1
|
Yang S, Li K, Peng M, Wang H, Lu J, Cai G, Wu D. Glutathione metabolism contributes to citric acid tolerance and antioxidant capacity in Acetobacter tropicalis. Food Microbiol 2025; 125:104657. [PMID: 39448167 DOI: 10.1016/j.fm.2024.104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Acetobacter is one of the main species producing fruit vinegar and its tolerance mechanism to citric acid has not been fully studied. This limits fruit vinegar production from high-citric-acid fruits, which are excellent materials for fruit vinegar production. This study analyzed the metabolic differences between two strains of A. tropicalis with different citric acid tolerances using non-targeted metabolomics. Differential metabolites and metabolic pathways analysis showed that the enhanced amino acid metabolism significantly improved the citric acid tolerance of A. tropicalis and the deamination of amino acids may also play a role. In addition, the up-regulated phosphatidylcholine (PC) and N-heptanoylhonoserine lactone indicated decreased membrane permeability and enhanced quorum sensing (QS), respectively. The analysis of the interaction between pathways and metabolites indicated that Gln, Cys, and Tyr contribute to improving citric acid tolerance, which was also confirmed by the exogenous addition. After adding the amino acids, the down-regulated qdh, up-regulated ggt, and improved glutathione reductase (GR) activity in J-2736 indicated that glutathione metabolism played an important role in resisting citric acid, and cellular antioxidant capacity was increased. This study provides a theoretical basis for efficient fruit vinegar production from citric-acid-type fruits.
Collapse
Affiliation(s)
- Shaojie Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Kang Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Mengdi Peng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Huacheng Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Guolin Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
2
|
Zhu L, Yang X, Fu X, Yang P, Lin X, Wang F, Shen Z, Wang J, Sun F, Qiu Z. Pheromone cCF10 inhibits the antibiotic persistence of Enterococcus faecalis by modulating energy metabolism. Front Microbiol 2024; 15:1408701. [PMID: 39040910 PMCID: PMC11260814 DOI: 10.3389/fmicb.2024.1408701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Bacterial resistance presents a major challenge to both the ecological environment and human well-being, with persistence playing a key role. Multiple studies were recently undertaken to examine the factors influencing the formation of persisters and the underlying process, with a primary focus on Gram-negative bacteria and Staphylococcus aureus (Gram-positive bacteria). Enterococcus faecalis (E. faecalis) is capable of causing a variety of infectious diseases, but there have been few studies of E. faecalis persisters. Previous studies have shown that the sex pheromone cCF10 secreted by E. faecalis induces conjugative plasmid transfer. However, whether the pheromone cCF10 regulates the persistence of E. faecalis has not been investigated. Methods As a result, we investigated the effect and potential molecular mechanism of pheromone cCF10 in regulating the formation of persisters in E. faecalis OG1RF using a persistent bacteria model. Results and discussion The metabolically active E. faecalis OG1RF reached a persistence state and temporarily tolerated lethal antibiotic concentrations after 8 h of levofloxacin hydrochloride (20 mg/mL) exposure, exhibiting a persistence rate of 0.109 %. During the growth of E. faecalis OG1RF, biofilm formation was a critical factor contributing to antibiotic persistence, whereas 10 ng/mL cCF10 blocked persister cell formation. Notably, cCF10 mediated the antibiotic persistence of E. faecalis OG1RF via regulating metabolic activity rather than suppressing biofilm formation. The addition of cCF10 stimulated the Opp system and entered bacterial cells, inhibiting (p)ppGpp accumulation, thus maintaining the metabolically active state of bacteria and reducing persister cell generation. These findings offer valuable insights into the formation, as well as the control mechanism of E. faecalis persisters.
Collapse
Affiliation(s)
- Li Zhu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinyue Fu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Panpan Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaoli Lin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Guizhou, China
| | - Feng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
3
|
Liu Y, Cui P, Tan R, Ru S. Rapid Membrane-Penetrating Hybrid Peptides Achieve Efficient Dual Antimicrobial and Antibiofilm Activity through a Triple Bactericidal Mechanism. ACS OMEGA 2024; 9:26133-26148. [PMID: 38911764 PMCID: PMC11191078 DOI: 10.1021/acsomega.4c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Antimicrobial peptides (AMPs) are a type of biomaterial used against multidrug resistant (MDR) bacteria. This study reports the design of a peptide family rich in tryptophan and lysine obtained by optimizing a natural AMP using single factor modification and pheromone hybridization to expedite the penetration and improve the antimicrobial activity of AMPs. S-4, L-4, and P-4 showed α-helical structures, exhibited extremely fast membrane penetration rates in vitro, and could kill MDR bacteria efficiently within 30 min. Intracellular fluorescence localization suggested rapid membrane-penetrating of AMPs within 1 min, making it more difficult for bacteria to develop resistance. Furthermore, they could effectively inhibit and destroy bacterial biofilms with dual antimicrobial and antibiofilm activity. In the treatment of skin infections caused by MDR-Acinetobacter baumannii in vivo , AMPs could effectively alleviate inflammation without toxic side effects. Additionally, the triple antimicrobial damage of AMPs was described in detail. AMPs rapidly penetrate the cell membrane, inducing cell membrane damage, triggering oxidative damage with a storm of reactive oxygen species and leading to bacterial death through leakage of cellular contents by complexing with DNA. The multiple damage is an important means by which AMPs can prevent bacterial resistance adequately.
Collapse
Affiliation(s)
| | | | - Rong Tan
- Lab of Environmental Health
and Ecological Engineering, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- Lab of Environmental Health
and Ecological Engineering, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
de la Fuente I, Manzano-Morales S, Sanz D, Prieto A, Barriuso J. Quorum sensing in bacteria: in silico protein analysis, ecophysiology, and reconstruction of their evolutionary history. BMC Genomics 2024; 25:441. [PMID: 38702600 PMCID: PMC11069264 DOI: 10.1186/s12864-024-10355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Quorum sensing (QS) is a sophisticated cell-to-cell signalling mechanism that allows the coordination of important processes in microbial populations. The AI-1 and AI-2 autoinducer systems are among the best characterized bacterial QS systems at the genetic level. RESULTS In this study, we present data derived from in silico screening of QS proteins from bacterial genomes available in public databases. Sequence analyses allowed identifying candidate sequences of known QS systems that were used to build phylogenetic trees. Eight categories were established according to the number of genes from the two major QS systems present in each genome, revealing a correlation with specific taxa, lifestyles or metabolic traits. Many species had incomplete QS systems, encoding the receptor protein but not the biosynthesis of the quorum sensing molecule (QSMs). Reconstruction of the evolutionary history of the LuxR family and prediction of the 3D structure of the ancestral protein suggested their monomeric configuration in the absence of the signal molecule and the presence of a cavity for its binding. CONCLUSIONS Here we correlate the taxonomic affiliation and lifestyle of bacteria from different genera with the QS systems encoded in their genomes. Moreover, we present the first ancestral reconstruction of the LuxR QS receptors, providing further insight in their evolutionary history.
Collapse
Affiliation(s)
- Iñigo de la Fuente
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Saioa Manzano-Morales
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - David Sanz
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain.
| |
Collapse
|
5
|
Ackroyd BK, Dodson EJ, Mehboob J, Dowle AA, Thomas GH, Wilkinson AJ. Structure and ligand binding in the putative anti-microbial peptide transporter protein, YejA. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001430. [PMID: 38334478 PMCID: PMC10924461 DOI: 10.1099/mic.0.001430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
YejABEF is an ATP-binding cassette transporter that is implicated in the sensitivity of Escherichia coli to anti-microbial peptides, the best-characterized example being microcin C, a peptide-nucleotide antibiotic that targets aspartyl-tRNA synthetase. Here the structure of the extracellular solute binding protein, YejA, has been determined, revealing an oligopeptide-binding protein fold enclosing a ligand-binding pocket larger than those of other peptide-binding proteins of known structure. Prominent electron density in this cavity defines an undecapeptide sequence LGEPRYAFNFN, an observation that is confirmed by mass spectrometry. In the structure, the peptide interactions with the protein are mediated by main chain hydrogen bonds with the exception of Arg5 whose guanidinium side chain makes a set of defining polar interactions with four YejA residues. More detailed characterization of purified recombinant YejA, by a combination of ESI and MALDI-mass spectrometry as well as thermal shift assays, reveals a set of YejA complexes containing overlapping peptides 10-19 residues in length. All contain the sequence LGEPRYAFN. Curiously, these peptides correspond to residues 8-26 of the mature YejA protein, which belong to a unique N-terminal extension that distinguishes YejA from other cluster C oligopeptide binding proteins of known structure. This 35-residue extension is well-ordered and packs across the surface of the protein. The undecapeptide ligand occupies only a fraction of the enclosed pocket volume suggesting the possibility that much larger peptides or peptide conjugates could be accommodated, though thermal shift assays of YejA binding to antimicrobial peptides and peptides unrelated to LGEPRYAFNFN have not provided evidence of binding. While the physiological significance of this 'auto-binding' is not clear, the experimental data suggest that it is not an artefact of the crystallization process and that it may have a function in the sensing of periplasmic or membrane stress.
