1
|
Duan J, Sanders AR, Gejman PV. From Schizophrenia Genetics to Disease Biology: Harnessing New Concepts and Technologies. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2019; 4:e190014. [PMID: 31555746 PMCID: PMC6760308 DOI: 10.20900/jpbs.20190014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder afflicting around 1% of the population. It is highly heritable but with complex genetics. Recent research has unraveled a plethora of risk loci for SZ. Accordingly, our conceptual understanding of SZ genetics has been rapidly evolving, from oligogenic models towards polygenic or even omnigenic models. A pressing challenge to the field, however, is the translation of the many genetic findings of SZ into disease biology insights leading to more effective treatments. Bridging this gap requires the integration of genetic findings and functional genomics using appropriate cellular models. Harnessing new technologies, such as the development of human induced pluripotent stem cells (hiPSC) and the CRISPR/Cas-based genome/epigenome editing approach are expected to change our understanding of SZ disease biology to a fundamentally higher level. Here, we discuss some new developments.
Collapse
Affiliation(s)
- Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| | - Pablo V. Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
3
|
Maney DL. Polymorphisms in sex steroid receptors: From gene sequence to behavior. Front Neuroendocrinol 2017; 47:47-65. [PMID: 28705582 PMCID: PMC6312198 DOI: 10.1016/j.yfrne.2017.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 01/09/2023]
Abstract
Sex steroid receptors have received much interest as potential mediators of human behaviors and mental disorders. Candidate gene association studies have identified about 50 genetic variants of androgen and estrogen receptors that correlate with human behavioral phenotypes. Because most of these polymorphisms lie outside coding regions, discerning their effect on receptor function is not straightforward. Thus, although discoveries of associations improve our ability to predict risk, they have not greatly advanced our understanding of underlying mechanisms. This article is intended to serve as a starting point for psychologists and other behavioral biologists to consider potential mechanisms. Here, I review associations between polymorphisms in sex steroid receptors and human behavioral phenotypes. I then consider ways in which genetic variation can affect processes such as mRNA transcription, splicing, and stability. Finally, I suggest ways that hypotheses about mechanism can be tested, for example using in vitro assays and/or animal models.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
4
|
Liu YW, Tzeng NS, Yeh CB, Kuo TBJ, Huang SY, Chang CC, Chang HA. Reduced cardiac autonomic response to deep breathing: A heritable vulnerability trait in patients with schizophrenia and their healthy first-degree relatives. Psychiatry Res 2016; 243:335-41. [PMID: 27442977 DOI: 10.1016/j.psychres.2016.04.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 03/09/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
Reduced resting heart rate variability (HRV) has been observed in patients with schizophrenia and their relatives, suggesting genetic predispositions. However, findings have not been consistent. We assessed cardiac autonomic response to deep breathing in first-degree relatives of patients with schizophrenia (n=45; 26 female; aged 39.69±14.82 years). Data were compared to healthy controls (n=45; 26 female; aged 38.27±9.79 years) matched for age, gender, body mass index and physical activity as well as to unmedicated patients with acute schizophrenia (n=45; 25 female; aged 37.31±12.65 years). Electrocardiograms were recorded under supine resting and deep-breathing conditions (10-12breaths/min). We measured HRV components including variance, low-frequency (LF) power, which may reflect baroreflex function, high-frequency (HF) power, which reflects cardiac parasympathetic activity, and LF/HF ratio, which may reflect sympatho-vagal balance. Patients rather than relatives exhibited lower resting-state HRV (variance, LF, and HF) than controls. As expected, deep breathing induced an increase in variance and HF-HRV in controls. However, such a response was significantly reduced in both patients and their relatives. In conclusion, the diminished cardiac autonomic reactivity to deep breathing seen in patients and their unaffected relatives indicates that this pattern of cardiac autonomic dysregulation may be regarded as a genetic trait marker for schizophrenia.
Collapse
Affiliation(s)
- Yu-Wen Liu
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Bin Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
A hypothesis-driven pathway analysis reveals myelin-related pathways that contribute to the risk of schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:140-5. [PMID: 24447946 DOI: 10.1016/j.pnpbp.2014.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/23/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are both severe neuropsychiatric disorders with a strong and potential overlapping genetic background. Multiple lines of evidence, including genetic studies, gene expression studies and neuroimaging studies, have suggested that both disorders are closely related to myelin and oligodendrocyte dysfunctions. In the current study, we hypothesized that the holistic effect of the myelin-related pathway contributes to the genetic susceptibility to both SZ and BD. We extracted pathway data from the canonical pathway database, Gene Ontology (GO), and selected a 'compiled' pathway based on previous literature. We then performed hypothesis-driven pathway analysis on GWAS data from the Psychiatric Genomics Consortium (PGC). As a result, we identified three myelin-related pathways with a joint effect significantly associated with both disorders: 'Myelin sheath' pathway (P(SZ) = 2.45E-7, P(BD) = 1.22E-3), 'Myelination' pathway (P(SZ) = 2.10E-4, P(BD) = 2.53E-24), and 'Compiled' pathway (P(SZ) = 4.57E-8, P(BD) = 2.61E-9). In comparing the SNPs and genes in these three pathways across the two diseases, we identified a substantial overlap in nominally associated SNPs and genes, which could be susceptibility SNPs and genes for both disorders. From these observations, we propose that myelin-related pathways may be involved in the etiologies of both SZ and BD.
Collapse
|
6
|
Johnson W, Penke L, Spinath FM. Understanding Heritability: What it is and What it is Not. EUROPEAN JOURNAL OF PERSONALITY 2011. [DOI: 10.1002/per.835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Commentators generally found our exposition of the concept of heritability helpful for psychologists, suggesting that we largely accomplished our primary goal. Many provided supplemental and helpful perspectives on concepts we addressed. A few of the comments indicated that we may not have been completely successful in making clear our secondary goal, which was to outline how heritability estimates confound a plethora of influences. In this response, we thus emphasize that we do not claim that specific kinds of complexity, or, even worse, intractable complexity, pervade the genetics of behavioural traits. Rather, our claim is that genetics is riddled with complexity of many degrees and kinds, and heritability is a poor indicator of either degree or kind of underlying genetic complexity. Copyright © 2011 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wendy Johnson
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, UK
- Department of Psychology, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Lars Penke
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Frank M. Spinath
- Department of Psychology, Saarland University, Saarbruecken, Germany
| |
Collapse
|
7
|
Papagni SA, Mechelli A, Prata DP, Kambeitz J, Fu CH, Picchioni M, Walshe M, Toulopoulou T, Bramon E, Murray RM, Collier DA, Bellomo A, McGuire P. Differential effects of DAAO on regional activation and functional connectivity in schizophrenia, bipolar disorder and controls. Neuroimage 2011; 56:2283-91. [DOI: 10.1016/j.neuroimage.2011.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/10/2011] [Accepted: 03/14/2011] [Indexed: 01/02/2023] Open
|
8
|
Hashimoto K. Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci 2010; 64:341-57. [PMID: 20653908 DOI: 10.1111/j.1440-1819.2010.02113.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BPD), are the most prevalent psychiatric conditions, and are also among the most severe and debilitating. However, the precise neurobiology underlying these disorders is currently unknown. One way to combat these disorders is to discover novel biomarkers for them. The development of such biomarkers will aid both in the diagnosis of mood disorders and in the development of effective psychiatric medications to treat them. A number of preclinical studies have suggested that the brain-derived neurotrophic factor (BDNF) plays an important role in the pathophysiology of MDD. In 2003, we reported that serum levels of BDNF in antidepressant-naive patients with MDD were significantly lower than those of patients medicated with antidepressants and normal controls, and that serum BDNF levels were negatively correlated with the severity of depression. Additionally, we found that decreased serum levels of BDNF in antidepressant-naive patients recovered to normal levels associated with the recovery of depression after treatment with antidepressant medication. This review article will provide an historical overview of the role played by BDNF in the pathophysiology of mood disorders and in the mechanism of action of therapeutic agents. Particular focus will be given to the potential use of BDNF as a biomarker for mood disorders. BDNF is initially synthesized as a precursor protein proBDNF, and then proBDNF is proteolytically cleaved to the mature BDNF. Finally, future perspectives on the use of proBDNF as a novel biomarker for mood disorders will be discussed.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
9
|
Gawlik M, Wehner I, Mende M, Jung S, Pfuhlmann B, Knapp M, Stöber G. The DAOA/G30 locus and affective disorders: haplotype based association study in a polydiagnostic approach. BMC Psychiatry 2010; 10:59. [PMID: 20667145 PMCID: PMC2921107 DOI: 10.1186/1471-244x-10-59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 07/29/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The DAOA/G30 (D-amino acid oxidase activator) gene complex at chromosomal region 13q32-33 is one of the most intriguing susceptibility loci for the major psychiatric disorders, although there is no consensus about the specific risk alleles or haplotypes across studies. METHODS In a case-control sample of German descent (affective psychosis: n = 248; controls: n = 188) we examined seven single nucleotide polymorphisms (SNPs) around DAOA/G30 (rs3916966, rs1935058, rs2391191, rs1935062, rs947267, rs3918342, and rs9558575) for genetic association in a polydiagnostic approach (ICD 10; Leonhard's classification). RESULTS No single marker showed evidence of overall association with affective disorder neither in ICD10 nor Leonhard's classification. Haplotype analysis revealed no association with recurrent unipolar depression or bipolar disorder according to ICD10, within Leonhard's classification manic-depression was associated with a 3-locus haplotype (rs2391191, rs1935062, and rs3916966; P = 0.022) and monopolar depression with a 5-locus combination at the DAOA/G30 core region (P = 0.036). CONCLUSION Our data revealed potential evidence for partially overlapping risk haplotypes at the DAOA/G30 locus in Leonhard's affective psychoses, but do not support a common genetic contribution of the DAOA/G30 gene complex to the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Micha Gawlik
- Department of Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstrasse 15, Würzburg, Germany.
