1
|
Amoah E, Sahraeian T, Seth A, Badu-Tawiah AK. Differentiation of oligosaccharide isomers by direct infusion multidimensional mass spectrometry. Analyst 2024; 149:5504-5517. [PMID: 39420774 PMCID: PMC11487224 DOI: 10.1039/d4an01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Oligosaccharides demonstrate many bioactivities with applications in the pharmaceutical, cosmetic, and food industries. They also serve as biomarkers for various diseases including cancer and glycogen storage disorders. These make the structural characterization of oligosaccharides very important. Unfortunately, the structural diversity found in saccharides make their characterization challenging, necessitating the development of sophisticated instrumentation to enable isomer differentiation. Herein, we report the ability of halide (Cl- and Br-) adducts to enable direct differentiation of oligosaccharide isomers using conventional collision-induced dissociation (CID) tandem MS (MS/MS). The halide adducts were generated by direct infusion nano-electrospray ionization (nESI). For the first time, this traditional nESI CID MS/MS platform was used to differentiate stereoisomers of trisaccharides (cellotriose β(1 → 4) and maltotriose α(1 → 4), tetrasaccharides (cellotetraose and maltotetraose), and pentasaccharides (cellopentaose and maltopentaose)). In addition, the MS/MS of halide adducts enabled the differentiation of positional, structural, and linkage isomers from a total of 14 oligosaccharides. The isomer differentiation was realized by the generation of distinct diagnostic fragment ions in CID. We also performed principal component analysis using the entire range of MS/MS fragment ion profiles and found that negative-ion mode halide adduction provided more effective isomer differentiation compared with positive-ion mode sodium adduction. Finally, we demonstrated complex mixture analysis by spiking all 14 oligosaccharides into raw urine, of which we successfully distinguished species based on molecular weight (first dimension) and CID MS/MS fragmentation patterns as the second dimension separation. This work effectively showcases the potential to use direct infusion nESI-MS/MS to characterize synthetic oligosaccharide isomers in unpurified reaction mixture as well as from biofluids for diagnostic purposes.
Collapse
Affiliation(s)
- Enoch Amoah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Taghi Sahraeian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Ayesha Seth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
2
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
3
|
Chen YJ, Sui X, Wang Y, Zhao ZH, Han TH, Liu YJ, Zhang JN, Zhou P, Yang K, Ye ZH. Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chem X 2024; 22:101289. [PMID: 38544933 PMCID: PMC10966145 DOI: 10.1016/j.fochx.2024.101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.
Collapse
Affiliation(s)
- Ya-jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Zhi-hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Wei X, Wang J, Wang Y, Zhao Y, Long Y, Tan B, Li QX, Dong Z, Wan X. Dietary fiber and polyphenols from whole grains: effects on the gut and health improvements. Food Funct 2024; 15:4682-4702. [PMID: 38590246 DOI: 10.1039/d4fo00715h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cereals are the main source of energy in the human diet. Compared to refined grains, whole grains retain more beneficial components, including dietary fiber, polyphenols, proteins, vitamins, and minerals. Dietary fiber and bound polyphenols (biounavailable) in cereals are important active substances that can be metabolized by the gut microorganisms and affect the intestinal environment. There is a close relationship between the gut microbiota structures and various disease phenotypes, although the consistency of this link is affected by many factors, and the specific mechanisms are still unclear. Remodeling unfavorable microbiota is widely recognized as an important way to target the gut and improve diseases. This paper mainly reviews the interaction between the gut microbiota and cereal-derived dietary fiber and polyphenols, and also summarizes the changes to the gut microbiota and possible molecular mechanisms of related glycolipid metabolism. The exploration of single active ingredients in cereals and their synergistic health mechanisms will contribute to a better understanding of the health benefits of whole grains. It will further help promote healthier whole grain foods by cultivating new varieties with more potential and optimizing processing methods.
Collapse
Affiliation(s)
- Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
- Environmental Economics and Natural Resources Group, Wageningen University & Research, Wageningen 6706 KN, The Netherlands
| | - Jianhui Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Yaxuan Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Yilin Zhao
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| |
Collapse
|
5
|
Kennedy JM, De Silva A, Walton GE, Gibson GR. A review on the use of prebiotics in ulcerative colitis. Trends Microbiol 2024; 32:507-515. [PMID: 38065786 DOI: 10.1016/j.tim.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 05/12/2024]
Abstract
The gut microbiome in the inflammatory bowel disease, ulcerative colitis (UC), is different to that of healthy controls. Patients with UC have relative reductions in abundance of Firmicutes and Bifidobacterium in the colon, and an increase in sulfate-reducing bacteria. Prebiotics are dietary substrates which are selectively metabolised by the human colonic microbiota to confer health benefits to the host. This review explores our current understanding of the potential benefits of prebiotics on various clinical, biochemical, and microbiological endpoints in UC, including new perspectives gained from recent studies in the field. This review looks to the future and highlights the need for appropriately designed trials to explore this potentially exciting new avenue for the treatment of UC.
Collapse
Affiliation(s)
- James M Kennedy
- Department of Food and Nutritional Sciences, The University of Reading, Reading, RG6 6AP, UK; Department of Gastroenterology, Royal Berkshire NHS Foundation Trust, Reading, RG1 5AN, UK.
| | - Aminda De Silva
- Department of Gastroenterology, Royal Berkshire NHS Foundation Trust, Reading, RG1 5AN, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, The University of Reading, Reading, RG6 6AP, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, The University of Reading, Reading, RG6 6AP, UK
| |
Collapse
|
6
|
Manthei A, Elez-Martínez P, Soliva-Fortuny R, Murciano-Martínez P. Prebiotic potential of pectin and cello-oligosaccharides from apple bagasse and orange peel produced by high-pressure homogenization and enzymatic hydrolysis. Food Chem 2024; 435:137583. [PMID: 37804723 DOI: 10.1016/j.foodchem.2023.137583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Apple bagasse and orange peel were subjected to high-pressure homogenization (HPH), enzymatic hydrolysis (EH) and their combination (HPHE) to study their effect on oligosaccharide production and in vitro fermentability. The application of a cellulase-pectinase mixture on the by-products generated significant quantities of cellobiose (COS-2) and pectin derived oligosaccharides (POS) which were identified as mainly methylated and acetylated oligogalacturonides with DP 2-5 (POS 2-5). When pre-treating the substrates with HPH, the release in orange peel was enhanced significantly leading to a POS content of 44.51 g/100 g peel, whereas oligosaccharide solubilization in apple bagasse was not affected. In vitro fermentation of the hydrolysates containing COS-2 and POS showed faster fermentation rates, between 6 and 10 h, and enhanced gas production, compared to those samples not subjected to enzymatic hydrolysis. Short chain fatty acid (SCFA) production was not impacted by the presence of POS and COS-2 in the induced quantities.
Collapse
Affiliation(s)
- Alina Manthei
- Department of Food Technology, Engineering and Science, University of Lleida - Agrotecnio CERCA Centre, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | - Pedro Elez-Martínez
- Department of Food Technology, Engineering and Science, University of Lleida - Agrotecnio CERCA Centre, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | - Robert Soliva-Fortuny
- Department of Food Technology, Engineering and Science, University of Lleida - Agrotecnio CERCA Centre, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | | |
Collapse
|
7
|
Montes YMG, Calle ERV, Terán SGS, García MRC, Nájera JCR, Vera MRL. Growth kinetics of Lactococcus lactis and Lactobacillus casei in liquid culture medium containing as prebiotics inulin or fructose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1258-1270. [PMID: 37801661 DOI: 10.1002/jsfa.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Predictive microbiology is a tool that allows us to evaluate the behavior of the concentration of biomass and estimated cells under extrinsic conditions, providing scientific and industrial benefits. In the present study, the growth of L. lactis and L. casei combined with inulin and fructose was modeled using the Gompertz sigmoidal growth functions and plotted using data obtained from batch culture in relation to biomass and cell concentration expressed as estimates in ln N (OD600nm and cells mL-1 ) as a function of time. RESULTS The results of the kinetic modeling indicated that (T1) A1B1 = L. lactis + fructose and (T4) A2B2 = L. casei + inulin presented the best function coefficients and best fits in most cases compared to the rest. The specific growth rate of the maximum acceleration was from 0.364 to 0.473 h-1 and 0.100 to 0.129 h-1 , the concentration of bacterial cells (A) was from 0.556 to 0.713 and 0.425 to 0.548 respectively and the time where (μ) occurred with a greater magnitude (L) fluctuated between 0.854 and 0.802 and when this time in (L) is very fast, it presents values of ≤0.072 to ≤0.092. Its coefficient of determination and/or multiple regression (R2 ) obtained in the two adjustments was 0.97. CONCLUSION It was possible to predict the influence of the carbon source on the behavior of maximum growth rates, higher consumption due to nutrient affinity and shorter growth time. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yessenia Maribel García Montes
- Departamento de Ciencias de Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito, Ecuador
- Facultad de Ciencias de la Vida y Tecnologías, Universidad Laica 'Eloy Alfaro' de Manabí, Av. Circunvalación, Manta, Ecuador
| | - Edwin Rafael Vera Calle
- Departamento de Ciencias de Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito, Ecuador
| | - Stalin Gustavo Santacruz Terán
- Facultad de Ciencias de la Vida y Tecnologías, Universidad Laica 'Eloy Alfaro' de Manabí, Av. Circunvalación, Manta, Ecuador
| | - Marlon Reinaldo Castro García
- Facultad de Ciencias de la Vida y Tecnologías, Universidad Laica 'Eloy Alfaro' de Manabí, Av. Circunvalación, Manta, Ecuador
| | | | - Mario René Lopez Vera
- Laboratorio de Microbiología Ambiental, Escuela Superior Politécnica Agropecuaria de Manabí 'MFL', Calceta, Ecuador
| |
Collapse
|
8
|
Divyashri G, Karthik P, Murthy TPK, Priyadarshini D, Reddy KR, Raghu AV, Vaidyanathan VK. Non-digestible oligosaccharides-based prebiotics to ameliorate obesity: Overview of experimental evidence and future perspectives. Food Sci Biotechnol 2023; 32:1993-2011. [PMID: 37860742 PMCID: PMC10581984 DOI: 10.1007/s10068-023-01381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 10/21/2023] Open
Abstract
The diverse populations reportedly suffer from obesity on a global scale, and inconclusive evidence has indicated that both environmental and genetic factors are associated with obesity development. Therefore, a need exists to examine potential therapeutic or prophylactic molecules for obesity treatment. Prebiotics with non-digestible oligosaccharides (NDOs) have the potential to treat obesity. A limited number of prebiotic NDOs have demonstrated their ability as a convincing therapeutic solution to encounter obesity through various mechanisms, viz., stimulating beneficial microorganisms, reducing the population of pathogenic microorganisms, and also improving lipid metabolism and glucose homeostasis. NDOs include pectic-oligosaccharides, fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides and other oligosaccharides which significantly influence the overall human health by different mechanisms. This review provides the treatment of obesity benefits by incorporating these prebiotic NDOs, according to established scientific research, which shows their good effects extend beyond the colon.
