1
|
Naiel S, Dowdall N, Zhou Q, Ali P, Hayat A, Vierhout M, Wong EY, Couto R, Yépez B, Seifried B, Moquin P, Kolb MR, Ask K, Hoare T. Modulating pro-fibrotic macrophages using yeast beta-glucan microparticles prepared by Pressurized Gas eXpanded liquid (PGX) Technology®. Biomaterials 2025; 313:122816. [PMID: 39250864 DOI: 10.1016/j.biomaterials.2024.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Pro-fibrotic M2-like macrophages are widely implicated in the pathogenesis and progression of lung fibrosis due to their production of pro-fibrotic growth factors and cytokines. Yeast beta-glucan (YBG) microparticles have shown potential as immunomodulators that can convert macrophage polarization from a pro-fibrotic phenotype to an anti-fibrotic phenotype through the engagement of the Dectin-1 receptor. However, the processing conditions used to fabricate YBG microparticles can lead to unpredictable immunomodulatory effects. Herein, we report the use of Pressurized Gas eXpanded liquids (PGX) Technology® to fabricate YBG (PGX-YBG) microparticles with higher surface areas, lower densities, and smaller and more uniform size distributions compared to commercially available spray-dried YBGs. PGX-YBG is shown to activate Dectin-1 more efficiently in vitro while avoiding significant TLR 2/4 activation. Furthermore, PGX-YBG microparticles effectively modulate M2-like fibrosis-inducing murine and human macrophages into fibrosis-suppressing macrophages both in vitro as well as in ex vivo precision-cut murine lung slices, suggesting their potential utility as a therapeutic for addressing a broad spectrum of fibrotic end-point lung diseases.
Collapse
Affiliation(s)
- S Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - N Dowdall
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Q Zhou
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - P Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - A Hayat
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - M Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - E Y Wong
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - R Couto
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - B Yépez
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - B Seifried
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - P Moquin
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - M R Kolb
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - K Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada.
| | - T Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
2
|
Du F, Ye Z, He A, Yuan J, Su M, Jia Q, Wang H, Yang P, Yang Z, Ning P, Wang Z. An engineered α1β1 integrin-mediated FcγRI signaling component to control enhanced CAR macrophage activation and phagocytosis. J Control Release 2025; 377:689-703. [PMID: 39617174 DOI: 10.1016/j.jconrel.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Treatment of solid tumors remains difficult, and therefore there has been increased focus on chimeric antigen receptor macrophages (CAR-M) to challenge solid tumors. However, CAR domain design of of adoptive cell therapy, which leads to differences in antitumor activity and triggered antitumor potential, remains poorly understood for macrophages. We developed an α1β1 integrin-mediated Fc-gamma receptor I (FcγRI) signaling component for CAR-M specific activation and its antitumor potential. We evaluated CAR-M effects with α1β1 integrin-mediated FcγRI signaling (ACT CAR-M) on the activation and antitumor phagocytic response of macrophages in vitro. Subcutaneous tumor model in BALB/c mice and carcinomatosis model in immunodeficient mice were used to test the antitumor effect of ACT CAR-M compared with CD3ζ CAR-M. The α1β1 integrin-mediated FcγRI signaling engagement of CAR-M was associated with enhanced macrophage activation and specific phagocytosis in primary human macrophages, and significantly improved tumor control and survival in multiple cancer models when compared to CD3ζ CAR-M. RNA-sequencing suggested that α1β1 integrin-mediated FcγRI engagement increased antitumor immunity by enhancing pro-inflammatory M1 phenotype-associated pathways, such as Toll-like receptor signaling, tumor necrosis factor signaling, and IL-17 signaling. α1β1 integrin-mediated FcγRI signaling engagement markedly enhanced antitumor effects of CAR-M immunotherapy, which is proposed as an advanced engineering CAR domain material to expand the clinical application of CAR-M.
Collapse
Affiliation(s)
- Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Zixuan Ye
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Anna He
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Jingtong Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Maozhi Su
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Qingan Jia
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710038, China
| | - Huaiyu Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Peng Yang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Zuo Yang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
3
|
Huo S, Lyu Z, Wang X, Liu S, Chen X, Yang M, Liu Z, Yin X. Engineering mesoporous polydopamine-based potentiate STING pathway activation for advanced anti-biofilm therapy. Biomaterials 2025; 312:122739. [PMID: 39096840 DOI: 10.1016/j.biomaterials.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The biofilm-induced "relatively immune-compromised zone" creates an immunosuppressive microenvironment that is a significant contributor to refractory infections in orthopedic endophytes. Consequently, the manipulation of immune cells to co-inhibit or co-activate signaling represents a crucial strategy for the management of biofilm. This study reports the incorporation of Mn2+ into mesoporous dopamine nanoparticles (Mnp) containing the stimulator of interferon genes (STING) pathway activator cGAMP (Mncp), and outer wrapping by M1-like macrophage cell membrane (m-Mncp). The cell membrane enhances the material's targeting ability for biofilm, allowing it to accumulate locally at the infectious focus. Furthermore, m-Mncp mechanically disrupts the biofilm through photothermal therapy and induces antigen exposure through photodynamic therapy-generated reactive oxygen species (ROS). Importantly, the modulation of immunosuppression and immune activation results in the augmentation of antigen-presenting cells (APCs) and the commencement of antigen presentation, thereby inducing biofilm-specific humoral immunity and memory responses. Additionally, this approach effectively suppresses the activation of myeloid-derived suppressor cells (MDSCs) while simultaneously boosting the activity of T cells. Our study showcases the efficacy of utilizing m-Mncp immunotherapy in conjunction with photothermal and photodynamic therapy to effectively mitigate residual and recurrent infections following the extraction of infected implants. As such, this research presents a viable alternative to traditional antibiotic treatments for biofilm that are challenging to manage.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoyuan Wang
- Physical Examination Center, Xi'an International Medical Center Hospital, Xi'an, China
| | - Shichang Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuxu Chen
- Department of Sports Medicine, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ming Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhongkai Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Xinhua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Kong L, Hu X, Xia D, Wu J, Zhao Y, Guo H, Zhang S, Qin C, Wang Y, Li L, Su Z, Zhu C, Xu S. Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation. Biomaterials 2024; 317:123060. [PMID: 39736219 DOI: 10.1016/j.biomaterials.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025]
Abstract
Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.
Collapse
Affiliation(s)
- Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Demeng Xia
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianghong Wu
- Department of Microbiology, College of Basic Medical Science, Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yangpeng Zhao
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Song Zhang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Chun Qin
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Yanjun Wang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Lei Li
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuogui Xu
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
5
|
Fadaka AO, Dourson AJ, Hofmann MC, Gupta P, Raut NGR, Jankowski MP. The intersection of endocrine signaling and neuroimmune communication regulates muscle inflammation-induced nociception in neonatal mice. Brain Behav Immun 2024:S0889-1591(24)00877-8. [PMID: 39716683 DOI: 10.1016/j.bbi.2024.12.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Neonatal pain is a significant clinical issue but the mechanisms by which pain is produced early in life are poorly understood. Our recent work has linked the transcription factor serum response factor downstream of local growth hormone (GH) signaling to incision-related hypersensitivity in neonates. However, it remains unclear if similar mechanisms contribute to inflammatory pain in neonates. We found that local GH treatment inhibited neonatal inflammatory myalgia but appeared to do so through a unique signal transducer and activator of transcription (STAT) dependent pathway within sensory neurons. The STAT1 transcription factor appeared to regulate peripheral inflammation itself by modulation of monocyte chemoattractant protein 1 (CCL2) release from sensory neurons. Data suggests that STAT1 upregulation, downstream of GH signaling, contributes to neonatal nociception during muscle inflammation through a novel neuroimmune loop involving chemokine release from primary afferents. Results could uncover new ways to treat muscle pain and inflammation in neonates.
Collapse
Affiliation(s)
- Adewale O Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Prakriti Gupta
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Namrata G R Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
6
|
Pan X, Zong Q, Liu C, Wu H, Fu B, Wang Y, Sun W, Zhai Y. Konjac glucomannan exerts regulatory effects on macrophages and its applications in biomedical engineering. Carbohydr Polym 2024; 345:122571. [PMID: 39227106 DOI: 10.1016/j.carbpol.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Konjac glucomannan (KGM) molecular chains contain a small amount of acetyl groups and a large number of hydroxyl groups, thereby exhibiting exceptional water retention and gel-forming properties. To meet diverse requirements, KGM undergoes modification processes such as oxidation, acetylation, grafting, and cationization, which reduce its viscosity, enhance its mechanical strength, and improve its water solubility. Researchers have found that KGM and its derivatives can regulate the polarization of macrophages, inducing their transformation into classically activated M1-type macrophages or alternatively activated M2-type macrophages, and even facilitating the interconversion between M1 and M2 phenotypes. Concurrently, the modulation of macrophage polarization states holds significant importance for chronic wound healing, inflammatory bowel disease (IBD), antitumor therapy, tissue engineering scaffolds, oral vaccines, pulmonary delivery, and probiotics. Therefore, KGM has the advantages of both immunomodulatory effects (biological activity) and gel-forming properties (physicochemical properties), giving it significant advantages in a variety of biomedical engineering applications.
Collapse
Affiliation(s)
- Xi Pan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou 570311, China
| | - Huiying Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Fu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
7
|
Ahmad F, Ahmad S, Srivastav AK, Upadhyay TK, Husain A, Khubaib M, Kang S, Park MN, Kim B, Sharma R. "β-glucan signalling stimulates NOX-2 dependent autophagy and LC-3 associated autophagy (LAP) pathway". Int J Biol Macromol 2024; 282:136520. [PMID: 39401634 DOI: 10.1016/j.ijbiomac.2024.136520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/19/2024]
Abstract
β-Glucan, a complex polysaccharide derived from fungal and yeast cell walls, plays a crucial role in modulating immune responses through their interaction with receptors such as Dectin-1 and Complement receptor 3 (CR-3). This review provides an in-depth analysis of the molecular mechanisms by which β-glucans activate receptor-mediated signalling pathways, focusing particularly on the LC3-associated phagocytosis (LAP) and autophagy pathways. Hence, we explore how β-glucan receptor engagement stimulates NADPH oxidase 2 (NOX-2), leading to the intracellular production of significant level of reactive oxygen species (ROS) essential for both conventional autophagy and LAP. While significant progress has been made in elucidation of downstream signaling by glucans, the regulation of phago-lysosomal maturation and antigen presentation during LAP induction still remains less explored. This review aims to provide a comprehensive overview of these pathways and their regulation by β-glucans. By consolidating the current knowledge, we seek to highlight how these mechanisms can be leveraged for therapeutic applications, particularly in the context of tuberculosis (TB) management, where β-glucans could serve as host-directed adjuvant therapies to combat drug-resistant strains. Despite major advancements in this field, currently key research gaps still persist, including detailed molecular interactions between β-glucan receptors and NOX-2 and the translation of these findings to in-vivo models and clinical investigations. This review underscores the need for further research to explore the therapeutic potential of β-glucans in managing not only tuberculosis but also other diseases such as cancer, cardiovascular conditions, and metabolic disorders.