Collapse
Affiliation(s)
- Bryony K. Ackroyd
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK
- Department of Biology and York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Eleanor J. Dodson
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Javeria Mehboob
- Department of Biology and York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Adam A. Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Gavin H. Thomas
- Department of Biology and York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Anthony J. Wilkinson
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
6
|
Wahlenmayer ER, Hammers DE. Streptococcal peptides and their roles in host-microbe interactions. Front Cell Infect Microbiol 2023; 13:1282622. [PMID: 37915845 PMCID: PMC10617681 DOI: 10.3389/fcimb.2023.1282622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Streptococcus encompasses many bacterial species that are associated with hosts, ranging from asymptomatic colonizers and commensals to pathogens with a significant global health burden. Streptococci produce numerous factors that enable them to occupy their host-associated niches, many of which alter their host environment to the benefit of the bacteria. The ability to manipulate host immune systems to either evade detection and clearance or induce a hyperinflammatory state influences whether bacteria are able to survive and persist in a given environment, while also influencing the propensity of the bacteria to cause disease. Several bacterial factors that contribute to this inter-species interaction have been identified. Recently, small peptides have become increasingly appreciated as factors that contribute to Streptococcal relationships with their hosts. Peptides are utilized by streptococci to modulate their host environment in several ways, including by directly interacting with host factors to disrupt immune system function and signaling to other bacteria to control the expression of genes that contribute to immune modulation. In this review, we discuss the many contributions of Streptococcal peptides in terms of their ability to contribute to pathogenesis and disruption of host immunity. This discussion will highlight the importance of continuing to elucidate the functions of these Streptococcal peptides and pursuing the identification of new peptides that contribute to modulation of host environments. Developing a greater understanding of how bacteria interact with their hosts has the potential to enable the development of techniques to inhibit these peptides as therapeutic approaches against Streptococcal infections.
Collapse
Affiliation(s)
| | - Daniel E. Hammers
- Biology Department, Houghton University, Houghton, NY, United States
| |
Collapse
|
7
|
Sahreen S, Mukhtar H, Imre K, Morar A, Herman V, Sharif S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int J Mol Sci 2022; 23:ijms23179751. [PMID: 36077148 PMCID: PMC9456111 DOI: 10.3390/ijms23179751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Quorum sensing (QS), a type of bacterial cell–cell communication, produces autoinducers which help in biofilm formation in response to cell population density. In this review, biofilm formation, the role of QS in biofilm formation and development with reference to biological wastewater treatment are discussed. Autoinducers, for example, acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2, present in both Gram-negative and Gram-positive bacteria, with their mechanism, are also explained. Over the years, wastewater treatment (WWT) by QS-regulated biofilms and their optimization for WWT have gained much attention. This article gives a comprehensive review of QS regulation methods, QS enrichment methods and QS inhibition methods in biological waste treatment systems. Typical QS enrichment methods comprise adding QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods consist of additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. Potential applications of QS regulated biofilms for WWT have also been summarized. At last, the knowledge gaps present in current researches are analyzed, and future study requirements are proposed.
Collapse
Affiliation(s)
- Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Sundas Sharif
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
8
|
Sivaramakrishnan M, Suresh R, Ponraj K. Predicting quorum sensing peptides using stacked generalization ensemble with gradient boosting based feature selection. J Microbiol 2022; 60:756-765. [DOI: 10.1007/s12275-022-2044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
|
9
|
Xiao Y, Zou H, Li J, Song T, Lv W, Wang W, Wang Z, Tao S. Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives. Gut Microbes 2022; 14:2039048. [PMID: 35188058 PMCID: PMC8865250 DOI: 10.1080/19490976.2022.2039048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Quorum sensing is a molecular signaling-based communication mechanism in prokaryotes. In the basic mode, signaling molecules released by certain bacteria are sensed by intracellular receptors or membrane-bound receptors of other members in the community, leading to the collective isogenic signaling molecule synthesis and synchronized activities. This regulation is important for the symbiosis of the bacterium with the host, as well as virulence and biofilm formation. Notably, quorum sensing signaling molecules are not only able to control microbial community behavior but can likewise regulate the physiological status of host cells. Here, we provide a comprehensive review of the importance of quorum sensing signaling molecules in gram-negative bacteria in regulating host cell function and gut health, and suggest possible opportunities for application in combating human and animal diseases by blocking the pathways through which quorum sensing signaling molecules exert their functions.
Collapse
Affiliation(s)
- Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huicong Zou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tongxing Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China,CONTACT Shiyu TaoCollege of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070China
| |
Collapse
|
10
|
Pedrini B, Finke AD, Marsh M, Luporini P, Vallesi A, Alimenti C. Crystal structure of the pheromone Er-13 from the ciliate Euplotes raikovi, with implications for a protein-protein association model in pheromone/receptor interactions. J Struct Biol 2021; 214:107812. [PMID: 34800649 DOI: 10.1016/j.jsb.2021.107812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
In the ciliate Euplotes raikovi, water-borne protein pheromones promote the vegetative cell growth and mating by competitively binding as autocrine and heterologous signals to putative cell receptors represented by membrane-bound pheromone isoforms. A previously determined crystal structure of pheromone Er-1 supported a pheromone/receptor binding model in which strong protein-protein interactions result from the cooperative utilization of two distinct types of contact interfaces that arrange molecules into linear chains, and these into two-dimensional layers. We have now determined the crystal structure of a new pheromone, Er-13, isolated from cultures that are strongly mating reactive withculturessource of pheromone Er-1.The comparison between the Er-1 and Er-13 crystal structuresreinforces the fundamental of the cooperative model of pheromone/receptor binding, in that the molecules arrange into linear chains taking a rigorously alternate opposite orientation reflecting the presumed mutual orientation of pheromone and receptor molecules on the cell surface. In addition, the comparison provides two new lines of evidence for a univocal rationalization of observations on the differentbehaviourbetween the autocrine and heterologous pheromone/receptor complexes. (i) In the Er-13 crystal, chains do not form layers which thus appear to be an over-structureunique tothe Er-1 crystal, not essential for the pheromone signalling mechanisms. (ii) In both crystal structures, the intra-chain interfaces are equally derived from burying amino-acid side-chains mostly residing on helix-3 of the three-helical pheromonefold. This helix is thus identified as the key structural motif underlying the pheromone activity, in line with its tight intra- and interspecificstructuralconservation.
Collapse
Affiliation(s)
- Bill Pedrini
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Aaron D Finke
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Macromolecular X-ray Science, Cornell High-energy Synchrotron Source, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - May Marsh
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pierangelo Luporini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy.
| | - Claudio Alimenti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy.
| |
Collapse
|
11
|
Tan R, Wang M, Xu H, Qin L, Wang J, Cui P, Ru S. Improving the Activity of Antimicrobial Peptides Against Aquatic Pathogen Bacteria by Amino Acid Substitutions and Changing the Ratio of Hydrophobic Residues. Front Microbiol 2021; 12:773076. [PMID: 34733268 PMCID: PMC8558516 DOI: 10.3389/fmicb.2021.773076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
With the increasing number of drug-resistant bacteria, there is an urgent need for new antimicrobial agents, and antimicrobial peptides (AMPs), which exist in the human non-specific immune system, are one of the most promising candidates. It is an effective optimization strategy to modify antimicrobial peptides (AMPs) according to the distribution of amino acids and hydrophobic characteristics. The addition of bacterial pheromones to the N short peptide can increase the ability to recognize bacteria. In this study, we designed and synthesized AMP1–6 by amino acid substitution of mBjAMP1. Additionally, P-6, S-6, and L-6 were designed and synthesized by adding bacterial pheromones based on 1–6. Functional tests showed that the four AMPs had the ability to kill Gram-negative Vibrio anguillarum, Pseudomonas mendocina, and Vibrio parahaemolyticus, and Gram-positive Micrococcus luteus and Listeria monocytogenes. Additionally, all four AMPs induced permeabilization and depolarization of bacterial cell membranes and increased intracellular reactive oxygen species (ROS) levels. Importantly, they had little or no mammalian cytotoxicity. At the same time, 1–6 and L-6 protected the stability of intestinal flora in Sebastes schlegelii and increased the relative abundance of Lactobacillaceae. In summary, our results indicate that the designed AMPs have broad application prospects as a new type of polypeptide antimicrobial agent.
