbio.2010.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 11/22/2022]
Abstract
Motor neurons that innervate the dorsal longitudinal (flight) muscles, DLMs, make multiple points of contact along the length of fibers. The stereotypy of the innervation lies in the number of contact points (CPs) made by each motor neuron and is established as a consequence of pruning that occurs during metamorphosis. Coincident with the onset of pruning is the arrival of glial processes that eventually ensheath persistent branches. To test a possible role for glia during pruning, the development of adult-specific glial ensheathment was disrupted using a targeted expression of dominant negative shibire. Such a manipulation resulted in fewer contact points at the DLM fibers. The development of innervation was examined during metamorphosis, specifically to test if the reduction was a consequence of increased pruning. We quantified the number of branches displaying discontinuities in their membrane, an indicator of the level of pruning. Disrupting the formation of glial ensheathment resulted in a two-fold increase in the discontinuities, indicating that pruning is enhanced. Thus glial-neuronal interactions, specifically during pruning are important for the patterning of adult innervation. Our studies also suggest that FasII plays a role in mediating this communication. At the end of the pruning phase, FasII localizes to glia, which envelops each of the stabilized contact points. When glial FasII levels are increased using the Gal4/UAS system of targeted expression, pruning of secondary branches is enhanced. Our results indicate that glia regulate pruning of secondary branches by influencing the balance between stabilization and pruning. This was confirmed by an observed rescue of the innervation phenotype of FasII hypomorphs by over expressing FasII in glia.
Collapse
|
14
|
Spokony RF, Restifo LL. Broad Complex isoforms have unique distributions during central nervous system metamorphosis in Drosophila melanogaster. J Comp Neurol 2009; 517:15-36. [PMID: 19711379 DOI: 10.1002/cne.22119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Broad Complex (BRC) is a highly conserved, ecdysone-pathway gene essential for metamorphosis in Drosophila melanogaster, and possibly all holometabolous insects. Alternative splicing among duplicated exons produces several BRC isoforms, each with one zinc-finger DNA-binding domain (Z1, Z2, Z3, or Z4), highly expressed at the onset of metamorphosis. BRC-Z1, BRC-Z2, and BRC-Z3 represent distinct genetic functions (BRC complementation groups rbp, br, and 2Bc, respectively) and are required at discrete stages spanning final-instar larva through very young pupa. We showed previously that morphogenetic movements necessary for adult CNS maturation require BRC-Z1, -Z2, and -Z3, but not at the same time: BRC-Z1 is required in the mid-prepupa, BRC-Z2 and -Z3 are required earlier, at the larval-prepupal transition. To explore how BRC isoforms controlling the same morphogenesis events do so at different times, we examined their central nervous system (CNS) expression patterns during the approximately 16 hours bracketing the hormone-regulated start of metamorphosis. Each isoform had a unique pattern, with BRC-Z3 being the most distinctive. There was some colocalization of isoform pairs, but no three-way overlap of BRC-Z1, -Z2, and -Z3. Instead, their most prominent expression was in glia (BRC-Z1), neuroblasts (BRC-Z2), or neurons (BRC-Z3). Despite sequence similarity to BRC-Z1, BRC-Z4 was expressed in a unique subset of neurons. These data suggest a switch in BRC isoform choice, from BRC-Z2 in proliferating cells to BRC-Z1, BRC-Z3, or BRC-Z4 in differentiating cells. Together with isoform-selective temporal requirements and phenotype considerations, this cell-type-selective expression suggests a model of BRC-dependent CNS morphogenesis resulting from intercellular interactions, culminating in BRC-Z1-controlled, glia-mediated CNS movements in late prepupa.
Collapse
Affiliation(s)
- Rebecca F Spokony
- Graduate Interdisciplinary Program in Insect Science, University of Arizona, Tucson, Arizona 85721-0108, USA.