Collapse
Affiliation(s)
- G. Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Pothiyappan Karthik
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641 021 India
| | - T. P. Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Dey Priyadarshini
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006 Australia
| | - Anjanapura V. Raghu
- Faculty of Allied Health Sciences, BLDE (Deemed-to-Be University), Vijayapura, 586103 Karnataka India
| | - Vinoth Kumar Vaidyanathan
- Department of Biotechnology, School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology (SRM IST), 603 203 Kattankulathur, India
| |
Collapse
|
9
|
Wei Y, Zhang S, Guan G, Wan Z, Wang R, Li P, Liu Y, Wang J, Jiao G, Wang H, Sun C. A specific and rapid method for detecting Bacillus and Acinetobacter species in Daqu. Front Bioeng Biotechnol 2023; 11:1261563. [PMID: 37818237 PMCID: PMC10561003 DOI: 10.3389/fbioe.2023.1261563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Daqu is a spontaneous, solid-state cereal fermentation product used for saccharification and as a starter culture for Chinese Baijiu production. Bacillus and Acinetobacter, two dominant microbial genera in Daqu, produce enzymes and organic acids that influence the Daqu quality. However, there are no rapid analytical methods for detecting Bacillus and Acinetobacter. We designed primers specific to the genera Bacillus and Acinetobacter to perform genetic comparisons using the 16 S rRNA. After amplification of polymerase chain reaction using specific primers, high-throughput sequencing was performed to detect strains of Bacillus and Acinetobacter. The results showed that the effective amplification rates for Bacillus and Acinetobacter in Daqu were 86.92% and 79.75%, respectively. Thus, we have devised and assessed a method to accurately identify the species associated with Bacillus and Acinetobacter in Daqu, which can also hold significance for bacterial typing and identification.
Collapse
Affiliation(s)
- Yanwei Wei
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Shuyue Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guikun Guan
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Ziran Wan
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Yu Liu
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guanhua Jiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Hao Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Chuying Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
10
|
Chen T, Wang C, Nie C, Yuan X, Tu A, Li J. Galactooligosaccharide or 2'-Fucosyllactose Modulates Gut Microbiota and Inhibits LPS/TLR4/NF-κB Signaling Pathway to Prevent DSS-Induced Colitis Aggravated by a High-Fructose Diet in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37290013 DOI: 10.1021/acs.jafc.2c08814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A high-fructose diet (HFrD) has been reported to exacerbate dextran sulfate sodium (DSS)-induced colitis. 2'-Fucosyllactose (FL) and galactooligosaccharide (GOS) have been shown, respectively, to have preventive and ameliorative effects on colitis, while limited research has explored whether GOS and FL may be equally protective or preventive in mice with HFrD. Here, we evaluated the protective effects of FL and GOS on colitis exacerbated by feeding HFrD and explored the underlying mechanisms. DSS-induced colitis was studied in four randomized C57BL/6J male mice (n = 8 mice/group). Among them, three groups were fed with HFrD, and two received either GOS or FL treatment, respectively. Gut microbial composition was analyzed by 16S rDNA gene sequencing. Intestinal barrier integrity and inflammatory pathway expression were measured using qPCR, immunofluorescence, and Western blot methods. Compared to the HFrD group, GOS or FL treatment increased the α-diversity of the gut microbiota, reduced the relative abundance of Akkermansia, and increased the content of short-chain fatty acids (SCFAs), respectively. Compared with the HFrD group, GOS or FL treatment improved the loss of goblet cells and the reduction of tight junction protein expression, thereby improving intestinal barrier integrity. Also, GOS or FL inhibited the LPS/TLR4/NF-κB signaling pathway and oxidative stress to suppress the inflammatory cascade compared with the HFrD group. These findings suggest that GOS or FL intake can alleviate HFrD-exacerbated colitis, with no significant difference observed between GOS and FL treatments.
Collapse
Affiliation(s)
- Tao Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Chuqing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Aobai Tu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| |
Collapse
|
11
|
Córdova A, Astudillo-Castro C, Henriquez P, Manriquez N, Nuñez H, Guerrero C, Álvarez D, Aburto C, Carrasco V, Oñate S, Lehuedé L. Ultrasound-assisted enzymatic synthesis of galacto-oligosaccharides using native whey with two commercial β-galactosidases: Aspergillus oryzae and Kluyveromyces var lactis. Food Chem 2023; 426:136526. [PMID: 37307741 DOI: 10.1016/j.foodchem.2023.136526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Native whey obtained during casein micelle microfiltration was used as a novel source to produce galacto-oligosaccharides (GOS). Since the presence of macromolecules and other interferers reduces biocatalyst performance, this work evaluated the effect of different ultrasound processing conditions on GOS synthesis using concentrated native whey. Ultrasonic intensities (UI) below 11 W/cm2 tended to increase the activity in the enzyme from Aspergillus oryzae for several minutes but accelerated the inactivation in that from Kluyveromyces lactis. At 40 °C, 40 % w/w native whey, 70 % wave amplitude, and 0.6 s/s duty-cycle, a UI of 30 W/cm2 was achieved, and the increased specific enzyme productivity was similar to the values obtained with pure lactose (∼0.136 g GOS/h/mgE). This strategy allows for obtaining a product containing prebiotics with the healthy and functional properties of whey proteins, avoiding the required purification steps used in the production of food-grade lactose.
Collapse
Affiliation(s)
- Andrés Córdova
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716 Playa Ancha, Valparaíso 2360100, Chile.
| | - Carolina Astudillo-Castro
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716 Playa Ancha, Valparaíso 2360100, Chile
| | - Paola Henriquez
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716 Playa Ancha, Valparaíso 2360100, Chile
| | - Natalia Manriquez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2360100, Chile
| | - Helena Nuñez
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716 Playa Ancha, Valparaíso 2360100, Chile; Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2360100, Chile
| | - Cecilia Guerrero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2360100, Chile
| | - Dafne Álvarez
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716 Playa Ancha, Valparaíso 2360100, Chile
| | - Carla Aburto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2360100, Chile
| | - Vinka Carrasco
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716 Playa Ancha, Valparaíso 2360100, Chile
| | - Sebastian Oñate
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2360100, Chile
| | - Luciana Lehuedé
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago 8370448, Chile
| |
Collapse
|
12
|
Mariano TB, Silva Lima HRD, Cotrim Ribeiro ST, Santos Filho JRD, Serrato RV, Reis AV, Gonçalves RAC, Oliveira AJBD. Inulin extraction from Stevia rebaudiana roots in an autoclave. Carbohydr Res 2023; 530:108850. [PMID: 37285636 DOI: 10.1016/j.carres.2023.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
Inulin is a polymer of d-fructose, characterized by the presence of a terminal glucose, and are a major component of Stevia rebaudiana roots. This type of polymer has nutritional properties and technological applications, such as fat substitutes in low-calorie foods and as the coating of pharmaceuticals. The aim of this study was to evaluate an alternative method for inulin extraction, in terms of extraction time and yield, since the traditional method of extraction under reflux is both time and energy consuming. Using the response surface methodology (RSM) with Box-Behnken design it was observed that the alternative extraction method using autoclave presented similar yields to the reflux-based method, but with a shorter extraction time, 121 °C by 17.41 min 1H Nuclear Magnetic Resonance and Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF-MS) analysis showed that inulin crude extract from S. rebaudiana roots obtained by autoclave extraction had a higher degree of polymerization when compared to those obtained by the traditional method. Thus, it is concluded that the proposed method using an autoclave is a faster alternative for the extraction of inulin.