Collapse
Affiliation(s)
- Rong Tan
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Meiru Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Huiqin Xu
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Lu Qin
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jun Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Pengfei Cui
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Shaoguo Ru
- College of Marine Life Science, Ocean University of China, Qingdao, China
| |
Collapse
|
12
|
Abstract
Quorum sensing (QS) is one of the most studied cell-cell communication mechanisms in fungi. Research in the last 20 years has explored various fungal QS systems that are involved in a wide range of biological processes, especially eukaryote- or fungus-specific behaviors, mirroring the significant contribution of QS regulation to fungal biology and evolution. Based on recent progress, we summarize in this review fungal QS regulation, with an emphasis on its functional role in behaviors unique to fungi or eukaryotes. We suggest that using fungi as genetically amenable eukaryotic model systems to address why and how QS regulation is integrated into eukaryotic reproductive strategies and molecular or cellular processes could be an important direction for QS research. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
13
|
Sholpan A, Lamas A, Cepeda A, Franco CM. Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion. AIMS Microbiol 2021; 7:238-256. [PMID: 34250377 PMCID: PMC8255907 DOI: 10.3934/microbiol.2021015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Salmonella spp. is one of the main foodborne pathogens around the world. It has a cyclic lifestyle that combines host colonization with survival outside the host, implying that Salmonella has to adapt to different conditions rapidly in order to survive. One of these environments outside the host is the food production chain. In this environment, this foodborne pathogen has to adapt to different stress conditions such as acidic environments, nutrient limitation, desiccation, or biocides. One of the mechanisms used by Salmonella to survive under such conditions is biofilm formation. Quorum sensing plays an important role in the production of biofilms composed of cells from the same microorganism or from different species. It is also important in terms of food spoilage and regulates the pathogenicity and invasiveness of Salmonella by regulating Salmonella pathogenicity islands and flagella. Therefore, in this review, we will discuss the genetic mechanism involved in Salmonella quorum sensing, paying special attention to small RNAs and their post-regulatory activity in quorum sensing. We will further discuss the importance of this cell-to-cell communication mechanism in the persistence and spoilage of Salmonella in the food chain environment and the importance in the communication with microorganisms from different species. Subsequently, we will focus on the role of quorum sensing to regulate the virulence and invasion of host cells by Salmonella and on the interaction between Salmonella and other microbial species. This review offers an overview of the importance of quorum sensing in the Salmonella lifestyle.
Collapse
Affiliation(s)
- Amanova Sholpan
- Almaty Technological University, Almaty, Republic of Kazakhstan
| | | | | | | |
Collapse
|
14
|
Wu S, Xu C, Liu J, Liu C, Qiao J. Vertical and horizontal quorum-sensing-based multicellular communications. Trends Microbiol 2021; 29:1130-1142. [PMID: 34020859 DOI: 10.1016/j.tim.2021.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Quorum sensing (QS) plays an important role in both natural and synthetic microbial systems. The complexity of QS entails multilayer controls, biomolecular crosstalk, and population-based interactions. In this review, we divide complex QS-based interactions into vertical and horizontal interactions. With respect to the former, we discuss QS-based interactions among phages, bacteria, and hosts in natural microbial systems, which are based on various QS signals and hormones. With regard to the latter, we highlight manipulations of QS-based interactions for multicomponent synthetic microbial consortia. We further present the recent and emerging applications of manipulating these interactions (collectively referred to as 'QS communication networks') in natural and synthetic microbiota. Finally, we identify key challenges in engineering diverse QS communication networks for various future applications.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chengyang Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Jiaheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
15
|
Impact of activation of neotrehalosadiamine/kanosamine biosynthetic pathway on the metabolism of Bacillus subtilis. J Bacteriol 2021; 203:JB.00603-20. [PMID: 33619155 PMCID: PMC8092168 DOI: 10.1128/jb.00603-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pentose phosphate (PP) pathway is one of the major sources of cellular NADPH. A B. subtilis zwf mutant that lacks glucose-6-phosphate dehydrogenase (the enzyme that catalyzes the first step of the PP pathway) showed inoculum-dose-dependent growth. This growth defect was suppressed by glcP disruption, which causes the upregulation of an autoinducer neotrehalosadiamine (NTD)/kanosamine biosynthetic pathway. A metabolome analysis showed that the stimulation of NTD/kanosamine biosynthesis caused significant accumulation of TCA cycle intermediates and NADPH. Because the major malic enzyme YtsJ concomitantly generates NADPH through malate-to-pyruvate conversion, de novo NTD/kanosamine biosynthesis can result in an increase in the intracellular NADPH pool via the accumulation of malate. In fact, a zwf mutant grew in malate-supplemented medium. Artificial induction of glcP in the zwf mutant caused a reduction in the intracellular NADPH pool. Moreover, the correlation between the expression level of the NTD/kanosamine biosynthesis operon ntdABC and the intracellular NADPH pool was confirmed. Our results suggest that NTD/kanosamine has the potential to modulate the carbon-energy metabolism through an autoinduction mechanism.ImportanceAutoinducers enable bacteria to sense cell density and to coordinate collective behavior. NTD/kanosamine is an autoinducer produced by B. subtilis and several close relatives, although its physiological function remains unknown. The most important finding of this study was the significance of de novo NTD/kanosamine biosynthesis in the modulation of the central carbon metabolism in B. subtilis We showed that NTD/kanosamine biosynthesis caused an increase in the NADPH pool via the accumulation of TCA cycle intermediates. These results suggest a possible role for NTD/kanosamine in the carbon-energy metabolism. As Bacillus species are widely used for the industrial production of various useful enzymes and compounds, the NTD/kanosamine biosynthetic pathway might be utilized to control metabolic pathways in these industrial strains.
Collapse
|
16
|
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel) 2021; 10:131. [PMID: 33573022 PMCID: PMC7911828 DOI: 10.3390/antibiotics10020131] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococci, like Staphylococcus aureus and S. epidermidis, are common colonizers of the human microbiota. While being harmless in many cases, many virulence factors result in them being opportunistic pathogens and one of the major causes of hospital-acquired infections worldwide. One of these virulence factors is the ability to form biofilms-three-dimensional communities of microorganisms embedded in an extracellular polymeric matrix (EPS). The EPS is composed of polysaccharides, proteins and extracellular DNA, and is finely regulated in response to environmental conditions. This structured environment protects the embedded bacteria from the human immune system and decreases their susceptibility to antimicrobials, making infections caused by staphylococci particularly difficult to treat. With the rise of antibiotic-resistant staphylococci, together with difficulty in removing biofilms, there is a great need for new treatment strategies. The purpose of this review is to provide an overview of our current knowledge of the stages of biofilm development and what difficulties may arise when trying to eradicate staphylococcal biofilms. Furthermore, we look into promising targets and therapeutic methods, including bacteriocins and phage-derived antibiofilm approaches.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Lucía Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| |
Collapse
|
17
|
Linciano P, Cavalloro V, Martino E, Kirchmair J, Listro R, Rossi D, Collina S. Tackling Antimicrobial Resistance with Small Molecules Targeting LsrK: Challenges and Opportunities. J Med Chem 2020; 63:15243-15257. [PMID: 33152241 PMCID: PMC8016206 DOI: 10.1021/acs.jmedchem.0c01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is a growing threat with severe health and economic consequences. The available antibiotics are losing efficacy, and the hunt for alternative strategies is a priority. Quorum sensing (QS) controls biofilm and virulence factors production. Thus, the quenching of QS to prevent pathogenicity and to increase bacterial susceptibility to antibiotics is an appealing therapeutic strategy. The phosphorylation of autoinducer-2 (a mediator in QS) by LsrK is a crucial step in triggering the QS cascade. Thus, LsrK represents a valuable target in fighting AMR. Few LsrK inhibitors have been reported so far, allowing ample room for further exploration. This perspective aims to provide a comprehensive analysis of the current knowledge about the structural and biological properties of LsrK and the state-of-the-art technology for LsrK inhibitor design. We elaborate on the challenges in developing novel LsrK inhibitors and point out promising avenues for further research.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Valeria Cavalloro
- Department
of Earth and Environmental Science, University
of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy
| | - Emanuela Martino
- Department
of Earth and Environmental Science, University
of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy
| | - Johannes Kirchmair
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
18
|
Crespo I, Bernardo N, Miguel-Arribas A, Singh PK, Luque-Ortega JR, Alfonso C, Malfois M, Meijer WJJ, Boer DR. Inactivation of the dimeric RappLS20 anti-repressor of the conjugation operon is mediated by peptide-induced tetramerization. Nucleic Acids Res 2020; 48:8113-8127. [PMID: 32658272 PMCID: PMC7430634 DOI: 10.1093/nar/gkaa540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Quorum sensing allows bacterial cells to communicate through the release of soluble signaling molecules into the surrounding medium. It plays a pivotal role in controlling bacterial conjugation in Gram-positive cells, a process that has tremendous impact on health. Intracellular regulatory proteins of the RRNPP family are common targets of these signaling molecules. The RRNPP family of gene regulators bind signaling molecules at their C-terminal domain (CTD), but have highly divergent functionalities at their N-terminal effector domains (NTD). This divergence is also reflected in the functional states of the proteins, and is highly interesting from an evolutionary perspective. RappLS20 is an RRNPP encoded on the Bacillus subtilis plasmid pLS20. It relieves the gene repression effectuated by RcopLS20 in the absence of the mature pLS20 signaling peptide Phr*pLS20. We report here an in-depth structural study of apo and Phr*pLS20-bound states of RappLS20 at various levels of atomic detail. We show that apo-RappLS20 is dimeric and that Phr*pLS20-bound Rap forms NTD-mediated tetramers. In addition, we show that RappLS20 binds RcopLS20 directly in the absence of Phr*pLS20 and that addition of Phr*pLS20 releases RcopLS20 from RappLS20. This allows RcopLS20 to bind the promotor region of crucial conjugation genes blocking their expression.