| | | |
Collapse
|
15
|
Gibson NJ, Tolbert LP, Oland LA. Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing olfactory system. PLoS One 2009; 4:e7222. [PMID: 19787046 PMCID: PMC2746287 DOI: 10.1371/journal.pone.0007222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 09/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. Methodology/Principal Findings We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-β-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. Conclusions/Significance We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
16
|
Gocht D, Wagner S, Heinrich R. Recognition, presence, and survival of locust central nervous glia in situ and in vitro. Microsc Res Tech 2009; 72:385-97. [PMID: 19115332 DOI: 10.1002/jemt.20683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insect glial cells serve functions for the formation, maintenance, and performance of the central nervous system in ways similar to their vertebrate counterparts. Characterization of physiological mechanisms that underlie the roles of glia in invertebrates is largely incomplete, partly due to the lack of markers that universally label all types of glia throughout all developmental stages in various species. Studies on primary cell cultures from brains of Locusta migratoria demonstrated that the absence of anti-HRP immunoreactivity, which has previously been used to identify glial cells in undissociated brains, can also serve as a reliable glial marker in vitro, but only in combination with a viability test. As cytoplasmic membranes of cultured cells are prone to degradation when they lose viability, only cells that are both anti-HRP immunonegative and viable should be regarded as glial cells, whereas the lack of anti-HRP immunoreactivity alone is not sufficient. Cell viability can be assessed by the pattern of nuclear staining with DAPI (4',6-diamidino-2-phenylindole), a convenient, sensitive labeling method that can be used in combination with other immunocytochemical cellular markers. We determined the glia-to-neuron ratio in central brains of fourth nymphal stage of Locusta migratoria to be 1:2 both in situ and in dissociated primary cell cultures. Analysis of primary cell cultures revealed a progressive reduction of glial cells and indicated that dead cells detach from the substrate and vanish from the analysis. Such changes in the composition of cell cultures should be considered in future physiological studies on cell cultures from insect nervous systems.
Collapse
Affiliation(s)
- Daniela Gocht
- Department of Neurobiology, Institute for Zoology, University of Göttingen, Berliner Strasse 28, Göttingen, Germany
| | | | | |
Collapse
|
17
|
Seid MA, Wehner R. Delayed axonal pruning in the ant brain: A study of developmental trajectories. Dev Neurobiol 2009; 69:350-64. [DOI: 10.1002/dneu.20709] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Oland LA, Biebelhausen JP, Tolbert LP. Glial investment of the adult and developing antennal lobe of Drosophila. J Comp Neurol 2009; 509:526-50. [PMID: 18537134 DOI: 10.1002/cne.21762] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years the Drosophila olfactory system, with its unparalleled opportunities for genetic dissection of development and functional organization, has been used to study the development of central olfactory neurons and the molecular basis of olfactory coding. The results of these studies have been interpreted in the absence of a detailed understanding of the steps in maturation of glial cells in the antennal lobe. Here we present a high-resolution study of the glia associated with olfactory glomeruli in adult and developing antennal lobes. The study provides a basis for comparison of findings in Drosophila with those in the moth Manduca sexta that indicate a critical role for glia in antennal lobe development. Using flies expressing GFP under a Nervana2 driver to visualize glia for confocal microscopy, and probing at higher resolution with the electron microscope, we find that glial development in Drosophila differs markedly from that in moths: glial cell bodies remain in a rind around the glomerular neuropil; glial processes ensheathe axon bundles in the nerve layer but likely contribute little to axonal sorting; their processes insinuate between glomeruli only very late and then form only a sparse, open network around each glomerulus; and glial processes invade the synaptic neuropil. Taking our results in the context of previous studies, we conclude that glial cells in the developing Drosophila antennal lobe are unlikely to play a strong role in either axonal sorting or glomerulus stabilization and that in the adult, glial processes do not electrically isolate glomeruli from their neighbors.
Collapse
Affiliation(s)
- Lynne A Oland
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
19
|
Hartenstein V, Spindler S, Pereanu W, Fung S. The development of the Drosophila larval brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 628:1-31. [PMID: 18683635 DOI: 10.1007/978-0-387-78261-4_1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter we will start out by describing in more detail the progenitors of the nervous system, the neuroblasts and ganglion mother cells. Subsequently we will survey the generic cell types that make up the developing Drosophila brain, namely neurons, glial cells and tracheal cells. Finally, we will attempt a synopsis of the neuronal connectivity of the larval brain that can be deduced from the analysis of neural lineages and their relationship to neuropile compartments.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