Collapse
Affiliation(s)
- Tamara Borges Mariano
- Departamento de Farmácia, Programa de Pós Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, 87020-900, Paraná, Brazil
| | - Hevelyn Regina da Silva Lima
- Departamento de Biotecnologia, Genética e Biologia Celular, Programa de Pós Graduação em Biotecnologia Ambiental, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, 87020-900, Paraná, Brazil
| | - Susana Tavares Cotrim Ribeiro
- Departamento de Farmácia, Programa de Pós Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, 87020-900, Paraná, Brazil
| | - José Rivaldo do Santos Filho
- Departamento de Farmácia, Programa de Pós Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, 87020-900, Paraná, Brazil
| | - Rodrigo Vassoler Serrato
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - Adriano Valim Reis
- Departamento de Farmácia, Programa de Pós Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, 87020-900, Paraná, Brazil
| | - Regina Aparecida Correia Gonçalves
- Departamento de Farmácia, Programa de Pós Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, 87020-900, Paraná, Brazil
| | - Arildo José Braz de Oliveira
- Departamento de Farmácia, Programa de Pós Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
13
|
Sajnaga E, Socała K, Kalwasińska A, Wlaź P, Waśko A, Jach ME, Tomczyk M, Wiater A. Response of murine gut microbiota to a prebiotic based on oligosaccharides derived via hydrolysis of fungal α-(1→3)-d-glucan: Preclinical trial study on mice. Food Chem 2023; 417:135928. [PMID: 36933426 DOI: 10.1016/j.foodchem.2023.135928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
We investigated the modulating effect of α-(1→3)-glucooligosaccharides (GOS), i.e. a product of fungal α-(1→3)-d-glucan hydrolysis, on the gut microbiota composition. Mice were fed with a GOS-supplemented diet and two control diets for 21 days, and fecal samples were collected at 0, 1, and 3-week time points. The bacterial community composition was determined by 16S rRNA gene Illumina sequencing. The gut microbiota of the GOS-supplemented mice showed profound time-dependent changes in the taxonomic composition; however, we did not observe significant changes in α-diversity indices. The biggest number of genus abundance shifts after 1 week of the treatment was noticed between the group of the GOS-supplemented mice and the controls; however, the differences were still relevant after the 3-week treatment. The GOS-supplemented mice displayed higher abundance of Prevotella spp., with a concomitant decrease in the abundance of Escherichia-Shigella. Hence, GOS seems to be a promising candidate for a new prebiotic.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, ul. Konstantynów 1J, 20-708 Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, ul. Lwowska 1, 87-100 Toruń, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, ul. Skromna 8, 20-704 Lublin, Poland
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, ul. Konstantynów 1H, 20-708 Lublin, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
14
|
Liu N, Shen H, Zhang F, Liu X, Xiao Q, Jiang Q, Tan B, Ma X. Applications and prospects of functional oligosaccharides in pig nutrition: A review. ANIMAL NUTRITION 2023. [DOI: 10.1016/j.aninu.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
15
|
Jackson PPJ, Wijeyesekera A, Rastall RA. Inulin-type fructans and short-chain fructooligosaccharides-their role within the food industry as fat and sugar replacers and texture modifiers-what needs to be considered! Food Sci Nutr 2023; 11:17-38. [PMID: 36655109 PMCID: PMC9834882 DOI: 10.1002/fsn3.3040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023] Open
Abstract
Inulin and oligofructose are classes of prebiotics belonging to a group of nondigestible carbohydrates referred to as inulin-type fructans. While short-chain fructooligosaccharides are enzymatically synthesized from the hydrolysis and transglycosylation of sucrose. Inulin-type fructans and short-chain fructooligosaccharides act as carbon sources for selective pathways supporting digestive health including altering the composition of the gut microbiota along with improving transit time. Due to their physicochemical properties, inulin-type fructans and short-chain fructooligosaccharides have been widely used in the food industry as partial replacements for both fat and sugar. Yet, levels of replacement need to be carefully considered as it may result in changes to physical and sensory properties that could be detected by consumers. Furthermore, it has been reported depending on the processing parameters used during production that inulin-type fructans and short-chain fructooligosaccharides may or may not undergo structural alterations. Therefore, this paper reviews the role of inulin-type fructans and short-chain fructooligosaccharides within the food industry as fat and sugar replacers and texture modifiers, their impact on final sensory properties, and to what degree processing parameters are likely to impact their functional properties.
Collapse
|
16
|
Ko H, Sung BH, Kim MJ, Sohn JH, Bae JH. Fructan Biosynthesis by Yeast Cell Factories. J Microbiol Biotechnol 2022; 32:1373-1381. [PMID: 36310357 PMCID: PMC9720074 DOI: 10.4014/jmb.2207.07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Fructan is a polysaccharide composed of fructose and can be classified into several types, such as inulin, levan, and fructo-oligosaccharides, based on their linkage patterns and degree of polymerization. Owing to its structural and functional diversity, fructan has been used in various fields including prebiotics, foods and beverages, cosmetics, and pharmaceutical applications. With increasing interest in fructans, efficient and straightforward production methods have been explored. Since the 1990s, yeast cells have been employed as producers of recombinant enzymes for enzymatic conversion of fructans including fructosyltransferases derived from various microbes and plants. More recently, yeast cell factories are highlighted as efficient workhorses for fructan production by direct fermentation. In this review, recent advances and strategies for fructan biosynthesis by yeast cell factories are discussed.
Collapse
Affiliation(s)
- Hyunjun Ko
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Cellapy Bio Inc., Bio-Venture Center 211, Daejeon 34141, Republic of Korea,Corresponding authors J.H. Sohn Phone: +82-42-860-4458 Fax: +82-42-860-4489 E-mail:
| | - Jung-Hoon Bae
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,
J.H. Bae Phone: +82-42-860-4484 Fax: +82-42-860-4489 E-mail:
| |
Collapse
|
17
|
Han D, Zulewska J, Xiong K, Yang Z. Synergy between oligosaccharides and probiotics: From metabolic properties to beneficial effects. Crit Rev Food Sci Nutr 2022; 64:4078-4100. [PMID: 36315042 DOI: 10.1080/10408398.2022.2139218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synbiotic is defined as the dietary mixture that comprises both probiotic microorganisms and prebiotic substrates. The concept has been steadily gaining attention owing to the rising recognition of probiotic, prebiotics, and gut health. Among prebiotic substances, oligosaccharides demonstrated considerable health beneficial effects in varieties of food products and their combination with probiotics have been subjected to full range of evaluations. This review delineated the landscape of studies using microbial cultures, cell lines, animal model, and human subjects to explore the functional properties and host impacts of these combinations. Overall, the results suggested that these combinations possess respective metabolic properties that could facilitate beneficial activities therefore could be employed as dietary interventions for human health improvement and therapeutic purposes. However, uncertainties, such as applicational practicalities, underutilized analytical tools, contradictory results in studies, unclear mechanisms, and legislation hurdles, still challenges the broad utilization of these combinations. Future studies to address these issues may not only advance current knowledge on probiotic-prebiotic-host interrelationship but also promote respective applications in food and nutrition.
Collapse
Affiliation(s)
- Dong Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ke Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
18
|
Supplementation with galacto-oligosaccharides in early life persistently facilitates the microbial colonization of the rumen and promotes growth of preweaning Holstein dairy calves. ANIMAL NUTRITION 2022; 10:223-233. [PMID: 35785255 PMCID: PMC9207549 DOI: 10.1016/j.aninu.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/18/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022]
Abstract
We aimed to determine the effects of dietary supplementation with galacto-oligosaccharides (GOS) on the growth performance, serum parameters, and the rumen microbial colonization and fermentation of pre-weaning dairy calves. The study comprised 2 phases of 28 and 42 d, respectively. During phase 1, 24 newborn female Holstein dairy calves were randomly allocated to consume a diet supplemented with 10 g/d GOS (GOS, n = 12) or not (CON, n = 12). Thereafter, during phase 2, the GOS group was further divided into 2 groups: one that continued to consume GOS (GOSC, n = 6) and one that no longer consumed GOS (GOSS, n = 6), alongside the CON group. Galacto-oligosaccharides increased the average daily gain (ADG), body weight, feed efficiency, and serum high-density lipoprotein-cholesterol concentration of dairy calves during phase 1 (P < 0.05). Supplementation with GOS for the entire study reduced the incidence of diarrhea and increased the serum total protein and Ca concentrations (P < 0.05) compared with the CON group. The effect of GOS supplementation persisted after it was stopped because the ADG and final body weight of the GOSS group were higher than those of the CON group (P < 0.05). Furthermore, the GOSS group showed a persistently lower incidence of diarrhea and greater colonization of the rumen with probiotics, at the expense of less beneficial bacteria, which would promote ruminal fermentation and microbial protein synthesis. These findings provide a theoretical basis for the rational application of prebiotics and have important practical implications for the design of early life dietary interventions in dairy calf rearing.