| | - Ingeborg Wehner
- Department of Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080 Würzburg, Germany
| | - Meinhard Mende
- Coordination Centre for Clinical Trials, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Sven Jung
- Department of Forensic Medicine, University of Würzburg, Lindleinstraße 15, 97080 Würzburg, Germany
| | - Bruno Pfuhlmann
- Department of Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080 Würzburg, Germany
| | - Michael Knapp
- Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Gerald Stöber
- Department of Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Schulze TG. Genetic research into bipolar disorder: the need for a research framework that integrates sophisticated molecular biology and clinically informed phenotype characterization. Psychiatr Clin North Am 2010; 33:67-82. [PMID: 20159340 PMCID: PMC2824617 DOI: 10.1016/j.psc.2009.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Research into the genetic basis of bipolar disorder (BD) has reached a turning point. Genome-wide association studies (GWAS), encompassing several thousand samples, have produced replicated evidence for some novel susceptibility genes; however, the genetic variants implicated so far account for only a fraction of disease liability, a phenomenon not limited to psychiatric phenotypes but characteristic of all complex genetic traits studied to date. It appears that pure genomic approaches, such as GWAS alone, will not suffice to unravel the genetic basis of a complex illness like BD. Genomic approaches will need to be complemented by a variety of strategies, including phenomics, epigenomics, pharmacogenomics, and neurobiology, as well as the study of environmental factors. This review highlights the most promising findings from recent GWAS and candidate gene studies in BD. It furthermore sketches out a potential research framework integrating various lines of research into the molecular biological basis of BD.
Collapse
Affiliation(s)
- Thomas G. Schulze
- Unit on the Genetic Basis of Mood & Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University, Baltimore, MD, USA, Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| |
Collapse
|
11
|
Bearden CE, Jasinska AJ, Freimer NB. Methodological issues in molecular genetic studies of mental disorders. Annu Rev Clin Psychol 2009; 5:49-69. [PMID: 19327025 DOI: 10.1146/annurev.clinpsy.032408.153545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of methodologies for assaying genetic variation at high resolution throughout the genome has revolutionized the search for susceptibility genes for common diseases. This search, however, has been less successful in psychiatry than in other areas of medicine. It is hypothesized that the imprecision and uncertain validity of psychiatric diagnoses are major factors in this disappointing progress. Here we discuss the methodologies employed for genetic investigation of mental disorders, including phenotyping strategies, approaches to genetic mapping, and use of animal models of psychopathology.
Collapse
Affiliation(s)
- Carrie E Bearden
- Department of Psychiatry & Biobehavioral Sciences, University of California-Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
12
|
Kucukali CI, Aydin M, Ozkok E, Bilge E, Orhan N, Zengin A, Kara I. Do schizophrenia and bipolar disorders share a common disease susceptibility variant at the MMP3 gene? Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:557-61. [PMID: 19245826 DOI: 10.1016/j.pnpbp.2009.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/13/2009] [Accepted: 02/17/2009] [Indexed: 01/02/2023]
Abstract
There is growing evidence of partial etiological overlap between schizophrenia (SZ) and bipolar I disorder (BD-I) from linkage analysis, genetic epidemiology and molecular genetics studies. SZ and BD-I are neurodevelopmental disorders with genetic and environmental etiologies. Recent studies have demonstrated that matrix metalloproteinase 3 (MMP3) is a key event in associative memory formation, learning and synaptic plasticity, which are important in psychiatric disorders. In the light of these findings, we analyzed the genetic variations in the MMP3-1171 5A/6A in patients with SZ, patients with BD-I and healthy controls. To the best of our knowledge, this is the first study to report an association of variation in gene encoding MMP3 with SZ. Our study group consisted of 111 unrelated patients with SZ, 141 unrelated patients with BD-I, and 121 unrelated healthy controls. The frequencies of 6A6A genotype and 6A allele distributions of MMP3 in patients with SZ were significantly decreased when compared with controls. In contrast, in patients with SZ, the distributions of 5A5A genotype and 5A allele of MMP3 gene were significantly increased as compared with healthy controls. When the frequencies of genotypes or alleles in schizophrenic patients and bipolar patients were compared, 6A6A genotype and 6A allele in patients with BD-I were significantly higher than patients with SZ. In contrast, 5A5A genotype and 5A allele distributions of MMP3 gene were significantly frequent in patients with SZ. On the other hand, no significant differences were found in the allele or genotype distribution in patients with BD-I compared with controls. In conclusion, our data have supported the hypothesis that there is a possible relationship between -1171 5A/6A polymorphism of MMP3 gene and SZ. A larger sample group is needed to confirm the potential role of this gene in the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Cem Ismail Kucukali
- Department of Neurology, Istanbul Erenkoy Psychiatric and Neurological Disorders Hospital, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
13
|
Castro MN, Vigo DE, Chu EM, Fahrer RD, de Achával D, Costanzo EY, Leiguarda RC, Nogués M, Cardinali DP, Guinjoan SM. Heart rate variability response to mental arithmetic stress is abnormal in first-degree relatives of individuals with schizophrenia. Schizophr Res 2009; 109:134-40. [PMID: 19179048 DOI: 10.1016/j.schres.2008.12.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/15/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Schizophrenia patients exhibit an abnormal autonomic response to mental stress. We sought to determine the cardiac autonomic response to mental arithmetic stress in their unaffected first-degree relatives. METHODS Heart rate variability (HRV) analysis was performed on recordings obtained before, during, and after a standard mental arithmetic task to induce mental stress. 22 unaffected first-degree relatives of patients meeting DSM-IV criteria for schizophrenia (R) and 22 healthy individuals (C) were included in this study. RESULTS Patients' relatives (R) had a normal response to the mental arithmetic stress test, showing an increased heart rate compared with controls. They also displayed the characteristic pattern of relative contributions of HRV components that consists of increased low-frequency (LF) HRV and decreased high-frequency (HF) HRV. Recovery of the resting pattern of HRV immediately after stress termination was observed in healthy subjects (LF 62+/-16% vs. 74+/-10% , HF 37+/-16% vs. 25+/-10%, F=9.616, p=0.004), but not in patients' relatives (LF 60+/-19% vs. 70+/-13%, HF 40+/-19% vs. 29+/-13%, F=8.4, p=0.056). CONCLUSIONS First-degree relatives of schizophrenia patients exhibit an abnormal pattern of protracted response to mental arithmetic stress, though less intense than that observed in patients in a previous study. This suggests that a pattern of autonomic response to stress may therefore be familial and heritable.
Collapse
Affiliation(s)
- Mariana N Castro
- Departments of Neurology and Psychiatry, Fundación Lucha contra Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prata D, Breen G, Osborne S, Munro J, St Clair D, Collier D. Association of DAO and G72(DAOA)/G30 genes with bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:914-7. [PMID: 18165970 DOI: 10.1002/ajmg.b.30682] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There is growing evidence of partial aetiological overlap between schizophrenia and bipolar disorder (BP) from linkage analysis, genetic epidemiology and molecular genetics studies. In the present study we investigated whether individual polymorphisms or haplotypes of the DAO and G72(DAOA)/G30 genes, which have been previously implicated in schizophrenia, are also associated with bipolar disorder. For each gene, we genotyped 213 cases and 197 controls for SNPs previously associated with schizophrenia: rs2111902 (MDAAO-4), rs3918346 (MDAAO-5), rs3741775 (MDAAO-6) and rs3918347 (MDAAO-7) in DAO and rs746187 (M7), rs3916966 (M13), rs2391191 (M15) and rs3916972 (M25) in G72. Although none of the individual SNPs in these genes reached statistical significance, we found haplotype wise associations with bipolar disorder for both genes. These included a two-SNP haplotype in DAO (rs2111902-A and rs3918346-T; global P = 0.003, individual P = 0.002, Z = 3.1) and a two-SNP haplotype for G72(DAOA)/G30 (rs746187-G and rs3916972-G; global P = 0.05; individual P = 0.005, Z = 2.81). However, we found no evidence for an epistatic interaction between the SNPs and/or haplotypes of the two genes. In summary, our findings provide some support for the individual involvement of DAO and G72(DAOA)/G30 in the etiology of bipolar disorder.