Collapse
Affiliation(s)
- Isidro Crespo
- ALBA Synchrotron Light Source, C. de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Nerea Bernardo
- ALBA Synchrotron Light Source, C. de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Praveen K Singh
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Juan R Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C. Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carlos Alfonso
- Systems Biochemistry of Bacterial Division Lab, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C. Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Marc Malfois
- ALBA Synchrotron Light Source, C. de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Wilfried J J Meijer
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Dirk Roeland Boer
- ALBA Synchrotron Light Source, C. de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| |
Collapse
|
19
|
Progress Overview of Bacterial Two-Component Regulatory Systems as Potential Targets for Antimicrobial Chemotherapy. Antibiotics (Basel) 2020; 9:antibiotics9100635. [PMID: 32977461 PMCID: PMC7598275 DOI: 10.3390/antibiotics9100635] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria adapt to changes in their environment using a mechanism known as the two-component regulatory system (TCS) (also called “two-component signal transduction system” or “two-component system”). It comprises a pair of at least two proteins, namely the sensor kinase and the response regulator. The former senses external stimuli while the latter alters the expression profile of bacterial genes for survival and adaptation. Although the first TCS was discovered and characterized in a non-pathogenic laboratory strain of Escherichia coli, it has been recognized that all bacteria, including pathogens, use this mechanism. Some TCSs are essential for cell growth and fitness, while others are associated with the induction of virulence and drug resistance/tolerance. Therefore, the TCS is proposed as a potential target for antimicrobial chemotherapy. This concept is based on the inhibition of bacterial growth with the substances acting like conventional antibiotics in some cases. Alternatively, TCS targeting may reduce the burden of bacterial virulence and drug resistance/tolerance, without causing cell death. Therefore, this approach may aid in the development of antimicrobial therapeutic strategies for refractory infections caused by multi-drug resistant (MDR) pathogens. Herein, we review the progress of TCS inhibitors based on natural and synthetic compounds.
Collapse
|
20
|
Protein Dynamics in F-like Bacterial Conjugation. Biomedicines 2020; 8:biomedicines8090362. [PMID: 32961700 PMCID: PMC7555446 DOI: 10.3390/biomedicines8090362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Efficient in silico development of novel antibiotics requires high-resolution, dynamic models of drug targets. As conjugation is considered the prominent contributor to the spread of antibiotic resistance genes, targeted drug design to disrupt vital components of conjugative systems has been proposed to lessen the proliferation of bacterial antibiotic resistance. Advancements in structural imaging techniques of large macromolecular complexes has accelerated the discovery of novel protein-protein interactions in bacterial type IV secretion systems (T4SS). The known structural information regarding the F-like T4SS components and complexes has been summarized in the following review, revealing a complex network of protein-protein interactions involving domains with varying degrees of disorder. Structural predictions were performed to provide insight on the dynamicity of proteins within the F plasmid conjugative system that lack structural information.
Collapse
|
21
|
Nguyen MT, Matsuo M, Niemann S, Herrmann M, Götz F. Lipoproteins in Gram-Positive Bacteria: Abundance, Function, Fitness. Front Microbiol 2020; 11:582582. [PMID: 33042100 PMCID: PMC7530257 DOI: 10.3389/fmicb.2020.582582] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
When one thinks of the Gram+ cell wall, the peptidoglycan (PG) scaffold in particular comes to mind. However, the cell wall also consists of many other components, for example those that are covalently linked to the PG: the wall teichoic acid and the cell wall proteins tethered by the sortase. In addition, there are completely different molecules that are anchored in the cytoplasmic membrane and span the cell wall. These are lipoteichoic acids and bacterial lipoproteins (Lpp). The latter are in the focus of this review. Lpp are present in almost all bacteria. They fulfill a wealth of different tasks. They represent the window to the outside world by recognizing nutrients and incorporating them into the bacterial cell via special transport systems. Furthermore, they perform very diverse and special tasks such as acting as chaperonin, as cyclomodulin, contributing to invasion of host cells or uptake of plasmids via conjugation. All these functions are taken over by the protein part. Nevertheless, the lipid part of the Lpp plays an as important role as the protein part. It is the released lipoproteins and derived lipopeptides that massively modulate our immune system and ultimately play an important role in immune tolerance or non-tolerance. All these varied activities of the Lpp are considered in this review article.
Collapse
Affiliation(s)
- Minh-Thu Nguyen
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Miki Matsuo
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Silke Niemann
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Mathias Herrmann
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Abstract
Bacteria are highly interactive and possess an extraordinary repertoire of intercellular communication and social behaviors, including quorum sensing (QS). QS has been studied in detail at the molecular level, so mechanistic details are well understood in many species and are often involved in virulence. The use of different animal host models has demonstrated QS-dependent control of virulence determinants and virulence in several human pathogenic bacteria. QS also controls virulence in several plant pathogenic species. Despite the role QS plays in virulence during animal and plant laboratory-engineered infections, QS mutants are frequently isolated from natural infections, demonstrating that the function of QS during infection and its role in pathogenesis remain poorly understood and are fruitful areas for future research. We discuss the role of QS during infection in various organisms and highlight approaches to better understand QS during human infection. This is an important consideration in an era of growing antimicrobial resistance, when we are looking for new ways to target bacterial infections.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alexander D Klementiev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia 30329, USA
| | - Stephen P Diggle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
23
|
Effect of New Analogs of Hexyloxy Phenyl Imidazoline on Quorum Sensing in Chromobacterium violaceum and In Silico Analysis of Ligand-Receptor Interactions. J CHEM-NY 2020. [DOI: 10.1155/2020/8735190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increasing common occurrence of antibiotic-resistant bacteria has become an urgent public health issue. There are currently some infections without any effective treatment, which require new therapeutic strategies. An attractive alternative is the design of compounds capable of disrupting bacterial communication known as quorum sensing (QS). In Gram-negative bacteria, such communication is regulated by acyl-homoserine lactones (AHLs). Triggering of QS after bacteria have reached a high cell density allows them to proliferate before expressing virulence factors. Our group previously reported that hexyloxy phenylimidazoline (9) demonstrated 71% inhibitory activity of QS at 100 μM (IC50 = 90.9 μM) in Chromobacterium violaceum, a Gram-negative bacterium. The aim of the present study was to take 9 as a lead compound to design and synthesize three 2-imidazolines (13–15) and three 2-oxazolines (16–18), to be evaluated as quorum-sensing inhibitors on C. violaceum CV026. We were looking for compounds with a higher affinity towards the Cvi receptor of this bacterium and the ability to inhibit QS. The binding mode of the test compounds on the Cvi receptor was explored with docking studies and molecular dynamics. It was found that 8-pentyloxyphenyl-2-imidazoline (13) reduced the production of violacein (IC50 = 56.38 μM) without affecting bacterial growth, suggesting inhibition of quorum sensing. Indeed, compound 13 is apparently one of the best QS inhibitors known to date. Molecular docking revealed the affinity of compound 13 for the orthosteric site of N-hexanoyl homoserine lactone (C6-AHL) on the CviR protein. Ten amino acid residues in the active binding site of C6-AHL in the Cvi receptor interacted with 13, and 7 of these are the same as those interacting with AHL. Contrarily, 8-octyloxyphenyl-2-imidazoline (14), 8-decyloxyphenyl-2-imidazoline (15), and 9-decyloxyphenyl-2-oxazoline (18) bound only to an allosteric site and thus did not compete with C6-AHL for the orthosteric site.
Collapse
|
24
|
Taghizadeh L, Karimi A, Presterl E, Heitzinger C. Bayesian inversion for a biofilm model including quorum sensing. Comput Biol Med 2019; 117:103582. [PMID: 31885354 DOI: 10.1016/j.compbiomed.2019.103582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
We propose a mathematical model based on a system of partial differential equations (PDEs) for biofilms. This model describes the time evolution of growth and degradation of biofilms which depend on environmental factors. The proposed model also includes quorum sensing (QS) and describes the cooperation among bacteria when they need to resist against external factors such as antibiotics. The applications include biofilms on teeth and medical implants, in drinking water, cooling water towers, food processing, oil recovery, paper manufacturing, and on ship hulls. We state existence and uniqueness of solutions of the proposed model and implement the mathematical model to discuss numerical simulations of biofilm growth and cooperation. We also determine the unknown parameters of the presented biofilm model by solving the corresponding inverse problem. To this end, we propose Bayesian inversion techniques and the delayed-rejection adaptive-Metropolis (DRAM) algorithm for the simultaneous extraction of multiple parameters from the measurements. These quantities cannot be determined directly from the experiments or from the computational model. Furthermore, we evaluate the presented model by comparing the simulations using the estimated parameter values with the measurement data. The results illustrate a very good agreement between the simulations and the measurements.