Collapse
|
19
|
Jiang K, Wang D, Su L, Liu X, Yue Q, Li B, Li K, Zhang S, Zhao L. Structural characteristics of locust bean gum hydrolysate and its alleviating effect on dextran sulfate sodium-induced colitis. Front Microbiol 2022; 13:985725. [PMID: 36033869 PMCID: PMC9399726 DOI: 10.3389/fmicb.2022.985725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory lesion of the colon from various causes. As current therapeutic drugs have adverse effects on patients with UC, there is a growing demand for alternative medicines from natural and functional foods. Locust bean gum, as a dietary fiber, has a variety of physiological effects. Methods In the present study, locust bean gum hydrolysate (LBGH) was obtained from the acid hydrolysis of locust bean gum. The structure of LBGH was characterized by thin-layer chromatography and high performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS)/MS analysis. And we investigated the therapeutic effect of LBGH on a mouse model of dextran sulfate sodium (DSS)-induced colitis. Results It was observed that the LBGH consisted of a mixture of monosaccharides and oligosaccharides with a degree of polymerization (DP) 2–7. LBGH treatment dramatically alleviated colonic pathological damage, suppressed the overproduction of pro-inflammatory factors and the activation of nuclear factor κB (NF-κB), increased the mRNA expression of tight junction proteins, and increased the abundance of probiotics such as Lactobacillus and Bifidobacterium in the gut. Conclusion There is a correlation between these mitigating effects on inflammation and the treatment of LBGH. Therefore, LBGH has tremendous potential in the treatment of colitis.
Collapse
Affiliation(s)
- Kangjia Jiang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Duo Wang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Le Su
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xinli Liu
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Baojun Li
- Shandong Zhuoran Biotechnology Co., Ltd., Jinan, China
| | - Kunlun Li
- Shandong Zhuoran Biotechnology Co., Ltd., Jinan, China
| | - Song Zhang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- *Correspondence: Song Zhang,
| | - Lin Zhao
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
- Lin Zhao,
| |
Collapse
|
20
|
Restoration of cefixime-induced gut microbiota changes by a prebiotic blend in a mouse model. Appl Microbiol Biotechnol 2022; 106:5197-5209. [PMID: 35779098 DOI: 10.1007/s00253-022-12044-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/09/2023]
Abstract
Recent studies have provided compelling evidence linking the composition of the gut microbiota, host diet, and host physiology. Prebiotics are substrates that are selectively utilized by host microorganisms, conferring health benefits. Prebiotics, such as prebiotic blends (PB), are commonly used worldwide in food processing. Here, microbiome-metabolomics was used to evaluate how PB affect gut microbes and metabolic functions in C57BL/6 J mice administered cefixime. We found favorable effects of PB on obesity outcomes. PB supplementation significantly increased the abundance of Bifidobacterium, Parabacteroides, Alloprevotella, Alistipes, and Dubosiella, and decreased that of Robinsoniella, Blautia, Lachnoclostridium, Coprobacillus, Hungatella, Erysipelatoclostridium, Helicobacter, Clostridium sensu stricto 1, Enterococcus, and Akkermansia compared to that in the cefixime administration (CEF) group. In particular, PB increased the abundance of Parabacteroides goldsteinii and suppressed that of Robinsoniella peoriensis and Akkermansia muciniphila. In addition, it regulated the levels of microbial metabolites such as unsaturated fatty acids and bile acids. Thus, PB can alleviate metabolic disorders induced by antibiotic intervention, indicating a potential dietary strategy for populations with antibiotic-associated diarrhea. KEY POINTS: • Prebiotic blends significantly increased the Parabacteroides goldsteinii colony. • Prebiotic blends selectivity reversed this increase of Akkermansia muciniphila by antibiotic intervention. • Prebiotic blends relieve cefixime-induced alteration of intestinal flora by regulating metabolites, such as fatty acids and bile acids.
Collapse
|
21
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
22
|
Ding Z, Wang X, Liu Y, Zheng Y, Li H, Zhang M, He Y, Cheng H, Xu J, Chen X, Zhao X. Dietary Mannan Oligosaccharides Enhance the Non-Specific Immunity, Intestinal Health, and Resistance Capacity of Juvenile Blunt Snout Bream (Megalobrama amblycephala) Against Aeromonas hydrophila. Front Immunol 2022; 13:863657. [PMID: 35784342 PMCID: PMC9240629 DOI: 10.3389/fimmu.2022.863657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/16/2022] [Indexed: 01/04/2023] Open
Abstract
Mannan oligosaccharides (MOS) have been studied and applied as a feed additive, whereas their regulation on the growth performance and immunity of aquatic animals lacks consensus. Furthermore, their immunoprotective effects on the freshwater fish Megalobrama amblycephala have not been sufficiently studied. Thus, we investigated the effects of dietary MOS of 0, 200, and 400 mg/kg on the growth performance, non-specific immunity, intestinal health, and resistance to Aeromonas hydrophila infection in juvenile M. amblycephala. The results showed that the weight gain rate of juvenile M. amblycephala was not significantly different after 8 weeks of feeding, whereas the feed conversion ratio decreased in the MOS group of 400 mg/kg. Moreover, dietary MOS increased the survival rate of juvenile M. amblycephala upon infection, which may be attributed to enhanced host immunity. For instance, dietary MOS increase host bactericidal and antioxidative abilities by regulating the activities of hepatic antimicrobial and antioxidant enzymes. In addition, MOS supplementation increased the number of intestinal goblet cells, and the intestine was protected from necrosis of the intestinal folds and disruption of the microvilli and junctional complexes, thus maintaining the stability of the intestinal epithelial barrier. The expression levels of M. amblycephala immune and tight junction-related genes increased after feeding dietary MOS for 8 weeks. However, the upregulated expression of immune and tight junction-related genes in the MOS supplemental groups was not as notable as that in the control group postinfection. Therefore, MOS supplementation might suppress the damage caused by excessive intestinal inflammation. Furthermore, dietary MOS affected the richness and composition of the gut microbiota, which improved the gut health of juvenile M. amblycephala by increasing the relative abundance of beneficial gut microbiota. Briefly, dietary MOS exhibited significant immune protective effects to juvenile M. amblycephala, which is a functional feed additive and immunostimulant.
Collapse
Affiliation(s)
- Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Zhujin Ding, ; Xiaoheng Zhao,
| | - Xu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yunlong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yancui Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Hongping Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Minying Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xiaoheng Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Zhujin Ding, ; Xiaoheng Zhao,
| |
Collapse
|
23
|
Chang L, Ding Y, Wang Y, Song Z, Li F, He X, Zhang H. Effects of Different Oligosaccharides on Growth Performance and Intestinal Function in Broilers. Front Vet Sci 2022; 9:852545. [PMID: 35433897 PMCID: PMC9011052 DOI: 10.3389/fvets.2022.852545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study was conducted to investigate the effects of different oligosaccharides on the growth performance and intestinal function in broilers.MethodsA total of 360 1-day-old yellow-feather chickens were randomly divided into 5 groups and fed with a basal diet supplemented with 50 mg/kg chlortetracycline (ANT), 3 g/kg isomalto-oligosaccharide (IMO), 3 g/kg raffinose oligosaccharide (RFO), and 30 mg/kg chitooligosaccharide (COS). The experiment lasted for 56 days, with 1–28 days as the starter phase and 29–56 days as the grower phase.ResultsThe results showed that dietary supplementation with RFO and COS significantly improved average daily gain (ADG) and average daily feed intake (ADFI) (p < 0.05). Relative to the control group, diets supplemented with oligosaccharides dramatically increased the level of serum IgM (RFO, COS), T-SOD (COS), and GSH-Px (IMO and RFO) and the expression of ZO-1(IMO) and claudin-1 (RFO) (p < 0.05). Adding antibiotics or oligosaccharides to the diet could remarkedly increase the villus height and villus height (VH)/crypt depth (CD) ratio of each group (p < 0.05). Through the ileum α-diversity analysis and comparison of OTU number in each group showed that the microbial richness of the IMO group increased in the starter phase, and that of the RFO and CSO group increased in the grower phase. Additionally, compared with the control group, IMO supplementation increased the level of ileum sIgA (p < 0.05) and the content of valeric acid (p < 0.05) in the cecum.ConclusionsIn summary, the addition of oligosaccharides in diet can improve the immune function and antioxidant capacity and improve intestinal health of broilers.
Collapse
Affiliation(s)
- Ling Chang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Yanan Ding
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Yushi Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Fei Li
- Guangxi Fufeng Agriculture and Animal Husbandry Group Co., Ltd., Nanning, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| |
Collapse
|
24
|
Oligosaccharides Ameliorate Acute Kidney Injury by Alleviating Cluster of Differentiation 44-Mediated Immune Responses in Renal Tubular Cells. Nutrients 2022; 14:nu14040760. [PMID: 35215410 PMCID: PMC8877265 DOI: 10.3390/nu14040760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden episode of kidney damage that commonly occurs in patients admitted to hospitals. To date, no ideal treatment has been developed to reduce AKI severity. Oligo-fucoidan (FC) interferes with renal tubular cell surface protein cluster of differentiation 44 (CD44) to prevent renal interstitial fibrosis; however, the influence of oligosaccharides on AKI remains unknown. In this study, FC, galacto-oligosaccharide (GOS), and fructo-oligosaccharide (FOS) were selected to investigate the influence of oligosaccharides on AKI. All three oligosaccharides have been proven to be partially absorbed by the intestine. We found that the oligosaccharides dose-dependently reduced CD44 antigenicity and suppressed the hypoxia-induced expression of CD44, phospho-JNK, MCP-1, IL-1β, and TNF-α in NRK-52E renal tubular cells. Meanwhile, CD44 siRNA transfection and JNK inhibitor SP600125 reduced the hypoxia-induced expression of phospho-JNK and cytokines. The ligand of CD44, hyaluronan, counteracted the influence of oligosaccharides on CD44 and phospho-JNK. At 2 days post-surgery for ischemia–reperfusion injury, oligosaccharides reduced kidney inflammation, serum creatine, MCP-1, IL-1β, and TNF-α in AKI mice. At 7 days post-surgery, kidney recovery was promoted. These results indicate that FC, GOS, and FOS inhibit the hypoxia-induced CD44/JNK cascade and cytokines in renal tubular cells, thereby ameliorating AKI and kidney inflammation in AKI mice. Therefore, oligosaccharide supplementation is a potential healthcare strategy for patients with AKI.