Collapse
Affiliation(s)
- Diana Prata
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK
| | | | | | | | | | | |
Collapse
|
15
|
Kumar RA, McGhee KA, Leach S, Bonaguro R, Maclean A, Aguirre-Hernandez R, Abrahams BS, Coccaro EF, Hodgins S, Turecki G, Condon A, Muir WJ, Brooks-Wilson AR, Blackwood DH, Simpson EM. Initial association of NR2E1 with bipolar disorder and identification of candidate mutations in bipolar disorder, schizophrenia, and aggression through resequencing. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:880-9. [PMID: 18205168 DOI: 10.1002/ajmg.b.30696] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nuclear receptor 2E1 gene (NR2E1) resides within a 6q21-22 locus for bipolar disorder and schizophrenia. Mice deleted for Nr2e1 show altered neurogenesis, cortical and limbic abnormalities, aggression, hyperexcitability, and cognitive impairment. NR2E1 is therefore a positional and functional candidate for involvement in mental illness. We performed association analyses in 394 patients with bipolar disorder, 396 with schizophrenia, and 479 controls using six common markers and haplotypes. We also performed a comprehensive mutation screen of NR2E1, resequencing its entire coding region, complete 5' and 3' untranslated regions, consensus splice-sites, and evolutionarily conserved regions in 126 humans with bipolar disorder, schizophrenia, or aggressive disorders. NR2E1 was associated with bipolar disorder I and II [odds ratio (OR = 0.77, P = 0.013), bipolar disorder I (OR = 0.77, P = 0.015), bipolar disorder in females (OR = 0.72, P = 0.009), and with age at onset < or = 25 years (OR = 0.67, P = 0.006)], all of which remained significant after correcting for multiple comparisons. We identified eight novel candidate mutations that were absent in 325 controls; four of these were predicted to alter known neural transcription factor binding sites. Analyses of NR2E1 mRNA in human brain revealed forebrain-specific transcription. The data presented support the hypothesis that genetic variation at NR2E1 may be associated with susceptibility to brain-behavior disorders.
Collapse
Affiliation(s)
- Ravinesh A Kumar
- Centre for Molecular Medicine & Therapeutics and Child & Family Research Institute, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mérette C, Roy MA, Bureau A, Fournier A, Emond C, Cliche D, Jomphe V, Chagnon YC, Maziade M. Replication of linkage with bipolar disorder on chromosome 16p in the Eastern Quebec population. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:737-44. [PMID: 18165973 DOI: 10.1002/ajmg.b.30673] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In a previous study [Maziade et al. (2005); Mol Psychiatry 10:486-499], we provided evidence for linkage (parametric lod score of 4.05) on chromosome 16p for bipolar affective disorder (BP) in 21 kindreds from Eastern Quebec, a population characterized by a founder effect. Using a stringent design, we performed a replication study in a second sample of 27 kindreds (sample 2) collected from the same population and assessed with the same methodologies as in our original sample (sample 1), that is with the same diagnostic procedure and using a common set of 23 markers studied with model-based (parametric) and model-free (nonparametric) linkage analyses. We replicated our initial finding with P values <0.001. Indeed, maximum NPL(all) scores of 3.7 and 3.52 were found at marker D16S3060 in sample 2 for the narrow and broad BP phenotype definition, respectively. For the latter definition, the nonparametric score reached 3.87 in the combined sample, a value that exceeded the maximum NPL score obtained in each individual sample (NPL(all) = 2.32 in sample 1; NPL(all) = 3.52 in sample 2). Moreover, a refined phenotype restricted to BP associated with psychosis yielded significant evidence for linkage in each individual sample (NPL(all) = 2.38 in sample 1; NPL(all) = 2.72) while yielding the best result (NPL(all) score = 3.90) in the combined sample (samples 1 and 2), despite an important reduction in the number of affected individuals. It is also noteworthy that the use of the refined phenotype provided a location of the maximum linkage peak shared by both samples, that is, at marker D16S668 in 16p13.12, suggesting consistency across samples. Our study provided one of the strongest pieces of evidence for linkage with BP in 16p and illustrated the heuristic potential of a replication study in a second sample ascertained from the same population and using homogeneous methodologies.
Collapse
|
17
|
Abstract
Understanding the genetic and environmental factors affecting human complex genetic traits and diseases is a major challenge because of many interacting genes with individually small effects, whose expression is sensitive to the environment. Dissection of complex traits using the powerful genetic approaches available with Drosophila melanogaster has provided important lessons that should be considered when studying human complex traits. In Drosophila, large numbers of pleiotropic genes affect complex traits; quantitative trait locus alleles often have sex-, environment-, and genetic background-specific effects, and variants associated with different phenotypic are in noncoding as well as coding regions of candidate genes. Such insights, in conjunction with the strong evolutionary conservation of key genes and pathways between flies and humans, make Drosophila an excellent model system for elucidating the genetic mechanisms that affect clinically relevant human complex traits, such as alcohol dependence, sleep, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | | |
Collapse
|
18
|
Xu C, Li PP, Kennedy JL, Green M, Hughes B, Cooke RG, Parikh SV, Warsh JJ. Further support for association of the mitochondrial complex I subunit gene NDUFV2 with bipolar disorder. Bipolar Disord 2008; 10:105-10. [PMID: 18199248 DOI: 10.1111/j.1399-5618.2008.00535.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The nuclear-encoded mitochondrial complex I subunit gene, NDUFV2, has been implicated in the pathogenesis of bipolar disorder (BD) in Japanese by virtue of association of variants in its promoter with BD and decreased NDUFV2 messenger ribonucleic acid (mRNA) levels in B lymphoblasts (BLCL) in BD patients compared to controls. We sought to determine if these same changes occur in non-Japanese populations and, if so, their relationship to altered basal intracellular Ca(2+) ([Ca(2+)](B)) in BLCL from BD patients. METHODS Bipolar disorder patients and healthy subjects included 298 subjects of European Caucasian descent. The 5'-nuclease allelic discrimination TaqMan assay was used to detect selected single nucleotide polymorphisms (SNPs) in promoter, introns and 3'UTR regions, spanning the NDUFV2 gene. NDUFV2 mRNA levels and [Ca(2+)](B) in BLCLs were determined. RESULTS The A allele of the NDUFV2 SNP rs1156044 was significantly associated (Bonferroni-corrected) with BD (p = 0.013) but differed in allele (rs1156044 G allele) from that previously reported as associated with BD. There was a trend for elevated BLCL [Ca(2+)](B) associated with SNP rs977581 in BD patients, but NDUFV2 mRNA levels in BLCLs did not differ between patients and controls, nor represented genotypes. CONCLUSIONS While genetic variants of NDUFV2 may increase risk for BD, the role of its altered expression and the link to intracellular Ca(2+) abnormalities in BD remains equivocal.
Collapse
Affiliation(s)
- Chun Xu
- Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mason C, Subedi S, Davis RB. Clients with mental illness and their children: implications for clinical practice. Issues Ment Health Nurs 2007; 28:1105-23. [PMID: 17957552 DOI: 10.1080/01612840701581214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The problem of adults with severe mental illness parenting minor children is a growing concern. These clients suffer from concerns that negatively affect them and their children. This study showed many clients seeking services at public mental health agencies are parents of minor children and have had a history of family dysfunction. Prevalence rates, demographic characteristics, types of mental illness diagnoses, family background variables, and some current issues regarding these clients were examined. The study concludes with clinical implications for clients and their families and calls for a family focused approach.