Collapse
Affiliation(s)
- Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Physiological Sciences, Oklahoma Centre for Respiratory and Infectious Diseases, Oklahoma State University, OK 74074, United States of America
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, Uttar Pradesh, India
| | - Anurag Kumar Srivastav
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, Gujarat, India
| | - Adil Husain
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das [BBD] College of Dental Sciences BBD University, Lucknow 226028, Uttar Pradesh, India
| | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| | - Rolee Sharma
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur 228024, Uttar Pradesh, India.
| |
Collapse
|
8
|
Su D, Han L, Shi C, Li Y, Qian S, Feng Z, Yu L. An updated review of HSV-1 infection-associated diseases and treatment, vaccine development, and vector therapy application. Virulence 2024; 15:2425744. [PMID: 39508503 PMCID: PMC11562918 DOI: 10.1080/21505594.2024.2425744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a globally widespread virus that causes and associates with a wide range of diseases, including herpes simplex encephalitis, herpes simplex keratitis, and herpes labialis. The interaction between HSV-1 and the host involves complex immune response mechanisms, including recognition of viral invasion, maintenance of latent infection, and triggering of reactivation. Antiviral therapy is the core treatment for HSV-1 infections. Meanwhile, vaccine development employs different strategies and methods, and several promising vaccine types have emerged, such as live attenuated, protein subunit, and nucleic acid vaccines, offering new possibilities for the prevention of HSV-1 infection. Moreover, HSV-1 can be modified into a therapeutic vector for gene therapy and tumour immunotherapy. This review provides an in-depth summary of HSV-1 infection-associated innate and adaptive immune responses, disease pathogenesis, current therapeutic approaches, recent advances in vaccine development, and vector therapy applications for cancer treatment. Through a systematic review of multiple aspects of HSV-1, this study aims to provide a comprehensive and detailed reference for the public on the prevention, control, and treatment of HSV-1.
Collapse
Affiliation(s)
- Dan Su
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Liping Han
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengyu Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Yaoxin Li
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Lili Yu
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| |
Collapse
|
9
|
Hazrati A, Mirarefin SMJ, Malekpour K, Rahimi A, Khosrojerdi A, Rasouli A, Akrami S, Soudi S. Mesenchymal stem cell application in pulmonary disease treatment with emphasis on their interaction with lung-resident immune cells. Front Immunol 2024; 15:1469696. [PMID: 39582867 PMCID: PMC11581898 DOI: 10.3389/fimmu.2024.1469696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Due to the vital importance of the lungs, lung-related diseases and their control are very important. Severe inflammatory responses mediated by immune cells were among the leading causes of lung tissue pathology and damage during the COVID-19 pandemic. In addition, uncontrolled immune cell responses can lead to lung tissue damage in other infectious and non-infectious diseases. It is essential to control immune responses in a way that leads to homeostasis. Immunosuppressive drugs only suppress inflammatory responses and do not affect the homeostasis of reactions. The therapeutic application of mesenchymal stem cells (MSCs), in addition to restoring immune homeostasis, can promote the regeneration of lung tissue through the production of growth factors and differentiation into lung-related cells. However, the communication between MSCs and immune cells after treatment of pulmonary diseases is essential, and investigating this can help develop a clinical perspective. Different studies in the clinical phase showed that MSCs can reverse fibrosis, increase regeneration, promote airway remodeling, and reduce damage to lung tissue. The proliferation and differentiation potential of MSCs is one of the mechanisms of their therapeutic effects. Furthermore, they can secrete exosomes that affect the function of lung cells and immune cells and change their function. Another important mechanism is that MSCs reduce harmful inflammatory responses through communication with innate and adaptive immune cells, which leads to a shift of the immune system toward regulatory and hemostatic responses.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ashkan Rasouli
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Suhardi V, Oktarina A, Niu Y, Sosa B, Retzky J, Greenblatt M, Ivashkiv L, Bostrom M, Yang X. A Murine Model of Non-Wear-Particle-Induced Aseptic Loosening. Biomimetics (Basel) 2024; 9:673. [PMID: 39590245 PMCID: PMC11592190 DOI: 10.3390/biomimetics9110673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The current murine models of peri-implant osseointegration failure are associated with wear particles. However, the current clinical osseointegration failure is not associated with wear particles. Here, we develop a murine model of osseointegration failure not associated with wear particles and validate it by comparing the cellular composition of interfacial tissues with human samples collected during total joint arthroplasty revision for aseptic loosening. MATERIALS AND METHODS Thirty-two 16-week-old female C57BL/6 mice underwent implantation with a press-fitted roughened titanium implant (Control, n = 11) to induce normal osseointegration and a press-fitted smooth polymethylmethacrylate implant (PMMA, n = 11), a loosely fitted smooth titanium implant (Smooth-Ti, n = 5) or a loosely fitted roughened titanium implant (Overdrill, n = 5) to induce osseointegration failure. Pullout testing was used to determine the strength of the bone-implant interface (n = 6 of each for Control and PMMA groups) at 2 weeks after implantation. Histology (n = 2/group) and immunofluorescence (n = 3/group) were used to determine the cellular composition of bone-implant interfacial tissue, and this was compared with two human samples. RESULTS Osseointegration failure was confirmed with grossly loosening implants and the presence of fibrous tissue identified via histology. The maximum pullout load in the PMMA group was 87% lower than in the Control group (2.8 ± 0.6 N vs. 21 ± 1.5 N, p < 0.001). With immunofluorescence, abundant fibroblasts (PDGFRα+ TCF4+ and PDGFRα+ Pu1+) were observed in osseointegration failure groups and the human samples, but not in controls. Interestingly, CD146+PDGFRα+ and LepR+PDGFRα+ mesenchymal progenitors, osteoblasts (OPN+), vascular endothelium (EMCN+) cells were observed in all groups, indicating dynamic osteogenic activity. Macrophages, only M2, were observed in conditions producing fibrous tissue. CONCLUSIONS In this newly developed non-wear-particle-related murine osseointegration failure model, the cellular composition of human and murine interfacial tissue implicates specific populations of fibroblasts in fibrous tissue formation and implies that these cells may derive from mesenchymal stem cells.
Collapse
Affiliation(s)
- Vincentius Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Anastasia Oktarina
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Yingzhen Niu
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050052, China
| | - Branden Sosa
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
| | - Julia Retzky
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
| | - Matthew Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lionel Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Mathias Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
11
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
12
|
Ding Y, Jia Q, Su Z, Chen H, Ye J, Xie D, Wu Y, He H, Peng Y, Ni Y. Homologous cell membrane-based hydrogel creates spatiotemporal niches to improve outcomes of dysregulated chronic wound healing. Mater Today Bio 2024; 28:101243. [PMID: 39315394 PMCID: PMC11419813 DOI: 10.1016/j.mtbio.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
The (M2M + TGF-β)@HAMA hydrogel dressing improves the outcomes of dysregulated chronic wound healing by protecting the open wound from repeated bacterial infections, reprogramming endogenous monocytes and M1 macrophages into an M2-phenotype, as well as enhancing fibroblastic proliferation and migration for matrix remodeling and granulation tissue formation.Image 1.
Collapse
Affiliation(s)
| | | | - Ziwen Su
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Heying Chen
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jialing Ye
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Dafeng Xie
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yubo Wu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Haiyan He
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yanlin Peng
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yilu Ni
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
13
|
Owen MC, Kopecky BJ. Targeting Macrophages in Organ Transplantation: A Step Toward Personalized Medicine. Transplantation 2024; 108:2045-2056. [PMID: 38467591 PMCID: PMC11390981 DOI: 10.1097/tp.0000000000004978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organ transplantation remains the most optimal strategy for patients with end-stage organ failure. However, prevailing methods of immunosuppression are marred by adverse side effects, and allograft rejection remains common. It is imperative to identify and comprehensively characterize the cell types involved in allograft rejection, and develop therapies with greater specificity. There is increasing recognition that processes mediating allograft rejection are the result of interactions between innate and adaptive immune cells. Macrophages are heterogeneous innate immune cells with diverse functions that contribute to ischemia-reperfusion injury, acute rejection, and chronic rejection. Macrophages are inflammatory cells capable of innate allorecognition that strengthen their responses to secondary exposures over time via "trained immunity." However, macrophages also adopt immunoregulatory phenotypes and may promote allograft tolerance. In this review, we discuss the roles of macrophages in rejection and tolerance, and detail how macrophage plasticity and polarization influence transplantation outcomes. A comprehensive understanding of macrophages in transplant will guide future personalized approaches to therapies aimed at facilitating tolerance or mitigating the rejection process.
Collapse
Affiliation(s)
- Macee C Owen
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
| | - Benjamin J Kopecky
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
14
|
Zhou R, Xue S, Cheng Y, Chen Y, Wang Y, Xing J, Liu H, Xu Y, Lin Y, Pei Z, Wei X, Ding J, Li S, Wang K, Yao F, Zhao Y, Ding C, Hu W. Macrophage membrane-camouflaged biomimetic nanoparticles for rheumatoid arthritis treatment via modulating macrophage polarization. J Nanobiotechnology 2024; 22:578. [PMID: 39300463 DOI: 10.1186/s12951-024-02822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease characterized by chronic joint inflammation and cartilage damage. Current therapeutic strategies often result in side effects, necessitating the development of targeted and safer treatment options. This study introduces a novel nanotherapeutic system, 2-APB@DGP-MM, which utilizes macrophage membrane (MM)-encapsulated nanoparticles (NPs) for the targeted delivery of 2-Aminoethyl diphenylborinate (2-APB) to inflamed joints more effectively. The NPs are designed with a matrix metalloproteinase (MMP)-cleavable peptide, allowing for MMP-responsive drug release within RA microenvironment. Comprehensive in vitro and in vivo assays confirmed the successful synthesis and loading of 2-APB into the DSPE-GPLGVRGC-PEG (DGP) NPs, as well as their ability to repolarize macrophages from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype. The NPs demonstrated high biocompatibility, low cytotoxicity, and enhanced cellular uptake. In a collagen-induced arthritis (CIA) mouse model, intra-articular injection of 2-APB@DGP-MM significantly reduced synovial inflammation and cartilage destruction. Histological analysis corroborated these findings, demonstrating marked improvements in joint structure and delayed disease progression. Above all, the 2-APB@DGP-MM nanotherapeutic system offers a promising and safe approach for RA treatment by modulating macrophage polarization and delivering effective agents to inflamed joints.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Song Xue
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510200, China
| | - Yuanzhi Cheng
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yan Wang
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Jing Xing
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Hao Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yucai Xu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Zejun Pei
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Xin Wei
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510200, China.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
15
|
Neupane KR, Aryal SP, Harvey BT, Ramon GS, Chun B, McCorkle JR, Kolesar JM, Kekenes-Huskey PM, Richards CI. Organelle Specific Macrophage Engineered Vesicles Differentially Reprogram Macrophage Polarization. Adv Healthc Mater 2024:e2401906. [PMID: 39240019 DOI: 10.1002/adhm.202401906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Tumor-associated macrophages (TAMs) represent the majority of the immune cells present in the tumor microenvironment. These macrophages exhibit an anti-inflammatory (M2)-like physiological state and execute immune-suppressive and tumor-supporting properties. With TAMs being plastic, there is a growing interest in reprogramming them toward a pro-inflammatory (M1)-like phenotype that exhibits anti-tumoral properties. Recent studies have demonstrated that both engineered vesicles derived from macrophages and endogenous extracellular vesicles produced by macrophages can be programmed to alter macrophage phenotype. Here it is demonstrated that pro-inflammatory macrophage-engineered subcellular vesicles (MEVs) have differential properties based on their organelle of origin. Endoplasmic reticulum specific MEVs (erMEVs) treated M2 macrophages exhibit enhanced pro-inflammatory cytokine production compared to plasma membrane specific MEVs (pmMEVs) treated M2 macrophages. In addition, under in vitro co-culture conditions, erMEVs elicit superior efficacy in suppressing the viability of cancer cells compared to the same concentration of pmMEVs. Furthermore, erMEVs and pmMEVs maintain differences in their membrane proteins, that regulate the repolarization efficacy of M2 macrophages toward an M1-like phenotype. In addition, The M2 to M1 repolarizing efficacy of MEVs can be altered by changing the activity of the membrane proteins present on erMEVs or pmMEVs.