Collapse
|
25
|
Nagashima M, Nakamura H, Hosaka H, Hirano T, Hakamata W, Nishio T. Growth of Bifidobacterium pseudocatenulatum in medium containing N-acetylsucrosamine: Enzyme that induces the growth of this bacterium via degradation of this disaccharide. Glycobiology 2022; 32:540-549. [PMID: 35138388 DOI: 10.1093/glycob/cwac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
Bifidobacterium pseudocatenulatum grows well in the early stages of cultivation in medium containing sucrose (Suc), whereas its growth in medium containing the analogue disaccharide N-acetylsucrosamine (SucNAc) tends to exhibit a considerable delay. To elucidate the cause of this phenomenon, we investigated the proliferation pattern of B. pseudocatenulatum in medium containing D-glucose (Glc) and SucNAc and identified the enzyme that degrades this disaccharide. We found that B. pseudocatenulatum initially proliferates by assimilating Glc, with subsequent growth based on SucNAc assimilation depending on production of the β-fructofuranosidase, which can hydrolyze SucNAc, after Glc is completely consumed. Thus, B. pseudocatenulatum exhibited a diauxic growth pattern in medium containing Glc and SucNAc. In contrast, when cultured in medium containing Glc and Suc, B. pseudocatenulatum initially grew by degrading Suc via the phosphorolysis activity of Suc phosphorylase, which did not react to SucNAc. These observations indicate that B. pseudocatenulatum proliferates by assimilating Suc and SucNAc via different pathways. The β-fructofuranosidase of B. pseudocatenulatum exhibited higher hydrolytic activity against several naturally occurring Suc-based tri- or tetrasaccharides than against Suc, suggesting that this enzyme actively catabolizes oligosaccharides other than Suc.
Collapse
Affiliation(s)
- Makoto Nagashima
- Bioresource Utilization Science Course, Graduate School of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroki Nakamura
- Bioresource Utilization Science Course, Graduate School of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroki Hosaka
- Bioresource Utilization Science Course, Graduate School of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Takako Hirano
- Bioresource Utilization Science Course, Graduate School of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Wataru Hakamata
- Bioresource Utilization Science Course, Graduate School of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Toshiyuki Nishio
- Bioresource Utilization Science Course, Graduate School of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
26
|
Ji H, Li X, Jiang T, Fang Q, Bai Y, Long J, Chen L, Jin Z. A novel amylolytic enzyme from Palaeococcus ferrophilus with malto-oligosaccharide forming ability belonging to subfamily GH13_20. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Saini R, Patel AK, Saini JK, Chen CW, Varjani S, Singhania RR, Di Dong C. Recent advancements in prebiotic oligomers synthesis via enzymatic hydrolysis of lignocellulosic biomass. Bioengineered 2022; 13:2139-2172. [PMID: 35034543 PMCID: PMC8973729 DOI: 10.1080/21655979.2021.2023801] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interest in functional food, such as non-digestible prebiotic oligosaccharides is increasing day by day and their production is shifting toward sustainable manufacturing. Due to the presence of high carbohydrate content, lignocellulosic biomass (LCB) is the most-potential, cost-effective and sustainable substrate for production of many useful products, including lignocellulose-derived prebiotic oligosaccharides (LDOs). These have the same worthwhile properties as other common oligosaccharides, such as short chain carbohydrates digestible to the gut flora but not to humans mainly due to their resistance to the low pH and high temperature and their demand is constantly increasing mainly due to increased awareness about their potential health benefits. Despite several advantages over the thermo-chemical route of synthesis, comprehensive and updated information on the conversion of lignocellulosic biomass to prebiotic oligomers via controlled enzymatic saccharification is not available in the literature. Thus, the main objective of this review is to highlight recent advancements in enzymatic synthesis of LDOs, current challenges, and future prospects of sustainably producing prebiotic oligomers via enzymatic hydrolysis of LCB substrates. Enzyme reaction engineering practices, custom-made enzyme preparations, controlled enzymatic hydrolysis, and protein engineering approaches have been discussed with regard to their applications in sustainable synthesis of lignocellulose-derived oligosaccharide prebiotics. An overview of scale-up aspects and market potential of LDOs has also been provided.
Collapse
Affiliation(s)
- Reetu Saini
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
28
|
Kong CL, Zhu DY, Zhao Y, Zhao TY, Tao YS. Spent yeast polysaccharides in mixed alcoholic fermentation between Pichia kluyveri, Pichia fermentans and Saccharomyces cerevisiae retarded wine fruity ester hydrolysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Zhang P, Su L, Ma F, Ji X, Su Y, Yue Q, Zhao C, Zhang S, Sun X, Zhao L. Weilan gum oligosaccharide ameliorates dextran sulfate sodium‑induced experimental ulcerative colitis. Mol Med Rep 2021; 25:52. [PMID: 34913079 PMCID: PMC8711021 DOI: 10.3892/mmr.2021.12568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022] Open
Abstract
Ulcerative colitis (UC) is a global disease, characterized by periods of relapse that seriously affects the quality of life of patients. Oligosaccharides are considered to be a prospective strategy to alleviate the symptoms of UC. The present study aimed to evaluate the effect of weilan gum oligosaccharide (WLGO) on a mouse UC model induced by dextran sulfate sodium (DSS). WLGO structural physical properties were characterized by electrospray mass spectrometry and fourier tansform infrared spectroscopy. MTT assays were performed to evaluate the non‑toxic concentration of WLGO. RT‑qPCR and ELISAs were conducted to determine the levels of inflammatory factors. The clinical symptoms and mucosal integrity of the DSS‑induced UC model were assessed by DAI and histological assessment. LPS‑induced Caco‑2 cells and DSS‑induced UC mice were used to explore the effects of WLGO on UC. Treatment of the mice with 4.48 g/kg/day WLGO via gavage for 7 days significantly relieved the symptoms of DSS‑induced UC model mice, whereas significant effects were not observed for all symptoms of DSS‑induced UC in the WLGO‑low group. The disease activity index score was decreased and the loss of body weight was reduced in DSS‑induced UC model mice treated with WLGO. Moreover, colonic damage and abnormally short colon length shortenings were relieved following WLGO treatment. WLGO treatment also reduced the concentration and mRNA expression levels of proinflammatory cytokines, including interleukin‑1β, interleukin‑6 and tumor necrosis factor α, in DSS‑induced UC model mice and lipopolysaccharide‑treated Caco‑2 cells. These results indicated that WLGO may be an effective strategy for UC treatment.
Collapse
Affiliation(s)
- Ping Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Feifan Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Xiuyu Ji
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Yue Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250013, P.R. China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| |
Collapse
|
30
|
Fructooligosaccharide decreases the production of uremic toxin precursor through modulating gut microbes mediated tyrosine metabolism pathway. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Potential of Inulin-Fructooligosaccharides Extract Produced from Red Onion (Allium cepa var. viviparum (Metz) Mansf.) as an Alternative Prebiotic Product. PLANTS 2021; 10:plants10112401. [PMID: 34834764 PMCID: PMC8624415 DOI: 10.3390/plants10112401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022]
Abstract
Red onion is a popular ingredient in many Thai dishes and has recently been promoted for commercial cultivation. In this study, inulin-fructooligosaccharides (inulin-FOSs) were extracted from red onions in a simplified extraction method. The extract contained 24.00 ± 0.38 g/L free glucose, fructose and sucrose, while the level of FOSs was recorded at 74.0 ± 2.80 g/L with a degree of polymerization of 4.1. The extract was resistant to simulated gastrointestinal conditions, while selectively promoting probiotic lactobacilli. These outcomes resulted in inhibitory effects against various pathogenic bacteria. The in vitro batch culture fermentation of the extract by natural mixed culture indicated that an unknown sugar identified as neokestose was more rapidly fermented than 1-kestose and other longer-chain inulin-FOSs. Notably, neokestose selectively encouraged a bifidogenic effect, specifically in terms of the growth of Bifidobacteirum breve, which is an infant-type probiotic bacterium. This is the first report to state that neokestose could selectively enhance the bifidogenic effect. In summary, inulin-FOSs extract should be recognized as a multifunctional ingredient that can offer benefits in food and pharmaceutical applications.