Collapse
Affiliation(s)
- Carolyn Mason
- Department of Nursing, Miami University, 4200 University Boulevard, Middletown, OH 45042, USA.
| | | | | |
Collapse
|
20
|
Zandi PP, Avramopoulos D, Willour VL, Huo Y, Miao K, Mackinnon DF, McInnis MG, Potash JB, Depaulo JR. SNP fine mapping of chromosome 8q24 in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:625-30. [PMID: 17357146 DOI: 10.1002/ajmg.b.30486] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously reported linkage to chromosome 8q24 in bipolar disorder (BP) with a LOD of 3.32. We fine mapped the locus with SNPs and tested for association with BP in families with evidence of linkage to the region. We genotyped 249 informative SNPs over 3.4 Mb in an initial sample of 155 nuclear families (352 affected offsprings), and followed up the best findings by genotyping six of the most significantly associated SNPs in a replication sample of 103 nuclear families (231 affected offsprings). We used FBAT and GIST for association tests. Two clusters of SNPs emerged with the strongest evidence of association. The first consisted of three SNPs, approximately 3 kb 5' from the gene ST3GAL1. These SNPs were associated with BP in the initial sample by FBAT (best P = 0.001) and GIST (best P = 0.05) and associated in the replication sample by FBAT (best P = 0.04). The second cluster consisted of four SNPs (one of which was not genotyped in the replication sample), approximately 480 kb 5' of ST3GAL1 in a relative gene desert. These SNPs were associated with BP in the initial sample by FBAT (best P = 0.007) and GIST (best P = 0.03), and marginally associated in the replication sample by FBAT (best P = 0.07) and GIST (P = 0.04). ST3GAL1 belongs to a family of glycosyltransferase proteins, several members of which are highly expressed in the brain and involved in neurogenesis. Several other interesting candidate genes are also located nearby. The congruence of findings across methods and samples suggests further investigation is warranted in these two targeted regions.
Collapse
Affiliation(s)
- Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boyer P, Phillips JL, Rousseau FL, Ilivitsky S. Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia. ACTA ACUST UNITED AC 2007; 54:92-112. [PMID: 17306884 DOI: 10.1016/j.brainresrev.2006.12.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 10/07/2006] [Accepted: 12/20/2006] [Indexed: 12/11/2022]
Abstract
The central goals of this manuscript are (1) to better characterize what appears to be the most parsimonious account of schizophrenic long-term memory impairment in the neuropsychological literature: a contextual binding deficit rooted in the medial temporal lobes; (2) to link this deficit to concrete abnormalities at the level of the hippocampus; and (3) to suggest that this deficit could lead to the functional impairment experienced by schizophrenia patients in their daily lives. As far as long-term memory is concerned in schizophrenia, there seems to be a general agreement to conclude that explicit mechanisms are disturbed compared to relatively spared implicit mechanisms. More precisely, both subsystems of explicit memory (i.e., episodic and semantic) appear to be dysfunctional in this patient population. Errors during the encoding processes could be responsible for this dysfunction even if retrieval per se is not totally spared. Recently, a number of studies have suggested that impairments in conscious recollection and contextual binding are closely linked to episodic memory deficit. Since the hippocampal formation is considered to be the central element in the neural support for contextual binding and episodic memory, we have conducted an extensive review of the literature concerning the hippocampal formation in schizophrenia. Emerging evidence from varying disciplines confirm the coherence of the different anomalies reported concurrently at the neuroanatomical, neurodevelopmental, biochemical, and genetic levels. It seems highly probable that the synaptic disorganization in the hippocampus concerns the regions crucial for encoding and contextual binding memory processes. The consequences of these deficits could result in schizophrenia patients experiencing major difficulties when facing usual events which have not been encoded with their proper context.
Collapse
Affiliation(s)
- Patrice Boyer
- Schizophrenia Research Unit, University of Ottawa Institute of Mental Health Research, 1145 Carling, Ottawa, Ontario, Canada K1Z 7K4.
| | | | | | | |
Collapse
|
22
|
Marcheco-Teruel B, Flint TJ, Wikman FP, Torralbas M, González L, Blanco L, Tan Q, Ewald H, Orntoft T, Kruse TA, Børglum AD, Mors O. A genome-wide linkage search for bipolar disorder susceptibility loci in a large and complex pedigree from the eastern part of Cuba. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:833-43. [PMID: 16917938 DOI: 10.1002/ajmg.b.30314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We present results from a genome-wide scan of a six generation pedigree with 28 affected members with apparently dominant bipolar I disorder from eastern Cuba. Genotypes were obtained using the early access version of the Genechip Mapping 10K Xba array from AFFYMETRIX. Parametric and non-parametric linkage analyses under dominant and recessive models were performed using GENEHUNTER v2.1r5. Two phenotypic models were included in the analyses: bipolar I disorder and recurrent depressive disorder, or bipolar I disorder only. LOD scores were calculated for the entire family combined, and for four subdivisions of the family. For the entire family a suggestive parametric LOD score was obtained under the dominant model and the broader phenotype at 14q11.2-12 (LOD = 2.05). In the same region, a non-parametric LOD score close to genome-wide significance was also obtained, based on the entire family (NPL = 7.31, P-value = 0.07). For two individual branches of the pedigree, genome-wide significance (P < 0.005) was obtained with NPL scores of 8.71 and 12.99, respectively, also in the same region on chromosome 14. Chromosome 5q21.3-22.3 also showed close to genome-wide significant linkage for the complete pedigree (NPL = 7.26, P = 0.07), also supported by significant linkage in one individual branch (NPL = 9.86, P < 0.005). In addition, genome-wide significant nonparametric results (P-values <0.005) were obtained for individual branches at 5p13.1-q12.3, 6p22.3, 8q13.3-21.13, and 10q22.3-23.32. Finally, 2p25.1-25.3, 2p13.3-14, 3p14.2, 6p22.3-24.1, 7p14.1-14.2, 8q12.2-12.3, 10q21.1-21.2, 14q13.1-21.1, 15q15.1-21.2, and 22q12.3-13.32 showed suggestive linkage in the complete family. Most of these potential susceptibility loci overlap with, or are close, to previous linkage findings. The locus on 5q may, however, represent a novel susceptibility locus.
Collapse
Affiliation(s)
- B Marcheco-Teruel
- National Center of Medical Genetics, Reparto Cubanacán, Playa, Havana, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shilling PD, Kuczenski R, Segal DS, Barrett TB, Kelsoe JR. Differential regulation of immediate-early gene expression in the prefrontal cortex of rats with a high vs low behavioral response to methamphetamine. Neuropsychopharmacology 2006; 31:2359-67. [PMID: 16855532 DOI: 10.1038/sj.npp.1301162] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Methamphetamine (METH) administration mimics many of the symptoms of mania and can produce psychosis after chronic use. Both rodents and man display interindividual variation in response to METH. The molecular mechanisms underlying these differences might be relevant to both stimulant addiction and endogenous psychosis. We treated 50 Sprague-Dawley rats acutely with METH (4.0 mg/kg) and 10 control rats with saline, and measured their behavior for 3 h after drug administration. Animals were divided into high responders (HR) (top 20%) and low responders (LR) (lowest 20%) based on their stereotypy response. They were killed 24 h after injection. Total RNA was extracted from the prefrontal cortex (PFC) and the expression of approximately 30 000 transcripts were analyzed using Affymetrix 230 2.0 GeneChips. Real-time reverse transcription-polymerase chain reaction was used to validate the expression of a select group of genes. Forty-three genes exhibited significant differences in expression in HR vs LR 24 h after METH treatment including a group of immediate-early genes (IEGs) (eg, c-fos, junB, NGFI-B, serum-regulated glucocorticoid kinase). These IEG expression differences were accompanied by the significant downregulation of many of these genes compared to saline in the HR but not LR, suggesting a differential responsiveness of signal transduction pathways in these two groups of rats. In addition, the expression of other transcription factors in the PFC was significantly different in HR compared to LR. These gene expression changes may contribute to individual differences in responsiveness to stimulants and the development of mania and psychosis.
Collapse
Affiliation(s)
- Paul D Shilling
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | | | | | | | | |
Collapse
|
24
|
Herzberg I, Jasinska A, García J, Jawaheer D, Service S, Kremeyer B, Duque C, Parra MV, Vega J, Ortiz D, Carvajal L, Polanco G, Restrepo GJ, López C, Palacio C, Levinson M, Aldana I, Mathews C, Davanzo P, Molina J, Fournier E, Bejarano J, Ramírez M, Ortiz CA, Araya X, Sabatti C, Reus V, Macaya G, Bedoya G, Ospina J, Freimer N, Ruiz-Linares A. Convergent linkage evidence from two Latin-American population isolates supports the presence of a susceptibility locus for bipolar disorder in 5q31-34. Hum Mol Genet 2006; 15:3146-53. [PMID: 16984960 DOI: 10.1093/hmg/ddl254] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We performed a whole genome microsatellite marker scan in six multiplex families with bipolar (BP) mood disorder ascertained in Antioquia, a historically isolated population from North West Colombia. These families were characterized clinically using the approach employed in independent ongoing studies of BP in the closely related population of the Central Valley of Costa Rica. The most consistent linkage results from parametric and non-parametric analyses of the Colombian scan involved markers on 5q31-33, a region implicated by the previous studies of BP in Costa Rica. Because of these concordant results, a follow-up study with additional markers was undertaken in an expanded set of Colombian and Costa Rican families; this provided a genome-wide significant evidence of linkage of BPI to a candidate region of approximately 10 cM in 5q31-33 (maximum non-parametric linkage score=4.395, P<0.00004). Interestingly, this region has been implicated in several previous genetic studies of schizophrenia and psychosis, including disease association with variants of the enthoprotin and gamma-aminobutyric acid receptor genes.
