1
|
Chen S, Cheng N, Chen X, Wang C. Integration and competition between space and time in the hippocampus. Neuron 2024; 112:3651-3664.e8. [PMID: 39241779 DOI: 10.1016/j.neuron.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Episodic memory is organized in both spatial and temporal contexts. The hippocampus is crucial for episodic memory and has been demonstrated to encode spatial and temporal information. However, how the representations of space and time interact in the hippocampal memory system is still unclear. Here, we recorded the activity of hippocampal CA1 neurons in mice in a variety of one-dimensional navigation tasks while systematically varying the speed of the animals. For all tasks, we found neurons simultaneously represented space and elapsed time. There was a negative correlation between the preferred space and lap duration, e.g., the preferred spatial position shifted more toward the origin when the lap duration became longer. A similar relationship between the preferred time and traveled distance was also observed. The results strongly suggest a competitive and integrated representation of space-time by single hippocampal neurons, which may provide the neural basis for spatiotemporal contexts.
Collapse
Affiliation(s)
- Shijie Chen
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Cheng
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaojing Chen
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Cheng Wang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
2
|
Gentry H, Buckner C. Transitional gradation and the distinction between episodic and semantic memory. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230407. [PMID: 39278251 PMCID: PMC11449154 DOI: 10.1098/rstb.2023.0407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 09/18/2024] Open
Abstract
In this article, we explore various arguments against the traditional distinction between episodic and semantic memory based on the metaphysical phenomenon of transitional gradation. Transitional gradation occurs when two candidate kinds A and B grade into one another along a continuum according to their characteristic properties. We review two kinds of arguments-from the gradual semanticization of episodic memories as they are consolidated, and from the composition of episodic memories during storage and recall from semantic memories-that predict the proliferation of such transitional forms. We further explain why the distinction cannot be saved from the challenges of transitional gradation by appealing to distinct underlying memory structures and applying our perspective to the impasse over research into 'episodic-like' memory in non-human animals. On the whole, we recommend replacing the distinction with a dynamic life cycle of memory in which a variety of transitional forms will proliferate, and illustrate the utility of this perspective by tying together recent trends in animal episodic memory research and recommending productive future directions. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Hunter Gentry
- Philosophy, Kansas State University , Manhattan, KS 66506, USA
| | - Cameron Buckner
- Philosophy, University of Florida , Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Collaro E, Barton RA, Ainge JA, Easton A. Measuring episodic memory and mental time travel: crossing the species gap. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230406. [PMID: 39278250 PMCID: PMC11449166 DOI: 10.1098/rstb.2023.0406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 09/18/2024] Open
Abstract
Mental time travel is the projection of the mind into the past or future, and relates to experiential aspects of episodic memory, and episodic future thinking. Framing episodic memory and future thinking in this way causes a challenge when studying memory in animals, where demonstration of this mental projection is prevented by the absence of language. However, there is good evidence that non-human animals pass tests of episodic memory that are based on behavioural criteria, meaning a better understanding needs to be had of the relationship between episodic memory and mental time travel. We argue that mental time travel and episodic memory are not synonymous, and that mental time travel is neither a requirement of, nor an irrelevance to, episodic memory. Mental time travel can allow improved behavioural choices based on episodic memory, and work in all species (including humans) should include careful consideration of the behavioural outputs being measured. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Eli Collaro
- Department of Anthropology, Durham University , Durham, UK
| | | | - James A Ainge
- School of Psychology and Neuroscience, University of St Andrews , St Andrews, UK
| | | |
Collapse
|
4
|
Beanato E, Moon HJ, Windel F, Vassiliadis P, Wessel MJ, Popa T, Pauline M, Neufeld E, De Falco E, Gauthier B, Steiner M, Blanke O, Hummel FC. Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. SCIENCE ADVANCES 2024; 10:eado4103. [PMID: 39475597 PMCID: PMC11524170 DOI: 10.1126/sciadv.ado4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Because of the depth of the hippocampal-entorhinal complex (HC-EC) in the brain, understanding of its role in spatial navigation via neuromodulation was limited in humans. Here, we aimed to better elucidate this relationship in healthy volunteers, using transcranial temporal interference electric stimulation (tTIS), a noninvasive technique allowing to selectively neuromodulate deep brain structures. We applied tTIS to the right HC-EC in either continuous or intermittent theta-burst stimulation patterns (cTBS or iTBS), compared to a control condition, during a virtual reality-based spatial navigation task and concomitant functional magnetic resonance imaging. iTBS improved spatial navigation performance, correlated with hippocampal activity modulation, and decreased grid cell-like activity in EC. Collectively, these data provide the evidence that human HC-EC activity can be directly and noninvasively modulated leading to changes of spatial navigation behavior. These findings suggest promising perspectives for patients suffering from cognitive impairment such as following traumatic brain injury or dementia.
Collapse
Affiliation(s)
- Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Hyuk-June Moon
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Maximillian J. Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Menoud Pauline
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
- ZMT Zurich MedTech AG, Zurich, Switzerland
| | - Emanuela De Falco
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Baptiste Gauthier
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
5
|
Cooray GK, Cooray V, Friston K. A cortical field theory - dynamics and symmetries. J Comput Neurosci 2024; 52:267-284. [PMID: 39352414 PMCID: PMC11470901 DOI: 10.1007/s10827-024-00878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 10/13/2024]
Abstract
We characterise cortical dynamics using partial differential equations (PDEs), analysing various connectivity patterns within the cortical sheet. This exploration yields diverse dynamics, encompassing wave equations and limit cycle activity. We presume balanced equations between excitatory and inhibitory neuronal units, reflecting the ubiquitous oscillatory patterns observed in electrophysiological measurements. Our derived dynamics comprise lowest-order wave equations (i.e., the Klein-Gordon model), limit cycle waves, higher-order PDE formulations, and transitions between limit cycles and near-zero states. Furthermore, we delve into the symmetries of the models using the Lagrangian formalism, distinguishing between continuous and discontinuous symmetries. These symmetries allow for mathematical expediency in the analysis of the model and could also be useful in studying the effect of symmetrical input from distributed cortical regions. Overall, our ability to derive multiple constraints on the fields - and predictions of the model - stems largely from the underlying assumption that the brain operates at a critical state. This assumption, in turn, drives the dynamics towards oscillatory or semi-conservative behaviour. Within this critical state, we can leverage results from the physics literature, which serve as analogues for neural fields, and implicit construct validity. Comparisons between our model predictions and electrophysiological findings from the literature - such as spectral power distribution across frequencies, wave propagation speed, epileptic seizure generation, and pattern formation over the cortical surface - demonstrate a close match. This study underscores the importance of utilizing symmetry preserving PDE formulations for further mechanistic insights into cortical activity.
Collapse
Affiliation(s)
| | - Vernon Cooray
- Department of Electrical Engineering, Uppsala University, Uppsala, Sweden
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
6
|
Fan LL, Fang H, Zheng JY, Qiu YH, Wu GL, Cai YF, Chen YB, Zhang SJ. Taohong Siwu decoction alleviates cognitive impairment by suppressing endoplasmic reticulum stress and apoptosis signaling pathway in vascular dementia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118407. [PMID: 38824979 DOI: 10.1016/j.jep.2024.118407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (TSD), a classic traditional Chinese medicine formula, is used for the treatment of vascular diseases, including vascular dementia (VD). However, the mechanisms remain unclear. AIM OF STUDY This study aimed to investigate whether TSD has a positive effect on cognitive impairment in VD rats and to confirm that the mechanism of action is related to the Endoplasmic Reticulum stress (ERs) and cell apoptosis signaling pathway. MATERIALS AND METHODS A total of 40 male adult Sprague-Dawley rats were divided into four groups: sham-operated group (Sham), the two-vessel occlusion group (2VO), the 2VO treated with 4.5 g/kg/d TSD group (2VO + TSD-L), the 2VO treated with 13.5 g/kg/d TSD group (2VO + TSD-H). The rats underwent either 2VO surgery or sham surgery. Postoperative TSD treatment was given for 4 consecutive weeks. Behavioral tests were initiated at the end of gastrulation. Open-field test (OFT) was used to detect the activity level. The New Object Recognition test (NOR) was used to test long-term memory. The Morris water maze (MWM) test was used to examine the foundation of spatial learning and memory. As a final step, the hippocampus was taken for molecular testing. The protein levels of GRP78 (Bip), p-PERK, PERK, IRE1α, p-IRE1α, ATF6, eIF2α, p-eIF2α, ATF4, XBP1, Bcl-2 and Bax were determined by Western blot. Immunofluorescence visualizes molecular expression. RESULTS In the OFT, residence time in the central area was significantly longer in both TSD treatment groups compared to the 2VO group. In the NOR, the recognition index was obviously elevated in both TSD treatment groups. The 2VO group had a significantly longer escape latency and fewer times in crossing the location of the platform compared with the Sham group in MWM. TSD treatment reversed this notion. Pathologically, staining observations confirmed that TSD inhibited hippocampal neuronal loss and alleviated the abnormal reduction of the Nissl body. In parallel, TUNEL staining illustrated that TSD decelerated neuronal apoptosis. Western Blot demonstrated that TSD reduces the expression of ERs and apoptotic proteins. CONCLUSION In this study, the significant ameliorative effect on cognitive impairment of TSD has been determined by comparing the behavioral data of the 4 groups of rats. Furthermore, it was confirmed that this effect of TSD was achieved by suppressing the ERs-mediated apoptosis signaling pathway.