Collapse
|
32
|
An enzymatic membrane reactor for oligodextran production: Effects of enzyme immobilization strategies on dextranase activity. Carbohydr Polym 2021; 271:118430. [PMID: 34364570 DOI: 10.1016/j.carbpol.2021.118430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023]
Abstract
An enzymatic membrane reactor (EMR) with immobilized dextranase provides an excellent opportunity for tailoring the molecular weight (Mw) of oligodextran to significantly improve product quality. However, a highly efficient EMR for oligodextran production is still lacking and the effect of enzyme immobilization strategy on dextranase hydrolysis behavior has not been studied yet. In this work, a functional layer of polydopamine (PDA) or nanoparticles made of tannic acid (TA) and hydrolysable 3-amino-propyltriethoxysilane (APTES) was first coated on commercial membranes. Then cross-linked dextranase or non-cross-linked dextranase was loaded onto the modified membranes using incubation mode or fouling-induced mode. The fouling-induced mode was a promising enzyme immobilization strategy on the membrane surface due to its higher enzyme loading and activity. Moreover, unlike the non-cross-linked dextranase that exhibited a normal endo-hydrolysis pattern, we surprisingly found that the cross-linked dextranase loaded on the PDA modified surface exerted an exo-hydrolysis pattern, possibly due to mass transfer limitations. Such alteration of hydrolysis pattern has rarely been reported before. Based on the hydrolysis behavior of the immobilized dextranase in different EMRs, we propose potential applications for the oligodextran products. This study presents a unique perspective on the relation between the enzyme immobilization process and the immobilized enzyme hydrolysis behavior, and thus opens up a variety of possibilities for the design of a high-performance EMR.
Collapse
|
33
|
Miao T, Basit A, Liu J, Zheng F, Rahim K, Lou H, Jiang W. Improved Production of Xylanase in Pichia pastoris and Its Application in Xylose Production From Xylan. Front Bioeng Biotechnol 2021; 9:690702. [PMID: 34513809 PMCID: PMC8429496 DOI: 10.3389/fbioe.2021.690702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Xylanases with high specific activity has been focused with great interest as a useful enzyme in biomass utilization. The production of recombinant GH11 xylanase (MYCTH_56237) from Myceliophthora thermophila has been improved through N-terminal signal peptide engineering in P. pastoris. The production of newly recombinant xylanase (termed Mtxyn11C) was improved from 442.53 to 490.7 U/mL, through a replacement of α-factor signal peptide with the native xylanase signal peptide segment (MVSVKAVLLLGAAGTTLA) in P. pastoris. Scaling up of Mtxyn11C production in a 7.5 L fermentor was improved to the maximal production rate of 2503 U/mL. In this study, the degradation efficiency of Mtxyn11C was further examined. Analysis of the hydrolytic mode of action towards the birchwood xylan (BWX) revealed that Mtxyn11C was clearly more effective than commercial xylanase and degrades xylan into xylooligosaccharides (xylobiose, xylotriose, xylotetraose). More importantly, Mtxyn11C in combination with a single multifunctional xylanolytic enzyme, improved the hydrolysis of BWX into single xylose by 40%. Altogether, this study provided strategies for improved production of xylanase together with rapid conversion of xylose from BWX, which provides sustainable, cost-effective and environmental friendly approaches to produce xylose/XOSs for biomass energy or biofuels production.
Collapse
Affiliation(s)
- Ting Miao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Abdul Basit
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Junquan Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengzhen Zheng
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kashif Rahim
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, Pakistan
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Wei L, Liu L, Bian Z, Wu Y. MALDI-TOF-MS analysis of hydrolysis products of beechwood and birchwood xylans catalyzed by xylanase from Bacillus subtilis. J Food Biochem 2021; 45:e13841. [PMID: 34189729 DOI: 10.1111/jfbc.13841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was used to analyze the polymerization distribution of xylo-oligosaccharides from birchwood and beechwood xylans following hydrolysis by the xylanase (XynA) from Bacillus subtilis, which was obtained by recombinant expression and purified by Ni2+ affinity column chromatography. The hydrolysis products of birchwood and beechwood xylans were analyzed by thin layer chromatography (TLC) and MALDI-TOF-MS. In the birchwood hydrolysate, the main neutral xylo-oligosaccharides were xylobiose (X2 ) and xylotriose (X3 ), and the acidic xylo-oligosaccharides (polymerization degree 4-12) were attached via a single methyl-glucuronic acid sidechain (MeG). Both X2 and X3 were identified in the beechwood xylan hydrolysate and acidic xylo-oligosaccharides (polymerization degree 4-16), which were structurally similar to those in the birchwood xylan hydrolysate. Therefore, the recombinant xylanase, XynA, has the potential to produce xylobiose (X2 ) and xylotriose (X3 ) as well as acidic xylo-oligosaccharides (MeGXn ) that would be applied in food industry. PRACTICAL APPLICATIONS: Xylo-oligosaccharides are a novel functional food additive, which has great potential in improving the quality of food. Xylo-oligosaccharides with methyl-glucuronic acid sidechains (MeG) are acidic xylo-oligosaccharides (MeGXn), which can be applied in the preparation of drugs for the treatment of cystitis and mucopolysaccharidosis. In this study, xylanase XynA was first obtained by gene cloning and expression and then used to hydrolyze the birchwood and beechwood xylans. The polymerization distribution of xylo-oligosaccharides generated during the enzymatic digestion was then determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Through enzyme hydrolysis, we are able to produce xylobiose and xylotriose for food additives.
Collapse
Affiliation(s)
- Lusha Wei
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Lei Liu
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ziwei Bian
- Department of Geology, Northwest University, Xi'an, China
| | - Yifei Wu
- College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
35
|
Choukade R, Kango N. Production, properties, and applications of fructosyltransferase: a current appraisal. Crit Rev Biotechnol 2021; 41:1178-1193. [PMID: 34015988 DOI: 10.1080/07388551.2021.1922352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Fructosyltransferases (FTases) are drawing increasing attention due to their application in prebiotic fructooligosaccharide (FOS) generation. FTases have been reported to occur in a variety of microorganisms but are predominantly found in filamentous fungi. These are employed at the industrial scale for generating FOS which make the key ingredient in functional food supplements and nutraceuticals due to their bifidogenic and various other health-promoting properties. SCOPE AND APPROACH This review is aimed to discuss recent developments made in the area of FTase production, characterization, and application in order to present a comprehensive account of their present status to the reader. Structural features, catalytic mechanisms, and FTase improvement strategies have also been discussed in order to provide insight into these aspects. KEY FINDINGS AND CONCLUSIONS Although FTases occur in several plants and microorganisms, fungal FTases are being exploited commercially for industrial-scale FOS generation. Several fungal FTases have been characterized and heterologously expressed. However, considerable scope exists for improved production and application of FTases for cost-effective production of prebiotic FOS.HIGHLIGHTSFructosyltrasferase (FTase) is a key enzyme in fructo-oligosaccharide (FOS) generationDevelopments in the production, properties, and functional aspects of FTasesMolecular modification and immobilization strategies for improved FOS generationFructosyltransferases are innovation hotspots in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Ritumbhara Choukade
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
36
|
Wu J, Yang R, Gao M, Zhang H, Zhan X. Synthesis of functional oligosaccharides and their derivatives through cocultivation and cellular NTP regeneration. ADVANCES IN APPLIED MICROBIOLOGY 2021; 115:35-63. [PMID: 34140133 DOI: 10.1016/bs.aambs.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrates play an important role in the life cycle. Among them, functional oligosaccharides show a complex and diverse structures with unique physiological activities and biological functions. However, different preparation methods directly affect the structure, molecular weight, and other functions of oligosaccharides, as well as their application fields and manufacturing costs. In the preparation of β-1,3-glucan oligosaccharides (OBGs), water insolubility of β-1,3-glucans hampers the hydrolysis efficiency. The synthesis of some functional oligosaccharides requires the consumption of energy substrates, such as ATP, CTP, and uridine triphosphate, for sugar nucleotide synthesis, leading to increased capital costs. A more economical solution to solve energy supply is to adopt microbial cocultivation or cellular nucleoside triphosphate regeneration. This review focused on the sources, preparation methods, biological activities of OBG, and the cultivation methods and applications of microbial cocultivation and fermentation. We also reviewed the preparation methods of other functional oligosaccharides, such as sialylated oligosaccharides, β-nicotinamide mononucleotide, and α-galacto-oligosaccharides.