The ensheathment of neurons and their axons creates an ion-sensitive microenvironment that allows rapid conduction of nerve impulses. One of the fundamental questions about axonal ensheathment is how insulating glial cells wrap around axons. The mechanisms that underlie insulation of axons in invertebrates and vertebrates are not fully understood. In the present article we address cellular aspects of axonal ensheathment in Drosophila by taking advantage of glial mutants that illustrate a range of phenotypic defects including ensheathment of axons. From the findings of these mutant studies, we summarize that loss of glial cells, defects in glial membrane wrapping, failure of glial migration, and loss of specialized ladderlike septate junctions between ensheathing glial membranes result in axon-glial functional defects. These studies provide a broad perspective on glial ensheathment of axons in Drosophila and key insights into the anatomical and cellular aspects of axonal insulation. Given the powerful genetic approaches available in Drosophila, the axonal ensheathment process can be dissected in great detail to reveal the fundamental principles of ensheathment. These observations will be relevant to understanding the very similar processes in vertebrates, where defects in glial cell functions lead to devastating neurological diseases.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Cell and Molecular Physiology, Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7545, USA
| | | |
Collapse
|
21
|
Abeytunga DTU, Oland L, Somogyi A, Polt R. Structural studies on the neutral glycosphingolipids of Manduca sexta. Bioorg Chem 2007; 36:70-6. [PMID: 18023840 DOI: 10.1016/j.bioorg.2007.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/03/2007] [Accepted: 10/05/2007] [Indexed: 11/27/2022]
Abstract
Glycosphingolipids (GSLs) have been implicated as playing major roles in cellular interactions and control of cell proliferation in muticellular organisms. Moreover GSLs and other sphingolipids such as sphingomyelins, ceramides and sphingosines serve a variety of roles in signal transduction. Hence, identification of structures of GSLs in different biota will shed light in understanding their physiological role. During this study, the major glycosphingolipid component present in the extracts of stage-12 and stage-17/18 metamorphosing adults of Manduca sexta was identified as mactosyl ceramide. We report the isolation of several ceramide disaccharides, a ceramide trisaccharide and a ceramide tetrasaccharide. The GSL structures were confirmed by high-resolution mass spectrometry and tandem mass spectrometry. The identity of the monosaccharides was proved using exoglycosidases. The predominant sphingosine chain-length varied from C-14 (tetradecasphing-4-enine) to C-16 (hexadecasphing-4-enine) in these GSLs. Sphingosines of both chain lengths were accompanied by their doubly unsaturated counterparts tetradecasphinga-4,6-diene and hexadecasphinga-4,6-diene. It is also interesting to note the presence of tetradecasphinganine and hexadecasphinganine in minute amounts in the form of a GSL in the extracts of M. sexta. The varying degrees of unsaturation in the sphingosine moiety of GSLs in M. sexta may be biologically significant in insect metamorphosis. The ceramide trisaccharides and ceramide tetrasaccharide belong to the arthro-series, The observation of fucose in the M. sexta GSLs is the first report of the presence of fucose in an arthroseries GSL.
Collapse
|
22
|
Loesel R, Weigel S, Bräunig P. A simple fluorescent double staining method for distinguishing neuronal from non-neuronal cells in the insect central nervous system. J Neurosci Methods 2006; 155:202-6. [PMID: 16481042 DOI: 10.1016/j.jneumeth.2006.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/04/2006] [Accepted: 01/08/2006] [Indexed: 01/15/2023]
Abstract
Being able to discriminate between neurons and non-neuronal cells such as glia and tracheal cells has been a major problem in insect neuroscience, because glia-specific antisera are available for only a small number of species such as Drosophila melanogaster and Manduca sexta. Especially developmental or comparative studies often require an estimate of neuron numbers. Since neuronal and glial cell bodies are in many cases indiscernible in situ, a method to distinguish neurons from non-neuronal cells that works in any given species is wanting. Another application is cell culturing. Cultured cells usually change their outward shape dramatically after being isolated so that it is frequently impossible to tell neurons and glia apart. Here, we present a simple method that uses a commercially available antiserum directed against horseradish peroxidase, which specifically stains neurons but no other cell type in every insect species investigated. Counterstaining with DAPI, a fluorescent chromophore that binds to double-stranded DNA in the nuclei of all cells, yields the total number of cells in a given sample. Thus, double labeled cells can be identified as neurons, cells that carry only DAPI staining are non-neuronal.
Collapse
Affiliation(s)
- Rudi Loesel
- Institute of Biology II (Zoology), Unit of Developmental Biology and Morphology of Animals, Kopernikusstrasse 16, RWTH Aachen University, D-52074 Aachen, Germany.
| | | | | |
Collapse
|
23
|
Beadle DJ. Insect neuronal cultures: an experimental vehicle for studies of physiology, pharmacology and cell interactions. INVERTEBRATE NEUROSCIENCE 2006; 6:95-103. [PMID: 16874504 DOI: 10.1007/s10158-006-0024-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 06/26/2006] [Indexed: 10/25/2022]
Abstract
The current status of insect neuronal cultures is discussed and their contribution to our understanding of the insect nervous system is explored. Neuronal cultures have been developed from a wide range of insect species and from all developmental stages. These have been used to study the morphological development of insect neurones and some of the extrinsic factors that affect this process. In addition, they have been used to investigate the physiology of sodium, potassium and calcium channels and the pharmacology of acetylcholine and GABA receptors. Insect neurones have also been grown in culture with muscle and glial cells to study cell interactions.