Collapse
Affiliation(s)
- Ibi Herzberg
- Galton Laboratory, Department of Biology, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wilson GM, Flibotte S, Chopra V, Melnyk BL, Honer WG, Holt RA. DNA copy-number analysis in bipolar disorder and schizophrenia reveals aberrations in genes involved in glutamate signaling. Hum Mol Genet 2006; 15:743-9. [PMID: 16434481 DOI: 10.1093/hmg/ddi489] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Using bacterial artificial chromosome (BAC) array comparative genome hybridization (aCGH) at approximately 1.4 Mbp resolution, we screened post-mortem brain DNA from bipolar disorder cases, schizophrenia cases and control individuals (n=35 each) for DNA copy-number aberrations. DNA copy number is a largely unexplored source of human genetic variation that may contribute risk for complex disease. We report aberrations at four loci which were seen in affected but not control individuals, and which were verified by quantitative real-time PCR. These aberrant loci contained the genes encoding EFNA5, GLUR7, CACNG2 and AKAP5; all brain-expressed proteins with known or postulated roles in neuronal function, and three of which (GLUR7, CACNG2 and AKAP5) are involved in glutamate signaling. A second cohort of psychiatric samples was also tested by quantitative PCR using the primer/probe sets for EFNA5, GLUR7, CACNG2 and AKAP5, and samples with aberrant copy number were found at three of the four loci (GLUR7, CACNG2 and AKAP5). Further scrutiny of these regions may reveal insights into the etiology and genetic risk factors for these complex psychiatric disorders.
Collapse
Affiliation(s)
- Gary M Wilson
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Suite 100, 570 West 7th Avenue, Vancouver, BC, Canada V5Z 4S6
| | | | | | | | | | | |
Collapse
|
26
|
Xu C, Macciardi F, Li PP, Yoon IS, Cooke RG, Hughes B, Parikh SV, McIntyre RS, Kennedy JL, Warsh JJ. Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:36-43. [PMID: 16252251 DOI: 10.1002/ajmg.b.30239] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Disturbed intracellular calcium (Ca(2+)) homeostasis has been implicated in bipolar disorder (BD). Reduced mRNA levels of the transient receptor potential Ca(2+) permeable channel melastatin type 2, TRPM2, in B lymphoblast cell lines (BLCL) from bipolar I disorder (BD-I) patients showing elevated basal intracellular Ca(2+) ([Ca(2+)](B)), an index of altered intracellular Ca(2+) homeostasis, along with its location within a putative BD susceptibility locus (21q22.3), implicates the involvement of this gene in the Ca(2+) abnormalities and the genetic diathesis to BD. We tested this hypothesis by examining the association of selected single nucleotide polymorphisms (SNPs) and their haplotypes, spanning the TRPM2 gene, with BD and BLCL [Ca(2+)](B), in a case control design. The 5' TaqMan SNP assay was used to detect selected SNPs. BLCL [Ca(2+)](B) was determined by ratiometric fluorometry. SNP rs1618355 in intron 18 was significantly associated with BD as a whole (P < 7.0 x 10(-5); odds ratio (OR) = 2.60), and when stratified into BD-I (P < 7.0 x 10(-5), OR = 2.48) and BD-II (P = 7.0 x 10(-5), OR = 2.88) subgroups. In addition, the alleles of the individual SNPs forming a seven marker at-risk haplotype were in excess in BD (12.0% in BD vs. 0.9% in controls; P = 2.3 x 10(-12)). A weak relationship was also detected between BLCL [Ca(2+)](B) and TRPM2 SNP rs1612472 in intron 19. These findings suggest genetic variants of the TRPM2 gene increase risk for BD and support the notion that TRPM2 may be involved in the pathophysiology of BD.
Collapse
Affiliation(s)
- Chun Xu
- Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health, University of Toronto, 150 College Street, Toronto, Ontario, Canada M5T 1R8
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Althoff RR, Faraone SV, Rettew DC, Morley CP, Hudziak JJ. Family, twin, adoption, and molecular genetic studies of juvenile bipolar disorder. Bipolar Disord 2005; 7:598-609. [PMID: 16403185 DOI: 10.1111/j.1399-5618.2005.00268.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Juvenile bipolar disorder (JBD) has been a subject of significant research and debate. Phenotypic differences between JBD and adult-onset bipolar disorder have led researchers to question whether or not similar neuropathologic mechanisms will be found. While much is known about the genetic and environmental contributions to the adult-onset phenotype, less is known about their contributions to JBD. Here, we review family, twin, adoption, and molecular genetic studies of JBD. Behavioral genetic data suggest both genetic and environmental contributions to JBD, while molecular genetic studies find linkage to age of onset of bipolar disorder to chromosomes 12p, 14q, and 15q. Additionally, changes associated with symptom age of onset have been recently reported in the brain-derived neurotrophic factor (BDNF) and glycogen synthase kinase 3-beta (GSK3-beta) genes. We contend that further progress in discovering the precise genetic and environmental contributions to JBD may depend on advances in phenotypic refinement, an increased appreciation of comorbid conditions, and more investigation of the longitudinal course of the disorder.
Collapse
Affiliation(s)
- Robert R Althoff
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | |
Collapse
|
28
|
Antshel KM, Kates WR, Roizen N, Fremont W, Shprintzen RJ. 22q11.2 deletion syndrome: genetics, neuroanatomy and cognitive/behavioral features keywords. Child Neuropsychol 2005; 11:5-19. [PMID: 15823980 DOI: 10.1080/09297040590911185] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This paper presents a conceptual review of the genetic underpinnings of 22q11.2 Deletion Syndrome. The neuroanatomical, neuropsychological, behavioral, and psychiatric phenotype associated with 22q11.2 Deletion Syndrome is also explored, including variables that are thought to affect symptom expression. The history of the deletion syndrome is described, and future directions for continued research are discussed.
Collapse
Affiliation(s)
- Kevin M Antshel
- Department of Psychiatry and Behavioral Sciences, SUNY-Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
29
|
Newton-Cheh C, Hirschhorn JN. Genetic association studies of complex traits: design and analysis issues. Mutat Res 2005; 573:54-69. [PMID: 15829237 DOI: 10.1016/j.mrfmmm.2005.01.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 01/09/2005] [Indexed: 04/08/2023]
Abstract
Most common diseases and many important quantitative traits are complex genetic traits, with multiple genetic and environmental variables contributing to the observed phenotype. Because of the multi-factorial nature of complex traits, each individual genetic variant generally has only a modest effect, and the interaction of genetic variants with each other or with environmental factors can potentially be quite important in determining the observed phenotype. It remains largely unknown what sort of genetic variants explain inherited variation in complex traits, but recent evidence suggests that common genetic variants will explain at least some of the inherited variation in susceptibility to common disease. Genetic association studies, in which the allele or genotype frequencies at markers are determined in affected individuals and compared with those of controls (either population- or family-based), may be an effective approach to detecting the effects of common variants with modest effects. With the explosion in single nucleotide polymorphism (SNP) discovery and genotyping technologies, large-scale association studies have become feasible, and small-scale association studies have become plentiful. We review the different types of association studies and discuss issues that are important to consider when performing and interpreting association studies of complex genetic traits. Heritable and accurately measured phenotypes, carefully matched large samples, well-chosen genetic markers, and adequate standards in genotyping, analysis, and interpretation are all integral parts of a high-quality association study.