Collapse
Affiliation(s)
- Ling-Ling Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Hao Fang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jia-Yi Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu-Hui Qiu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China.
| | - Yun-Bo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China.
| |
Collapse
|
7
|
Breffle J, Germaine H, Shin JD, Jadhav SP, Miller P. Intrinsic dynamics of randomly clustered networks generate place fields and preplay of novel environments. eLife 2024; 13:RP93981. [PMID: 39422556 PMCID: PMC11488848 DOI: 10.7554/elife.93981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
During both sleep and awake immobility, hippocampal place cells reactivate time-compressed versions of sequences representing recently experienced trajectories in a phenomenon known as replay. Intriguingly, spontaneous sequences can also correspond to forthcoming trajectories in novel environments experienced later, in a phenomenon known as preplay. Here, we present a model showing that sequences of spikes correlated with the place fields underlying spatial trajectories in both previously experienced and future novel environments can arise spontaneously in neural circuits with random, clustered connectivity rather than pre-configured spatial maps. Moreover, the realistic place fields themselves arise in the circuit from minimal, landmark-based inputs. We find that preplay quality depends on the network's balance of cluster isolation and overlap, with optimal preplay occurring in small-world regimes of high clustering yet short path lengths. We validate the results of our model by applying the same place field and preplay analyses to previously published rat hippocampal place cell data. Our results show that clustered recurrent connectivity can generate spontaneous preplay and immediate replay of novel environments. These findings support a framework whereby novel sensory experiences become associated with preexisting "pluripotent" internal neural activity patterns.
Collapse
Affiliation(s)
- Jordan Breffle
- Neuroscience Program, Brandeis UniversityWalthamUnited States
| | - Hannah Germaine
- Neuroscience Program, Brandeis UniversityWalthamUnited States
| | - Justin D Shin
- Neuroscience Program, Brandeis UniversityWalthamUnited States
- Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
- Department of Psychology , Brandeis UniversityWalthamUnited States
| | - Shantanu P Jadhav
- Neuroscience Program, Brandeis UniversityWalthamUnited States
- Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
- Department of Psychology , Brandeis UniversityWalthamUnited States
| | - Paul Miller
- Neuroscience Program, Brandeis UniversityWalthamUnited States
- Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
- Department of Biology, Brandeis UniversityWalthamUnited States
| |
Collapse
|
8
|
Mobbs D, Wise T, Tashjian S, Zhang J, Friston K, Headley D. Survival in a world of complex dangers. Neurosci Biobehav Rev 2024; 167:105924. [PMID: 39424109 DOI: 10.1016/j.neubiorev.2024.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
How did our nomadic ancestors continually adapt to the seemingly limitless and unpredictable number of dangers in the natural world? We argue that human defensive behaviors are dynamically constructed to facilitate survival in capricious and itinerant environments. We first hypothesize that internal and external states result in state constructions that combine to form a meta-representation. When a threat is detected, it triggers the action construction. Action constructions are formed through two contiguous survival strategies: generalization strategies, which are used when encountering new threats and ecologies. Generalization strategies are associated with cognitive representations that have high dimensionality and which furnish flexible psychological constructs, including relations between threats, and imagination, and which converge through the construction of defensive states. We posit that generalization strategies drive 'explorative' behaviors including information seeking, where the goal is to increase knowledge that can be used to mitigate current and future threats. Conversely, specialization strategies entail lower dimensional representations, which underpin specialized, sometimes reflexive, or habitual survival behaviors that are 'exploitative'. Together, these strategies capture a central adaptive feature of human survival systems: self-preservation in response to a myriad of threats.
Collapse
Affiliation(s)
- Dean Mobbs
- Department of Humanities and Social Sciences, USA; Computation and Neural Systems Program at the California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Toby Wise
- Department of Neuroimaging, King's College London, London, UK
| | | | - JiaJin Zhang
- Department of Humanities and Social Sciences, USA
| | - Karl Friston
- Institute of Neurology, and The Wellcome Centre for Human Imaging, University College London, London WC1N 3AR, UK
| | - Drew Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ 07102, USA
| |
Collapse
|
9
|
Schwartz A, Macalli M, Navarro MC, Jean FAM, Crivello F, Galera C, Tzourio C. Adverse childhood experiences and left hippocampal volumetric reductions: A structural magnetic resonance imaging study. J Psychiatr Res 2024; 180:183-189. [PMID: 39427447 DOI: 10.1016/j.jpsychires.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/10/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Adverse childhood experiences (ACEs) have been associated with volume alterations of stress-related brain structures among aging and clinical populations, however, existing studies have predominantly assessed only one type of ACE, with small sample sizes, and it is less clear if these associations exist among a general population of young adults. OBJECTIVE The aims were to describe structural hippocampal volumetric differences by ACEs exposure and investigate the association between ACEs exposure and left and right hippocampal volume in a student sample of young adults. METHODS 959 young adult students (18-24 years old) completed an online questionnaire on ACEs, mental health conditions, and sociodemographic characteristics. Magnetic resonance imaging (MRI) was used to measure left and right hippocampal volume (mm3). We used linear regression to explore the differences of hippocampal volumes in university students with and without ACEs. RESULTS Two thirds of students (65.9%) reported ACEs exposure. As ACEs exposure increased there were significant volumetric reductions in left (p < 0.0001) and right hippocampal volume (p = 0.001) and left (p = 0.0023) and right (p = 0.0013) amygdala volume. After adjusting for intracranial brain volume, sex, age, and depression diagnosis there was a negative association between ACEs exposure and left (β = -22.6, CI = -44.5, -0.7, p = 0.0412) but not right hippocampal volume (β = -18.3, CI = -39.2, 2.6, p = 0.0792). After adjusting for intracranial volume there were no associations between ACEs exposure and left (β = -9.2, CI = -26.2, 7.9 p = 0.2926) or right (β = -5.6, CI = -19.9,8.8 p = 0.4466) amygdala volume. CONCLUSIONS Hippocampal volume varied by ACEs exposure in young adult students. ACEs appear to contribute to neuroanatomic differences in young adults from the general population.
Collapse
Affiliation(s)
- Ashlyn Schwartz
- Trinity College, Department of Public Health & Primary Care, D24 DH74, Dublin, Ireland.
| | - Mélissa Macalli
- Inserm, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, F-33000, Bordeaux, France.
| | - Marie C Navarro
- Inserm, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, F-33000, Bordeaux, France.
| | - François A M Jean
- Dr Jean Eric Techer Hospital, Department of Psychiatry, Calais, France.
| | - Fabrice Crivello
- Univ. Bordeaux, CEA, CNRS, IMN UMR 5293, Bordeaux, F-33000, France.
| | | | - Christophe Tzourio
- Inserm, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
10
|
Negen J. No evidence for a difference in Bayesian reasoning for egocentric versus allocentric spatial cognition. PLoS One 2024; 19:e0312018. [PMID: 39388501 PMCID: PMC11466427 DOI: 10.1371/journal.pone.0312018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Bayesian reasoning (i.e. prior integration, cue combination, and loss minimization) has emerged as a prominent model for some kinds of human perception and cognition. The major theoretical issue is that we do not yet have a robust way to predict when we will or will not observe Bayesian effects in human performance. Here we tested a proposed divide in terms of Bayesian reasoning for egocentric spatial cognition versus allocentric spatial cognition (self-centered versus world-centred). The proposal states that people will show stronger Bayesian reasoning effects when it is possible to perform the Bayesian calculations within the egocentric frame, as opposed to requiring an allocentric frame. Three experiments were conducted with one egocentric-allowing condition and one allocentric-requiring condition but otherwise matched as closely as possible. No difference was found in terms of prior integration (Experiment 1), cue combination (Experiment 2), or loss minimization (Experiment 3). The contrast in previous reports, where Bayesian effects are present in many egocentric-allowing tasks while they are absent in many allocentric-requiring tasks, is likely due to other differences between the tasks-for example, the way allocentric-requiring tasks are often more complex and memory intensive.
Collapse
Affiliation(s)
- James Negen
- Psychology Department, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
11
|
Liao Z, Terada S, Raikov IG, Hadjiabadi D, Szoboszlay M, Soltesz I, Losonczy A. Inhibitory plasticity supports replay generalization in the hippocampus. Nat Neurosci 2024; 27:1987-1998. [PMID: 39227715 DOI: 10.1038/s41593-024-01745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Memory consolidation assimilates recent experiences into long-term memory. This process requires the replay of learned sequences, although the content of these sequences remains controversial. Recent work has shown that the statistics of replay deviate from those of experience: stimuli that are experientially salient may be either recruited or suppressed from sharp-wave ripples. In this study, we found that this phenomenon can be explained parsimoniously and biologically plausibly by a Hebbian spike-time-dependent plasticity rule at inhibitory synapses. Using models at three levels of abstraction-leaky integrate-and-fire, biophysically detailed and abstract binary-we show that this rule enables efficient generalization, and we make specific predictions about the consequences of intact and perturbed inhibitory dynamics for network dynamics and cognition. Finally, we use optogenetics to artificially implant non-generalizable representations into the network in awake behaving mice, and we find that these representations also accumulate inhibition during sharp-wave ripples, experimentally validating a major prediction of our model. Our work outlines a potential direct link between the synaptic and cognitive levels of memory consolidation, with implications for both normal learning and neurological disease.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA.