Collapse
Affiliation(s)
- Leila Taghizadeh
- Institute for Analysis and Scientific Computing, Vienna University of Technology (TU Wien), Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
| | - Ahmad Karimi
- Institute for Analysis and Scientific Computing, Vienna University of Technology (TU Wien), Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
| | - Elisabeth Presterl
- Department for Hospital Hygiene and Infection Control, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Clemens Heitzinger
- Institute for Analysis and Scientific Computing, Vienna University of Technology (TU Wien), Wiedner Hauptstraße 8-10, 1040 Vienna, Austria; School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
25
|
Gour S, Kumar V, Rana M, Yadav JK. Pheromone peptide cOB1 from native Enterococcus faecalis forms amyloid-like structures: A new paradigm for peptide pheromones. J Pept Sci 2019; 25:e3178. [PMID: 31317612 DOI: 10.1002/psc.3178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022]
Abstract
Pheromone peptides are an important component of bacterial quorum-sensing system. The pheromone peptide cOB1 (VAVLVLGA) of native commensal Enterococcus faecalis has also been identified as an antimicrobial peptide (AMP) and reported to kill the prototype clinical isolate strain of E. faecalis V583. In this study, the pheromone peptide cOB1 has shown to form amyloid-like structures, a characteristic which is never reported for a pheromone peptide so far. With in silico analysis, the peptide was predicted to be highly amyloidogenic. Further, under experimental conditions, cOB1 formed aggregates displaying characteristics of amyloid structures such as bathochromic shift in Congo red absorbance, enhancement in thioflavin T fluorescence, and fibrillar morphology under transmission electron microscopy. This novel property of pheromone peptide cOB1 may have some direct effects on the binding of the pheromone to the receptor cells and subsequent conjugative transfer, making this observation more important for the therapeutics, dealing with the generation of virulent and multidrug-resistant pathogenic strains.
Collapse
Affiliation(s)
- Shalini Gour
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| | - Vijay Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| | - Monika Rana
- Department of Chemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| |
Collapse
|
26
|
Huang J, Yi K, Zeng G, Shi Y, Gu Y, Shi L, Yu H. The role of quorum sensing in granular sludge: Impact and future application: A review. CHEMOSPHERE 2019; 236:124310. [PMID: 31344626 DOI: 10.1016/j.chemosphere.2019.07.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Quorum sensing (QS) is a process widely exist in bacteria, which refers to the cell-cell communication through secretion and sensing the specific chemical signal molecules named autoinducers. This review demonstrated recent research progresses on the specific impacts of signal molecules in the granular sludge reactors, such corresponding exogenous strategies contained the addition of QS signal molecules, QS-related enzymes and bacteria associated with QS process. Accordingly, the correlation between QS signaling molecule content and sludge granulation (including the formation and stability) was assumed, the comprehensive conclusion elucidated that some QS signals (acyl-homoserine lactone and Autoinducer 2) can accelerate the growth of particle diameter, the production of extracellular polymeric substance (EPS), microbial adhesion and change the microbiome structure. But diffusable signal factor (DSF) acted as a significant disincentive to the formation and stability of GS. As a result, it deserved serious attention on the value and role of QS signals in the GS. This review attempts to illuminate the potential method for addressing the main bottleneck: to accelerate the formation of granules and keep the high stability of GS for a long-term reactor. Therefore, review discussed the possible trends of GS: QS and intercellular/intracellular signaling which can lay a theoretical foundation for mechanism of GS formation and stability, would be of practical significance for further application in the future.
Collapse
Affiliation(s)
- Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Hanbo Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
27
|
Yee R, Feng J, Wang J, Chen J, Zhang Y. Identification of Genes Regulating Cell Death in Staphylococcus aureus. Front Microbiol 2019; 10:2199. [PMID: 31632363 PMCID: PMC6779855 DOI: 10.3389/fmicb.2019.02199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes acute and chronic infections. Due to S. aureus's highly resistant and persistent nature, it is paramount to identify better drug targets in order to eradicate S. aureus infections. Despite the efforts in understanding bacterial cell death, the genes, and pathways of S. aureus cell death remain elusive. Here, we performed a genome-wide screen using a transposon mutant library to study the genetic mechanisms involved in S. aureus cell death. Using a precisely controlled heat-ramp and acetic acid exposure assays, mutations in 27 core genes (hsdR1, hslO, nsaS, sspA, folD, mfd, vraF, kdpB, USA300HOU_2684, 0868, 0369, 0420, 1154, 0142, 0930, 2590, 0997, 2559, 0044, 2004, 1209, 0152, 2455, 0154, 2386, 0232, 0350 involved in transporters, transcription, metabolism, peptidases, kinases, transferases, SOS response, nucleic acid, and protein synthesis) caused the bacteria to be more death-resistant. In addition, we identified mutations in 10 core genes (capA, gltT, mnhG1, USA300HOU_1780, 2496, 0200, 2029, 0336, 0329, 2386, involved in transporters, metabolism, transcription, and cell wall synthesis) from heat-ramp and acetic acid that caused the bacteria to be more death-sensitive or with defect in persistence. Interestingly, death-resistant mutants were more virulent than the parental strain USA300 and caused increased mortality in a Caenorhabditis elegans infection model. Conversely, death-sensitive mutants were less persistent and formed fewer persister cells upon exposure to different classes of antibiotics. These findings provide new insights into the mechanisms of S. aureus cell death and offer new therapeutic targets for developing more effective treatments for infections caused by S. aureus.
Collapse
Affiliation(s)
- Rebecca Yee
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jie Feng
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
28
|
Yehuda A, Slamti L, Malach E, Lereclus D, Hayouka Z. Elucidating the Hot Spot Residues of Quorum Sensing Peptidic Autoinducer PapR by Multiple Amino Acid Replacements. Front Microbiol 2019; 10:1246. [PMID: 31231335 PMCID: PMC6568020 DOI: 10.3389/fmicb.2019.01246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022] Open
Abstract
The quorum sensing (QS) system of Bacillus cereus, an opportunistic human pathogen, utilizes the autoinducing PapR peptide signal that mediates the activation of the pleiotropic virulence regulator PlcR. A set of synthetic 7-mer PapR-derived peptides (PapR7; ADLPFEF) have been shown to inhibit efficiently the PlcR regulon activity and the production of virulence factors, reflected by a loss in hemolytic activity without affecting bacterial growth. Interestingly, these first potent synthetic inhibitors involved D-amino acid or alanine replacements of three amino acids; proline, glutamic acid, and phenylalanine of the heptapeptide PapR. To better understand the role of these three positions in PlcR activity, we report herein the second generation design, synthesis, and characterization of PapR7-derived combinations, alternate double and triple alanine and D-amino acids replacement at these positions. Our findings generate a new set of non-native PapR7-derived peptides that inhibit the PlcR regulon activity and the production of virulence factors. Using the amino acids substitution strategy, we revealed the role of proline and glutamic acid on PlcR regulon activation. Moreover, we demonstrated that the D-Glutamic acid substitution was crucial for the design of stronger PlcR antagonists. These peptides represent potent synthetic inhibitors of B. cereus QS and constitute new and readily accessible chemical tools for the study of the PlcR system. Our method might be applied to other quorum sensing systems to design new anti-virulence agents.
Collapse
Affiliation(s)
- Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leyla Slamti
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
29
|
Guan Z, Pei K, Wang J, Cui Y, Zhu X, Su X, Zhou Y, Zhang D, Tang C, Yin P, Liu Z, Zou T. Structural insights into DNA recognition by AimR of the arbitrium communication system in the SPbeta phage. Cell Discov 2019; 5:29. [PMID: 31149347 PMCID: PMC6536502 DOI: 10.1038/s41421-019-0101-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
A newly identified arbitrium communication system regulates the lysis-to-lysogeny decision in a Bacillus bacteriophage. This system contains an arbitrium hexapeptide as a signal, the cellular receptor AimR, and the lysogenic negative regulator AimX. AimR specifically targets the downstream DNA to activate aimX gene expression. The arbitrium peptide binds to AimR, inhibiting its DNA-binding to promote phage lysogeny. Recently, we and other groups have elucidated how arbitrium peptide sensed by AimR. However, the molecular mechanisms of DNA recognition by AimR and the regulation of its DNA-binding activity by the peptide remain largely unknown. Here, we report the crystal structure of the AimR–DNA complex at 2.1 Å resolution. The N-terminal HTH motif recognizes the palindromic DNA sequence, buttressed by interactions between positively charged residues and the DNA phosphate groups. The DNA-bound AimR assembles a more closed dimer than the peptide-bound form. Single-molecule FRET and crosslinking assays revealed that the AimR protein samples both open and closed conformations in solution. Arbitrium peptide binding induces a closed-to-open conformational change of AimR, eliminating DNA targeting. Our structural and functional analysis provides new insights into the DNA recognition mechanism of AimR and its regulation by the arbitrium peptide in the context of phage lysis-lysogeny decisions.