Collapse
Affiliation(s)
- D J Beadle
- School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
24
|
Abstract
The programmed cell death (PCD) of developing cells is considered an essential adaptive process that evolved to serve diverse roles. We review the putative adaptive functions of PCD in the animal kingdom with a major focus on PCD in the developing nervous system. Considerable evidence is consistent with the role of PCD in events ranging from neurulation and synaptogenesis to the elimination of adult-generated CNS cells. The remarkable recent progress in our understanding of the genetic regulation of PCD has made it possible to perturb (inhibit) PCD and determine the possible repercussions for nervous system development and function. Although still in their infancy, these studies have so far revealed few striking behavioral or functional phenotypes.
Collapse
Affiliation(s)
- Robert R Buss
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
25
|
Sun X, Morozova T, Sonnenfeld M. Glial and neuronal functions of the Drosophila homolog of the human SWI/SNF gene ATR-X (DATR-X) and the jing zinc-finger gene specify the lateral positioning of longitudinal glia and axons. Genetics 2006; 173:1397-415. [PMID: 16648585 PMCID: PMC1526706 DOI: 10.1534/genetics.106.057893] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal-glial communication is essential for constructing the orthogonal axon scaffold in the developing Drosophila central nervous system (CNS). Longitudinal glia (LG) guide extending commissural and longitudinal axons while pioneer and commissural neurons maintain glial survival and positioning. However, the transcriptional regulatory mechanisms controlling these processes are not known. Previous studies showed that the midline function of the jing C2H2-type zinc-finger transcription factor was only partially required for axon scaffold formation in the Drosophila CNS. We therefore screened for gain-of-function enhancers of jing gain of function in the eye and identified the Drosophila homolog of the disease gene of human alpha-thalassemia/mental retardation X-linked (ATR-X) as well as other genes with potential roles in gene expression, translation, synaptic transmission, and cell cycle. jing and DATR-X reporter genes are expressed in both CNS neurons and glia, including the LG. Coexpression of jing and DATR-X in embryonic neurons synergistically affects longitudinal connective formation. During embryogenesis, jing and DATR-X have autonomous and nonautonomous roles in the lateral positioning of LG, neurons, and longitudinal axons as shown by cell-specific knockdown of gene expression. jing and DATR-X are also required autonomously for glial survival. jing and DATR-X mutations show synergistic effects during longitudinal axon formation suggesting that they are functionally related. These observations support a model in which downstream gene expression controlled by a potential DATR-X-Jing complex facilitates cellular positioning and axon guidance, ultimately allowing for proper connectivity in the developing Drosophila CNS.
Collapse
Affiliation(s)
- Xuetao Sun
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | |
Collapse
|
26
|
Gibson NJ, Tolbert LP. Activation of epidermal growth factor receptor mediates receptor axon sorting and extension in the developing olfactory system of the moth Manduca sexta. J Comp Neurol 2006; 495:554-72. [PMID: 16498681 PMCID: PMC2709604 DOI: 10.1002/cne.20890] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
27
|
Abstract
Glial cells have diverse functions that are necessary for the proper development and function of complex nervous systems. Various insects, primarily the fruit fly Drosophila melanogaster and the moth Manduca sexta, have provided useful models of glial function during development. The present review will outline evidence of glial contributions to embryonic, visual, olfactory and wing development. We will also outline evidence for non-developmental functions of insect glia including blood-brain-barrier formation, homeostatic functions and potential contributions to synaptic function. Where relevant, we will also point out similarities between the functions of insect glia and their vertebrate counterparts.
Collapse
Affiliation(s)
- Robert J Parker
- Department of Zoology, University of British Columbia, 6270 University Blvd. Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
28
|
Gohl T, Krieger J. Immunolocalization of a candidate pheromone receptor in the antenna of the male moth, Heliothis virescens. INVERTEBRATE NEUROSCIENCE 2006; 6:13-21. [PMID: 16402239 DOI: 10.1007/s10158-005-0012-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 12/19/2005] [Indexed: 11/28/2022]
Abstract
Pheromone recognition in insects is thought to involve distinct receptor proteins in the dendritic membrane of antennal sensory neurons. We have generated antibodies directed against a peptide derived from the sequence of the candidate pheromone receptor HR13 from Heliothis virescens. The antibodies specifically labelled the cell bodies of a distinct neuron population housed in male-specific pheromone-sensitive sensilla. Combining antibody staining with in situ hybridization the reactive cells were found to express the HR13 gene. In addition, dendrites projecting into sensilla hairs as well as the axonal processes of immunoreactive cells were labelled. Labelling of axons has allowed visualization of their fasciculation within antennal segments and permits tracking of axons as they merge into the antennal nerve. The HR13 protein was first detected 1 day before eclosion. Thus, the distribution of HR13 protein in the antennal neurons of the male moth strongly suggests a role of the HR13 receptor in recognition of pheromones.