Collapse
Affiliation(s)
- Khaga R Neupane
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Surya P Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Brock T Harvey
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Geraldine San Ramon
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, 60153, USA
| | - Byeong Chun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, 60153, USA
| | - J Robert McCorkle
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, 40508, USA
| | - Jill M Kolesar
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, 40508, USA
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, 60153, USA
| | | |
Collapse
|
16
|
Maeshima Y, Kataoka TR, Vandenbon A, Hirata M, Takeuchi Y, Suzuki Y, Fukui Y, Kawashima M, Takada M, Ibi Y, Haga H, Morita S, Toi M, Kawaoka S, Kawaguchi K. Intra-patient spatial comparison of non-metastatic and metastatic lymph nodes reveals the reduction of CD169 + macrophages by metastatic breast cancers. EBioMedicine 2024; 107:105271. [PMID: 39173531 PMCID: PMC11382037 DOI: 10.1016/j.ebiom.2024.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/06/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Breast cancer cells suppress the host immune system to efficiently invade the lymph nodes; however, the underlying mechanism remains incompletely understood. Here, we aimed to comprehensively characterise the effects of breast cancers on immune cells in the lymph nodes. METHODS We collected non-metastatic and metastatic lymph node samples from 6 patients with breast cancer with lymph node metastasis. We performed bulk transcriptomics, spatial transcriptomics, and imaging mass cytometry to analyse the obtained lymph nodes. Furthermore, we conducted histological analyses against a larger patient cohort (474 slices from 58 patients). FINDINGS The comparison between paired lymph nodes with and without metastasis from the same patients demonstrated that the number of CD169+ lymph node sinus macrophages, an initiator of anti-cancer immunity, was reduced in metastatic lymph nodes (36.7 ± 21.1 vs 7.3 ± 7.0 cells/mm2, p = 0.0087), whereas the numbers of other major immune cell types were unaltered. We also detected that the infiltration of CD169+ macrophages into metastasised cancer tissues differed by section location within tumours, suggesting that CD169+ macrophages were gradually decreased after anti-cancer reactions. Furthermore, CD169+ macrophage elimination was prevalent in major breast cancer subtypes and correlated with breast cancer staging (p = 0.022). INTERPRETATION We concluded that lymph nodes with breast cancer metastases have fewer CD169+ macrophages, which may be detrimental to the activity of anti-cancer immunity. FUNDING JSPS KAKENHI (16H06279, 20H03451, 20H04842, 22H04925, 19K16770, and 21K15530, 24K02236), JSPS Fellows (JP22KJ1822), AMED (JP21ck0106698), JST FOREST (JPMJFR2062), Caravel, Co., Ltd, Japan Foundation for Applied Enzymology, and Sumitomo Pharma Co., Ltd. under SKIPS.
Collapse
Affiliation(s)
- Yurina Maeshima
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan; Inter-Organ Communication Research Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuki R Kataoka
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate Prefecture 028-3694, Japan
| | - Alexis Vandenbon
- Laboratory of Tissue Homeostasis, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Liberal Arts and Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhide Takeuchi
- Department of Diagnostic Pathology, Kyoto University, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Chiba 277-8562, Japan
| | - Yukiko Fukui
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Takada
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Yumiko Ibi
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan; Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Shinpei Kawaoka
- Inter-Organ Communication Research Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan; Department of Breast Surgery, Breast Center, Mie University, Mie 514-0102, Japan.
| |
Collapse
|
17
|
Gordon S, Roberti A, Kaufmann SHE. Mononuclear Phagocytes, Cellular Immunity, and Nobel Prizes: A Historic Perspective. Cells 2024; 13:1378. [PMID: 39195266 PMCID: PMC11352343 DOI: 10.3390/cells13161378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The mononuclear phagocyte system includes monocytes, macrophages, some dendritic cells, and multinuclear giant cells. These cell populations display marked heterogeneity depending on their differentiation from embryonic and bone marrow hematopoietic progenitors, tissue location, and activation. They contribute to tissue homeostasis by interacting with local and systemic immune and non-immune cells through trophic, clearance, and cytocidal functions. During evolution, they contributed to the innate host defense before effector mechanisms of specific adaptive immunity emerged. Mouse macrophages appear at mid-gestation and are distributed throughout the embryo to facilitate organogenesis and clear cells undergoing programmed cell death. Yolk sac, AGM, and fetal liver-derived tissue-resident macrophages persist throughout postnatal and adult life, supplemented by bone marrow-derived blood monocytes, as required after injury and infection. Nobel awards to Elie Metchnikoff and Paul Ehrlich in 1908 drew attention to cellular phagocytic and humoral immunity, respectively. In 2011, prizes were awarded to Jules Hoffmann and Bruce Beutler for contributions to innate immunity and to Ralph Steinman for the discovery of dendritic cells and their role in antigen presentation to T lymphocytes. We trace milestones in the history of mononuclear phagocyte research from the perspective of Nobel awards bearing directly and indirectly on their role in cellular immunity.
Collapse
Affiliation(s)
- Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany;
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
18
|
Ma H, Zhu M, Chen M, Li X, Feng X. The role of macrophage plasticity in neurodegenerative diseases. Biomark Res 2024; 12:81. [PMID: 39135084 PMCID: PMC11321226 DOI: 10.1186/s40364-024-00624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Tissue-resident macrophages and recruited macrophages play pivotal roles in innate immunity and the maintenance of brain homeostasis. Investigating the involvement of these macrophage populations in eliciting pathological changes associated with neurodegenerative diseases has been a focal point of research. Dysregulated states of macrophages can compromise clearance mechanisms for pathological proteins such as amyloid-β (Aβ) in Alzheimer's disease (AD) and TDP-43 in Amyotrophic lateral sclerosis (ALS). Additionally, recent evidence suggests that abnormalities in the peripheral clearance of pathological proteins are implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, numerous genome-wide association studies have linked genetic risk factors, which alter the functionality of various immune cells, to the accumulation of pathological proteins. This review aims to unravel the intricacies of macrophage biology in both homeostatic conditions and neurodegenerative disorders. To this end, we initially provide an overview of the modifications in receptor and gene expression observed in diverse macrophage subsets throughout development. Subsequently, we outlined the roles of resident macrophages and recruited macrophages in neurodegenerative diseases and the progress of targeted therapy. Finally, we describe the latest advances in macrophage imaging methods and measurement of inflammation, which may provide information and related treatment strategies that hold promise for informing the design of future investigations and therapeutic interventions.
Collapse
Affiliation(s)
- Hongyue Ma
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Mingxia Zhu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Mengjie Chen
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiuli Li
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xinhong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
19
|
Lee SG, Rod-in W, Jung JJ, Jung SK, Lee SM, Park WJ. Lipids Extracted from Aptocyclus ventricosus Eggs Possess Immunoregulatory Effects on RAW264.7 Cells by Activating the MAPK and NF-κB Signaling Pathways. Mar Drugs 2024; 22:368. [PMID: 39195484 PMCID: PMC11355579 DOI: 10.3390/md22080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
This study was conducted to evaluate the potential anti-inflammatory and immune-enhancement properties of lipids derived from Aptocyclus ventricosus eggs on RAW264.7 cells. Firstly, we determined the fatty acid compositions of A. ventricosus lipids by performing gas chromatography analysis. The results showed that A. ventricosus lipids contained saturated fatty acids (24.37%), monounsaturated fatty acids (20.90%), and polyunsaturated fatty acids (54.73%). They also contained notably high levels of DHA (25.91%) and EPA (22.05%) among the total fatty acids. Our results for the immune-associated biomarkers showed that A. ventricosus lipids had immune-enhancing effects on RAW264.7 cells. At the maximum dose of 300 µg/mL, A. ventricosus lipids generated NO (119.53%) and showed greater phagocytosis (63.69%) ability as compared with untreated cells. A. ventricosus lipids also upregulated the expression of iNOS, IL-1β, IL-6, and TNF-α genes and effectively upregulated the phosphorylation of MAPK (JNK, p38, and ERK) and NF-κB p65, indicating that these lipids could activate the MAPK and NF-κB pathways to stimulate macrophages in the immune system. Besides their immune-enhancing abilities, A. ventricosus lipids significantly inhibited LPS-induced RAW264.7 inflammatory responses via the NF-κB and MAPK pathways. The results indicated that these lipids significantly reduced LPS-induced NO production, showing a decrease from 86.95% to 38.89%. Additionally, these lipids downregulated the expression of genes associated with the immune response and strongly suppressed the CD86 molecule on the cell surface, which reduced from 39.25% to 33.80%. Collectively, these findings imply that lipids extracted from A. ventricosus eggs might have biological immunoregulatory effects. Thus, they might be considered promising immunomodulatory drugs and functional foods.