- Department of Neuroscience, University of Edinburgh, Edinburgh, UK.
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ivan Georgiev Raikov
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Darian Hadjiabadi
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ivan Soltesz
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Sun H, Cai R, Li R, Li M, Gao L, Li X. Conjunctive processing of spatial border and locomotion in retrosplenial cortex during spatial navigation. J Physiol 2024; 602:5017-5038. [PMID: 39216077 DOI: 10.1113/jp286434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Spatial information and dynamic locomotor behaviours are equally important for achieving locomotor goals during spatial navigation. However, it remains unclear how spatial and locomotor information is integrated during the processing of self-initiated spatial navigation. Anatomically, the retrosplenial cortex (RSC) has reciprocal connections with brain regions related to spatial processing, including the hippocampus and para-hippocampus, and also receives inputs from the secondary motor cortex. In addition, RSC is functionally associated with allocentric and egocentric spatial targets and head-turning. So, RSC may be a critical region for integrating spatial and locomotor information. In this study, we first examined the role of RSC in spatial navigation using the Morris water maze and found that mice with inactivated RSC took a longer time and distance to reach their destination. Then, by imaging neuronal activity in freely behaving mice within two open fields of different sizes, we identified a large proportion of border cells, head-turning cells and locomotor speed cells in the superficial layer of RSC. Interestingly, some RSC neurons exhibited conjunctive coding for both spatial and locomotor signals. Furthermore, these conjunctive neurons showed higher prediction accuracy compared with simple spatial or locomotor neurons in special navigator scenes using the border, turning and positive-speed conjunctive cells. Our study reveals that the RSC is an important conjunctive brain region that processes spatial and locomotor information during spatial navigation. KEY POINTS: Retrosplenial cortex (RSC) is indispensable during spatial navigation, which was displayed by the longer time and distance of mice to reach their destination after the inactivation of RSC in a water maze. The superficial layer of RSC has a larger population of spatial-related border cells, and locomotion-related head orientation and speed cells; however, it has few place cells in two-dimensional spatial arenas. Some RSC neurons exhibited conjunctive coding for both spatial and locomotor signals, and the conjunctive neurons showed higher prediction accuracy compared with simple spatial or locomotor neurons in special navigation scenes. Our study reveals that the RSC is an important conjunctive brain region that processes both spatial and locomotor information during spatial navigation.
Collapse
Affiliation(s)
- Hao Sun
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Candia-Rivera D, Engelen T, Babo-Rebelo M, Salamone PC. Interoception, network physiology and the emergence of bodily self-awareness. Neurosci Biobehav Rev 2024; 165:105864. [PMID: 39208877 DOI: 10.1016/j.neubiorev.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The interplay between the brain and interoceptive signals is key in maintaining internal balance and orchestrating neural dynamics, encompassing influences on perceptual and self-awareness. Central to this interplay is the differentiation between the external world, others and the self, a cornerstone in the construction of bodily self-awareness. This review synthesizes physiological and behavioral evidence illustrating how interoceptive signals can mediate or influence bodily self-awareness, by encompassing interactions with various sensory modalities. To deepen our understanding of the basis of bodily self-awareness, we propose a network physiology perspective. This approach explores complex neural computations across multiple nodes, shifting the focus from localized areas to large-scale neural networks. It examines how these networks operate in parallel with and adapt to changes in visceral activities. Within this framework, we propose to investigate physiological factors that disrupt bodily self-awareness, emphasizing the impact of interoceptive pathway disruptions, offering insights across several clinical contexts. This integrative perspective not only can enhance the accuracy of mental health assessments but also paves the way for targeted interventions.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière AP-HP, Inria Paris, 75013, Paris, France.
| | - Tahnée Engelen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, Jyväskylä FI-40014, Finland
| | - Mariana Babo-Rebelo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Paula C Salamone
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Park S, Park M, Kim EJ, Kim JJ, Huh Y, Cho J. Distinct Disruptions in CA1 and CA3 Place Cell Function in Alzheimer's Disease Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614631. [PMID: 39386433 PMCID: PMC11463587 DOI: 10.1101/2024.09.23.614631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The hippocampus, a critical brain structure for spatial learning and memory, is susceptible to neurodegenerative disorders such as Alzheimer's disease (AD). The APPswe/PSEN1dE9 (APP/PS1) transgenic mouse model is widely used to study the pathology of AD. Although previous research has established AD-associated impairments in hippocampal-dependent learning and memory, the neurophysiological mechanisms underlying these cognitive dysfunctions remain less understood. To address this gap, we investigated the activities of place cells in both CA1 and CA3 hippocampal subregions, which have distinct yet complementary computational roles. Behaviorally, APP/PS1 mice demonstrated impaired spatial recognition memory compared to wild-type (WT) mice in the object location test. Physiologically, place cells in APP/PS1 mice showed deterioration in spatial representation compared to WT. Specifically, CA1 place cells exhibited significant reductions in coherence and spatial information, while CA3 place cells displayed a significant reduction in place field size. Both CA1 and CA3 place cells in APP/PS1 mice also showed significant disruptions in their ability to stably encode the same environment. Furthermore, the burst firing properties of these cells were altered to forms correlated with reduced cognition. Additionally, the theta rhythm was significantly attenuated in CA1 place cells of APP/PS1 mice compared to WT. Our results suggest that distinct alteration in the physiological properties of CA1 and CA3 place cells, coupled with disrupted hippocampal theta rhythm in CA1, may collectively contribute to impaired hippocampal-dependent spatial learning and memory in AD.
Collapse
Affiliation(s)
- Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, Republic of Korea
| | - Mijeong Park
- Center for Neural Science, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, U.S.A
| | - Jeansok J. Kim
- Department of Psychology, University of Washington, Seattle, U.S.A
| | - Yeowool Huh
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong University, Incheon, Republic of Korea
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
16
|
Boyle A, Brown SAB. Why might animals remember? A functional framework for episodic memory research in comparative psychology. Learn Behav 2024:10.3758/s13420-024-00645-0. [PMID: 39289293 DOI: 10.3758/s13420-024-00645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
One of Clayton's major contributions to our understanding of animal minds has been her work on episodic-like memory. A central reason for the success of this work was its focus on ecological validity: rather than looking for episodic memory for arbitrary stimuli in artificial contexts, focussing on contexts in which episodic memory would serve a biological function such as food caching. This review aims to deepen this insight by surveying the numerous functions that have been proposed for episodic memory, articulating a philosophically grounded framework for understanding what exactly functions are, and drawing on these to make suggestions for future directions in the comparative cognitive psychology of episodic memory. Our review suggests four key insights. First, episodic memory may have more than one function and may have different functions in different species. Second, cross-disciplinary work is key to developing a functional account of episodic memory. Third, there is scope for further theoretical elaboration of proposals relating episodic memory to food caching and, in particular, future-oriented cognition. Finally, learning-related functions suggested by AI (artificial intelligence)-based models are a fruitful avenue for future behavioural research.
Collapse
Affiliation(s)
- Alexandria Boyle
- London School of Economics and Political Science, London, UK.
- CIFAR Azrieli Global Scholars Program, London, UK.
| | - Simon A B Brown
- London School of Economics and Political Science, London, UK
| |
Collapse
|
17
|
Hamed A, Kursa MB, Mrozek W, Piwoński KP, Falińska M, Danielewski K, Rejmak E, Włodkowska U, Kubik S, Czajkowski R. Spatio-temporal mechanisms of consolidation, recall and reconsolidation in reward-related memory trace. Mol Psychiatry 2024:10.1038/s41380-024-02738-8. [PMID: 39271752 DOI: 10.1038/s41380-024-02738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
The formation of memories is a complex, multi-scale phenomenon, especially when it involves integration of information from various brain systems. We have investigated the differences between a novel and consolidated association of spatial cues and amphetamine administration, using an in situ hybridisation method to track the short-term dynamics during the recall testing. We have found that remote recall group involves smaller, but more consolidated groups of neurons, which is consistent with their specialisation. By employing machine learning analysis, we have shown this pattern is especially pronounced in the VTA; furthermore, we also uncovered significant activity patterns in retrosplenial and prefrontal cortices, as well as in the DG and CA3 subfields of the hippocampus. The behavioural propensity towards the associated localisation appears to be driven by the nucleus accumbens, however, further modulated by a trio of the amygdala, VTA and hippocampus, as the trained association is confronted with test experience. Moreover, chemogenetic analysis revealed central amygdala as critical for linking appetitive emotional states with spatial contexts. These results show that memory mechanisms must be modelled considering individual differences in motivation, as well as covering dynamics of the process.