Collapse
Affiliation(s)
- Thomas Gohl
- Institute of Physiology (230), University of Hohenheim, Garbenstrasse 30, 70599, Stuttgart, Germany
| | | |
Collapse
|
29
|
Younossi-Hartenstein A, Nguyen B, Shy D, Hartenstein V. Embryonic origin of theDrosophila brain neuropile. J Comp Neurol 2006; 497:981-98. [PMID: 16802336 DOI: 10.1002/cne.20884] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurons of the Drosophila larval brain are formed by a stereotyped set of neuroblasts. As differentiation sets in, neuroblast lineages produce axon bundles that initially form a scaffold of unbranched fibers in the center of the brain primordium. Subsequently, axons elaborate interlaced axonal and dendritic arbors, which, together with sheath-like processes formed by glial cells, establish the neuropile compartments of the larval brain. By using markers that visualize differentiating axons and glial cells, we have analyzed the formation of neuropile compartments and their relationship to neuroblast lineages. Neurons of each lineage extend their axons as a cohesive tract ("primary axon bundle"). We generated a map of the primary axon bundles that visualizes the location of the primary lineages in the brain cortex where the axon bundles originate, the trajectory of the axon bundles into the neuropile, and the relationship of these bundles to the early-formed scaffold of neuropile pioneer tracts (Nassif et al. [1998] J. Comp. Neurol. 402:10-31). The map further shows the growth of neuropile compartments at specific locations around the pioneer tracts. Following the time course of glial development reveals that glial processes, which form prominent septa around compartments in the larval brain, appear very late in the embryonic neuropile, clearly after the compartments themselves have crystallized. This suggests that spatial information residing within neurons, rather than glial cells, specifies the location and initial shape of neuropile compartments.
Collapse
Affiliation(s)
- Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Calcium signaling studies in invertebrate glial cells have been performed mainly in the nervous systems of the medicinal leech (Hirudo medicinalis) and the sphinx moth Manduca sexta. The main advantages of studing glial cells in invertebrate nervous systems are the large size of invertebrate glial cells and their easy accessibility for optical and electrophysiological recordings. Glial cells in both insects and annelids express voltage-gated calcium channels and, in the case of leech glial cells, calcium-permeable neurotransmitter receptors, which allow calcium influx as one major source for cytosolic calcium transients. Calcium release from intracellular stores can be induced by metabotropic receptor activation in leech glial cells, but appears to play a minor role in calcium signaling. In glial cells of the antennal lobe of Manduca, voltage-gated calcium signaling changes during postembryonic development and is essential for the migration of the glial cells, a key step in axon guidance and in stabilization of the glomerular structures that are characteristic of primary olfactory centers.
Collapse
Affiliation(s)
- Christian Lohr
- Abteilung für Allgemeine Zoologie, FB Biologie, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Joachim W Deitmer
- Abteilung für Allgemeine Zoologie, FB Biologie, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| |
Collapse
|
31
|
Sen A, Shetty C, Jhaveri D, Rodrigues V. Distinct types of glial cells populate the Drosophila antenna. BMC DEVELOPMENTAL BIOLOGY 2005; 5:25. [PMID: 16281986 PMCID: PMC1310525 DOI: 10.1186/1471-213x-5-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 11/11/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix-loop-helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. RESULTS We have used different P(Gal4) lines to drive Green Fluorescent Protein (GFP) in distinct populations of cells within the Drosophila antenna. Mz317::GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional approximately 30 glial cells detected by GH146::GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317-glia and GH146-glia respectively. In the adult, processes of GH146-glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317-glia form a peripheral layer. Ablation of GH146-glia does not result in any significant effects on the patterning of the olfactory receptor axons. CONCLUSION We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146-glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting zone cells described in Manduca.