Collapse
Affiliation(s)
- Seul Gi Lee
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
| | - Weerawan Rod-in
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Jun Jae Jung
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
| | - Seok Kyu Jung
- Department of Horticultural Science, Kongju National University, Yesan-gun 32439, Chungcheonnam-do, Republic of Korea;
| | - Sang-min Lee
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
- KBIoRANCh Co., Ltd., Gangwon-do, Gangneung 25457, Republic of Korea
| |
Collapse
|
20
|
Ismahil MA, Zhou G, Gao M, Bansal SS, Patel B, Limdi N, Xie M, Antipenko S, Rokosh G, Hamid T, Prabhu SD. Splenic CD169 + Tim4 + Marginal Metallophilic Macrophages Are Essential for Wound Healing After Myocardial Infarction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.09.24311769. [PMID: 39211861 PMCID: PMC11361232 DOI: 10.1101/2024.08.09.24311769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fidelity of wound healing after myocardial infarction (MI) is an important determinant of subsequent adverse cardiac remodeling and failure. Macrophages derived from infiltrating Ly6C hi blood monocytes are a key component of this healing response; however, the importance of other macrophage populations is unclear. Here, using a variety of in vivo murine models and orthogonal approaches, including surgical myocardial infarction, splenectomy, parabiosis, cell adoptive transfer, lineage tracing and cell tracking, RNA sequencing, and functional characterization, we establish in mice an essential role for splenic CD169 + Tim4 + marginal metallophilic macrophages (MMMs) in post-MI wound healing. Splenic CD169 + Tim4 + MMMs circulate in blood as Ly6C low cells expressing macrophage markers and help populate CD169 + Tim4 + CCR2 - LYVE1 low macrophages in the naïve heart. After acute MI, splenic MMMs augment phagocytosis, CCR3 and CCR4 expression, and robustly mobilize to the heart, resulting in marked expansion of cardiac CD169 + Tim4 + LyVE1 low macrophages with an immunomodulatory and pro-resolving gene signature. These macrophages are obligatory for apoptotic neutrophil clearance, suppression of inflammation, and induction of a reparative macrophage phenotype in the infarcted heart. Splenic MMMs are both necessary and sufficient for post-MI wound healing, and limit late pathological remodeling. Liver X receptor-α agonist-induced expansion of the splenic marginal zone and MMMs during acute MI alleviates inflammation and improves short- and long-term cardiac remodeling. Finally, humans with acute ST-elevation MI also exhibit expansion of circulating CD169 + Tim4 + macrophages. We conclude that splenic CD169 + Tim4 + MMMs are required for pro-resolving and reparative responses after MI and can be manipulated for therapeutic benefit to limit long-term heart failure. CLINICAL PERSPECTIVE What is new?: We establish for the first time that metallophilic marginal macrophages (MMMs) from the spleen, expressing the markers CD169 and Tim4, circulate in blood and traffic to the heart to help maintain the CD169 + Tim4 + CCR2 - LYVE1 low macrophage population in the heart. After acute myocardial infarction, splenic MMMs augment cardiac trafficking in response to chemotactic signals, resulting in expansion of CD169 + Tim4 + macrophages in the heart that play an essential role in post-MI efferocytosis, wound healing and repair while limiting longer term adverse cardiac remodeling. Analogous to mice, humans also exhibit circulating CD169 + Tim4 + macrophages in the blood that expand after acute ST segment elevation MI. What are the clinical implications?: This study highlights the importance of the cardiosplenic axis in acute MI, and the splenic marginal zone, in determining the course and outcome of post-MI LV remodeling.Pharmacological expansion of splenic marginal zone macrophages alleviated post-MI adverse LV remodeling and inflammation, suggesting that splenic modulation is a potential translational therapeutic approach for limiting post-MI inflammation and improving heart repair.
Collapse
|
21
|
Gao X, Carpenter RS, Boulais PE, Zhang D, Marlein CR, Li H, Smith M, Chung DJ, Maryanovich M, Will B, Steidl U, Frenette PS. Regulation of the hematopoietic stem cell pool by C-Kit-associated trogocytosis. Science 2024; 385:eadp2065. [PMID: 39116219 PMCID: PMC11533977 DOI: 10.1126/science.adp2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/14/2024] [Indexed: 08/10/2024]
Abstract
Hematopoietic stem cells (HSCs) are routinely mobilized from the bone marrow (BM) to the blood circulation for clinical transplantation. However, the precise mechanisms by which individual stem cells exit the marrow are not understood. This study identified cell-extrinsic and molecular determinants of a mobilizable pool of blood-forming stem cells. We found that a subset of HSCs displays macrophage-associated markers on their cell surface. Although fully functional, these HSCs are selectively niche-retained as opposed to stem cells lacking macrophage markers, which exit the BM upon forced mobilization. Macrophage markers on HSCs could be acquired through direct transfer by trogocytosis, regulated by receptor tyrosine-protein kinase C-Kit (CD117), from BM-resident macrophages in mouse and human settings. Our study provides proof of concept that adult stem cells utilize trogocytosis to rapidly establish and activate function-modulating molecular mechanisms.
Collapse
Affiliation(s)
- Xin Gao
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wisconsin Blood Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Randall S. Carpenter
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Philip E. Boulais
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christopher R. Marlein
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Huihui Li
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Matthew Smith
- Wisconsin Blood Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David J. Chung
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine–Montefiore Health System, Bronx, NY, USA
| | - Britta Will
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine–Montefiore Health System, Bronx, NY, USA
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ulrich Steidl
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine–Montefiore Health System, Bronx, NY, USA
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
22
|
Fadaka AO, Dourson AJ, Hofmann MC, Gupta P, Raut NGR, Jankowski MP. The intersection of endocrine signaling and neuroimmune communication regulates neonatal nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605393. [PMID: 39211258 PMCID: PMC11361094 DOI: 10.1101/2024.07.26.605393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neonatal pain is a significant clinical issue but the mechanisms by which pain is produced early in life are poorly understood. Our recent work has linked the transcription factor serum response factor downstream of local growth hormone (GH) signaling to incision-related hypersensitivity in neonates. However, it remains unclear if similar mechanisms contribute to inflammatory pain in neonates. We found that local GH treatment inhibited neonatal inflammatory myalgia but appeared to do so through a unique signal transducer and activator of transcription (STAT) dependent pathway within sensory neurons. The STAT1 transcription factor appeared to regulate peripheral inflammation itself by modulation of monocyte chemoattractant protein 1 (MCP1) release from sensory neurons. Data suggests that STAT1 upregulation, downstream of GH signaling, contributes to neonatal nociception during muscle inflammation through a novel neuroimmune loop involving cytokine release from primary afferents. Results could uncover new ways to treat muscle pain and inflammation in neonates.
Collapse
|
23
|
Patente TA, Gasan TA, Scheenstra M, Ozir-Fazalalikhan A, Obieglo K, Schetters S, Verwaerde S, Vergote K, Otto F, Wilbers RHP, van Bloois E, Wijck YV, Taube C, Hammad H, Schots A, Everts B, Yazdanbakhsh M, Guigas B, Hokke CH, Smits HH. S. mansoni -derived omega-1 prevents OVA-specific allergic airway inflammation via hampering of cDC2 migration. PLoS Pathog 2024; 20:e1012457. [PMID: 39186814 PMCID: PMC11379383 DOI: 10.1371/journal.ppat.1012457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic infection with Schistosoma mansoni parasites is associated with reduced allergic sensitization in humans, while schistosome eggs protects against allergic airway inflammation (AAI) in mice. One of the main secretory/excretory molecules from schistosome eggs is the glycosylated T2-RNAse Omega-1 (ω1). We hypothesized that ω1 induces protection against AAI during infection. Peritoneal administration of ω1 prior to sensitization with Ovalbumin (OVA) reduced airway eosinophilia and pathology, and OVA-specific Th2 responses upon challenge, independent from changes in regulatory T cells. ω1 was taken up by monocyte-derived dendritic cells, mannose receptor (CD206)-positive conventional type 2 dendritic cells (CD206+ cDC2), and by recruited peritoneal macrophages. Additionally, ω1 impaired CCR7, F-actin, and costimulatory molecule expression on myeloid cells and cDC2 migration in and ex vivo, as evidenced by reduced OVA+ CD206+ cDC2 in the draining mediastinal lymph nodes (medLn) and retainment in the peritoneal cavity, while antigen processing and presentation in cDC2 were not affected by ω1 treatment. Importantly, RNAse mutant ω1 was unable to reduce AAI or affect DC migration, indicating that ω1 effects are dependent on its RNAse activity. Altogether, ω1 hampers migration of OVA+ cDC2 to the draining medLn in mice, elucidating how ω1 prevents allergic airway inflammation in the OVA/alum mouse model.
Collapse
Affiliation(s)
- Thiago A Patente
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Thomas A Gasan
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maaike Scheenstra
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Arifa Ozir-Fazalalikhan
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Katja Obieglo
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stijn Verwaerde
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Frank Otto
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Eline van Bloois
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Christian Taube
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Arjen Schots
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart Everts
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
24
|
Tsiverioti CA, Gottschlich A, Trefny M, Theurich S, Anders HJ, Kroiss M, Kobold S. Beyond CAR T cells: exploring alternative cell sources for CAR-like cellular therapies. Biol Chem 2024; 405:485-515. [PMID: 38766710 DOI: 10.1515/hsz-2023-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has led to remarkable clinical outcomes in the treatment of hematological malignancies. However, challenges remain, such as limited infiltration into solid tumors, inadequate persistence, systemic toxicities, and manufacturing insufficiencies. The use of alternative cell sources for CAR-based therapies, such as natural killer cells (NK), macrophages (MΦ), invariant Natural Killer T (iNKT) cells, γδT cells, neutrophils, and induced pluripotent stem cells (iPSC), has emerged as a promising avenue. By harnessing these cells' inherent cytotoxic mechanisms and incorporating CAR technology, common CAR-T cell-related limitations can be effectively mitigated. We herein present an overview of the tumoricidal mechanisms, CAR designs, and manufacturing processes of CAR-NK cells, CAR-MΦ, CAR-iNKT cells, CAR-γδT cells, CAR-neutrophils, and iPSC-derived CAR-cells, outlining the advantages, limitations, and potential solutions of these therapeutic strategies.
Collapse
Affiliation(s)
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Lindwurmstr. 2a, 80337 Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Marchioninstr. 15, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), LMU Munich, Pettenkoferstr. 8a, 80336 Munich, Germany
| | - Marcel Trefny
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Lindwurmstr. 2a, 80337 Munich, Germany
| | - Sebastian Theurich
- Department of Medicine III, University Hospital, LMU Munich, Marchioninstr. 15, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), LMU Munich, Pettenkoferstr. 8a, 80336 Munich, Germany
- 74939 German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University Hospital of the LMU , Marchioninstr. 15, 81377 Munich, Germany
- Cancer and Immunometabolism Research Group, 74939 Gene Center LMU , Feodor-Lynen Str. 25, 81377 Munich, Germany
| | - Hans-Joachim Anders
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstr. 5, 80336 Munich, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstr. 5, 80336 Munich, Germany
- Division of Endocrinology and Diabetes, Department of Medicine, University Hospital, University of Würzburg, Josef-Schneider-Str, 9780 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str. 6, 9780 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Lindwurmstr. 2a, 80337 Munich, Germany
- 74939 German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University Hospital of the LMU , Marchioninstr. 15, 81377 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
25
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
26
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
27
|
Qu Y, Chu B, Li J, Deng H, Niu T, Qian Z. Macrophage-Biomimetic Nanoplatform-Based Therapy for Inflammation-Associated Diseases. SMALL METHODS 2024; 8:e2301178. [PMID: 38037521 DOI: 10.1002/smtd.202301178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Inflammation-associated diseases are very common clinically with a high incidence; however, there is still a lack of effective treatments. Cell-biomimetic nanoplatforms have led to many breakthroughs in the field of biomedicine, significantly improving the efficiency of drug delivery and its therapeutic implications especially for inflammation-associated diseases. Macrophages are an important component of immune cells and play a critical role in the occurrence and progression of inflammation-associated diseases while simultaneously maintaining homeostasis and modulating immune responses. Therefore, macrophage-biomimetic nanoplatforms not only inherit the functions of macrophages including the inflammation tropism effect for targeted delivery of drugs and the neutralization effect of pro-inflammatory cytokines and toxins via membrane surface receptors or proteins, but also maintain the functions of the inner nanoparticles. Macrophage-biomimetic nanoplatforms are shown to have remarkable therapeutic efficacy and excellent application potential in inflammation-associated diseases. In this review, inflammation-associated diseases, the physiological functions of macrophages, and the classification and construction of macrophage-biomimetic nanoplatforms are first introduced. Next, the latest applications of different macrophage-biomimetic nanoplatforms for the treatment of inflammation-associated diseases are summarized. Finally, challenges and opportunities for future biomedical applications are discussed. It is hoped that the review will provide new ideas for the further development of macrophage-biomimetic nanoplatforms.