Collapse
Affiliation(s)
- Adam Hamed
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Miron Bartosz Kursa
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Wiktoria Mrozek
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Piotr Piwoński
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Monika Falińska
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Konrad Danielewski
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Rejmak
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Włodkowska
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Stepan Kubik
- Institute of Physiology, Academy of Sciences of the Czech Republic, Praha, Czechia
| | - Rafał Czajkowski
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
18
|
Armstrong P, Güngör H, Anongjanya P, Tweedy C, Parkin E, Johnston J, Carr IM, Dawson N, Clapcote SJ. Protective effect of PDE4B subtype-specific inhibition in an App knock-in mouse model for Alzheimer's disease. Neuropsychopharmacology 2024; 49:1559-1568. [PMID: 38521860 PMCID: PMC11319650 DOI: 10.1038/s41386-024-01852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Meta-analysis of genome-wide association study data has implicated PDE4B in the pathogenesis of Alzheimer's disease (AD), the leading cause of senile dementia. PDE4B encodes one of four subtypes of cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase-4 (PDE4A-D). To interrogate the involvement of PDE4B in the manifestation of AD-related phenotypes, the effects of a hypomorphic mutation (Pde4bY358C) that decreases PDE4B's cAMP hydrolytic activity were evaluated in the AppNL-G-F knock-in mouse model of AD using the Barnes maze test of spatial memory, 14C-2-deoxyglucose autoradiography, thioflavin-S staining of β-amyloid (Aβ) plaques, and inflammatory marker assay and transcriptomic analysis (RNA sequencing) of cerebral cortical tissue. At 12 months of age, AppNL-G-F mice exhibited spatial memory and brain metabolism deficits, which were prevented by the hypomorphic PDE4B in AppNL-G-F/Pde4bY358C mice, without a decrease in Aβ plaque burden. RNA sequencing revealed that, among the 531 transcripts differentially expressed in AppNL-G-F versus wild-type mice, only 13 transcripts from four genes - Ide, Btaf1, Padi2, and C1qb - were differentially expressed in AppNL-G-F/Pde4bY358C versus AppNL-G-F mice, identifying their potential involvement in the protective effect of hypomorphic PDE4B. Our data demonstrate that spatial memory and cerebral glucose metabolism deficits exhibited by 12-month-old AppNL-G-F mice are prevented by targeted inhibition of PDE4B. To our knowledge, this is the first demonstration of a protective effect of PDE4B subtype-specific inhibition in a preclinical model of AD. It thus identifies PDE4B as a key regulator of disease manifestation in the AppNL-G-F model and a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Paul Armstrong
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK
| | - Hüseyin Güngör
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YG, Lancaster, UK
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, 58140, Turkey
| | - Pariya Anongjanya
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK
| | - Clare Tweedy
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK
| | - Edward Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YG, Lancaster, UK
| | - Jamie Johnston
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK
| | - Ian M Carr
- Leeds Institute of Medical Research, University of Leeds, LS9 7TF, Leeds, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YG, Lancaster, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK.
| |
Collapse
|
19
|
Robinson JC, Ying J, Hasselmo ME, Brandon MP. Optogenetic silencing of medial septal GABAergic neurons disrupts grid cell spatial and temporal coding in the medial entorhinal cortex. Cell Rep 2024; 43:114590. [PMID: 39163200 DOI: 10.1016/j.celrep.2024.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/29/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
The hippocampus and medial entorhinal cortex (MEC) form a cognitive map that facilitates spatial navigation. As part of this map, MEC grid cells fire in a repeating hexagonal pattern across an environment. This grid pattern relies on inputs from the medial septum (MS). The MS, and specifically GABAergic neurons, are essential for theta rhythm oscillations in the entorhinal-hippocampal network; however, the role of this population in grid cell function is unclear. To investigate this, we use optogenetics to inhibit MS-GABAergic neurons and observe that MS-GABAergic inhibition disrupts grid cell spatial periodicity. Grid cell spatial periodicity is disrupted during both optogenetic inhibition periods and short inter-stimulus intervals. In contrast, longer inter-stimulus intervals allow for the recovery of grid cell spatial firing. In addition, grid cell phase precession is also disrupted. These findings highlight the critical role of MS-GABAergic neurons in maintaining grid cell spatial and temporal coding in the MEC.
Collapse
Affiliation(s)
- Jennifer C Robinson
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| | - Johnson Ying
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Fischer LF, Xu L, Murray KT, Harnett MT. Learning to use landmarks for navigation amplifies their representation in retrosplenial cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.607457. [PMID: 39229229 PMCID: PMC11370392 DOI: 10.1101/2024.08.18.607457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Visual landmarks provide powerful reference signals for efficient navigation by altering the activity of spatially tuned neurons, such as place cells, head direction cells, and grid cells. To understand the neural mechanism by which landmarks exert such strong influence, it is necessary to identify how these visual features gain spatial meaning. In this study, we characterized visual landmark representations in mouse retrosplenial cortex (RSC) using chronic two-photon imaging of the same neuronal ensembles over the course of spatial learning. We found a pronounced increase in landmark-referenced activity in RSC neurons that, once established, remained stable across days. Changing behavioral context by uncoupling treadmill motion from visual feedback systematically altered neuronal responses associated with the coherence between visual scene flow speed and self-motion. To explore potential underlying mechanisms, we modeled how burst firing, mediated by supralinear somatodendritic interactions, could efficiently mediate context- and coherence-dependent integration of landmark information. Our results show that visual encoding shifts to landmark-referenced and context-dependent codes as these cues take on spatial meaning during learning.
Collapse
Affiliation(s)
- Lukas F. Fischer
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Liane Xu
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Keith T. Murray
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Mark T. Harnett
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| |
Collapse
|
21
|
Wang Z, Di Tullio RW, Rooke S, Balasubramanian V. Time Makes Space: Emergence of Place Fields in Networks Encoding Temporally Continuous Sensory Experiences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607484. [PMID: 39185149 PMCID: PMC11343115 DOI: 10.1101/2024.08.11.607484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The vertebrate hippocampus is believed to use recurrent connectivity in area CA3 to support episodic memory recall from partial cues. This brain area also contains place cells, whose location-selective firing fields implement maps supporting spatial memory. Here we show that place cells emerge in networks trained to remember temporally continuous sensory episodes. We model CA3 as a recurrent autoencoder that recalls and reconstructs sensory experiences from noisy and partially occluded observations by agents traversing simulated arenas. The agents move in realistic trajectories modeled from rodents and environments are modeled as continuously varying, high-dimensional, sensory experience maps (spatially smoothed Gaussian random fields). Training our autoencoder to accurately pattern-complete and reconstruct sensory experiences with a constraint on total activity causes spatially localized firing fields, i.e., place cells, to emerge in the encoding layer. The emergent place fields reproduce key aspects of hippocampal phenomenology: a) remapping (maintenance of and reversion to distinct learned maps in different environments), implemented via repositioning of experience manifolds in the network's hidden layer, b) orthogonality of spatial representations in different arenas, c) robust place field emergence in differently shaped rooms, with single units showing multiple place fields in large or complex spaces, and d) slow representational drift of place fields. We argue that these results arise because continuous traversal of space makes sensory experience temporally continuous. We make testable predictions: a) rapidly changing sensory context will disrupt place fields, b) place fields will form even if recurrent connections are blocked, but reversion to previously learned representations upon remapping will be abolished, c) the dimension of temporally smooth experience sets the dimensionality of place fields, including during virtual navigation of abstract spaces.
Collapse
Affiliation(s)
- Zhaoze Wang
- Department of Computer and Information Science, University of Pennsylvania
| | | | | | | |
Collapse
|
22
|
Tesler F, Lorenzi RM, Ponzi A, Casellato C, Palesi F, Gandolfi D, Gandini Wheeler Kingshott CAM, Mapelli J, D'Angelo E, Migliore M, Destexhe A. Multiscale modeling of neuronal dynamics in hippocampus CA1. Front Comput Neurosci 2024; 18:1432593. [PMID: 39165754 PMCID: PMC11333306 DOI: 10.3389/fncom.2024.1432593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
The development of biologically realistic models of brain microcircuits and regions constitutes currently a very relevant topic in computational neuroscience. One of the main challenges of such models is the passage between different scales, going from the microscale (cellular) to the meso (microcircuit) and macroscale (region or whole-brain level), while keeping at the same time a constraint on the demand of computational resources. In this paper we introduce a multiscale modeling framework for the hippocampal CA1, a region of the brain that plays a key role in functions such as learning, memory consolidation and navigation. Our modeling framework goes from the single cell level to the macroscale and makes use of a novel mean-field model of CA1, introduced in this paper, to bridge the gap between the micro and macro scales. We test and validate the model by analyzing the response of the system to the main brain rhythms observed in the hippocampus and comparing our results with the ones of the corresponding spiking network model of CA1. Then, we analyze the implementation of synaptic plasticity within our framework, a key aspect to study the role of hippocampus in learning and memory consolidation, and we demonstrate the capability of our framework to incorporate the variations at synaptic level. Finally, we present an example of the implementation of our model to study a stimulus propagation at the macro-scale level, and we show that the results of our framework can capture the dynamics obtained in the corresponding spiking network model of the whole CA1 area.
Collapse
Affiliation(s)
- Federico Tesler
- CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif-sur-Yvette, France
| | | | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Claudia Casellato
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Daniela Gandolfi
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia A. M. Gandini Wheeler Kingshott
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Centre, IRCCS Mondino Foundation, Pavia, Italy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Alain Destexhe
- CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif-sur-Yvette, France
| |
Collapse
|
23
|
Dong LL, Fiete IR. Grid Cells in Cognition: Mechanisms and Function. Annu Rev Neurosci 2024; 47:345-368. [PMID: 38684081 DOI: 10.1146/annurev-neuro-101323-112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable-the allocentric position of the animal-with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.