Collapse
Affiliation(s)
- Christopher Newton-Cheh
- Broad Institute of Harvard and MIT, One Kendall Square, Building 300, Cambridge, MA 02139, USA
| | | |
Collapse
|
30
|
Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N, Dion C, Lavallée JC, Garneau Y, Gingras N, Nicole L, Pirès A, Ponton AM, Potvin A, Wallot H, Mérette C. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 2005; 10:486-99. [PMID: 15534619 DOI: 10.1038/sj.mp.4001594] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The goal of this study was to identify susceptibility loci shared by schizophrenia (SZ) and bipolar disorder (BP), or specific to each. To this end, we performed a dense genome scan in a first sample of 21 multigenerational families of Eastern Quebec affected by SZ, BP or both (N=480 family members). This probably constitutes the first genome scan of SZ and BP that used the same ascertainment, statistical and molecular methods for the concurrent study of the two disorders. We genotyped 607 microsatellite markers of which 350 were spaced by 10 cM and 257 others were follow-up markers in positive regions at the 10 cM scan. Lander and Kruglyak thresholds were conservatively adjusted for multiple testings. We maximized the lod scores (mod score) over eight combinations (2 phenotype severity levels x 2 models of transmission x 2 analyses, affected/unaffected vs affected-only). We observed five genomewide significant linkages with mod score >4.0: three for BP (15q11.1, 16p12.3, 18q12-q21) and two for the shared phenotype, that is, the common locus (CL) phenotype (15q26,18q12-q21). Nine mod scores exceeded the suggestive threshold of 2.6: three for BP (3q21, 10p13, 12q23), three for SZ (6p22, 13q13, 18q21) and three for the CL phenotype (2q12.3, 13q14, 16p13). Mod scores >1.9 might represent confirmatory linkages of formerly reported genomewide significant findings such as our finding in 6p22.3 for SZ. Several regions appeared to be shared by SZ and BP. One linkage signal (15q26) appeared novel, whereas others overlapped formerly reported susceptibility regions. Despite the methodological limitations we raised, our data support the following trends: (i) results from several genome scans of SZ and BP in different populations tend to converge in specific genomic regions and (ii) some of these susceptibility regions may be shared by SZ and BP, whereas others may be specific to each. The present results support the relevance of investigating concurrently SZ and BP within the same study and have implications for the modelling of genetic effects.
Collapse
Affiliation(s)
- M Maziade
- Department of Psychiatry, Laval University, Quebec G1J 2G3, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Adaptation is a central organizing principle throughout biology, whether we are studying species, populations, or individuals. Adaptation in biological systems occurs in response to molar and molecular environments. Thus, we would predict that genetic systems and nervous systems would be dynamic (cybernetic) in contrast to previous conceptualizations with genes and brains fixed in form and function. Questions of nature versus nurture are meaningless, and we must turn to epigenetics--the way in which biology and experience work together to enhance adaptation throughout thick and thin. Defining endophenotypes--road markers that bring us closer to the biological origins of the developmental journey--facilitates our understanding of adaptive or maladaptive processes. For human behavioral disorders such as schizophrenia and autism, the inherent plasticity of the nervous system requires a systems approach to incorporate all of the myriad epigenetic factors that can influence such outcomes.
Collapse
Affiliation(s)
- Irving I Gottesman
- Department of Psychiatry and Department of Psychology, University of Minnesota, Minneapolis, MN 55454, USA.
| | | |
Collapse
|
32
|
Meiser B, Mitchell PB, McGirr H, Van Herten M, Schofield PR. Implications of genetic risk information in families with a high density of bipolar disorder: an exploratory study. Soc Sci Med 2005; 60:109-18. [PMID: 15482871 DOI: 10.1016/j.socscimed.2004.04.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
While major susceptibility genes for bipolar disorder are yet to be identified, the opportunity exists to systematically ascertain the important issues and societal implications of genetic risk determination for bipolar disorder prior to these technological advances becoming widely available. This study explores, in a sample of families with a high density of bipolar disorder: (i) attitudes to predictive genetic and prenatal testing, using different risk frames; (ii) attributions for bipolar disorder, in particular the degree to which a genetic model is endorsed; and (iii) the impact of these attributions on the perceived stigma of bipolar disorder. A qualitative methodology was selected as most appropriate as no previous research has examined this issue. Participants were ascertained through a molecular genetics study of bipolar disorder. In-depth interviews were conducted with 21 members of families with a high density of bipolar disorder. Most participants reported being interested in genetic testing if it gave a definitive answer, while expressed interest in testing was lower if it gave a probable answer only. Almost all stressed that a genetic susceptibility and environmental factors interacted. Most participants felt that a genetic explanation was likely to decrease the stigma associated with bipolar disorder as it shifted the locus of control and responsibility away from the individual towards the role of heredity. Findings indicate that expressed interest in genetic testing depends on the certainty imparted by the test. Results suggest that families with bipolar disorder are likely to benefit psychologically from information about the genetic basis of bipolar disorder.
Collapse
Affiliation(s)
- Bettina Meiser
- Hereditary Cancer Clinic, Prince of Wales Hospital, Randwick, Sydney NSW 2031, Australia.
| | | | | | | | | |
Collapse
|
33
|
Coors M. Genes in families: attitudes toward genetic testing for schizophrenia. Schizophr Res 2005; 72:271-3. [PMID: 15560972 DOI: 10.1016/j.schres.2004.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 02/19/2004] [Accepted: 02/23/2004] [Indexed: 11/24/2022]
|
34
|
Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75:862-72. [PMID: 15386212 PMCID: PMC1182115 DOI: 10.1086/425586] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 09/01/2004] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia, schizoaffective disorder, and bipolar disorder are common psychiatric disorders with high heritabilities and variable phenotypes. The Disrupted in Schizophrenia 1 (DISC1) gene, on chromosome 1q42, was originally discovered and linked to schizophrenia in a Scottish kindred carrying a balanced translocation that disrupts DISC1 and DISC2. More recently, DISC1 was linked to schizophrenia, broadly defined, in the general Finnish population, through the undertransmission to affected women of a common haplotype from the region of intron 1/exon 2. We present data from a case-control study of a North American white population, confirming the underrepresentation of a common haplotype of the intron 1/exon 2 region in individuals with schizoaffective disorder. Multiple haplotypes contained within four haplotype blocks extending between exon 1 and exon 9 are associated with schizophrenia, schizoaffective disorder, and bipolar disorder. We also find overrepresentation of the exon 9 missense allele Phe607 in schizoaffective disorder. These data support the idea that these apparently distinct disorders have at least a partially convergent etiology and that variation at the DISC1 locus predisposes individuals to a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Colin A Hodgkinson
- Section of Human Neurogenetics and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Palmatier MA, Pakstis AJ, Speed W, Paschou P, Goldman D, Odunsi A, Okonofua F, Kajuna S, Karoma N, Kungulilo S, Grigorenko E, Zhukova OV, Bonne-Tamir B, Lu RB, Parnas J, Kidd JR, DeMille MMC, Kidd KK. COMT haplotypes suggest P2 promoter region relevance for schizophrenia. Mol Psychiatry 2004; 9:859-70. [PMID: 15098000 DOI: 10.1038/sj.mp.4001496] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A recent study found, in a large sample of Ashkenazi Jews, a highly significant association between schizophrenia and a particular haplotype of three polymorphic sites in the catechol-O-methyl transferase, COMT, gene: an IVS 1 SNP (dbSNP rs737865), the exon 4 functional SNP (Val158Met, dbSNP rs165688), and a downstream SNP (dbSNP rs165599). Subsequently, this haplotype was shown to be associated with lower levels of COMT cDNA derived from normal cortical brain tissue, most likely due to cis-acting element(s). As a first step toward evaluating whether this haplotype may be relevant to schizophrenia in populations other than Ashkenazi Jews, we have studied this haplotype in 38 populations representing all major regions of the world. Adding to our previous data on four polymorphic sites in the COMT gene, including the Val158Met polymorphism, we have typed the IVS 1 rs737865 and 3' rs615599 sites and also included a novel IVS 1 indel polymorphism, yielding seven-site haplotype frequencies for normal individuals in the 38 globally distributed populations, including a sample of Ashkenazi Jews. We report that the schizophrenia-associated haplotype is significantly heterogeneous in populations worldwide. The three-site, schizophrenia-associated haplotype frequencies range from 0% in South America to 37.1% in Southwest Asia, despite the fact that schizophrenia occurs at roughly equal frequency around the world. Assuming that the published associations found between the exon 4 Val158Met SNP and schizophrenia are due to linkage disequilibrium, these new haplotype data support the hypothesis of a relevant cis variant linked to the rs737865 site, possibly just upstream in the P2 promoter driving transcription of the predominant form of COMT in the brain. The previously described HindIII restriction site polymorphism, located within the P2 promoter, varies within all populations and may provide essential information in future studies of schizophrenia.