Collapse
Affiliation(s)
- Zeyuan Guan
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Kai Pei
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Jing Wang
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yongqing Cui
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiang Zhu
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiang Su
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yuanbao Zhou
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Delin Zhang
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Chun Tang
- 2CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 Hubei Province China
| | - Ping Yin
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Zhu Liu
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Tingting Zou
- 3College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
30
|
Cirrincione S, Neumann B, Zühlke D, Riedel K, Pessione E. Detailed Soluble Proteome Analyses of a Dairy-Isolated Enterococcus faecalis: A Possible Approach to Assess Food Safety and Potential Probiotic Value. Front Nutr 2019; 6:71. [PMID: 31157229 PMCID: PMC6533484 DOI: 10.3389/fnut.2019.00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Enterococci are common inhabitants of the gastrointestinal tracts of humans and animals and thanks to their capability to tolerate different environmental conditions and their high rates of gene transfer, they are able to colonize various ecological niches, as food matrices. Enterococcus faecalis bacteria are defined as controversial microorganisms. From one side they are used as food starters, bio-control agents and probiotics to improve human or animal health. From the other side, in the last two decades enterococci have emerged as important nosocomial pathogens, because bearing high-level of resistance to antibiotics and several putative virulence factors. In this study, the soluble proteome quantitation data (LC-MS/MS) of the food-isolated strain E. faecalis D27 (dairy-isolate) was compared with the soluble proteome quantitation data of the pathogenic E. faecalis UW3114 (urinary tract infection isolate) and with the one of the health promoting strain E. faecalis Symbioflor1, respectively. The comparison of cytosolic protein expression profiles highlighted statistically significant changes in the abundance of proteins mainly involved in specific metabolic pathways, nutrient transport, stress response, and cell wall modulation. Moreover, especially in the dairy isolate and the clinical isolate, several proteins with potential pathogenic implications were found, such as serine proteases, von Willebrand factor, serine hydrolase with beta lactamase activity, efflux transporter, and proteins involved in horizontal gene transfer. The analysis of the extracellular proteome provided interesting results concerning proteins involved in bacterial communication, such as pheromones and conjugative elements and also proteins able to interact with human components. The phenotypic characterization evaluating (i) biofilm formation (ii) hemolytic activity on blood agar plates (iii) protease activity (iv) gelatinase (v) antibiotic resistance pattern, enabled us to elucidate the risks associated with the poor characterized foodborne E. faecalis D27.
Collapse
Affiliation(s)
- Simona Cirrincione
- Department of Life Sciences and Systems Biology, Univerity of Torino, Turin, Italy
| | - Bernd Neumann
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, Univerity of Torino, Turin, Italy
| |
Collapse
|
31
|
Impact of Combined Acidic and Hyperosmotic Shock Conditions on the Proteome of Listeria monocytogenesATCC 19115 in a Time-Course Study. J FOOD QUALITY 2019. [DOI: 10.1155/2019/3075028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenescan cause listeriosis in humans through consumption of contaminated food and can adapt to and grow under a wide array of physiochemical stresses. Consequently, it causes persistent food safety issues and requires vigilant sanitation processes to be in place, especially for the manufacture of high-risk food products. In this study, the global proteomic responses of the food-borne pathogenL. monocytogenesstrain ATCC 19115 were determined when exposed to nonthermal inactivation. This process was examined in the early stationary growth phase with the strain placed under simultaneous exposure to low pH (pH 3.5) and high salinity (aw0.900, 14% NaCl). Proteomic responses, measured using iTRAQ techniques, were conducted over a time course (5 min, 30 min, and 1 h at 25°C). The enumeration results showed that, at 5 min, cells underwent initial rapid inactivation by 1.2 log units and 2.5 log units after 30 min, and after that, culturability remained stable when sampled at 1 h. From the iTRAQ results, the proteome level changes that occur rapidly during the inactivation process mainly affected prophage, cell defense/detoxification, carbohydrate-related metabolism, transporter proteins, phosphotransferase systems, cell wall biogenesis, and specific cell surface proteins. Pathway map analysis revealed that several pathways are affected including pentose and glucuronate interconversions, glycolysis/gluconeogenesis, pyruvate metabolism, valine, leucine and isoleucine biosynthesis, oxidative phosphorylation, and proteins associated with bacterial invasion of epithelial cells and host survival. Proteome profiling provided a better understanding of the physiological responses of this pathogen to adapt to lethal nonthermal environments and indicates the need to improve food processing and storage methods, especially for non- or minimally thermally processed foods.
Collapse
|
32
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
33
|
Yehuda A, Slamti L, Bochnik-Tamir R, Malach E, Lereclus D, Hayouka Z. Turning off Bacillus cereus quorum sensing system with peptidic analogs. Chem Commun (Camb) 2018; 54:9777-9780. [PMID: 30105347 DOI: 10.1039/c8cc05496g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We explored quenching of the PlcR-PapR quorum-sensing system in Bacillus cereus. We generated PapR7-peptidic derivatives that inhibit this system and thus the production of virulence factors, reflected by a loss in hemolytic activity, without affecting bacterial growth. To our knowledge, these peptides represent the first potent synthetic inhibitors of quorum-sensing in B. cereus.
Collapse
Affiliation(s)
- Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | | | | | | | | | | |
Collapse
|
34
|
Barriuso J, Martínez MJ. In Silico Analysis of the Quorum Sensing Metagenome in Environmental Biofilm Samples. Front Microbiol 2018; 9:1243. [PMID: 29930547 PMCID: PMC6000730 DOI: 10.3389/fmicb.2018.01243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing (QS) is a sophisticated cell to cell signaling mechanism mediated by small diffusible molecules called “autoinducers.” This phenomenon is well studied in bacteria, where different QS systems are described that differ between Gram-negative and Gram-positive bacteria. However, a common system to these groups was discovered, the autoinducer 2. QS has implications in biofilm formation, where the application of metagenomic techniques to study these phenomena may be useful to understand the communication networks established by the different components of the community, and to discover new targets for microbial control. Here we present an in silico screening of QS proteins in all publicly available biofilm metagenomes from the JGI database. We performed sequence, conserved motifs, phylogenetic, and three-dimensional structure analyses of the candidates, resulting in an effective strategy to search QS proteins in metagenomes sequences. The number of QS proteins present in each sample, and its phylogenetic affiliation, was clearly related to the bacterial diversity and the origin of the biofilm. The samples isolated from natural habitats presented clear differences with those from artificial habitats. Interesting findings have been made in the abundance of LuxR-like proteins finding an unbalanced ratio between the synthases and the receptor proteins in Bacteroidetes bacteria, pointing out the existence of “cheaters” in this group. Moreover, we have shown the presence of the LuxI/R QS system in bacteria from the Nitrospira taxonomic group. Finally, some undescribed proteins from the HdtS family have been found in Gamma-proteobacteria.