Collapse
Affiliation(s)
- Ling L Dong
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Ila R Fiete
- McGovern Institute and K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
24
|
Scarlat KA, Tchoumi CA, Feldman AG, Levin MF. Referent Control of Side-to-Side Body-Weight Transfer During Standing and Stepping in Adults. Neuroscience 2024; 551:94-102. [PMID: 38762084 DOI: 10.1016/j.neuroscience.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Research suggests that locomotion may be primarily caused by shifting stable body balance from one location in the environment to another with subsequent rhythmical muscle activation by the central pattern generator (CPG), constituting a multi-level control system. All levels interact with environmental forces affected by proprioceptive and vestibular reflexes as well as vision. A similar multi-level control schema is likely used to shift body balance laterally when the body weight is rhythmically transferred from side-to-side. In order to do so, the system shifts a specific body posture in space. This body posture is referred to as the threshold or referent body posture, R, at which all muscles involved can be at rest but are activated depending on the deflection of the actual body posture, Q, from R. This concept has previously been investigated for forward and backward locomotion. The purpose of the present study was to verify if it was also applicable to locomotor tasks in other directions such as sidestepping. We predicted that during sidestepping, the actual and referent posture can transiently match each other bringing the activity of multiple muscles to a minimum. The existence of such minima was demonstrated in healthy adults performing three locomotor tasks involving shifts of the body weight from side-to-side thus further supporting the validity of the multi-level control scheme of locomotion.
Collapse
Affiliation(s)
- Katharine A Scarlat
- Integrated Program in Neuroscience, McGill University, Montreal, Qc., Canada; Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Montreal, Qc., Canada
| | - Carl A Tchoumi
- Integrated Program in Neuroscience, McGill University, Montreal, Qc., Canada; Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Montreal, Qc., Canada
| | - Anatol G Feldman
- Department of Neuroscience, University of Montreal, Montreal, Qc., Canada; Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Montreal, Qc., Canada.
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, Qc., Canada; Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Montreal, Qc., Canada
| |
Collapse
|
25
|
Illouz T, Ascher LAB, Madar R, Okun E. Unbiased analysis of spatial learning strategies in a modified Barnes maze using convolutional neural networks. Sci Rep 2024; 14:15944. [PMID: 38987437 PMCID: PMC11237060 DOI: 10.1038/s41598-024-66855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Assessment of spatial learning abilities is central to behavioral neuroscience and a useful tool for animal model validation and drug development. However, biases introduced by the apparatus, environment, or experimentalist represent a critical challenge to the test validity. We have recently developed the Modified Barnes Maze (MBM) task, a spatial learning paradigm that overcomes inherent behavioral biases of animals in the classical Barnes maze. The specific combination of spatial strategies employed by mice is often considered representative of the level of cognitive resources used. Herein, we have developed a convolutional neural network-based classifier of exploration strategies in the MBM that can effectively provide researchers with enhanced insights into cognitive traits in mice. Following validation, we compared the learning performance of female and male C57BL/6J mice, as well as that of Ts65Dn mice, a model of Down syndrome, and 5xFAD mice, a model of Alzheimer's disease. Male mice exhibited more effective navigation abilities than female mice, reflected in higher utilization of effective spatial search strategies. Compared to wildtype controls, Ts65Dn mice exhibited delayed usage of spatial strategies despite similar success rates in completing this spatial task. 5xFAD mice showed increased usage of non-spatial strategies such as Circling that corresponded to higher latency to reach the target and lower success rate. These data exemplify the need for deeper strategy classification tools in dissecting complex cognitive traits. In sum, we provide a machine-learning-based strategy classifier that extends our understanding of mice's spatial learning capabilities while enabling a more accurate cognitive assessment.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Lyn Alice Becker Ascher
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Ravit Madar
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel.
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, 5290002, Ramat Gan, Israel.
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Building 901, Room 312, 5290002, Ramat Gan, Israel.
| |
Collapse
|
26
|
Dolón Vera L, Dietz B, Manahan-Vaughan D. Distal but not local auditory information supports spatial representations by place cells. Cereb Cortex 2024; 34:bhae202. [PMID: 39016432 PMCID: PMC11252853 DOI: 10.1093/cercor/bhae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 07/18/2024] Open
Abstract
Sound is an important navigational cue for mammals. During spatial navigation, hippocampal place cells encode spatial representations of the environment based on visual information, but to what extent audiospatial information can enable reliable place cell mapping is largely unknown. We assessed this by recording from CA1 place cells in the dark, under circumstances where reliable visual, tactile, or olfactory information was unavailable. Male rats were exposed to auditory cues of different frequencies that were delivered from local or distal spatial locations. We observed that distal, but not local cue presentation, enables and supports stable place fields, regardless of the sound frequency used. Our data suggest that a context dependency exists regarding the relevance of auditory information for place field mapping: whereas locally available auditory cues do not serve as a salient spatial basis for the anchoring of place fields, auditory cue localization supports spatial representations by place cells when available in the form of distal information. Furthermore, our results demonstrate that CA1 neurons can effectively use auditory stimuli to generate place fields, and that hippocampal pyramidal neurons are not solely dependent on visual cues for the generation of place field representations based on allocentric reference frames.
Collapse
Affiliation(s)
- Laura Dolón Vera
- Ruhr University Bochum, Medical Faculty, Department of Neurophysiology, Universitätsstrasse 150, MA4/150, Bochum 44780, Germany
- Ruhr University Bochum, International Graduate School of Neuroscience, Universitätsstrasse 150, FNO 01, Bochum 44780, Germany
| | - Birte Dietz
- Ruhr University Bochum, Medical Faculty, Department of Neurophysiology, Universitätsstrasse 150, MA4/150, Bochum 44780, Germany
- Ruhr University Bochum, International Graduate School of Neuroscience, Universitätsstrasse 150, FNO 01, Bochum 44780, Germany
| | - Denise Manahan-Vaughan
- Ruhr University Bochum, Medical Faculty, Department of Neurophysiology, Universitätsstrasse 150, MA4/150, Bochum 44780, Germany
| |
Collapse
|
27
|
Elliott BL, Mohyee RA, Ballard IC, Olson IR, Ellman LM, Murty VP. In vivo structural connectivity of the reward system along the hippocampal long axis. Hippocampus 2024; 34:327-341. [PMID: 38700259 DOI: 10.1002/hipo.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Recent work has identified a critical role for the hippocampus in reward-sensitive behaviors, including motivated memory, reinforcement learning, and decision-making. Animal histology and human functional neuroimaging have shown that brain regions involved in reward processing and motivation are more interconnected with the ventral/anterior hippocampus. However, direct evidence examining gradients of structural connectivity between reward regions and the hippocampus in humans is lacking. The present study used diffusion MRI (dMRI) and probabilistic tractography to quantify the structural connectivity of the hippocampus with key reward processing regions in vivo. Using a large sample of subjects (N = 628) from the human connectome dMRI data release, we found that connectivity profiles with the hippocampus varied widely between different regions of the reward circuit. While the dopaminergic midbrain (ventral tegmental area) showed stronger connectivity with the anterior versus posterior hippocampus, the ventromedial prefrontal cortex showed stronger connectivity with the posterior hippocampus. The limbic (ventral) striatum demonstrated a more homogeneous connectivity profile along the hippocampal long axis. This is the first study to generate a probabilistic atlas of the hippocampal structural connectivity with reward-related networks, which is essential to investigating how these circuits contribute to normative adaptive behavior and maladaptive behaviors in psychiatric illness. These findings describe nuanced structural connectivity that sets the foundation to better understand how the hippocampus influences reward-guided behavior in humans.
Collapse
Affiliation(s)
- Blake L Elliott
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Raana A Mohyee
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian C Ballard
- Department of Psychology, University of California, Riverside, California, USA
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Vishnu P Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Scharfen HE, Memmert D. The model of the brain as a complex system: Interactions of physical, neural and mental states with neurocognitive functions. Conscious Cogn 2024; 122:103700. [PMID: 38749233 DOI: 10.1016/j.concog.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
The isolated approaching of physical, neural and mental states and the binary classification into stable traits and fluctuating states previously lead to a limited understanding concerning underlying processes and possibilities to explain, measure and regulate neural and mental performance along with the interaction of mental states and neurocognitive traits. In this article these states are integrated by i) differentiating the model of the brain as a complex, self-organizing system, ii) showing possibilities to measure this model, iii) offering a classification of mental states and iv) presenting a holistic operationalization of state regulations and trait trainings to enhance neural and mental high-performance on a macro- and micro scale. This model integrates current findings from the theory of constructed emotions, the theory of thousand brains and complex systems theory and yields several testable hypotheses to provide an integrated reference frame for future research and applied target points to regulate and enhance performance.
Collapse
|
29
|
Shaykevich DA, Pareja-Mejía D, Golde C, Pašukonis A, O’Connell LA. Neural and sensory basis of homing behavior in the invasive cane toad, Rhinella marina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600658. [PMID: 38979178 PMCID: PMC11230440 DOI: 10.1101/2024.06.25.600658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The behavioral, sensory, and neural bases of vertebrate navigation are primarily described in mammals and birds. However, we know much less about navigational abilities and mechanisms of vertebrates that move on smaller scales, such as amphibians. To address this knowledge gap, we conducted an extensive field study on navigation in the cane toad, Rhinella marina. First, we performed a translocation experiment to describe how invasive toads in Hawai'i navigate home following displacements of up to one kilometer. Next, we tested the effect of olfactory and magnetosensory manipulations on homing, as these senses are most commonly associated with amphibian navigation. We found that neither ablation alone prevents homing, suggesting that toad navigation is multimodal. Finally, we tested the hypothesis that the medial pallium, the amphibian homolog to the hippocampus, is involved in homing. By comparing neural activity across homing and non-homing toads, we found evidence supporting the involvement of the medial pallium, lateral pallium, and septum in navigation, suggesting a conservation of neural structures supporting navigation across vertebrates. Our study lays the foundation to understand the behavioral, sensory, and neural bases of navigation in amphibians and to further characterize the evolution of behavior and neural structures in vertebrates.