Collapse
Affiliation(s)
- Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Ruoyu Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
37
|
Karl JP. Gut Microbiota-targeted Interventions for Reducing the Incidence, Duration, and Severity of Respiratory Tract Infections in Healthy Non-elderly Adults. Mil Med 2021; 186:e310-e318. [PMID: 33137200 PMCID: PMC7665594 DOI: 10.1093/milmed/usaa261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Respiratory tract infections (RTI), such as those caused by influenza viruses and, more recently, the severe acute respiratory syndrome coronavirus-2, pose a significant burden to military health care systems and force readiness. The gut microbiota influences immune function, is malleable, and may provide a target for interventions aiming to reduce RTI burden. This narrative review summarizes existing evidence regarding the effectiveness of probiotics, prebiotics, and synbiotics, all of which are gut microbiota-targeted interventions, for reducing the burden of RTI in military-relevant populations (i.e., healthy non-elderly adults). MATERIALS AND METHODS A systematic search strategy was used to identify recent meta-analyses and systematic reviews of randomized controlled trials conducted in healthy non-elderly adults which examined effects of probiotics, prebiotics, or synbiotics on the incidence, duration, and/or severity of RTI, or on immune responses to vaccinations against viruses that cause RTI. Relevant randomized controlled clinical trials not included in those reports were also identified. RESULTS Meta-analyses and multiple randomized controlled trials have demonstrated that certain probiotic strains may reduce the incidence, duration, and/or severity of RTI and improve immune responses to vaccination against RTI-causing pathogens in various populations including healthy non-elderly adults. Fewer randomized controlled trials have examined the effects of prebiotics or synbiotics on RTI-related outcomes in healthy non-elderly adults. Nevertheless, some studies conducted within that population and other populations have observed that certain prebiotics and synbiotics reduce the incidence, duration, and/or severity of RTI or improve immune responses to vaccinations against RTI-causing viruses. However, across all product classes, not all product formulations have shown benefit, and most have not been tested in multiple randomized controlled trials in military-relevant populations. CONCLUSION Dietary supplementation with certain gut microbiota-targeted interventions, and certain probiotics in particular, may provide viable strategies for reducing RTI-related illness in military personnel. Research in military populations is warranted to fully understand the magnitude of any military health and cost benefits, and to establish definitive recommendations for use.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| |
Collapse
|
38
|
Rezende ESV, Lima GC, Naves MMV. Dietary fibers as beneficial microbiota modulators: A proposed classification by prebiotic categories. Nutrition 2021; 89:111217. [PMID: 33838493 DOI: 10.1016/j.nut.2021.111217] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Dietary fiber is a group of heterogeneous substances that are neither digested nor absorbed in the small intestine. Some fibers can be classified as prebiotics if they are metabolized by beneficial bacteria present in the hindgut microbiota. The aim of this review was to specify the prebiotic properties of different subgroups of dietary fibers (resistant oligosaccharides, non-starch polysaccharides, resistant starches, and associated substances) to classify them by prebiotic categories. Currently, only resistant oligosaccharides (fructans [fructooligosaccharides, oligofructose, and inulin] and galactans) are well documented as prebiotics in the literature. Other fibers are considered candidates to prebiotics or have prebiotic potential, and apparently some have no prebiotic effect on humans. This dietary fiber classification by the prebiotic categories contributes to a better understanding of these concepts in the literature, to the stimulation of the processing and consumption of foods rich in fiber and other products with prebiotic properties, and to the development of protocols and guidelines on food sources of prebiotics.
Collapse
Affiliation(s)
| | - Glaucia Carielo Lima
- School of Nutrition, Federal University of Goiás, St. Leste Universitário, Goiânia, Goiás, Brazil
| | | |
Collapse
|
39
|
Li Y, Hintze KJ, Ward RE. Effect of supplemental prebiotics, probiotics and bioactive proteins on the microbiome composition and fecal calprotectin in C57BL6/j mice. Biochimie 2021; 185:43-52. [PMID: 33609630 DOI: 10.1016/j.biochi.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/11/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
The composition and metabolic activity of the microbiome affect many aspects of health, and there is current interest in dietary constituents that may affect this system. The purpose of this study was to evaluate the effects of a mix of probiotics, a mix of prebiotics and a bioactive protein fraction on the microbiome, when fed to mice alone and in combination at physiologically relevant doses. Mice were fed the total western diet (TWD) supplemented with prebiotics, probiotics, and bioactive proteins individually and in combination for four weeks. Subsequently, effects on the composition of the gut microbiome, gut short-chain fatty acids (SCFAs) concentration, and gut inflammation were measured. Ruminococcus gnavus was increased in mice gut microbiome after feeding prebiotics. Bifidobacterium longum was increased after feeding probiotics. The treatments significantly affected beta-diversity with minor treatment effects on cecal or fecal SCFAs levels, and the treatments did not affect gut inflammation as measured by fecal calprotectin.
Collapse
Affiliation(s)
- Ye Li
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT, 84322-8700, USA
| | - Korry J Hintze
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT, 84322-8700, USA
| | - Robert E Ward
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT, 84322-8700, USA.
| |
Collapse
|
40
|
Cunningham M, Azcarate-Peril MA, Barnard A, Benoit V, Grimaldi R, Guyonnet D, Holscher HD, Hunter K, Manurung S, Obis D, Petrova MI, Steinert RE, Swanson KS, van Sinderen D, Vulevic J, Gibson GR. Shaping the Future of Probiotics and Prebiotics. Trends Microbiol 2021; 29:667-685. [PMID: 33551269 DOI: 10.1016/j.tim.2021.01.003] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Recent and ongoing developments in microbiome science are enabling new frontiers of research for probiotics and prebiotics. Novel types, mechanisms, and applications currently under study have the potential to change scientific understanding as well as nutritional and healthcare applications of these interventions. The expansion of related fields of microbiome-targeted interventions, and an evolving landscape for implementation across regulatory, policy, prescriber, and consumer spheres, portends an era of significant change. In this review we examine recent, emerging, and anticipated trends in probiotic and prebiotic science, and create a vision for broad areas of developing influence in the field.
Collapse
Affiliation(s)
- Marla Cunningham
- Department of Science and Innovation, Metagenics, PO Box 675, Virginia BC, QLD, 4014, Australia.
| | - M Andrea Azcarate-Peril
- UNC Departments of Medicine and Nutrition, Microbiome Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | | | - Valerie Benoit
- Bell Institute of Health and Nutrition, General Mills, Minneapolis, MN, USA
| | | | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Kirsty Hunter
- Department of Sport Science, Nottingham Trent University, UK
| | - Sarmauli Manurung
- Emerging Sciences Research, Reckitt Benckiser, Nijmegen, The Netherlands
| | - David Obis
- Danone Nutricia Research, Palaiseau Cedex, France
| | | | - Robert E Steinert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, Switzerland
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Douwe van Sinderen
- Microbiology BioSciences Institute, University College Cork, Cork, Ireland
| | - Jelena Vulevic
- veMico Ltd, Reading, UK; Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
41
|
Yañez-Ñeco CV, Cervantes FV, Amaya-Delgado L, Ballesteros AO, Plou FJ, Arrizon J. Synthesis of β(1 → 3) and β(1 → 6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
42
|
Costa GT, Vasconcelos QDJS, Abreu GC, Albuquerque AO, Vilar JL, Aragão GF. Systematic review of the ingestion of fructooligosaccharides on the absorption of minerals and trace elements versus control groups. Clin Nutr ESPEN 2020; 41:68-76. [PMID: 33487309 DOI: 10.1016/j.clnesp.2020.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Fructooligosaccharides (FOS) are non-caloric and unconventional sugars that are not metabolized by the human body, but can be fermented by the colonic microbiota, leading to some beneficial effects on the absorption of minerals and trace elements. There is, however, a lack of research that describes the continued consumption of FOS in the diet between healthy and ill individuals and their impact. The objective of this systematic review was to evaluate the evidence behind the role of FOS in the absorption of minerals and trace elements in the human body. METHODS The bibliographic research covered the period from January 2000 to August 2020. Four databases were investigated. We follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA). The systematic review protocol was recorded in PROSPERO (139621). Two reviewers examined and extracted data from qualitative and quantitative studies published in the main databases, through a careful analysis. The risk of bias was assessed by four reviewers. RESULTS Of a total of 1494 texts, 30 complete articles composed this review. Two overarching categories represented the results: animal models and human models (randomized crossover design). Regarding human models, the results showed an improvement in minerals, especially the absorption of calcium, magnesium and iron after the ingestion of FOS, and specifically the absorption of minerals and trace elements in postmenopausal women was improved. CONCLUSIONS The use of FOS to improve the absorption of minerals and trace elements seems to be beneficial with evidence corroborating both in human and animal studies. However, the literature lacks articles exploring the daily dose and duration for FOS benefits, as well as long-term side effects in healthy or unhealthy subjects. Future research should focus on addressing the extent of the functional effect of this fiber and identifying the impact on overall health.
Collapse
Affiliation(s)
- G T Costa
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | - G C Abreu
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - A O Albuquerque
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - J L Vilar
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - G F Aragão
- Drug Research and Development Center, Federal University of Ceará, Brazil; Health Sciences Center, State University of Ceará, Brazil.
| |
Collapse
|
43
|
Shi H, Xu J, Wang W, Jia M, Zhou Y, Sun L. An efficient protocol for the preparation of linear arabino-oligosaccharides. Carbohydr Res 2020; 496:108131. [PMID: 32829204 DOI: 10.1016/j.carres.2020.108131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 08/09/2020] [Indexed: 10/23/2022]
Abstract
In this study, we report the development of an efficient protocol in the preparation of linear arabino-oligosaccharides derived from sugar beet arabinan. By optimizing hydrolytic conditions and separation on tandem Bio-Gel P4 columns, we obtained arabino-oligosaccharides with various degrees of polymerization (DP) from 2 to 15. All of these α-1,5-linked arabino-oligosaccharides are highly pure (>95%) as determined by HPAEC, MALDI-TOF mass spectrometry and 13C NMR spectroscopy. Due to their purity, these oligosaccharides can be used as standards to identify other oligosaccharides and as substrates to characterize new arabinan-specific enzymes, as well as for the development of new functional oligosaccharides.