Collapse
Affiliation(s)
- Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María J Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
35
|
Makthal N, Do H, VanderWal AR, Olsen RJ, Musser JM, Kumaraswami M. Signaling by a Conserved Quorum Sensing Pathway Contributes to Growth Ex Vivo and Oropharyngeal Colonization of Human Pathogen Group A Streptococcus. Infect Immun 2018; 86:e00169-18. [PMID: 29531135 PMCID: PMC5913841 DOI: 10.1128/iai.00169-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
Bacterial virulence factor production is a highly coordinated process. The temporal pattern of bacterial gene expression varies in different host anatomic sites to overcome niche-specific challenges. The human pathogen group A streptococcus (GAS) produces a potent secreted protease, SpeB, that is crucial for pathogenesis. Recently, we discovered that a quorum sensing pathway comprised of a leaderless short peptide, SpeB-inducing peptide (SIP), and a cytosolic global regulator, RopB, controls speB expression in concert with bacterial population density. The SIP signaling pathway is active in vivo and contributes significantly to GAS invasive infections. In the current study, we investigated the role of the SIP signaling pathway in GAS-host interactions during oropharyngeal colonization. The SIP signaling pathway is functional during growth ex vivo in human saliva. SIP-mediated speB expression plays a crucial role in GAS colonization of the mouse oropharynx. GAS employs a distinct pattern of SpeB production during growth ex vivo in saliva that includes a transient burst of speB expression during early stages of growth coupled with sustained levels of secreted SpeB protein. SpeB production aids GAS survival by degrading LL37, an abundant human antimicrobial peptide. We found that SIP signaling occurs during growth in human blood ex vivo. Moreover, the SIP signaling pathway is critical for GAS survival in blood. SIP-dependent speB regulation is functional in strains of diverse emm types, indicating that SIP signaling is a conserved virulence regulatory mechanism. Our discoveries have implications for future translational studies.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Arica R VanderWal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
36
|
Oh HS, Lee CH. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Abstract
Vibrio cholerae, an estuarine bacterium, is the causative agent of cholera, a severe diarrheal disease that demonstrates seasonal incidence in Bangladesh. In an extensive study of V. cholerae occurrence in a natural aquatic environment, water and plankton samples were collected biweekly between December 2005 and November 2006 from Mathbaria, an estuarine village of Bangladesh near the mangrove forests of the Sundarbans. Toxigenic V. cholerae exhibited two seasonal growth peaks, one in spring (March to May) and another in autumn (September to November), corresponding to the two annual seasonal outbreaks of cholera in this region. The total numbers of bacteria determined by heterotrophic plate count (HPC), representing culturable bacteria, accounted for 1% to 2.7% of the total numbers obtained using acridine orange direct counting (AODC). The highest bacterial culture counts, including toxigenic V. cholerae, were recorded in the spring. The direct fluorescent antibody (DFA) assay was used to detect V. cholerae O1 cells throughout the year, as free-living cells, within clusters, or in association with plankton. V. cholerae O1 varied significantly in morphology, appearing as distinctly rod-shaped cells in the spring months, while small coccoid cells within thick clusters of biofilm were observed during interepidemic periods of the year, notably during the winter months. Toxigenic V. cholerae O1 was culturable in natural water during the spring when the temperature rose sharply. The results of this study confirmed biofilms to be a means of persistence for bacteria and an integral component of the annual life cycle of toxigenic V. cholerae in the estuarine environment of Bangladesh. Vibrio cholerae, the causative agent of cholera, is autochthonous in the estuarine aquatic environment. This study describes morphological changes in naturally occurring V. cholerae O1 in the estuarine environment of Mathbaria, where the bacterium is culturable when the water temperature rises and is observable predominantly as distinct rods and dividing cells. In the spring and fall, these morphological changes coincide with the two seasonal peaks of endemic cholera in Bangladesh. V. cholerae O1 cells are predominantly coccoid within biofilms but are rod shaped as free-living cells and when attached to plankton or to particulate matter in interepidemic periods of the year. It is concluded that biofilms represent a stage of the annual life cycle of V. cholerae O1, the causative agent of cholera in Bangladesh.
Collapse
|
38
|
Mejias Carpio IE, Ansari A, Rodrigues DF. Relationship of Biodiversity with Heavy Metal Tolerance and Sorption Capacity: A Meta-Analysis Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:184-194. [PMID: 29172474 DOI: 10.1021/acs.est.7b04131] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbial remediation of metals can alleviate the concerns of metal pollution in the environment. The microbial remediation, however, can be a complex process since microbial metal resistance and biodiversity can play a direct role in the bioremediation process. This study aims to understand the relationships among microbial metal resistance, biodiversity, and metal sorption capacity. Meta-analyses based on 735 literature data points of minimum inhibitory concentrations (MIC) of Plantae, Bacteria, and Fungi exposed to As, Cd, Cr Cu, Ni, Pb, and Zn showed that metal resistance depends on the microbial Kingdom and the type of heavy metal and that consortia are significantly more resistant to heavy metals than pure cultures. A similar meta-analysis comparing 517 MIC values from different bacterial genera (Bacillus, Cupriavidus, Klebsiella, Ochrobactrum, Paenibacillus, Pseudomonas, and Ralstonia) confirmed that metal tolerance depends on the type of genus. Another meta-analysis with 195 studies showed that the maximum sorption capacity is influenced by microbial Kingdoms, the type of biosorbent (whether consortia or pure cultures), and the type of metal. This study also suggests that bioremediation using microbial consortia is a valid option to reduce environmental metal contaminations.
Collapse
Affiliation(s)
- Isis E Mejias Carpio
- Department of Civil and Environmental Engineering. University of Houston , Houston, Texas 77004, United States
| | - Ali Ansari
- Department of Civil and Environmental Engineering. University of Houston , Houston, Texas 77004, United States
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering. University of Houston , Houston, Texas 77004, United States
| |
Collapse
|
39
|
Esmaeilishirazifard E, De Vizio D, Moschos SA, Keshavarz T. Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis. AMB Express 2017; 7:78. [PMID: 28391484 PMCID: PMC5385187 DOI: 10.1186/s13568-017-0381-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing molecules (QSMs) are involved in the regulation of complicated processes helping bacterial populations respond to changes in their cell-density. Although the QS gene cluster (comQXPA) has been identified in the genome sequence of some bacilli, the QS system B. licheniformis has not been investigated in detail, and its QSM (ComX pheromone) has not been identified. Given the importance of this antagonistic bacterium as an industrial workhorse, this study was aimed to elucidate B. licheniformis NCIMB-8874 QS. The results obtained from bioinformatics studies on the whole genome sequence of this strain confirmed the presence of essential quorum sensing-related genes. Although polymorphism was verified in three proteins of this cluster, ComQ, precursor-ComX and ComP, the transcription factor ComA was confirmed as the most conserved protein. The cell–cell communication of B. licheniformis NCIMB-8874 was investigated through further elucidation of the ComX pheromone as 13-amino acid peptide. The peptide sequence of the pheromone has been described through biochemical characterisation.
Collapse
|
40
|
Phumisantiphong U, Siripanichgon K, Reamtong O, Diraphat P. A novel bacteriocin from Enterococcus faecalis 478 exhibits a potent activity against vancomycin-resistant enterococci. PLoS One 2017; 12:e0186415. [PMID: 29023515 PMCID: PMC5638566 DOI: 10.1371/journal.pone.0186415] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/29/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of multidrug-resistant enterococci (MDRE) and particularly vancomycin-resistant enterococci (VRE) is considered a serious health problem worldwide, causing the need for new antimicrobials. The aim of this study was to discover and characterize bacteriocin against clinical isolates of MDRE and VRE. Over 10,000 bacterial isolates from water, environment and clinical samples were screened. E. faecalis strain 478 isolated from human feces produced the highest antibacterial activity against several MDRE and VRE strains. The optimum condition for bacteriocin production was cultivation in MRS broth at 37°C, pH 5-6 for 16 hours. The bacteriocin-like substance produced from E. faecalis strain EF478 was stable at 60°C for at least 1 hour and retained its antimicrobial activity after storage at -20°C for 1 year, at 4°C for 6 months, and at 25°C for 2 months. A nano-HPLC electrospray ionization multi-stage tandem mass spectrometry (nLC-ESI-MS/MS) analysis showed that the amino acid sequences of the bacteriocin-like substance was similar to serine protease of E. faecalis, gi|488296663 (NCBI database), which has never been reported as a bacteriocin. This study reported a novel bacteriocin with high antibacterial activity against VRE and MDRE.