Collapse
Affiliation(s)
| | - Daniela Pareja-Mejía
- Department of Biology, Stanford University, Stanford, CA, USA
- Graduate Program in Zoology, Universidade Estadual de Santa Cruz, Bahía, Brazil
| | - Chloe Golde
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford CA, USA
| |
Collapse
|
30
|
McKissick O, Klimpert N, Ritt JT, Fleischmann A. Odors in space. Front Neural Circuits 2024; 18:1414452. [PMID: 38978957 PMCID: PMC11228174 DOI: 10.3389/fncir.2024.1414452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
As an evolutionarily ancient sense, olfaction is key to learning where to find food, shelter, mates, and important landmarks in an animal's environment. Brain circuitry linking odor and navigation appears to be a well conserved multi-region system among mammals; the anterior olfactory nucleus, piriform cortex, entorhinal cortex, and hippocampus each represent different aspects of olfactory and spatial information. We review recent advances in our understanding of the neural circuits underlying odor-place associations, highlighting key choices of behavioral task design and neural circuit manipulations for investigating learning and memory.
Collapse
Affiliation(s)
- Olivia McKissick
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Nell Klimpert
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Jason T Ritt
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Alexander Fleischmann
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| |
Collapse
|
31
|
Breffle J, Germaine H, Shin JD, Jadhav SP, Miller P. Intrinsic dynamics of randomly clustered networks generate place fields and preplay of novel environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564173. [PMID: 37961479 PMCID: PMC10634993 DOI: 10.1101/2023.10.26.564173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
During both sleep and awake immobility, hippocampal place cells reactivate time-compressed versions of sequences representing recently experienced trajectories in a phenomenon known as replay. Intriguingly, spontaneous sequences can also correspond to forthcoming trajectories in novel environments experienced later, in a phenomenon known as preplay. Here, we present a model showing that sequences of spikes correlated with the place fields underlying spatial trajectories in both previously experienced and future novel environments can arise spontaneously in neural circuits with random, clustered connectivity rather than pre-configured spatial maps. Moreover, the realistic place fields themselves arise in the circuit from minimal, landmark-based inputs. We find that preplay quality depends on the network's balance of cluster isolation and overlap, with optimal preplay occurring in small-world regimes of high clustering yet short path lengths. We validate the results of our model by applying the same place field and preplay analyses to previously published rat hippocampal place cell data. Our results show that clustered recurrent connectivity can generate spontaneous preplay and immediate replay of novel environments. These findings support a framework whereby novel sensory experiences become associated with preexisting "pluripotent" internal neural activity patterns.
Collapse
Affiliation(s)
- Jordan Breffle
- Neuroscience Program, Brandeis University, 415 South St., Waltham, MA 02454
| | - Hannah Germaine
- Neuroscience Program, Brandeis University, 415 South St., Waltham, MA 02454
| | - Justin D Shin
- Neuroscience Program, Brandeis University, 415 South St., Waltham, MA 02454
- Volen National Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02454
- Department of Psychology, Brandeis University, 415 South St., Waltham, MA 02454
| | - Shantanu P Jadhav
- Neuroscience Program, Brandeis University, 415 South St., Waltham, MA 02454
- Volen National Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02454
- Department of Psychology, Brandeis University, 415 South St., Waltham, MA 02454
| | - Paul Miller
- Neuroscience Program, Brandeis University, 415 South St., Waltham, MA 02454
- Volen National Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02454
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02454
| |
Collapse
|
32
|
Chiamulera C, Benvegnù G, Piva A, Paolone G. Ecocebo: How the interaction between environment and drug effects may improve pharmacotherapy outcomes. Neurosci Biobehav Rev 2024; 161:105648. [PMID: 38565340 DOI: 10.1016/j.neubiorev.2024.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
This narrative review describes the research on the effects of the association between environmental context and medications, suggesting the benefit of specific design interventions in adjunction to pharmacotherapy. The literature on Evidence-Based Design (EBD) studies and Neuro-Architecture show how contact with light, nature, and specific physical features of urban and interior architecture may enhance the effects of analgesic, anxiolytics, and antidepressant drugs. This interaction mirrors those already known between psychedelics, drugs of abuse, and setting. Considering that the physical feature of space is a component of the complex placebo configuration, the aim is to highlight those elements of built or natural space that may help to improve drug response in terms of efficacy, tolerability, safety, and compliance. Ecocebo, the integration of design approaches such as EBD and Neuro-Architecture may thus contribute to a more efficient, cost-sensitive, and sustainable pharmacotherapy.
Collapse
Affiliation(s)
- Cristiano Chiamulera
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
| | - Giulia Benvegnù
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessandro Piva
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Giovanna Paolone
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
33
|
Yu JH, Napoli JL, Lovett-Barron M. Understanding collective behavior through neurobiology. Curr Opin Neurobiol 2024; 86:102866. [PMID: 38852986 PMCID: PMC11439442 DOI: 10.1016/j.conb.2024.102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
A variety of organisms exhibit collective movement, including schooling fish and flocking birds, where coordinated behavior emerges from the interactions between group members. Despite the prevalence of collective movement in nature, little is known about the neural mechanisms producing each individual's behavior within the group. Here we discuss how a neurobiological approach can enrich our understanding of collective behavior by determining the mechanisms by which individuals interact. We provide examples of sensory systems for social communication during collective movement, highlight recent discoveries about neural systems for detecting the position and actions of social partners, and discuss opportunities for future research. Understanding the neurobiology of collective behavior can provide insight into how nervous systems function in a dynamic social world.
Collapse
Affiliation(s)
- Jo-Hsien Yu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. https://twitter.com/anitajhyu
| | - Julia L Napoli
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. https://twitter.com/juliadoingneuro
| | - Matthew Lovett-Barron
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
34
|
Piza DB, Corrigan BW, Gulli RA, Do Carmo S, Cuello AC, Muller L, Martinez-Trujillo J. Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus. Nat Commun 2024; 15:4053. [PMID: 38744848 PMCID: PMC11093997 DOI: 10.1038/s41467-024-48374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.
Collapse
Affiliation(s)
- Diego B Piza
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | - Benjamin W Corrigan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | | | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lyle Muller
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Julio Martinez-Trujillo
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Western University, London, ON, Canada.
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Department of Psychiatry, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| |
Collapse
|
35
|
Vignoud G, Venance L, Touboul JD. Anti-Hebbian plasticity drives sequence learning in striatum. Commun Biol 2024; 7:555. [PMID: 38724614 PMCID: PMC11082161 DOI: 10.1038/s42003-024-06203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Spatio-temporal activity patterns have been observed in a variety of brain areas in spontaneous activity, prior to or during action, or in response to stimuli. Biological mechanisms endowing neurons with the ability to distinguish between different sequences remain largely unknown. Learning sequences of spikes raises multiple challenges, such as maintaining in memory spike history and discriminating partially overlapping sequences. Here, we show that anti-Hebbian spike-timing dependent plasticity (STDP), as observed at cortico-striatal synapses, can naturally lead to learning spike sequences. We design a spiking model of the striatal output neuron receiving spike patterns defined as sequential input from a fixed set of cortical neurons. We use a simple synaptic plasticity rule that combines anti-Hebbian STDP and non-associative potentiation for a subset of the presented patterns called rewarded patterns. We study the ability of striatal output neurons to discriminate rewarded from non-rewarded patterns by firing only after the presentation of a rewarded pattern. In particular, we show that two biological properties of striatal networks, spiking latency and collateral inhibition, contribute to an increase in accuracy, by allowing a better discrimination of partially overlapping sequences. These results suggest that anti-Hebbian STDP may serve as a biological substrate for learning sequences of spikes.
Collapse
Affiliation(s)
- Gaëtan Vignoud
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France.
| | - Jonathan D Touboul
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
36
|
Zhang X, Cao Q, Gao K, Chen C, Cheng S, Li A, Zhou Y, Liu R, Hao J, Kropff E, Miao C. Multiplexed representation of others in the hippocampal CA1 subfield of female mice. Nat Commun 2024; 15:3702. [PMID: 38697969 PMCID: PMC11065873 DOI: 10.1038/s41467-024-47453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Hippocampal place cells represent the position of a rodent within an environment. In addition, recent experiments show that the CA1 subfield of a passive observer also represents the position of a conspecific performing a spatial task. However, whether this representation is allocentric, egocentric or mixed is less clear. In this study we investigated the representation of others during free behavior and in a task where female mice learned to follow a conspecific for a reward. We found that most cells represent the position of others relative to self-position (social-vector cells) rather than to the environment, with a prevalence of purely egocentric coding modulated by context and mouse identity. Learning of a pursuit task improved the tuning of social-vector cells, but their number remained invariant. Collectively, our results suggest that the hippocampus flexibly codes the position of others in multiple coordinate systems, albeit favoring the self as a reference point.