Collapse
Affiliation(s)
- Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Li
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
28
|
Wang F, Li N, Li H, Di Y, Li F, Jiang P, Wang G. An alkali-extracted neutral heteropolysaccharide from Phellinus nigricans used as an immunopotentiator in immunosuppressed mice by activating macrophages. Carbohydr Polym 2024; 335:122110. [PMID: 38616084 DOI: 10.1016/j.carbpol.2024.122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
A neutral heteropolysaccharide (PNANb) was isolated with alkali (0.1 M NaOH) from mycelia of Phellinus nigricans, and the structure, immunostimulating activity and some of the underlying molecular mechanisms of action of PNANb were explored in the current study. PNANb (14.95 kDa) predominantly consisted of Gal, Glc, and Man with minor Fuc. GC-MS and NMR analyses indicated that the backbone of PNANb was mainly composed of 6-α-Galp, 2,6-α-Galp with minor 3,6-β-Glcp, which was substituted with complex side chains at C-2 of 2,6-α-Galp and C-3 of 3,6-β-Glcp. Notably, PNANb (50 or 100 mg/kg) possessed immunoprotective effects in cyclophosphamide (Cy)-induced immunosuppressed C57BL/6 mice, which was supported by evidence including the enhancement of spleen and thymus indices, levels of serum immunoglobulins (IgG, IgM) and cytokines (IFN-γ, IL-2, IL-4, IL-10), and macrophage activity. However, the immunostimulation effects of PNANb were decreased when macrophages were depleted, underscoring the essential role of macrophages in the beneficial effects of PNANb in Cy-induced immunosuppressed mice. Further investigations in vitro indicated that PNANb activated macrophages through MAPK/NF-κB signaling pathways mediated by Toll-like receptor 4. Therefore, PNANb can serve as a prospective immunopotentiator in immunosuppression.
Collapse
Affiliation(s)
- Feihe Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Na Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hong Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yao Di
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Fan Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Peng Jiang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Guiyun Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
29
|
Ravi Sundar Jose Geetha A, Fischer K, Babadei O, Smesnik G, Vogt A, Platanitis E, Müller M, Farlik M, Decker T. Dynamic control of gene expression by ISGF3 and IRF1 during IFNβ and IFNγ signaling. EMBO J 2024; 43:2233-2263. [PMID: 38658796 PMCID: PMC11148166 DOI: 10.1038/s44318-024-00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Type I interferons (IFN-I, including IFNβ) and IFNγ produce overlapping, yet clearly distinct immunological activities. Recent data show that the distinctness of global transcriptional responses to the two IFN types is not apparent when comparing their immediate effects. By analyzing nascent transcripts induced by IFN-I or IFNγ over a period of 48 h, we now show that the distinctiveness of the transcriptomes emerges over time and is based on differential employment of the ISGF3 complex as well as of the second-tier transcription factor IRF1. The distinct transcriptional properties of ISGF3 and IRF1 correspond with a largely diverse nuclear protein interactome. Mechanistically, we describe the specific input of ISGF3 and IRF1 into enhancer activation and the regulation of chromatin accessibility at interferon-stimulated genes (ISG). We further report differences between the IFN types in altering RNA polymerase II pausing at ISG 5' ends. Our data provide insight how transcriptional regulators create immunological identities of IFN-I and IFNγ.
Collapse
Affiliation(s)
- Aarathy Ravi Sundar Jose Geetha
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Katrin Fischer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Georg Smesnik
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | | | - Ekaterini Platanitis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria.
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria.
| |
Collapse
|
30
|
Iglesias-Velazquez O, Gf Tresguerres F, F Tresguerres I, Leco-Berrocal I, Lopez-Pintor R, Baca L, Torres J. OsteoMac: A new player on the bone biology scene. Ann Anat 2024; 254:152244. [PMID: 38492654 DOI: 10.1016/j.aanat.2024.152244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
The knowledge of bone biology has undergone major advances in recent decades. In bone, resorbing osteoclasts have classically been described as tissue-resident macrophages, however, it is currently known that a new subtype of macrophages, called OsteoMacs, are specialised bone-resident macrophages, which, depending on certain conditions, may play an important role not only in bone homeostasis, but also in promoting pro-anabolic functions or in creating an inflammatory environment. There is growing evidence that these osteal macrophages may influence the development of bone-loss diseases. It is essential to understand the biological bases underlying bone physiological processes to search for new therapeutic targets for bone-loss diseases, such as osteoporosis, rheumatoid arthritis, or even periodontal disease. This narrative review provides an update on the origin, characterisation, and possible roles of osteoMacs in bone biology. Finally, the potential clinical applications of this new cell in bone-loss disorders are discussed.
Collapse
Affiliation(s)
- Oscar Iglesias-Velazquez
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| | - Francisco Gf Tresguerres
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| | - Isabel F Tresguerres
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain.
| | - Isabel Leco-Berrocal
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| | - Rosa Lopez-Pintor
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| | - Laura Baca
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| | - Jesus Torres
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| |
Collapse
|
31
|
Li B, Wang W, Zhao L, Wu Y, Li X, Yan D, Gao Q, Yan Y, Zhang J, Feng Y, Zheng J, Shu B, Wang J, Wang H, He L, Zhang Y, Pan M, Wang D, Tang BZ, Liao Y. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. NATURE NANOTECHNOLOGY 2024; 19:834-845. [PMID: 38383890 DOI: 10.1038/s41565-024-01618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Conventional antibiotics used for treating tuberculosis (TB) suffer from drug resistance and multiple complications. Here we propose a lesion-pathogen dual-targeting strategy for the management of TB by coating Mycobacterium-stimulated macrophage membranes onto polymeric cores encapsulated with an aggregation-induced emission photothermal agent that is excitable with a 1,064 nm laser. The coated nanoparticles carry specific receptors for Mycobacterium tuberculosis, which enables them to target tuberculous granulomas and internal M. tuberculosis simultaneously. In a mouse model of TB, intravenously injected nanoparticles image individual granulomas in situ in the lungs via signal emission in the near-infrared region IIb, with an imaging resolution much higher than that of clinical computed tomography. With 1,064 nm laser irradiation from outside the thoracic cavity, the photothermal effect generated by these nanoparticles eradicates the targeted M. tuberculosis and alleviates pathological damage and excessive inflammation in the lungs, resulting in a better therapeutic efficacy compared with a combination of first-line antibiotics. This precise photothermal modality that uses dual-targeted imaging in the near-infrared region IIb demonstrates a theranostic strategy for TB management.
Collapse
Affiliation(s)
- Bin Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
- School of Inspection, Ningxia Medical University, Yinchuan, China
- Institute of Translational Medicine, Department of Clinical Laboratory & Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Lu Zhao
- Institute of Translational Medicine, Department of Clinical Laboratory & Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Yunxia Wu
- Institute of Translational Medicine, Department of Clinical Laboratory & Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Qiuxia Gao
- Institute of Translational Medicine, Department of Clinical Laboratory & Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Yan Yan
- Department of Critical Care Medicine, Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Zhang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, China
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Bowen Shu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Jiamei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Huanhuan Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Lingjie He
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yunlong Zhang
- Department of Critical Care Medicine, Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingliang Pan
- Department of Critical Care Medicine, Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, China.
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China.
- School of Inspection, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
32
|
Wang C, Li C, Zhang R, Huang L. Macrophage membrane-coated nanoparticles for the treatment of infectious diseases. Biomed Mater 2024; 19:042003. [PMID: 38740051 DOI: 10.1088/1748-605x/ad4aaa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Infectious diseases severely threaten human health, and traditional treatment techniques face multiple limitations. As an important component of immune cells, macrophages display unique biological properties, such as biocompatibility, immunocompatibility, targeting specificity, and immunoregulatory activity, and play a critical role in protecting the body against infections. The macrophage membrane-coated nanoparticles not only maintain the functions of the inner nanoparticles but also inherit the characteristics of macrophages, making them excellent tools for improving drug delivery and therapeutic implications in infectious diseases (IDs). In this review, we describe the characteristics and functions of macrophage membrane-coated nanoparticles and their advantages and challenges in ID therapy. We first summarize the pathological features of IDs, providing insight into how to fight them. Next, we focus on the classification, characteristics, and preparation of macrophage membrane-coated nanoparticles. Finally, we comprehensively describe the progress of macrophage membrane-coated nanoparticles in combating IDs, including drug delivery, inhibition and killing of pathogens, and immune modulation. At the end of this review, a look forward to the challenges of this aspect is presented.