Collapse
Affiliation(s)
| | - Kanokrat Siripanichgon
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornphan Diraphat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|
41
|
Do H, Makthal N, VanderWal AR, Rettel M, Savitski MM, Peschek N, Papenfort K, Olsen RJ, Musser JM, Kumaraswami M. Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen. Proc Natl Acad Sci U S A 2017; 114:E8498-E8507. [PMID: 28923955 PMCID: PMC5635878 DOI: 10.1073/pnas.1705972114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Successful pathogens use complex signaling mechanisms to monitor their environment and reprogram global gene expression during specific stages of infection. Group A Streptococcus (GAS) is a major human pathogen that causes significant disease burden worldwide. A secreted cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB) is a key virulence factor that is produced abundantly during infection and is critical for GAS pathogenesis. Although identified nearly a century ago, the molecular basis for growth phase control of speB gene expression remains unknown. We have discovered that GAS uses a previously unknown peptide-mediated intercellular signaling system to control SpeB production, alter global gene expression, and enhance virulence. GAS produces an eight-amino acid leaderless peptide [SpeB-inducing peptide (SIP)] during high cell density and uses the secreted peptide for cell-to-cell signaling to induce population-wide speB expression. The SIP signaling pathway includes peptide secretion, reimportation into the cytosol, and interaction with the intracellular global gene regulator Regulator of Protease B (RopB), resulting in SIP-dependent modulation of DNA binding and regulatory activity of RopB. Notably, SIP signaling causes differential expression of ∼14% of GAS core genes. Several genes that encode toxins and other virulence genes that enhance pathogen dissemination and infection are significantly up-regulated. Using three mouse infection models, we show that the SIP signaling pathway is active during infection and contributes significantly to GAS pathogenesis at multiple host anatomic sites. Together, our results delineate the molecular mechanisms involved in a previously undescribed virulence regulatory pathway of an important human pathogen and suggest new therapeutic strategies.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Arica R VanderWal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Mandy Rettel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nikolai Peschek
- Munich Center for Integrated Protein Science, Department of Microbiology, Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
| | - Kai Papenfort
- Munich Center for Integrated Protein Science, Department of Microbiology, Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030;
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| |
Collapse
|
42
|
Engevik MA, Versalovic J. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0012-2016. [PMID: 28984235 PMCID: PMC5873327 DOI: 10.1128/microbiolspec.bad-0012-2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
43
|
Contribution of Lysinibacillus sphaericus hemolysin and chitin-binding protein in entomopathogenic activity against insecticide resistant Aedes aegypti. World J Microbiol Biotechnol 2017; 33:181. [DOI: 10.1007/s11274-017-2348-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
44
|
Mashima I, Nakazawa F. Role of an autoinducer-2-like molecule from Veillonella tobetsuensis in Streptococcus gordonii biofilm formation. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Chen Y, Bandyopadhyay A, Kozlowicz BK, Haemig HAH, Tai A, Hu W, Dunny GM. Mechanisms of peptide sex pheromone regulation of conjugation in Enterococcus faecalis. Microbiologyopen 2017; 6:e00492. [PMID: 28523739 PMCID: PMC5552905 DOI: 10.1002/mbo3.492] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
In many gram positive bacteria, horizontal transfer and virulence are regulated by peptide-mediated cell-cell signaling. The heptapeptide cCF10 (C) activates conjugative transfer of the Enterococcus faecalis plasmid pCF10, whereas the iCF10 (I) peptide inhibits transfer. Both peptides bind to the same domain of the master transcription regulator PrgX, a repressor of transcription of the prgQ operon encoding conjugation genes. We show that repression of prgQ by PrgX tetramers requires formation of a pCF10 DNA loop where each of two PrgX DNA-binding sites is occupied by a dimer. I binding to PrgX enhances prgQ repression, while C binding has the opposite effect. Previous models suggested that differential effects of these two peptides on the PrgX oligomerization state accounted for their distinct functions. Our new results demonstrate that both peptides have similar, high-binding affinity for PrgX, and that both peptides actually promote formation of PrgX tetramers with higher DNA-binding affinity than Apo-PrgX. We propose that differences in repression ability of PrgX/peptide complexes result from subtle differences in the structures of DNA-bound PrgX/peptide complexes. Changes in the induction state of a donor cell likely results from replacement of one type of DNA-bound peptide/PrgX tetramer with the other.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
| | - Arpan Bandyopadhyay
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMNUSA
| | - Briana K. Kozlowicz
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
- Present address:
Cargill Biotechnology R&DPlymouthMNUSA
| | - Heather A. H. Haemig
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
- Present address:
Department of ChemistryGustavus Adolphus CollegeSt. PeterMNUSA
| | | | - Wei‐Shou Hu
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMNUSA
| | - Gary M. Dunny
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
46
|
Velusamy SK, Sampathkumar V, Godboley D, Fine DH. Survival of an Aggregatibacter actinomycetemcomitans quorum sensing luxS mutant in the mouths of Rhesus monkeys: insights into ecological adaptation. Mol Oral Microbiol 2017; 32:432-442. [PMID: 28383798 DOI: 10.1111/omi.12184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Experiments were designed to explore a prominent autoinducer-2 (AI-2) producing gene (luxS) related to colonization and survival of Aggregatibacter actinomycetemcomitans, a low abundance member of the indigenous flora, that forms a key component of the dysbiotic flora in localized aggressive periodontitis. The luxS gene was disrupted in a primate strain of A. actinomycetemcomitans before implantation into the oral cavity of Rhesus monkeys (Rh). The colonization efficiency of the luxS mutant (RhAa-VS4) was compared with the parental wild-type strain (RhAa3) (positive control) and a ltxA mutant (RhAa-VS2) (negative control). The in vivo results showed that the luxS mutation had minimal impact on A. actinomycetemcomitans colonization compared with the wild-type RhAa3 strain. In vitro studies revealed that there was a significant upregulation of attachment-related genes aae, apiA, and flp in the RhAa-VS4 strain compared with RhAa3. Biofilm forming ability was also significantly increased in the RhAa-VS4 strain compared with RhAa3, whereas the AI-2 signal was ablated. The exogenous addition of the AI-2 precursor dihydroxy pentanedione allowed the RhAa-VS4 strain to achieve RhAa3 biofilm levels. This is the first primate study to test the relevance of LuxS in vivo. In vitro assessment suggests that in vivo survival of the RhAa-VS4 strain was due to the production of signaling AI-2 molecules derived from other members of the flora as well as the upregulation of genes related to attachment and biofilm formation.
Collapse
Affiliation(s)
- Senthil K Velusamy
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, NJ, USA
| | - Vandana Sampathkumar
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, NJ, USA
| | - Dipti Godboley
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, NJ, USA
| | - Daniel H Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, NJ, USA
| |
Collapse
|
47
|
Liu J, Martinez-Corral R, Prindle A, Lee DYD, Larkin J, Gabalda-Sagarra M, Garcia-Ojalvo J, Süel GM. Coupling between distant biofilms and emergence of nutrient time-sharing. Science 2017; 356:638-642. [PMID: 28386026 DOI: 10.1126/science.aah4204] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/24/2017] [Indexed: 01/05/2023]
Abstract
Bacteria within communities can interact to organize their behavior. It has been unclear whether such interactions can extend beyond a single community to coordinate the behavior of distant populations. We discovered that two Bacillus subtilis biofilm communities undergoing metabolic oscillations can become coupled through electrical signaling and synchronize their growth dynamics. Coupling increases competition by also synchronizing demand for limited nutrients. As predicted by mathematical modeling, we confirm that biofilms resolve this conflict by switching from in-phase to antiphase oscillations. This results in time-sharing behavior, where each community takes turns consuming nutrients. Time-sharing enables biofilms to counterintuitively increase growth under reduced nutrient supply. Distant biofilms can thus coordinate their behavior to resolve nutrient competition through time-sharing, a strategy used in engineered systems to allocate limited resources.
Collapse
Affiliation(s)
- Jintao Liu
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| | - Rosa Martinez-Corral
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Arthur Prindle
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| | - Dong-Yeon D Lee
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| | - Joseph Larkin
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| | - Marçal Gabalda-Sagarra
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gürol M Süel
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA. .,San Diego Center for Systems Biology, University of California, San Diego, CA 92093, USA.,Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA
| |
Collapse
|
48
|
Sadiq FA, Flint S, Li Y, Liu T, Lei Y, Sakandar HA, He G. New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review. BIOFOULING 2017; 33:306-326. [PMID: 28347177 DOI: 10.1080/08927014.2017.1304541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
A biofilm is a complex assemblage of microbial communities adhered to a biotic or an abiotic surface which is embedded within a self-produced matrix of extracellular polymeric substances. Many transcriptional regulators play a role in triggering a motile-sessile switch and in consequently producing the biofilm matrix. This review is aimed at highlighting the role of two nucleotide signaling molecules (c-di-GMP and c-di-AMP), toxin antitoxin modules and a novel transcriptional regulator BolA in biofilm formation in various bacteria. In addition, it highlights the common themes that have appeared in recent research regarding the key regulatory components and signal transduction pathways that help Bacillus subtilis and Pseudomonas aeruginosa to acquire the biofilm mode of life.
Collapse
Affiliation(s)
- Faizan A Sadiq
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Steve Flint
- b School of Food and Nutrition , Massey University , Palmerston North , New Zealand
| | - Yun Li
- c School of Life Sciences and Food Technology , Hanshan Normal University , Chaozhou , PR China
| | - TongJie Liu
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Yuan Lei
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | | | - GuoQing He
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| |
Collapse
|
49
|
Stolz JF. Gaia and her microbiome. FEMS Microbiol Ecol 2016; 93:fiw247. [DOI: 10.1093/femsec/fiw247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 01/09/2023] Open
|
50
|
Scheie AA, Petersen FC. The Biofilm Concept: Consequences for Future Prophylaxis of Oral Diseases? ACTA ACUST UNITED AC 2016; 15:4-12. [PMID: 14761896 DOI: 10.1177/154411130401500102] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biofilm control is fundamental to oral health. Existing oral prophylactic measures, however, are insufficient. The main reason is probably because the micro-organisms involved organize into complex biofilm communities with features that differ from those of planktonic cells. Micro-organisms have traditionally been studied in the planktonic state. Conclusions drawn from many of these studies, therefore, need to be revalidated. Recent global approaches to the study of microbial gene expression and regulation in non-oral micro-organisms have shed light on two-component and quorum-sensing systems for the transduction of stimuli that allow for coordinated gene expression. We suggest interference with two-component and quorum-sensing systems as potential novel strategies for the prevention of oral diseases through control of oral biofilms. Information is still lacking, however, on the genetic regulation of oral biofilm formation. A better understanding of these processes is of considerable importance.
Collapse
Affiliation(s)
- Anne Aamdal Scheie
- Dept. of Oral Biology, Faculty of Dentistry, University of Oslo, PB 1052 Blindern, 0316 Oslo, Norway
| | | |
Collapse
|