Collapse
Affiliation(s)
- Xiang Zhang
- State key laboratory of Membrane biology, School of Life Sciences, Peking university, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking university, Beijing, 100871, China
| | - Qichen Cao
- State key laboratory of Membrane biology, School of Life Sciences, Peking university, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking university, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Kai Gao
- State key laboratory of Membrane biology, School of Life Sciences, Peking university, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking university, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Cong Chen
- State key laboratory of Membrane biology, School of Life Sciences, Peking university, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking university, Beijing, 100871, China
| | - Sihui Cheng
- State key laboratory of Membrane biology, School of Life Sciences, Peking university, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking university, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Ang Li
- State key laboratory of Membrane biology, School of Life Sciences, Peking university, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking university, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Yuqian Zhou
- State key laboratory of Membrane biology, School of Life Sciences, Peking university, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking university, Beijing, 100871, China
| | - Ruojin Liu
- State key laboratory of Membrane biology, School of Life Sciences, Peking university, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking university, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Jun Hao
- State key laboratory of Membrane biology, School of Life Sciences, Peking university, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking university, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Emilio Kropff
- Leloir Institute/IIBBA-CONICET, Buenos Aires, Argentina.
| | - Chenglin Miao
- State key laboratory of Membrane biology, School of Life Sciences, Peking university, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking university, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
- Chinese Institute for Brain Research (CIBR), Beijing, China.
| |
Collapse
|
37
|
Deng H, Gao Y, Mo L, Mo C. Concurrent attention to hetero-depth surfaces in 3-D visual space is governed by theta rhythm. Psychophysiology 2024; 61:e14494. [PMID: 38041416 DOI: 10.1111/psyp.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
When simultaneously confronted with multiple attentional targets, visual system employs a time-multiplexing approach in which each target alternates for prioritized access, a mechanism broadly known as rhythmic attentional sampling. For the past decade, rhythmic attentional sampling has received mounting support from converging behavioral and neural findings. However, so compelling are these findings that a critical test ground has been long overshadowed, namely the 3-D visual space where attention is complicated by extraction of the spatial layout of surfaces extending beyond 2-D planes. It remains unknown how attentional deployment to multiple targets is accomplished in the 3-D space. Here, we provided a time-resolved portrait of the behavioral and neural dynamics when participants concurrently attended to two surfaces defined by motion-depth conjunctions. To characterize the moment-to-moment attentional modulation effects, we measured perceptual sensitivity to the hetero-depth surface motions on a fine temporal scale and reconstructed their neural representations using a time-resolved multivariate inverted encoding model. We found that the perceptual sensitivity to the two surface motions rhythmically fluctuated over time at ~4 Hz, with one's enhancement closely tracked by the other's diminishment. Moreover, the behavioral pattern was coupled with an ongoing periodic alternation in strength between the two surface motion representations in the same frequency. Together, our findings provide the first converging evidence of an attentional "pendulum" that rhythmically traverses different stereoscopic depth planes and are indicative of a ubiquitous attentional time multiplexor based on theta rhythm in the 3-D visual space.
Collapse
Affiliation(s)
- Hongyu Deng
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, P.R. China
| | - Yuan Gao
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, P.R. China
| | - Lei Mo
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, P.R. China
| | - Ce Mo
- Department of Psychology, Sun-Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
38
|
Yanakieva S, Frost BE, Amin E, Nelson AJD, Aggleton JP. Disrupting direct inputs from the dorsal subiculum to the granular retrosplenial cortex impairs flexible spatial memory in the rat. Eur J Neurosci 2024; 59:2715-2731. [PMID: 38494604 DOI: 10.1111/ejn.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
In a changing environment, animals must process spatial signals in a flexible manner. The rat hippocampal formation projects directly upon the retrosplenial cortex, with most inputs arising from the dorsal subiculum and terminating in the granular retrosplenial cortex (area 29). The present study examined whether these same projections are required for spatial working memory and what happens when available spatial cues are altered. Consequently, injections of iDREADDs were made into the dorsal subiculum of rats. In a separate control group, GFP-expressing adeno-associated virus was injected into the dorsal subiculum. Both groups received intracerebral infusions within the retrosplenial cortex of clozapine, which in the iDREADDs rats should selectively disrupt the subiculum to retrosplenial projections. When tested on reinforced T-maze alternation, disruption of the subiculum to retrosplenial projections had no evident effect on the performance of those alternation trials when all spatial-cue types remained present and unchanged. However, the same iDREADDs manipulation impaired performance on all three alternation conditions when there was a conflict or selective removal of spatial cues. These findings reveal how the direct projections from the dorsal subiculum to the retrosplenial cortex support the flexible integration of different spatial cue types, helping the animal to adopt the spatial strategy that best meets current environmental demands.
Collapse
Affiliation(s)
| | | | - Eman Amin
- School of Psychology, Cardiff University, Wales, UK
| | | | | |
Collapse
|
39
|
Fortunato C, Bennasar-Vázquez J, Park J, Chang JC, Miller LE, Dudman JT, Perich MG, Gallego JA. Nonlinear manifolds underlie neural population activity during behaviour. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549575. [PMID: 37503015 PMCID: PMC10370078 DOI: 10.1101/2023.07.18.549575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
There is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single neuron responses can be well described by relatively few patterns of neural co-modulation. The study of such low-dimensional structure of neural population activity has provided important insights into how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction techniques to estimate these population-wide co-modulation patterns, constraining them to a flat "neural manifold". Here, we hypothesised that since neurons have nonlinear responses and make thousands of distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should be intrinsically nonlinear. Combining neural population recordings from monkey, mouse, and human motor cortex, and mouse striatum, we show that: 1) neural manifolds are intrinsically nonlinear; 2) their nonlinearity becomes more evident during complex tasks that require more varied activity patterns; and 3) manifold nonlinearity varies across architecturally distinct brain regions. Simulations using recurrent neural network models confirmed the proposed relationship between circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and properly accounting for such nonlinearities will be critical as neuroscientists move towards studying numerous brain regions involved in increasingly complex and naturalistic behaviours.
Collapse
Affiliation(s)
- Cátia Fortunato
- Department of Bioengineering, Imperial College London, London UK
| | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA
| | - Joanna C. Chang
- Department of Bioengineering, Imperial College London, London UK
| | - Lee E. Miller
- Department of Neurosciences, Northwestern University, Chicago IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago IL, USA, and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Joshua T. Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA
| | - Matthew G. Perich
- Department of Neurosciences, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Québec Artificial Intelligence Institute (MILA), Montréal, Québec, Canada
| | - Juan A. Gallego
- Department of Bioengineering, Imperial College London, London UK
| |
Collapse
|
40
|
Tian C, Schrack JA, Agrawal Y, An Y, Cai Y, Wang H, Gross AL, Tian Q, Simonsick EM, Ferrucci L, Resnick SM, Wanigatunga AA. Cross-sectional associations between multisensory impairment and brain volumes in older adults: Baltimore Longitudinal Study of Aging. Sci Rep 2024; 14:9339. [PMID: 38653745 DOI: 10.1038/s41598-024-59965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Sensory impairment and brain atrophy is common among older adults, increasing the risk of dementia. Yet, the degree to which multiple co-occurring sensory impairments (MSI across vision, proprioception, vestibular function, olfactory, and hearing) are associated with brain morphometry remain unexplored. Data were from 208 cognitively unimpaired participants (mean age 72 ± 10 years; 59% women) enrolled in the Baltimore Longitudinal Study of Aging. Multiple linear regression models were used to estimate cross-sectional associations between MSI and regional brain imaging volumes. For each additional sensory impairment, there were associated lower orbitofrontal gyrus and entorhinal cortex volumes but higher caudate and putamen volumes. Participants with MSI had lower mean volumes in the superior frontal gyrus, orbitofrontal gyrus, superior parietal lobe, and precuneus compared to participants with < 2 impairments. While MSI was largely associated with lower brain volumes, our results suggest the possibility that MSI was associated with higher basal ganglia volumes. Longitudinal analyses are needed to evaluate the temporality and directionality of these associations.
Collapse
Affiliation(s)
- Chenxin Tian
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center on Aging and Health, Johns Hopkins University, 2024 E. Monument Street, Suite 2-700, Rm 2-726, Baltimore, MD, 21205, USA
| | - Yuri Agrawal
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yang An
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Yurun Cai
- Department of Health and Community Systems, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | - Hang Wang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center on Aging and Health, Johns Hopkins University, 2024 E. Monument Street, Suite 2-700, Rm 2-726, Baltimore, MD, 21205, USA
| | - Alden L Gross
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center on Aging and Health, Johns Hopkins University, 2024 E. Monument Street, Suite 2-700, Rm 2-726, Baltimore, MD, 21205, USA
| | - Qu Tian
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Susan M Resnick
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Amal A Wanigatunga
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Center on Aging and Health, Johns Hopkins University, 2024 E. Monument Street, Suite 2-700, Rm 2-726, Baltimore, MD, 21205, USA.
| |
Collapse
|
41
|
Viganò S, Bayramova R, Doeller CF, Bottini R. Spontaneous eye movements reflect the representational geometries of conceptual spaces. Proc Natl Acad Sci U S A 2024; 121:e2403858121. [PMID: 38635638 PMCID: PMC11046636 DOI: 10.1073/pnas.2403858121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Functional neuroimaging studies indicate that the human brain can represent concepts and their relational structure in memory using coding schemes typical of spatial navigation. However, whether we can read out the internal representational geometries of conceptual spaces solely from human behavior remains unclear. Here, we report that the relational structure between concepts in memory might be reflected in spontaneous eye movements during verbal fluency tasks: When we asked participants to randomly generate numbers, their eye movements correlated with distances along the left-to-right one-dimensional geometry of the number space (mental number line), while they scaled with distance along the ring-like two-dimensional geometry of the color space (color wheel) when they randomly generated color names. Moreover, when participants randomly produced animal names, eye movements correlated with low-dimensional similarity in word frequencies. These results suggest that the representational geometries used to internally organize conceptual spaces might be read out from gaze behavior.