Collapse
Affiliation(s)
- Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Ruoyu Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
33
|
Li R, Tran DN, Lessey BA, Young SL, Kim TH, Jeong JW. Transcriptomic changes in eutopic endometrium and ectopic lesions during endometriosis progression in a mouse model. F&S SCIENCE 2024; 5:182-194. [PMID: 38342342 PMCID: PMC11116064 DOI: 10.1016/j.xfss.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE To identify the transcriptomic changes of ectopic lesions and eutopic endometrial tissues during the progression of endometriosis, we performed transcriptomic analysis in the eutopic endometrium and ectopic lesions. DESIGN Laboratory study. SETTING Academic medical center. ANIMALS Four fertile and 4 subfertile Pgrcre/+Rosa26mTmG/+ mice with endometriosis, and 4 sham mice for each group of endometriosis mice as control. These mice underwent either surgery to induce endometriosis or sham surgery. Fertile sham and mice with endometriosis were used 1 month after surgery, whereas subfertile ones were used 3 months after surgery. INTERVENTIONS Early and chronic effects of endometriosis on transcriptomics of ectopic lesions and eutopic endometrium. MAIN OUTCOME MEASURES RNA-sequencing analysis and identification of differentially expressed genes and pathways in the ectopic lesions and eutopic uteri from mice with endometriosis and sham mice at day 3.5 of pregnancy. RESULTS Our mouse model recapitulates the transcriptomic changes of ectopic lesions in humans. RNA-sequencing analysis was performed in ectopic lesions and eutopic uteri from mice with or without endometriosis during the progression of the disease. Estrogen activity, inflammation, angiogenesis, and fibrosis pathways were consistently elevated in all the ectopic lesions compared with eutopic endometrium. Cholesterol/glucose synthesis and stem cell pluripotency pathways were more enhanced in ectopic lesions from subfertile mice compared with their eutopic endometrium. Dysregulation of infiltration of macrophage, dendritic, T and B cells was validated with the use of immunohistochemistry in ectopic lesions. Multiple ligand-receptor pairs between the ectopic and eutopic endometrium were altered compared with the sham endometrium. Suppressed WNT and EGF pathways were only found in the eutopic endometrium from subfertile not fertile mice compared with sham. CONCLUSIONS Our mouse endometriosis model recapitulates the transcriptomics of ectopic lesions in humans. Our transcriptomic analysis during endometriosis progression in our mouse model will help us understand the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Rong Li
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - Dinh Nam Tran
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Steven L Young
- Department of Obstetrics, Gynecology and Women's Health, Duke University, Durham, North Carolina
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri.
| |
Collapse
|
34
|
Kloc M, Halasa M, Ghobrial RM. Macrophage niche imprinting as a determinant of macrophage identity and function. Cell Immunol 2024; 399-400:104825. [PMID: 38648700 DOI: 10.1016/j.cellimm.2024.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Macrophage niches are the anatomical locations within organs or tissues consisting of various cells, intercellular and extracellular matrix, transcription factors, and signaling molecules that interact to influence macrophage self-maintenance, phenotype, and behavior. The niche, besides physically supporting macrophages, imposes a tissue- and organ-specific identity on the residing and infiltrating monocytes and macrophages. In this review, we give examples of macrophage niches and the modes of communication between macrophages and surrounding cells. We also describe how macrophages, acting against their immune defensive nature, can create a hospitable niche for pathogens and cancer cells.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; University of Texas, MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| | - Rafik M Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| |
Collapse
|
35
|
Deng H, Liang WY, Chen LQ, Yuen TH, Sahin B, Vasilescu DM, Trinder M, Walley K, Rensen PC, Boyd JH, Brunham LR. CETP inhibition enhances monocyte activation and bacterial clearance and reduces streptococcus pneumonia-associated mortality in mice. JCI Insight 2024; 9:e173205. [PMID: 38646937 PMCID: PMC11141867 DOI: 10.1172/jci.insight.173205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.
Collapse
Affiliation(s)
- Haoyu Deng
- Department of Medicine, Faculty of Medicine
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | - Wan Yi Liang
- Department of Microbiology and Immunology, Faculty of Science, and
| | - Le Qi Chen
- Department of Microbiology and Immunology, Faculty of Science, and
| | - Tin Ho Yuen
- Department of Microbiology and Immunology, Faculty of Science, and
| | - Basak Sahin
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | | | - Mark Trinder
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
- Department of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith Walley
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | - Patrick C.N. Rensen
- Department of Medicine, Division of Endocrinology, and
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - John H. Boyd
- Department of Medicine, Faculty of Medicine
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | - Liam R. Brunham
- Department of Medicine, Faculty of Medicine
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| |
Collapse
|
36
|
Zhang X, Zhang X, Wang Z, Quan B, Bai X, Wu Z, Meng Y, Wei Z, Xia T, Zheng Y, Wang M. Melanoidin-like carbohydrate-containing macromolecules from Shanxi aged vinegar exert immunoenhancing effects on macrophage RAW264.7 cells. Int J Biol Macromol 2024; 264:130088. [PMID: 38354936 DOI: 10.1016/j.ijbiomac.2024.130088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Bioactive macromolecule mining is important for the functional chemome analysis of traditional Chinese vinegar. In this study, we isolated and characterized carbohydrate-containing macromolecules from Shanxi aged vinegar (CCMSAV) and evaluated their immunomodulatory activity. The isolation process involved ethanol precipitation, deproteinization, decolorization, and DEAE-650 M column chromatography, resulting in the acquisition of four sub-fractions. All sub-fractions exhibited a molecular weight range of 6.92 to 16.71 kDa and were composed of 10 types of monosaccharides. Comparative analysis of these sub-fractions with two melanoidins exhibited similarities in elemental composition, spectral signature, and pyrolytic characteristics. Immunological assays confirmed the significantly enhanced cell viability, phagocytic activity, and secretion of nitric oxide, tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 cells by all four sub-fractions. Further investigation of the immunomodulatory mechanism revealed that SAV-RP70-X, the most potent purified sub-fraction, enhanced aerobic glycolysis in macrophages and activated Toll-like receptor 2 (TLR2), TLR4, mannose receptor (MR), scavenger receptor (SR), and the dendritic cell-associated C-type lectin-1 receptor (Dectin-1). Furthermore, the activation of macrophages was associated with the MyD88/PI3K/Akt/NF-κB signaling pathway. Methylation analysis revealed that 1,4-Xylp was the most abundant glycosidic linkage in SAV-RP70-X.
Collapse
Affiliation(s)
- Xianglong Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaodong Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhisong Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bingyan Quan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoli Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zihang Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuan Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zixiang Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
37
|
Perumalsamy H, Xiao X, Kim HY, Yoon TH. scRNA-seq analysis discovered suppression of immunomodulatory dependent inflammatory response in PMBCs exposed to silver nanoparticles. J Nanobiotechnology 2024; 22:118. [PMID: 38494495 PMCID: PMC10946150 DOI: 10.1186/s12951-024-02364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
The assessment of AgNPs toxicity in vitro and in vivo models are frequently conflicting and inaccurate. Nevertheless, single cell immunological responses in a heterogenous environment have received little attention. Therefore, in this study, we have performed in-depth analysis which clearly revealed cellular-metal ion association as well as specific immunological response. Our study didn't show significant population differences in PMBC between control and AgNPs group implying no toxicological response. To confirm it further, deep profiling identified differences in subsets and differentially expressed genes (DEGs) of monocytes, B cells and T cells. Notably, monocyte subsets showed significant upregulation of metallothionein (MT) gene expression such as MT1G, MT1X, MT1E, MT1A, and MT1F. On the other hand, downregulation of pro-inflammatory genes such as IL1β and CCL3 in both CD16 + and CD16- monocyte subsets were observed. This result indicated that AgNPs association with monocyte subsets de-promoted inflammatory responsive genes suggesting no significant toxicity observed in AgNPs treated group. Other cell types such as B cells and T cells also showed negligible differences in their subsets suggesting no toxicity response. Further, AgNPs treated group showed upregulation of cell proliferation, ribosomal synthesis, downregulation of cytokine release, and T cell differentiation inhibition. Overall, our results conclude that treatment of AgNPs to PMBC cells didn't display immunological related cytotoxicity response and thus motivate researchers to use them actively for biomedical applications.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Xiao Xiao
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Yi Kim
- NGeneS Inc, 362, Gwangdeok 1-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15495, Republic of Korea
| | - Tae-Hyun Yoon
- Institute of Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
38
|
Zhang W, Shen J, Liang J, Ge C, Zhou Y, Yin L, Ji Y. Pulmonary RNA interference against acute lung injury mediated by mucus- and cell-penetrating nanocomplexes. Acta Biomater 2024; 177:332-346. [PMID: 38290689 DOI: 10.1016/j.actbio.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Trans-mucosal delivery of anti-inflammatory siRNA into alveolar macrophages represents a promising modality for the treatment of acute lung injury (ALI). However, its therapeutic efficacy is often hurdled by the lack of effective carriers that can simultaneously overcome the mucosal barrier and cell membrane barrier. Herein, we developed mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes which enabled efficient intratracheal delivery of TNF-α siRNA (siTNF-α) to attenuate pulmonary inflammation against lipopolysaccharide (LPS)-induced ALI. P-G@Zn, a cationic helical polypeptide bearing both guanidine and zinc dipicolylamine (Zn-DPA) side charged groups, was designed to condense siTNF-α and promote macrophage internalization due to its helicity-dependent membrane activity. Coating of the polyplexes with charge-neutralizing carboxylated mannan (Man-COOH) greatly enhanced the mucus penetration potency due to shielding of the electrostatic adhesive interactions with the mucus, and it cooperatively enabled active targeting to alveolar macrophages to potentiate the intracellular delivery efficiency of siTNF-α. As such, intratracheally administered Man-COOH/P-G@Zn/siTNF-α polyplexes provoked notable TNF-α silencing by ∼75 % in inflamed lung tissues at 500 μg siRNA/kg, and demonstrated potent anti-inflammatory performance to treat ALI. This study provides an effective tool for the synchronized trans-mucosal delivery of siRNA into macrophages, and the unique properties of the polyplexes render remarkable potentials for anti-inflammatory therapy against ALI. STATEMENT OF SIGNIFICANCE: siRNA-mediated anti-inflammatory management of acute lung injury (ALI) is greatly challenged by the insufficient delivery across the mucus layer and cell membrane. To address such critical issue, mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes are herein developed, which are comprised of an outer shell of carboxylated mannan (Man-COOH) and an inner nanocore formed by TNF-α siRNA (siTNF-α) and a cationic helical polypeptide P-G@Zn. Man-COOH coating endowed the polyplexes with high mucus-penetrating capability and macrophage-targeting ability, while P-G@Zn bearing both guanidine and zinc dipicolylamine afforded potent siTNF-α condensation capacity and high intracellular delivery efficiency with reduced cytotoxicity. Intratracheally administered polyplexes solicit pronounced TNF-α silencing and anti-inflammatory efficiencies in ALI mice. This study renders an effective example for overcoming the multiple barriers against trans-mucosal delivery of siRNA into macrophages, and holds profound potentials for gene therapy against ALI.
Collapse
Affiliation(s)
- Wenxin Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jingrui Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jialong Liang
- Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Yong Ji
- Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
39
|
Johnson M, Chelysheva I, Öner D, McGinley J, Lin GL, O'Connor D, Robinson H, Drysdale SB, Gammin E, Vernon S, Muller J, Wolfenden H, Westcar S, Anguvaa L, Thwaites RS, Bont L, Wildenbeest J, Martinón-Torres F, Aerssens J, Openshaw PJM, Pollard AJ. A Genome-Wide Association Study of Respiratory Syncytial Virus Infection Severity in Infants. J Infect Dis 2024; 229:S112-S119. [PMID: 38271230 DOI: 10.1093/infdis/jiae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a significant cause of infant morbidity and mortality worldwide. Most children experience at least one 1 RSV infection by the age of two 2 years, but not all develop severe disease. However, the understanding of genetic risk factors for severe RSV is incomplete. Consequently, we conducted a genome-wide association study of RSV severity. METHODS Disease severity was assessed by the ReSVinet scale, in a cohort of 251 infants aged 1 week to 1 year. Genotyping data were collected from multiple European study sites as part of the RESCEU Consortium. Linear regression models were used to assess the impact of genotype on RSV severity and gene expression as measured by microarray. RESULTS While no SNPs reached the genome-wide statistical significance threshold (P < 5 × 10-8), we identified 816 candidate SNPs with a P-value of <1 × 10-4. Functional annotation of candidate SNPs highlighted genes relevant to neutrophil trafficking and cytoskeletal functions, including LSP1 and RAB27A. Moreover, SNPs within the RAB27A locus significantly altered gene expression (false discovery rate, FDR P < .05). CONCLUSIONS These findings may provide insights into genetic mechanisms driving severe RSV infection, offering biologically relevant information for future investigations.