Collapse
Affiliation(s)
- Huimin Shi
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Jialei Xu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Wenqing Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Mengdi Jia
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
44
|
Yang Y, Ma Y, Hu X, Cui SW, Zhang T, Miao M. Reuteransucrase-catalytic kinetic modeling and functional characteristics for novel prebiotic gluco-oligomers. Food Funct 2020; 11:7037-7047. [PMID: 32812985 DOI: 10.1039/d0fo00225a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work describes the reuteransucrase-catalyzed reaction and structural characterization as well as in vitro fermentation for the acceptor products of gluco-oligomers from sucrose and maltose. At a low concentration of sucrose, the production of gluco-oligomers was favored, resulting in a relatively large number of acceptor products (DP3-5). A mathematical model was also proposed to simulate gluco-oligomer production depending on the reaction conditions. The fine structures of major linear gluco-oligomer fractions for a sucrose : maltose ratio of 1 : 1 were assigned as follows: α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-d-Glcp, α-d-Glcp-(1→4)-α-d-Glcp-(1→4)-α-d-Glcp-(1→4)-d-Glcp, α-d-Glcp-(1→4)-α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-d-Glcp, and α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-d-Glcp, respectively. Compared with dextran and GOS57, the results of fermentation selectivity indicated that gluco-oligomers promoted the proliferation of gut bacteria and total SCFA production with a higher concentration of propionate. These data suggested that the gluco-oligomers synthesized via the reuteransucrase acceptor reaction had a prebiotic effect on gastrointestinal health.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Yajun Ma
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Xiuting Hu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Steve W Cui
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China. and Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ont., Canada N1G 5C9
| | - Tao Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
45
|
Effects of fructans and probiotics on the inhibition of Klebsiella oxytoca and the production of short-chain fatty acids assessed by NMR spectroscopy. Carbohydr Polym 2020; 248:116832. [PMID: 32919546 DOI: 10.1016/j.carbpol.2020.116832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Generally, the selection of fructans prebiotics and probiotics for the formulation of a symbiotic has been based on arbitrary considerations and in vitro tests that fail to take into account competitiveness and other interactions with autochthonous members of the intestinal microbiota. However, such analyzes may be a valuable step in the development of the symbiotic. The present study, therefore, aims to investigate the effect of lactobacilli strains and fructans (prebiotic compounds) on the growth of the intestinal competitor Klebsiella oxytoca, and to assess the correlation with short-chain fatty acids production. The short-chain fatty acids formed in the fermentation of the probiotic/prebiotic combination were investigated using NMR spectroscopy, and the inhibitory activities were assessed by agar diffusion and co-culture methods. The results showed that Lactobacillus strains can inhibit K. oxytoca, and that this antagonism is influenced by the fructans source and probably associated with organic acid production.
Collapse
|
46
|
Study the Possibility of Manufacturing Therapeutic Ice Cream by Adding Synbiotic and Study its Microbiological and Sensory Characteristics. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study was conducted to prepare control, probiotic (Lactobacillus acidophilus), and synbiotic (L. acidophilus and inulin) ice cream, L. acidophilus content, pH, titratable acidity, sensory properties were evaluated during frozen storage periods. L. acidophilus counts were the higher in synbiotic ice cream, adding inulin to probiotic ice cream enhanced significantly (P<0.05) the content of L. acidophilus. Freezing process caused a decrease in L. acidophilus counts along with storage periods in all the samples of ice cream. Synbiotic ice cream was the lower in pH values and the higher in TA values compared to the other ice cream samples. Synbiotic ice cream was the better in overall acceptance followed by probiotic and control ice cream, respectively. So, ice cream fortification with L. acidophilus probiotic bacteria and prebiotic inulin have a positive influence on all sensory characteristics. Probiotic content of both synbiotic and probiotic ice cream could be considered as functional therapeutic healthy product since it was more than the lowest concentration of probiotic bacteria to provide the beneficial attributes which are 106 cfu/g at the consumption time of the product.
Collapse
|
47
|
Utilization of sucrose and analog disaccharides by human intestinal bifidobacteria and lactobacilli: Search of the bifidobacteria enzymes involved in the degradation of these disaccharides. Microbiol Res 2020; 240:126558. [PMID: 32688171 DOI: 10.1016/j.micres.2020.126558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022]
Abstract
The majority of oligosaccharides used as prebiotics typically consist of a combination of 3 kinds of neutral monosaccharides, d-glucose, d-galactose, and d-fructose. In this context, we aimed to generate new types of prebiotic oligosaccharides containing other monosaccharides, and to date have synthesized various oligosaccharides containing an amino sugar, uronic acid, and their derivatives. In this study, we investigated the effects of 4 kinds of sucrose (Suc) analog disaccharides containing d-glucosamine, N-acetyl-d-glucosamine, d-glucuronic acid, or d-glucuronamide as constituent monosaccharides, on the growth of 8 species of bifidobacteria and 3 species of lactobacilli isolated from the human intestine. The results of these experiments were compared with those obtained from identical experiments using Suc. We confirmed that all bacterial strains could utilize Suc as a nutrient source for growth; in contrast, only specific species of bifidobacteria showed growth with Suc analog disaccharides. When oligosaccharides are utilized as a nutrient source by bacteria, they are often broken down into monosaccharides or their derivatives by cellular enzymes before entering the intracellular glycolytic pathway. Therefore, to clarify the above phenomenon involved in the growth of bifidobacteria using Suc analog disaccharides, we investigated the cellular glycosidases of 3 strains of bifidobacteria shown to be capable or incapable of growth in the presence of these disaccharides. As the result, it was confirmed that the strains capable of growth using Suc analog disaccharides show greater productivity of glycosidases that degrade these disaccharides than strains not capable of growth; however, we have not identified the enzymes here.
Collapse
|
48
|
Structure and Function of Bovine Whey Derived Oligosaccharides Showing Synbiotic Epithelial Barrier Protective Properties. Nutrients 2020; 12:nu12072007. [PMID: 32640639 PMCID: PMC7400958 DOI: 10.3390/nu12072007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Commensal gut microbiota and probiotics have numerous effects on the host’s metabolic and protective systems, which occur primarily through the intestinal epithelial cell interface. Prebiotics, like galacto-oligosaccharides (GOS) are widely used to modulate their function and abundance. However, important structure–function relations may exist, requiring a detailed structural characterization. Here, we detailed the structural characterization of bovine whey derived oligosaccharide preparations enriched with GOS or not, dubbed GOS-enriched milk oligosaccharides (GMOS) or MOS, respectively. We explore GMOS’s and MOS’s potential to improve intestinal epithelial barrier function, assessed in a model based on barrier disruptive effects of the Clostridioides difficile toxin A. GMOS and MOS contain mainly GOS species composed of β1-6- and β1-3-linked galactoses, and 3′- and 6′-sialyllactose. Both GMOS and MOS, combined with lactobacilli, like Lactobacillus rhamnosus (LPR, NCC4007), gave synergistic epithelial barrier protection, while no such effect was observed with Bifidobacterium longum (BL NCC3001), Escherichia coli (Nissle) or fructo-oligosaccharides. Mechanistically, for barrier protection with MOS, (i) viable LPR was required, (ii) acidification of growth medium was not enough, (iii) LPR did not directly neutralize toxin A, and (iv) physical proximity of LPR with the intestinal epithelial cells was necessary. This is the first study, highlighting the importance of structure–function specificity and the necessity of the simultaneous presence of prebiotic, probiotic and host cell interactions required for a biological effect.
Collapse
|
49
|
Molecular and Microbial Signatures Predictive of Prebiotic Action of Neoagarotetraose in a Dextran Sulfate Sodium-Induced Murine Colitis Model. Microorganisms 2020; 8:microorganisms8070995. [PMID: 32635315 PMCID: PMC7409226 DOI: 10.3390/microorganisms8070995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023] Open
Abstract
Neoagarotetraose (NT), a hydrolytic product of agar by β-agarase, is known to possess bioactive properties. However, the mechanisms via which NT alleviates intestinal inflammation remain unknown. In this study, a dextran sulfate sodium (DSS)-induced murine model was developed to evaluate the effect of NT on gut microbiome and microbial metabolism using 16S rRNA gene sequencing and untargeted metabolomics. Our data demonstrate that NT ingestion improved gut integrity and inflammation scores. NT reversed the abundance of Proteobacteria from an elevated level induced by DSS and significantly increased the abundance of Verrucomicrobia. Further, NT significantly increased the abundance of Akkermansia and Lactobacillus and concomitantly decreased that of Sutterella, which were among the important features identified by random forests analysis contributing to classification accuracy for NT supplementation. A microbial signature consisting of Adlercreutzia (denominator) and Turicibacter (numerator) predicted the NT supplementation status. Moreover, NT significantly modulated multiple gut metabolites, particularly those related to histidine, polyamine and tocopherol metabolism. Together, our findings provided novel insights into the mechanisms by which NT modulated the gut microbiome and metabolome and should facilitate the development of NT as a potent prebiotic for colitis management.
Collapse
|
50
|
Su Z, Luo J, Li X, Pinelo M. Enzyme membrane reactors for production of oligosaccharides: A review on the interdependence between enzyme reaction and membrane separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116840] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|