Collapse
Affiliation(s)
- M A Palmatier
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hashimoto K, Shimizu E, Iyo M. Critical role of brain-derived neurotrophic factor in mood disorders. ACTA ACUST UNITED AC 2004; 45:104-14. [PMID: 15145621 DOI: 10.1016/j.brainresrev.2004.02.003] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 01/19/2023]
Abstract
The purpose of this review is to integrate what is currently known about the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of mood disorders including major depressive disorder (MDD) and bipolar disorder (BD). We reviewed the pre-clinical and clinical papers demonstrating that BDNF plays a role in the pathophysiology of mood disorders and in the mechanism of action of therapeutic agents. Pre-clinical studies suggest that the expression of BDNF might be a downstream target of antidepressant treatments and mood stabilizers such as lithium and valproate, and that BDNF exerts antidepressant activity in animal models of depression. Furthermore, BDNF protects against stress-induced neuronal damage, and it might affect neurogenesis in the hippocampus, which is thought to be involved in the pathogenesis of mood disorders. Clinical studies have demonstrated that serum levels of BDNF in drug-naive patients with MDD are significantly decreased as compared with normal controls, and that BDNF might be an important agent for therapeutic recovery from MDD. Moreover, recent findings from family-based association studies have suggested that the BDNF gene is a potential risk locus for the development of BD. These findings suggest that BDNF plays a critical role in the pathophysiology of mood disorders and in the activity of therapeutic agents in patients with mood disorders. New agents capable of enhancing BDNF levels may lead aid the development of novel therapeutic drugs for patients with mood disorders.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | | | | |
Collapse
|
37
|
Corfas G, Roy K, Buxbaum JD. Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 2004; 7:575-80. [PMID: 15162166 DOI: 10.1038/nn1258] [Citation(s) in RCA: 287] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a devastating psychiatric disease that affects 0.5-1% of the world's adult population. The hypothesis that this disease is a developmental disorder of the nervous system with late onset of its characteristic symptoms has been gaining acceptance in past years. However, the anatomical, cellular and molecular bases of schizophrenia remain unclear. Numerous studies point to alterations in different aspects of brain development as possible causes of schizophrenia, including defects in neuronal migration, neurotransmitter receptor expression and myelination. Recently, the gene that encodes neuregulin-1 (NRG1) has been identified as a potential susceptibility gene for schizophrenia, and defects in the expression of erbB3, one of the NRG1 receptors, have been shown to occur in the prefrontal cortex of schizophrenic patients, suggesting that NRG1-erbB signaling is involved in the pathogenesis of schizophrenia. These findings open new approaches to defining the molecular and cellular basis of schizophrenia in more mechanistic terms.
Collapse
Affiliation(s)
- Gabriel Corfas
- Division of Neuroscience, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
38
|
|
39
|
Chan E. Low Akt levels might underlie schizophrenia. Clin Genet 2004. [DOI: 10.1111/j.0009-9163.2004.00281c.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Schulze TG, McMahon FJ. Genetic linkage and association studies in bipolar affective disorder: a time for optimism. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2004; 123C:36-47. [PMID: 14601035 DOI: 10.1002/ajmg.c.20012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic research on complex diseases is beginning to bear fruit, with the successful identification of candidate susceptibility genes in diabetes, asthma, and other illnesses. Similar success is on the horizon for bipolar affective disorder (BPAD), but significant challenges remain. In this review, we outline the basic concepts of linkage and association mapping for complex phenotypes. We point out important caveats inherent in both approaches, and review guidelines on the interpretation of linkage statistics and significance thresholds. We then apply these concepts to an evaluation of the present status of genetic linkage and association studies in BPAD. The challenges posed by locus heterogeneity, phenotype definition, and sample size requirements are given a detailed treatment. Despite these challenges, we argue that the way ahead remains firmly rooted in linkage studies, complemented by association studies in linked regions. This is the only truly genome-wide approach currently available; it has succeeded in other complex phenotypes, and it is the surest strategy for mapping susceptibility genes in BPAD. Once these genes are identified, genetic mapping methods will yield to the other methods of 21st-century molecular biology as we begin to elucidate the pathophysiology of BPAD.
Collapse
Affiliation(s)
- Thomas G Schulze
- Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany.
| | | |
Collapse
|
41
|
Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 2004; 113:1353-63. [PMID: 15124027 PMCID: PMC398430 DOI: 10.1172/jci20425] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 02/03/2004] [Indexed: 02/04/2023] Open
Abstract
Eleven studies now report significant associations between schizophrenia and certain haplotypes of single-nucleotide polymorphisms in the gene encoding dysbindin-1 at 6p22.3. Dysbindin-1 is best known as dystrobrevin-binding protein 1 (DTNBP1) and may thus be associated with the dystrophin glycoprotein complex found at certain postsynaptic sites in the brain. Contrary to expectations, however, we found that when compared to matched, nonpsychiatric controls, 73-93% of cases in two schizophrenia populations displayed presynaptic dysbindin-1 reductions averaging 18-42% (P = 0.027-0.0001) at hippocampal formation sites lacking neuronal dystrobrevin (i.e., beta-dystrobrevin). The reductions, which were not observed in the anterior cingulate of the same schizophrenia cases, occurred specifically in terminal fields of intrinsic, glutamatergic afferents of the subiculum, the hippocampus proper, and especially the inner molecular layer of the dentate gyrus (DGiml). An inversely correlated increase in vesicular glutamate transporter-1 (VGluT-1) occurred in DGiml of the same schizophrenia cases. Those changes occurred without evidence of axon terminal loss or neuroleptic effects on dysbindin-1 or VGluT-1. Our findings indicate that presynaptic dysbindin-1 reductions independent of the dystrophin glycoprotein complex are frequent in schizophrenia and are related to glutamatergic alterations in intrinsic hippocampal formation connections. Such changes may contribute to the cognitive deficits common in schizophrenia.
Collapse
Affiliation(s)
- Konrad Talbot
- Department of Psychiatry (Center for Neurobiology and Behavior), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6140, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Middleton FA, Pato MT, Gentile KL, Morley CP, Zhao X, Eisener AF, Brown A, Petryshen TL, Kirby AN, Medeiros H, Carvalho C, Macedo A, Dourado A, Coelho I, Valente J, Soares MJ, Ferreira CP, Lei M, Azevedo MH, Kennedy JL, Daly MJ, Sklar P, Pato CN. Genomewide linkage analysis of bipolar disorder by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay: a comparison with microsatellite marker assays and finding of significant linkage to chromosome 6q22. Am J Hum Genet 2004; 74:886-97. [PMID: 15060841 PMCID: PMC1181983 DOI: 10.1086/420775] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 02/20/2004] [Indexed: 02/04/2023] Open
Abstract
We performed a linkage analysis on 25 extended multiplex Portuguese families segregating for bipolar disorder, by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay, the GeneChip Human Mapping 10K Array (HMA10K). Of these families, 12 were used for a direct comparison of the HMA10K with the traditional 10-cM microsatellite marker set and the more dense 4-cM marker set. This comparative analysis indicated the presence of significant linkage peaks in the SNP assay in chromosomal regions characterized by poor coverage and low information content on the microsatellite assays. The HMA10K provided consistently high information and enhanced coverage throughout these regions. Across the entire genome, the HMA10K had an average information content of 0.842 with 0.21-Mb intermarker spacing. In the 12-family set, the HMA10K-based analysis detected two chromosomal regions with genomewide significant linkage on chromosomes 6q22 and 11p11; both regions had failed to meet this strict threshold with the microsatellite assays. The full 25-family collection further strengthened the findings on chromosome 6q22, achieving genomewide significance with a maximum nonparametric linkage (NPL) score of 4.20 and a maximum LOD score of 3.56 at position 125.8 Mb. In addition to this highly significant finding, several other regions of suggestive linkage have also been identified in the 25-family data set, including two regions on chromosome 2 (57 Mb, NPL = 2.98; 145 Mb, NPL = 3.09), as well as regions on chromosomes 4 (91 Mb, NPL = 2.97), 16 (20 Mb, NPL = 2.89), and 20 (60 Mb, NPL = 2.99). We conclude that at least some of the linkage peaks we have identified may have been largely undetected in previous whole-genome scans for bipolar disorder because of insufficient coverage or information content, particularly on chromosomes 6q22 and 11p11.