Collapse
Affiliation(s)
- Mari Johnson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Deniz Öner
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Joseph McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Emma Gammin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Sophie Vernon
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Jill Muller
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | | | | | | | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Netherlands
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Netherlands
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela
- Genetics, Vaccines and Infections Research Group, Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Jeroen Aerssens
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
40
|
Sun Z, Zhang W, Li J, Yang K, Zhang Y, Li Z. H9N2 Avian Influenza Virus Downregulates FcRY Expression in Chicken Macrophage Cell Line HD11 by Activating the JNK MAPK Pathway. Int J Mol Sci 2024; 25:2650. [PMID: 38473897 DOI: 10.3390/ijms25052650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
The H9N2 avian influenza virus causes reduced production performance and immunosuppression in chickens. The chicken yolk sac immunoglobulins (IgY) receptor (FcRY) transports from the yolk into the embryo, providing offspring with passive immunity to infection against common poultry pathogens. FcRY is expressed in many tissues/organs of the chicken; however, there are no reports investigating FcRY expression in chicken macrophage cells, and how H9N2-infected HD11 cells (a chicken macrophage-like cell line) regulate FcRY expression remains uninvestigated. This study used the H9N2 virus as a model pathogen to explore the regulation of FcRY expression in avian macrophages. FcRY was highly expressed in HD11 cells, as shown by reverse transcription polymerase chain reactions, and indirect immunofluorescence indicated that FcRY was widely expressed in HD11 cells. HD11 cells infected with live H9N2 virus exhibited downregulated FcRY expression. Transfection of eukaryotic expression plasmids encoding each viral protein of H9N2 into HD11 cells revealed that nonstructural protein (NS1) and matrix protein (M1) downregulated FcRY expression. In addition, the use of a c-jun N-terminal kinase (JNK) activator inhibited the expression of FcRY, while a JNK inhibitor antagonized the downregulation of FcRY expression by live H9N2 virus, NS1 and M1 proteins. Finally, a dual luciferase reporter system showed that both the M1 protein and the transcription factor c-jun inhibited FcRY expression at the transcriptional level. Taken together, the transcription factor c-jun was a negative regulator of FcRY, while the live H9N2 virus, NS1, and M1 proteins downregulated the FcRY expression through activating the JNK signaling pathway. This provides an experimental basis for a novel mechanism of immunosuppression in the H9N2 avian influenza virus.
Collapse
Affiliation(s)
- Zhijian Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
| | - Wenjie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
| | - Jian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
| | - Kang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
| | - Yanhao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
| |
Collapse
|
41
|
Miron RJ, Bohner M, Zhang Y, Bosshardt DD. Osteoinduction and osteoimmunology: Emerging concepts. Periodontol 2000 2024; 94:9-26. [PMID: 37658591 DOI: 10.1111/prd.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 09/03/2023]
Abstract
The recognition and importance of immune cells during bone regeneration, including around bone biomaterials, has led to the development of an entire field termed "osteoimmunology," which focuses on the connection and interplay between the skeletal system and immune cells. Most studies have focused on the "osteogenic" capacity of various types of bone biomaterials, and much less focus has been placed on immune cells despite being the first cell type in contact with implantable devices. Thus, the amount of literature generated to date on this topic makes it challenging to extract needed information. This review article serves as a guide highlighting advancements made in the field of osteoimmunology emphasizing the role of the osteoimmunomodulatory properties of biomaterials and their impact on osteoinduction. First, the various immune cell types involved in bone biomaterial integration are discussed, including the prominent role of osteal macrophages (OsteoMacs) during bone regeneration. Thereafter, key biomaterial properties, including topography, wettability, surface charge, and adsorption of cytokines, growth factors, ions, and other bioactive molecules, are discussed in terms of their impact on immune responses. These findings highlight and recognize the importance of the immune system and osteoimmunology, leading to a shift in the traditional models used to understand and evaluate biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | | | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | | |
Collapse
|
42
|
Niu Y, Chen SJ, Klauda JB. Simulations of naïve and KLA-activated macrophage plasma membrane models. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184242. [PMID: 37866689 DOI: 10.1016/j.bbamem.2023.184242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/25/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Macrophages (MAs), which play vital roles in human immune responses and lipid metabolisms, are implicated in the development and progression of atherosclerosis, a major contributor to cardiovascular diseases. Specifically, the abnormal lipid metabolism of oxidized low-density lipids (oxLDLs) in MAs is believed to be a crucial factor. However, the precise mechanism by which the MA membrane contributes to this altered lipid metabolism remains unclear. Lipidomic studies have revealed significant differences in membrane composition between various MA phenotypes. This study serves to provide and characterize complex realistic computational models for naïve (M0) and Kdo2-lipid A-activated (M1) state MA. Analyses of surface area per lipid (SA/lip), area compressibility modulus (KA), carbon‑hydrogen order parameter (SCH), electron density profile (EDP), tilt angles, two-dimension radial distribution functions (2D RDFs), mean squared displacement (MSD), hydrogen bonds (H-bonds), lipid clustering, and lipid wobble were conducted for both models. Results indicate that the M1 state MA membrane is more tightly packed, with increased chain order across lipid species, and forms PSM-DOPG-CHOL and PSM-SLPC-CHOL clusters. Importantly, the bilayer thicknesses reported for the models are in good agreement with experimental data for the thicknesses of transmembrane regions for MA integral proteins. These findings validate the described models as physiologically accurate for future computational studies of MA membranes and their residing proteins.
Collapse
Affiliation(s)
- Yueqi Niu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Si Jia Chen
- Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, Biophysics Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
43
|
Sharma P, Venkatachalam K, Binesh A. Decades Long Involvement of THP-1 Cells as a Model for Macrophage Research: A Comprehensive Review. Antiinflamm Antiallergy Agents Med Chem 2024; 23:85-104. [PMID: 38676532 DOI: 10.2174/0118715230294413240415054610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Over the years, researchers have endeavored to identify dependable and reproducible in vitro models for examining macrophage behavior under controlled conditions. The THP-1 cell line has become a significant and widely employed tool in macrophage research within these models. Originating from the peripheral blood of individuals with acute monocytic leukemia, this human monocytic cell line can undergo transformation into macrophage-like cells, closely mirroring primary human macrophages when exposed to stimulants. Macrophages play a vital role in the innate immune system, actively regulating inflammation, responding to infections, and maintaining tissue homeostasis. A comprehensive understanding of macrophage biology and function is crucial for gaining insights into immunological responses, tissue healing, and the pathogenesis of diseases such as viral infections, autoimmune disorders, and neoplastic conditions. This review aims to thoroughly evaluate and emphasize the extensive history of THP-1 cells as a model for macrophage research. Additionally, it will delve into the significance of THP-1 cells in advancing our comprehension of macrophage biology and their invaluable contributions to diverse scientific domains.
Collapse
Affiliation(s)
- Prakhar Sharma
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Ambika Binesh
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| |
Collapse
|
44
|
Zhu D, Hadjivassiliou H, Jennings C, Mikolon D, Ammirante M, Acharya S, Lloyd J, Abbasian M, Narla RK, Piccotti JR, Stamp K, Cho H, Hariharan K. CC-96673 (BMS-986358), an affinity-tuned anti-CD47 and CD20 bispecific antibody with fully functional fc, selectively targets and depletes non-Hodgkin's lymphoma. MAbs 2024; 16:2310248. [PMID: 38349008 PMCID: PMC10865928 DOI: 10.1080/19420862.2024.2310248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Cluster of differentiation 47 (CD47) is a transmembrane protein highly expressed in tumor cells that interacts with signal regulatory protein alpha (SIRPα) and triggers a "don't eat me" signal to the macrophage, inhibiting phagocytosis and enabling tumor escape from immunosurveillance. The CD47-SIRPα axis has become an important target for cancer immunotherapy. To date, the advancement of CD47-targeted modalities is hindered by the ubiquitous expression of the target, often leading to rapid drug elimination and hematologic toxicity including anemia. To overcome those challenges a bispecific approach was taken. CC-96673, a humanized IgG1 bispecific antibody co-targeting CD47 and CD20, is designed to bind CD20 with high affinity and CD47 with optimally lowered affinity. As a result of the detuned CD47 affinity, CC-96673 selectively binds to CD20-expressing cells, blocking the interaction of CD47 with SIRPα. This increased selectivity of CC-96673 over monospecific anti-CD47 approaches allows for the use of wild-type IgG1 Fc, which engages activating crystallizable fragment gamma receptors (FcγRs) to fully potentiate macrophages to engulf and destroy CD20+ cells, while sparing CD47+CD20- normal cells. The combined targeting of anti-CD20 and anti-CD47 results in enhanced anti- tumor activity compared to anti-CD20 targeting antibodies alone. Furthermore, preclinical studies have demonstrated that CC-96673 exhibits acceptable pharmacokinetic properties with a favorable toxicity profile in non-human primates. Collectively, these findings define CC-96673 as a promising CD47 × CD20 bispecific antibody that selectively destroys CD20+ cancer cells via enhanced phagocytosis and other effector functions.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | | | - Catherine Jennings
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - David Mikolon
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - Massimo Ammirante
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Sharmistha Acharya
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - Jon Lloyd
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - Mahan Abbasian
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - Rama Krishna Narla
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Joseph R. Piccotti
- Department of Nonclinical Development, Bristol Myers Squibb, San Diego, CA, USA
| | - Katie Stamp
- Department of Nonclinical Development, Bristol Myers Squibb, San Diego, CA, USA
| | - Ho Cho
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - Kandasamy Hariharan
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| |
Collapse
|
45
|
Wei S, Chen Y, Shi X, Zuo L, Zhang L. OSM May Serve as a Biomarker of Poor Prognosis in Clear Cell Renal Cell Carcinoma and Promote Tumor Cell Invasion and Migration. Int J Genomics 2023; 2023:6665452. [PMID: 38034950 PMCID: PMC10684322 DOI: 10.1155/2023/6665452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Background Currently, the role of oncostatin M (OSM) in clear cell renal cell carcinoma (ccRCC) has not been investigated. This study will explore the impact of OSM on ccRCC expression, prognosis, and cell function. Materials and Methods In this study, we used The Cancer Genome Atlas (TCGA) database to evaluate OSM expression characteristics, pathogenic factor distribution, and prognostic aspects in ccRCC. We also combined this analysis with qRT-PCR to verify OSM mRNA expression levels at the tissue level. Then, the effects of OSM on the proliferation, invasion, and migration abilities of ccRCC cells were explored through CCK8, Transwell, Western blotting, and immunofluorescence experiments. Finally, the oncogenic mechanisms associated with OSM in ccRCC were explored through signaling pathway enrichment and single-cell analysis. Results The results demonstrated that OSM was significantly more expressed in ccRCC than in normal tissues. According to the survival analysis, OSM in ccRCC was considerably worse in the group with high expression than in the group with low expression. Also, the univariate and multivariate Cox analyses of clinical characteristics show that OSM in ccRCC may be able to predict a poor prognosis on its own as a biomarker. In vitro cellular experiments demonstrated that high OSM expression had no discernible impact on ccRCC cell proliferation compared to the control group, but it did promote tumor cell invasion and migration. Signaling pathways and single-cell analysis revealed that OSM might promote ccRCC invasion and migration through M2 macrophages. Conclusion In conclusion, OSM may serve as an independent poor prognostic biomarker in ccRCC and promote tumor cell invasion and migration. This discovery is expected to provide a new therapeutic target for patients with recurrent and metastatic ccRCC.