Collapse
Affiliation(s)
- Anindya Sen
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005, India
- Dept. of Physiology and Cellular Biophysics, Columbia University, New York. USA
| | - Chetak Shetty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005, India
| | - Dhanisha Jhaveri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005, India
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Veronica Rodrigues
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005, India
- National Centre for Biological Sciences, TIFR, GKVK PO, Bellary Rd., Bangalore 560065, India
| |
Collapse
|
32
|
Pereanu W, Shy D, Hartenstein V. Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol 2005; 283:191-203. [PMID: 15907832 DOI: 10.1016/j.ydbio.2005.04.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/31/2005] [Accepted: 04/04/2005] [Indexed: 11/26/2022]
Abstract
Glial cells subserve a number of essential functions during development and function of the Drosophila brain, including the control of neuroblast proliferation, neuronal positioning and axonal pathfinding. Three major classes of glial cells have been identified. Surface glia surround the brain externally. Neuropile glia ensheath the neuropile and form septa within the neuropile that define distinct neuropile compartments. Cortex glia form a scaffold around neuronal cell bodies in the cortex. In this paper we have used global glial markers and GFP-labeled clones to describe the morphology, development and proliferation pattern of the three types of glial cells in the larval brain. We show that both surface glia and cortex glia contribute to the glial layer surrounding the brain. Cortex glia also form a significant part of the glial layer surrounding the neuropile. Glial cell numbers increase slowly during the first half of larval development but show a rapid incline in the third larval instar. This increase results from mitosis of differentiated glia, but, more significantly, from the proliferation of neuroblasts.
Collapse
Affiliation(s)
- Wayne Pereanu
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
33
|
Lohr C, Heil JE, Deitmer JW. Blockage of voltage-gated calcium signaling impairs migration of glial cells in vivo. Glia 2005; 50:198-211. [PMID: 15712206 DOI: 10.1002/glia.20163] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Migration of glial cells is an essential step in the development of the antennal lobe, the primary olfactory center of insects, to establish well-defined borders between olfactory glomeruli required for odor discrimination. In the present study, we used two-photon microscopy to visualize calcium signaling in developing antennal lobe glial cells of the sphinx moth Manduca sexta. We found a correlation between the upregulation of functional voltage-gated calcium channels and the onset of glial cell migration. In addition, glial cells migrating into the center of the antennal lobe express larger voltage-gated calcium transients than glial cells that remain at the periphery. Migration behavior and calcium signaling of glial cells in vivo were manipulated either by deafferentation, by injection of the calcium channel blockers diltiazem, verapamil, and flunarizine, or by injection of the calcium chelators BAPTA-AM and Fluo-4-AM. In deafferented antennal lobes, glial cells failed to express functional voltage-gated calcium channels and did not migrate. Calcium channel blockage or reducing glial calcium signals by calcium chelators prevented glial cell migration and resulted in antennal lobes lacking glial borders around glomeruli, indicating that voltage-gated calcium signaling is required for the migration of antennal lobe glial cells and the development of mature olfactory glomeruli.
Collapse
Affiliation(s)
- Christian Lohr
- Abteilung für Allgemeine Zoologie, Universität Kaiserslautern, 67653 Kaiserslautern, Germany.
| | | | | |
Collapse
|
34
|
Abstract
In all complex organisms, glial cells are pivotal for neuronal development and function. Insects are characterized by having only a small number of these cells, which nevertheless display a remarkable molecular diversity. An intricate relationship between neurons and glia is initially required for glial migration and during axonal patterning. Recent data suggest that in organisms such as Drosophila, a prime role of glial cells lies in setting boundaries to guide and constrain axonal growth.
Collapse
Affiliation(s)
- Gundula Edenfeld
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | | | | |
Collapse
|
35
|
Consoulas C, Levine RB, Restifo LL. The steroid hormone-regulated geneBroad Complex is required for dendritic growth of motoneurons during metamorphosis ofDrosophila. J Comp Neurol 2005; 485:321-37. [PMID: 15803508 DOI: 10.1002/cne.20499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dendrites are subject to subtle modifications as well as extensive remodeling during the assembly and maturation of neural circuits in a wide variety of organisms. During metamorphosis, Drosophila flight motoneurons MN1-MN4 undergo dendritic regression, followed by regrowth, whereas MN5 differentiates de novo (Consoulas et al. [2002] J. Neurosci. 22:4906-4917). Many cellular changes during metamorphosis are triggered and orchestrated by the steroid hormone 20-hydroxyecdysone, which initiates a cascade of coordinated gene expression. Broad Complex (BRC), a primary response gene in the ecdysone cascade, encodes a family of transcription factors (BRC-Z1-Z4) that are essential for metamorphic reorganization of the central nervous system (CNS). Using neuron-filling techniques that reveal cellular morphology with very high resolution, we tested the hypothesis that BRC is required for metamorphic development of MN1-MN5. Through a combination of loss-of-function mutant analyses, genetic mapping, and transgenic rescue experiments, we found that 2Bc function, mediated by BRC-Z3, is required selectively for motoneuron dendritic regrowth (MN1-MN4) and de novo outgrowth (MN5), as well as for soma expansion of MN5. In contrast, larval development and dendritic regression of MN1-MN4 are BRC-independent. Surprisingly, BRC proteins are not expressed in the motoneurons, suggesting that BRC-Z3 exerts its effect in a non-cell-autonomous manner. The 2Bc mutants display no gross defects in overall thoracic CNS structure, or in peripheral structures such as target muscles or sensory neurons. Candidates for mediating the effect of BRC-Z3 on dendritic growth of MN1-MN5 include their synaptic inputs and non-neuronal CNS cells that interact with them through direct contact or diffusible factors.