Collapse
Affiliation(s)
- F A Middleton
- Department of Neuroscience and Physiology, State University of New York (SUNY), Syracuse, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 2004. [DOI: 10.1172/jci200420425] [Citation(s) in RCA: 348] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Sklar P, Pato MT, Kirby A, Petryshen TL, Medeiros H, Carvalho C, Macedo A, Dourado A, Coelho I, Valente J, Soares MJ, Ferreira CP, Lei M, Verner A, Hudson TJ, Morley CP, Kennedy JL, Azevedo MH, Lander E, Daly MJ, Pato CN. Genome-wide scan in Portuguese Island families identifies 5q31-5q35 as a susceptibility locus for schizophrenia and psychosis. Mol Psychiatry 2004; 9:213-8. [PMID: 14699422 DOI: 10.1038/sj.mp.4001418] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a common psychiatric disorder with a complex genetic etiology. To understand the genetic basis of this syndrome in Portuguese Island populations, we performed a genome-wide scan of 29 families with schizophrenia, which identified a single region on 5q31-5q35 with strong linkage (NPL=3.09, P=0.0012 at D5S820). Empirical simulations set a genome-wide threshold of NPL=3.10 for significant linkage. Additional support for this locus in schizophrenia comes from higher-density mapping and mapping of 11 additional families. The combined set of 40 families had a peak NPL=3.28 (P=0.00066) at markers D5S2112-D5S820. These data and previous linkage findings from other investigators provide strong and consistent evidence for this genomic region as a susceptibility locus for schizophrenia. Exploratory analyses of a novel phenotype, psychosis, in families with schizophrenia and bipolar disorder detected evidence for linkage to the same markers as found in schizophrenia (peak NPL=3.03, P=0.0012 at D5S820), suggesting that this locus may be responsible for the psychotic symptoms observed in both diseases. Molecular Psychiatry (2004) 9, 213-218. doi:10.1038/sj.mp.4001418 Published online 30 December 2003
Collapse
Affiliation(s)
- P Sklar
- Department of Psychiatry, Harvard Medical School, and Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte ACJ, Tullius M, Kovalenko S, Bogaert AVD, Maier W, Rietschel M, Propping P, Nöthen MM, Cichon S. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 2004; 9:203-7. [PMID: 14966479 DOI: 10.1038/sj.mp.4001421] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A recent study has suggested that the brain-expressed genes for G72 and D-amino-acid oxidase (DAAO) exert an influence on susceptibility to schizophrenia. Our aim was to replicate this finding in German schizophrenic patients and to assess whether G72 and DAAO might also contribute to the development of bipolar affective disorder. We genotyped seven single-nucleotide polymorphisms (SNPs) in the G72 gene and three in the DAAO gene in 599 patients (299 schizophrenic, 300 bipolar) and 300 controls. At G72, individual SNPs and a four-marker haplotype were associated with schizophrenia. The most significant SNP as well as the haplotype were also associated with bipolar affective disorder (BPAD). DAAO was associated with schizophrenia, but not with BPAD. The association of variation at G72 with schizophrenia as well as BPAD provides molecular support for the hypothesis that these two major psychiatric disorders share some of their etiologic background.
Collapse
Affiliation(s)
- J Schumacher
- Institute of Human Genetics, University of Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Porton B, Ferreira A, DeLisi LE, Kao HT. A rare polymorphism affects a mitogen-activated protein kinase site in synapsin III: possible relationship to schizophrenia. Biol Psychiatry 2004; 55:118-25. [PMID: 14732590 DOI: 10.1016/j.biopsych.2003.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Synapsin III plays a role in neuronal plasticity and maps to chromosome 22q12-13, a region suggested to be linked to schizophrenia. To determine if synapsin III plays a role in this disease, we searched for polymorphisms in this gene in patients with schizophrenia and controls. METHODS The synapsin III gene was initially sequenced from 10 individuals with schizophrenia to identify polymorphisms. Association analysis was then performed using 118 individuals with schizophrenia and 330 population controls. Synapsin III expression was studied by immunoblot analyses, and phosphorylation sites were mapped by sequencing trypsin-digested synapsin III fragments phosphorylated with phosphorus-32. RESULTS A rare, missense polymorphism, S470N, was identified in the synapsin III gene and appeared more frequently in individuals with schizophrenia than in controls (p =.0048). The site affected by the polymorphism, Ser470, was determined to be a substrate for mitogen-activated protein kinase, a downstream effector of neurotrophin action. Phosphorylation at Ser470 was increased during neonatal development and in response to neurotrophin-3 in cultured hippocampal neurons. CONCLUSIONS Our observations suggest an association of a rare polymorphism in synapsin III with schizophrenia, but further studies will be required to clarify its role in this disease.
Collapse
Affiliation(s)
- Barbara Porton
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| | | | | | | |
Collapse
|
47
|
Hennah W, Varilo T, Paunio T, Peltonen L. Haplotype analysis and identification of genes for a complex trait: examples from schizophrenia. Ann Med 2004; 36:322-31. [PMID: 15478307 DOI: 10.1080/07853890410029824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
For more than a decade there has been intensive research into the genetic etiology of schizophrenia, yet it is only recently that the first findings of promising genes associating with the disorder have been reported. Linkage analyses in families collected from different populations have provided relatively well defined genomic loci. These have been typically followed by fine mapping studies using single nucleotide polymorphisms (SNPs). A number of analysis programs have been produced to test SNPs and their haplotypes for association. Typically association has been established to specific haplotypes representing an allelic variant of the corresponding gene. The inherent problem of multiple testing in the analysis of haplotypes needs to be addressed fully, to determine if any of these recent findings can be considered as confirmed susceptibility genes for schizophrenia. However, informative haplotypes have provided a way to define allelic variants of genes associated with schizophrenia in numerous study samples, and are a useful tool in characterizing the extent of allelic diversity of putative schizophrenia susceptibility genes within different populations.
Collapse
MESH Headings
- Chromosome Mapping/methods
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 8/genetics
- Genetic Predisposition to Disease/genetics
- Genome, Human
- Haplotypes/genetics
- Humans
- Linkage Disequilibrium/genetics
- Polymorphism, Single Nucleotide
- Schizophrenia/genetics
Collapse
Affiliation(s)
- William Hennah
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland.
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Akio Inui
- Division of Diabetes, Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
49
|
Zubenko GS, Maher B, Hughes HB, Zubenko WN, Stiffler JS, Kaplan BB, Marazita ML. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 2003; 123B:1-18. [PMID: 14582139 DOI: 10.1002/ajmg.b.20073] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this report, we describe the results of the first genome-wide linkage survey for genetic loci that influence the development of unipolar Mood Disorders in 81 families identified by individuals with Recurrent, Early-Onset, Major Depressive Disorder (RE-MDD). Model-free linkage analysis was performed using genotypes for 392 highly informative polymorphisms with an average spacing of 9 cM. The highest maximum LOD score observed, 8.19 (genome-wide adjusted P << 0.0001), occurred for Recurrent Major Depressive Disorder (R-MDD) at D2S2321 (205 cM), located 121 kb proximal to CREB1. Nineteen chromosomal regions contained linkage peaks that reached genome-wide statistical significance (genome-wide adjusted P < 0.05) and ten of these were "highly significant" (adjusted P < 0.001). Six of the 19 linkage peaks were revealed only when the analysis included covariates to control for the effects of sex and linkage to CREB1. Sex-specific susceptibility loci were common and preferentially affected the vulnerability of women to developing unipolar Mood Disorders. Five loci revealed evidence of interaction with the CREB1 locus in determining susceptibility (epistasis). A systematic candidate gene analysis is presented and potential overlaps of the linkage regions for unipolar Mood Disorders with those reported for other psychiatric disorders are discussed. The findings suggest that genes whose products participate in cellular signaling pathways that converge on CREB, as well as the target genes whose expression they regulate, may also harbor alleles that affect the development of Mood Disorders and related conditions.
Collapse
Affiliation(s)
- George S Zubenko
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Manji HK, Gottesman II, Gould TD. Signal transduction and genes-to-behaviors pathways in psychiatric diseases. Sci Signal 2003; 2003:pe49. [PMID: 14600293 DOI: 10.1126/stke.2003.207.pe49] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although psychiatric diseases are among the most common and destructive of all human illnesses, the molecular and cellular mechanisms underlying their complex origins remain to be elucidated. Dysfunction of critical intracellular signaling pathways is very likely to be involved. This conclusion is based on a number of observations, including the short- and long-term cellular effects of psychiatric drugs; the critical role signaling pathways play in neurotransmitter, neuropeptide, and neurohormone communication; and the fact that signaling pathways are principle regulators of the diverse array of behavioral symptoms experienced by patients. The genomics era has brought to psychiatry an abundance of genetic linkage and candidate gene findings. The difficult task--now under way--is to discern the functional relevance of these results. Recent evidence suggests the involvement of the ubiquitous protein phosphatase 2B (calcineurin), a critical regulator of many signal transduction pathways, as a schizophrenia susceptibility gene. It is likely that genetic findings in severe psychiatric disorders will continue to implicate direct and indirect modulation of critical intracellular signaling pathways.
Collapse
Affiliation(s)
- Husseini K Manji
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Program, NIMH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|