Collapse
Affiliation(s)
- Shuzhang Wei
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yin Chen
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Lifeng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Urology, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
- Department of Urology, Changzhou Seventh People's Hospital, China
| |
Collapse
|
46
|
Huang J, Wu Q, Geller DA, Yan Y. Macrophage metabolism, phenotype, function, and therapy in hepatocellular carcinoma (HCC). J Transl Med 2023; 21:815. [PMID: 37968714 PMCID: PMC10652641 DOI: 10.1186/s12967-023-04716-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
The pivotal role of the tumor microenvironment (TME) in the initiation and advancement of hepatocellular carcinoma (HCC) is widely acknowledged, as it fosters the proliferation and metastasis of HCC cells. Within the intricate TME of HCC, tumor-associated macrophages (TAMs) represent a significant constituent of non-malignant cells. TAMs engage in direct communication with cancer cells in HCC, while also exerting influence on other immune cells to adopt a tumor-supportive phenotype that facilitates tumor progression. Among the multifaceted mechanisms at play, the metabolic reprogramming of both tumor cells and macrophages leads to phenotypic alterations and functional modifications in macrophages. This comprehensive review elucidates the intricate interplay between cellular metabolism and macrophage phenotype/polarization, while also providing an overview of the associated signaling molecules and potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Jingquan Huang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - David A Geller
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| |
Collapse
|
47
|
Hwang S, Sung DK, Kim YE, Yang M, Ahn SY, Sung SI, Chang YS. Mesenchymal Stromal Cells Primed by Toll-like Receptors 3 and 4 Enhanced Anti-Inflammatory Effects against LPS-Induced Macrophages via Extracellular Vesicles. Int J Mol Sci 2023; 24:16264. [PMID: 38003458 PMCID: PMC10670946 DOI: 10.3390/ijms242216264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Although it has been suggested that toll-like receptor (TLR) 3 and TLR4 activation alters mesenchymal stromal cells (MSCs)' immunoregulatory function as anti- or pro-inflammatory phenotypes, we have previously confirmed that TLR4-primed hUCB-MSCs alleviate lung inflammation and tissue injury in an E. coli-induced acute lung injury (ALI) mouse model. Therefore, we hypothesized that strong stimulation of TLR3 or TLR4 prompts hUCB-MSCs to exhibit an anti-inflammatory phenotype mediated by extracellular vesicles (EVs). In this study, we compared the anti-inflammatory effect of TLR3-primed and TLR4-primed hUCB-MSCs against an LPS-induced ALI in vitro model by treating MSCs, MSC-derived conditioned medium (CM), and MSC-derived extracellular vesicles (EVs). LPS-induced rat primary alveolar macrophage and RAW 264.7 cells were treated with naïve, TLR3-, and TLR4-primed MSCs and their derived CM and EVs. Flow cytometry and ELISA were used to evaluate M1-M2 polarization of macrophages and pro-inflammatory cytokine levels, respectively. LPS-stimulated macrophages showed significantly increased pro-inflammatory cytokines compared to those of the normal control, and the percentage of M2 macrophage phenotype was predominantly low. In reducing the inflammatory cytokines and enhancing M2 polarization, TLR3- and TLR4-primed MSCs were significantly more effective than the naïve MSCs, and this finding was also observed with the treatment of MSC-derived CMs and EVs. No significant difference between the efficacy of TLR3- and TLR-primed MSCs was observed. Strong stimulation of TLR3- and TLR4-stimulated hUCB-MSCs significantly reduced pro-inflammatory cytokine secretion from LPS-induced macrophages and significantly enhanced the M2 polarization of macrophages. We further confirmed that TLR-primed MSC-derived EVs can exert anti-inflammatory and immunosuppressive effects alone comparable to MSC treatment. We hereby suggest that in the LPS-induced macrophage in vitro model, EVs derived from both TLR3 and TLR4-primed MSCs can be a therapeutic candidate by promoting the M2 phenotype.
Collapse
Affiliation(s)
- Sein Hwang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Dong Kyung Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Misun Yang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - So Yoon Ahn
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Se In Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yun Sil Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
48
|
de Faria Júnior GM, Kumano LS, Bronchtein Gomes I, Camargos GS, Meira-Strejevitch CDS, Castiglioni L, Previato M, Pereira-Chioccola VL, Brandão CC, de Mattos LC. miRNA 511_5p is a potential biomarker for ocular toxoplasmosis. Trans R Soc Trop Med Hyg 2023; 117:804-810. [PMID: 37477502 DOI: 10.1093/trstmh/trad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Ocular toxoplasmosis (OT) is a frequent clinical manifestation due to infection by Toxoplasma gondii. It is characterized by an inflammatory process involving macrophages activated by pro-inflammatory cytokines. The expression of microRNAs takes place during the inflammatory process and, among them, miRNA 511 regulates the activation of macrophages. This study evaluated the expression of miRNA 511_5p in patients with OT and healthy controls. METHODS A total of 361 patients from the Hospital de Base of Fundação Faculdade de Medicina de São José do Rio Preto were enrolled and divided into four groups: G1-patients with active ocular lesions and reagent serology for T. gondii; G2-patients with scars and reagent serology for T. gondii; G3-patients without ocular lesions or scars and reagent serology for T. gondii; G4-patients without ocular lesions or scars and non-reagent serology for T. gondii. All patients underwent clinical and laboratory evaluation to confirm the diagnosis of OT. Serology tests, RNA extraction and cDNA synthesis were performed. RESULTS The miRNA 511_5p levels were compared among the groups. The G1 group showed a high blood plasma concentration of miRNA 511_5p (mean 22.34) compared with the G2 (4.65), G3 (8.91) and G4 (3.52) groups (p<0.0001). CONCLUSION These data suggest that miRNA 511_5p has significant potential as a biomarker for OT.
Collapse
Affiliation(s)
- Geraldo Magela de Faria Júnior
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), 5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, 15090-000, Brazil; Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | - Laurie Sayuri Kumano
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), 5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, 15090-000, Brazil; Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | - Isabela Bronchtein Gomes
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), 5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, 15090-000, Brazil; Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | - Gláucio Silva Camargos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), 5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, 15090-000, Brazil; Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | | | - Lilian Castiglioni
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), 5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, 15090-000, Brazil; Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | - Mariana Previato
- Ophthalmology Outpatient Clinic of Hospital de Base da Fundação Faculdade Regional de Medicina de São José do Rio Preto (HB- FUNFARME), 5544 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, 15090-000, Brazil
| | - Vera Lucia Pereira-Chioccola
- Parasitology and Mycology Center, Adolpho Lutz Institute, 355 Dr Arnaldo Avenue, São Paulo, SP, 01246-000, Brazil
| | - Cinara Cássia Brandão
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), 5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, 15090-000, Brazil; Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), 5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, 15090-000, Brazil; Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| |
Collapse
|
49
|
Ali ET, Al-Salman HNK, Rasool KH, Jabir MS, Ghimire TR, Shari FH, Hussein HH, Al-Fregi AA, Sulaiman GM, Khalil KAA, Ahmed EM, Soliman MTA. 2-(Benzhydryl sulfinyl)-N-sec-butylacetamide) isolated from fig augmented trastuzumab-triggered phagocytic killing of cancer cells through interface with Fcγ receptor. Nat Prod Res 2023; 37:4112-4120. [PMID: 36661202 DOI: 10.1080/14786419.2023.2169861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
The objective of the current study was to extract 2-(benzhydryl sulfinyl)-N-sec-butylacetamide), a novel compound from fig, and then determine its role in enhancing trastuzumab-triggered phagocytic killing of SKOV-3 cancer cells. In this study, Soxhlet was used to extract the compound from the mature and air-dried fig fruits. The production of the isolated extracts was enhanced by using polar and non-polar solvents. Several solvents, such as methanol, ethyl acetate, chloroform, and n-hexane, were used to isolate the effective compound 2-(benzhydryl sulfinyl)-N-sec-butylacetamide) from the organic layer. UV-spectroscopy, FT-IR, 1H-NMR, and 13C-NMR were applied to identify the purified compound. The in vitro and in vivo assays demonstrated that the 2-(benzhydryl sulfinyl)-N-sec-butylacetamide) can increase the activity of the phagocytic cells, via the interaction with FcY receptors, along with trastuzumab, and the pathway can use a model for the therapeutic strategy for effective treatment of ovarian cancer cells.
Collapse
Affiliation(s)
- Eman T Ali
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - H N K Al-Salman
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Basrah, Iraq
| | - Khetam H Rasool
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Tirth R Ghimire
- Department of Zoology, Tri-Chandra Multiple College Tribhuvan University, Kathmandu, Nepal
| | - Falah H Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Hussein H Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Basrah, Iraq
| | - Adil A Al-Fregi
- Department of Chemistry, College of Science, University of Basrah, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Khalil A A Khalil
- Department of Medical Laboratories, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, University of Hodeidah, Yemen
| | - Elsadig M Ahmed
- Department of Medical Laboratories, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
- Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Mohamed T A Soliman
- Department of Medical Laboratories, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
50
|
Generalov E, Yakovenko L. Receptor basis of biological activity of polysaccharides. Biophys Rev 2023; 15:1209-1222. [PMID: 37975017 PMCID: PMC10643635 DOI: 10.1007/s12551-023-01102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 11/19/2023] Open
Abstract
Polysaccharides, the most diverse forms of organic molecules in nature, exhibit a large number of different biological activities, such as immunomodulatory, radioprotective, antioxidant, regenerative, metabolic, signaling, antitumor, and anticoagulant. The reaction of cells to a polysaccharide is determined by its specific interaction with receptors present on the cell surface, the type of cells, and their condition. The effect of many polysaccharides depends non-linearly on their concentration. The same polysaccharide in different conditions can have very different effects on cells and organisms, up to the opposite; therefore, when conducting studies of the biological activity of polysaccharides, both for the purpose of developing new drugs or approaches to the treatment of patients, and in order to clarify the features of intracellular processes, information about already known research results is needed. There is a lot of scattered data on the biological activities of polysaccharides, but there are few reviews that would consider natural polysaccharides from various sources and possible molecular mechanisms of their action. The purpose of this review is to present the main results published at different times in order to facilitate the search for information necessary for conducting relevant studies.
Collapse
Affiliation(s)
- Evgenii Generalov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Leonid Yakovenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|