Collapse
Affiliation(s)
- Christos Consoulas
- ARL Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
36
|
Abstract
In the developing nervous system, growth cones follow specific trajectories to reach their target area and ultimately connect with their correct postsynaptic partners. This review focuses on studies in both Drosophila and vertebrates to highlight that mutual interactions between neurons and glia are essential in forming specific neuronal connections. Glia signal to neurons to direct pathfinding and targeting of axons, as well as to stabilize and refine axonal branches within the target area. Equally, neurons provide crucial information to glia, supporting their migration and correct positioning.
Collapse
Affiliation(s)
- Carole Chotard
- National Institute for Medical Research, Division of Molecular Neurobiology, The Ridgeway, London NW7 1AA, UK
| | | |
Collapse
|
37
|
Gibson NJ, Hildebrand JG, Tolbert LP. Glycosylation patterns are sexually dimorphic throughout development of the olfactory system in Manduca sexta. J Comp Neurol 2004; 476:1-18. [PMID: 15236463 DOI: 10.1002/cne.20178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the moth Manduca sexta, development of the adult olfactory system depends on complex interactions between olfactory receptor neurons in the antenna, antennal-lobe neurons in the brain, and several classes of glial cells. As one approach to characterizing molecules that may play roles in these interactions, we used lectins to screen antennae and antennal lobes at different stages of adult development. We find that each of the major neural cell types has a distinct pattern of labeling by lectins. Effects of enzymatic and other treatments on lectin labeling lead us to conclude that the predominant lectin ligands are: glycosphingolipids and an O-linked, fucose-containing glycoprotein on axons of olfactory receptor neurons, O-linked glycoproteins on antennal-lobe neurons, and N-linked glycoproteins on all classes of glial cells in the primary olfactory pathway. Wheat germ agglutinin labels all olfactory axons uniformly during much of development, but labeling becomes restricted to the pheromone-responsive olfactory receptor neurons in the adult male. Succinylated WGA reveals differences in these axon classes earlier, as glomerului develop from protoglomeruli. The adult female displays a less pronounced difference in labeling of axons targeting ordinary and sexually dimorphic glomeruli. Differences in labeling of receptor axons targeted to ordinary and sexually dimorphic glomeruli may be correlated with differences in function or connectivity in different regions of the antennal lobe.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | | | |
Collapse
|
38
|
Awasaki T, Ito K. Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr Biol 2004; 14:668-77. [PMID: 15084281 DOI: 10.1016/j.cub.2004.04.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 03/02/2004] [Accepted: 03/03/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND Axon pruning is involved in establishment and maintenance of functional neural circuits. During metamorphosis of Drosophila, selective pruning of larval axons is developmentally regulated by ecdysone and caused by local axon degeneration. Previous studies have revealed intrinsic molecular and cellular mechanisms that trigger this pruning process, but how pruning is accomplished remains essentially unknown. RESULTS Detailed analysis of morphological changes in the axon branches of Drosophila mushroom body (MB) neurons revealed that during early pupal stages, clusters of neighboring varicosities, each of which belongs to different axons, disappear simultaneously shortly before the onset of local axon degeneration. At this stage, bundles of axon branches are infiltrated by the processes of surrounding glia. These processes engulf clusters of varicosities and accumulate intracellular degradative compartments. Selective inhibition of cellular functions, including endocytosis, in glial cells via the temperature-sensitive allele of shibire both suppresses glial infiltration and varicosity elimination and induces a severe delay in axon pruning. Selective inhibition of ecdysone receptors in the MB neurons severely suppressed not only axon pruning but also the infiltration and engulfing action of the surrounding glia. CONCLUSIONS These findings strongly suggest that glial cells are extrinsically activated by ecdysone-stimulated MB neurons. These glial cells infiltrate the mass of axon branches to eliminate varicosities and break down axon branches actively rather than just scavenging already-degraded debris. We therefore propose that neuron-glia interaction is essential for the precisely coordinated axon-pruning process during Drosophila metamorphosis.
Collapse
Affiliation(s)
- Takeshi Awasaki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | |
Collapse
|
39
|
Kurshan PT, Hamilton IS, Mustard JA, Mercer AR. Developmental changes in expression patterns of two dopamine receptor genes in mushroom bodies of the honeybee,Apis mellifera. J Comp Neurol 2003; 466:91-103. [PMID: 14515242 DOI: 10.1002/cne.10864] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The expression patterns of two dopamine receptor genes, Amdop1 and Amdop2, in the developing mushroom bodies of the honeybee brain were determined by using in situ hybridisation. Both genes were expressed throughout pupal development, but their patterns of expression in the three major divisions of mushroom body intrinsic neurons (outer compact cells, noncompact cells, and inner compact cells) were quite distinct. Amdop1 expression could be detected in all three mushroom body cell groups throughout development. Staining for Amdop1 mRNA was particularly intense in newly born Kenyon cells, suggesting that levels of Amdop1 expression are higher in newborn cells than in more mature mushroom body neurons. This was not the case for Amdop2. Amdop2 expression in the mushroom bodies was restricted to inner and outer compact cells during most of pupal development, appearing in noncompact cells only late in metamorphosis or at adult eclosion. In contrast to the case with Amdop1, staining for Amdop2 mRNA was observed in glial cells. Expression of Amdop2 in glial cells was detected only at early stages of glial cell development, when the cells are reported to be actively dividing. This study not only implicates dopamine in the development of honeybee mushroom bodies but also suggests different roles for the two dopamine receptors investigated.
Collapse
Affiliation(s)
- Peri T Kurshan
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
40
|
Tucker ES, Tolbert LP. Reciprocal interactions between olfactory receptor axons and olfactory nerve glia cultured from the developing moth Manduca sexta. Dev Biol 2003; 260:9-30. [PMID: 12885552 DOI: 10.1016/s0012-1606(03)00207-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In olfactory systems, neuron-glia interactions have been implicated in the growth and guidance of olfactory receptor axons. In the moth Manduca sexta, developing olfactory receptor axons encounter several types of glia as they grow into the brain. Antennal nerve glia are born in the periphery and enwrap bundles of olfactory receptor axons in the antennal nerve. Although their peripheral origin and relationship with axon bundles suggest that they share features with mammalian olfactory ensheathing cells, the developmental roles of antennal nerve glia remain elusive. When cocultured with antennal nerve glial cells, olfactory receptor growth cones readily advance along glial processes without displaying prolonged changes in morphology. In turn, olfactory receptor axons induce antennal nerve glial cells to form multicellular arrays through proliferation and process extension. In contrast to antennal nerve glia, centrally derived glial cells from the axon sorting zone and antennal lobe never form arrays in vitro, and growth-cone glial-cell encounters with these cells halt axon elongation and cause permanent elaborations in growth cone morphology. We propose that antennal nerve glia play roles similar to olfactory ensheathing cells in supporting axon elongation, yet differ in their capacity to influence axon guidance, sorting, and targeting, roles that could be played by central olfactory glia in Manduca.
Collapse
Affiliation(s)
- Eric S Tucker
- Department of Cell Biology and Anatomy, University of Arizona, PO Box 245044, Tucson, AZ 85724-5044, USA
| | | |
Collapse
|
41
|
Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 2003; 38:567-80. [PMID: 12765609 DOI: 10.1016/s0896-6273(03)00289-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glia are the most abundant cell type in the mammalian brain. They regulate neuronal development and function, CNS immune surveillance, and stem cell biology, yet we know surprisingly little about glia in any organism. Here we identify over 40 new Drosophila glial genes. We use glial cells missing (gcm) mutants and misexpression to verify they are Gcm regulated in vivo. Many genes show unique spatiotemporal responsiveness to Gcm in the CNS, and thus glial subtype diversification requires spatially or temporally restricted Gcm cofactors. These genes provide insights into glial biology: we show unc-5 (a repulsive netrin receptor) orients glial migrations and the draper gene mediates glial engulfment of apoptotic neurons and larval locomotion. Many identified Drosophila glial genes have homologs expressed in mammalian glia, revealing conserved molecular features of glial cells. 80% of these Drosophila glial genes have mammalian homologs; these are now excellent candidates for regulating human glial development, function, or disease.
Collapse
Affiliation(s)
- Marc R Freeman
- Institutes of Neuroscience and Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | |
Collapse
|