Collapse
Affiliation(s)
- Simone Viganò
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Psychology, Leipzig04103, Germany
- Center for Mind/Brain Sciences, University of Trento, Rovereto38068, Italy
| | - Rena Bayramova
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Psychology, Leipzig04103, Germany
- Max Planck School of Cognition, Max Planck Institute of Human Cognitive and Brain Sciences, Department of Psychology, Leipzig04103, Germany
| | - Christian F. Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Psychology, Leipzig04103, Germany
- Kavli Institute for Systems Neuroscience, Center for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Jebsen Center for Alzheimer’s Disease, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Roberto Bottini
- Center for Mind/Brain Sciences, University of Trento, Rovereto38068, Italy
| |
Collapse
|
42
|
Kaster M, Czappa F, Butz-Ostendorf M, Wolf F. Building a realistic, scalable memory model with independent engrams using a homeostatic mechanism. Front Neuroinform 2024; 18:1323203. [PMID: 38706939 PMCID: PMC11066267 DOI: 10.3389/fninf.2024.1323203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Memory formation is usually associated with Hebbian learning and synaptic plasticity, which changes the synaptic strengths but omits structural changes. A recent study suggests that structural plasticity can also lead to silent memory engrams, reproducing a conditioned learning paradigm with neuron ensembles. However, this study is limited by its way of synapse formation, enabling the formation of only one memory engram. Overcoming this, our model allows the formation of many engrams simultaneously while retaining high neurophysiological accuracy, e.g., as found in cortical columns. We achieve this by substituting the random synapse formation with the Model of Structural Plasticity. As a homeostatic model, neurons regulate their activity by growing and pruning synaptic elements based on their current activity. Utilizing synapse formation based on the Euclidean distance between the neurons with a scalable algorithm allows us to easily simulate 4 million neurons with 343 memory engrams. These engrams do not interfere with one another by default, yet we can change the simulation parameters to form long-reaching associations. Our model's analysis shows that homeostatic engram formation requires a certain spatiotemporal order of events. It predicts that synaptic pruning precedes and enables synaptic engram formation and that it does not occur as a mere compensatory response to enduring synapse potentiation as in Hebbian plasticity with synaptic scaling. Our model paves the way for simulations addressing further inquiries, ranging from memory chains and hierarchies to complex memory systems comprising areas with different learning mechanisms.
Collapse
Affiliation(s)
- Marvin Kaster
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Fabian Czappa
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Markus Butz-Ostendorf
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
- Data Science, Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Felix Wolf
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
43
|
Taghizadeh B, Fortmann O, Gail A. Position- and scale-invariant object-centered spatial localization in monkey frontoparietal cortex dynamically adapts to cognitive demand. Nat Commun 2024; 15:3357. [PMID: 38637493 PMCID: PMC11026390 DOI: 10.1038/s41467-024-47554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Egocentric encoding is a well-known property of brain areas along the dorsal pathway. Different to previous experiments, which typically only demanded egocentric spatial processing during movement preparation, we designed a task where two male rhesus monkeys memorized an on-the-object target position and then planned a reach to this position after the object re-occurred at variable location with potentially different size. We found allocentric (in addition to egocentric) encoding in the dorsal stream reach planning areas, parietal reach region and dorsal premotor cortex, which is invariant with respect to the position, and, remarkably, also the size of the object. The dynamic adjustment from predominantly allocentric encoding during visual memory to predominantly egocentric during reach planning in the same brain areas and often the same neurons, suggests that the prevailing frame of reference is less a question of brain area or processing stream, but more of the cognitive demands.
Collapse
Affiliation(s)
- Bahareh Taghizadeh
- Sensorimotor Group, German Primate Center, Göttingen, Germany
- School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
| | - Ole Fortmann
- Sensorimotor Group, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Alexander Gail
- Sensorimotor Group, German Primate Center, Göttingen, Germany.
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany.
| |
Collapse
|
44
|
Zeng YF, Yang KX, Cui Y, Zhu XN, Li R, Zhang H, Wu DC, Stevens RC, Hu J, Zhou N. Conjunctive encoding of exploratory intentions and spatial information in the hippocampus. Nat Commun 2024; 15:3221. [PMID: 38622129 PMCID: PMC11018604 DOI: 10.1038/s41467-024-47570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
The hippocampus creates a cognitive map of the external environment by encoding spatial and self-motion-related information. However, it is unclear whether hippocampal neurons could also incorporate internal cognitive states reflecting an animal's exploratory intention, which is not driven by rewards or unexpected sensory stimuli. In this study, a subgroup of CA1 neurons was found to encode both spatial information and animals' investigatory intentions in male mice. These neurons became active before the initiation of exploration behaviors at specific locations and were nearly silent when the same fields were traversed without exploration. Interestingly, this neuronal activity could not be explained by object features, rewards, or mismatches in environmental cues. Inhibition of the lateral entorhinal cortex decreased the activity of these cells during exploration. Our findings demonstrate that hippocampal neurons may bridge external and internal signals, indicating a potential connection between spatial representation and intentional states in the construction of internal navigation systems.
Collapse
Affiliation(s)
- Yi-Fan Zeng
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ke-Xin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yilong Cui
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rui Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hanqing Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Dong Chuan Wu
- Neuroscience and Brain Disease Center, Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, 404333, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung City, 404333, Taiwan
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji Hu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
45
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
46
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
47
|
Clark H, Nolan MF. Task-anchored grid cell firing is selectively associated with successful path integration-dependent behaviour. eLife 2024; 12:RP89356. [PMID: 38546203 PMCID: PMC10977970 DOI: 10.7554/elife.89356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.
Collapse
Affiliation(s)
- Harry Clark
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, Hugh Robson Building, University of EdinburghEdinburghUnited Kingdom
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, Hugh Robson Building, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
48
|
Hoffman C, Cheng J, Morales R, Ji D, Dabaghian Y. Altered patterning of neural activity in a tauopathy mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586417. [PMID: 38585991 PMCID: PMC10996513 DOI: 10.1101/2024.03.23.586417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition that manifests at multiple levels and involves a spectrum of abnormalities ranging from the cellular to cognitive. Here, we investigate the impact of AD-related tau-pathology on hippocampal circuits in mice engaged in spatial navigation, and study changes of neuronal firing and dynamics of extracellular fields. While most studies are based on analyzing instantaneous or time-averaged characteristics of neuronal activity, we focus on intermediate timescales-spike trains and waveforms of oscillatory potentials, which we consider as single entities. We find that, in healthy mice, spike arrangements and wave patterns (series of crests or troughs) are coupled to the animal's location, speed, and acceleration. In contrast, in tau-mice, neural activity is structurally disarrayed: brainwave cadence is detached from locomotion, spatial selectivity is lost, the spike flow is scrambled. Importantly, these alterations start early and accumulate with age, which exposes progressive disinvolvement the hippocampus circuit in spatial navigation. These features highlight qualitatively different neurodynamics than the ones provided by conventional analyses, and are more salient, thus revealing a new level of the hippocampal circuit disruptions.
Collapse
Affiliation(s)
- C Hoffman
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| | - J Cheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - R Morales
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| | - D Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Y Dabaghian
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| |
Collapse
|
49
|
Moon HJ, Albert L, De Falco E, Tasu C, Gauthier B, Park HD, Blanke O. Changes in spatial self-consciousness elicit grid cell-like representation in the entorhinal cortex. Proc Natl Acad Sci U S A 2024; 121:e2315758121. [PMID: 38489383 PMCID: PMC10962966 DOI: 10.1073/pnas.2315758121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Grid cells in the entorhinal cortex (EC) encode an individual's location in space, integrating both environmental and multisensory bodily cues. Notably, body-derived signals are also primary signals for the sense of self. While studies have demonstrated that continuous application of visuo-tactile bodily stimuli can induce perceptual shifts in self-location, it remains unexplored whether these illusory changes suffice to trigger grid cell-like representation (GCLR) within the EC, and how this compares to GCLR during conventional virtual navigation. To address this, we systematically induced illusory drifts in self-location toward controlled directions using visuo-tactile bodily stimulation, while maintaining the subjects' visual viewpoint fixed (absent conventional virtual navigation). Subsequently, we evaluated the corresponding GCLR in the EC through functional MRI analysis. Our results reveal that illusory changes in perceived self-location (independent of changes in environmental navigation cues) can indeed evoke entorhinal GCLR, correlating in strength with the magnitude of perceived self-location, and characterized by similar grid orientation as during conventional virtual navigation in the same virtual room. These data demonstrate that the same grid-like representation is recruited when navigating based on environmental, mainly visual cues, or when experiencing illusory forward drifts in self-location, driven by perceptual multisensory bodily cues.
Collapse
Affiliation(s)
- Hyuk-June Moon
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul02792, Republic of Korea
| | - Louis Albert
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
| | - Emanuela De Falco
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
| | - Corentin Tasu
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
| | - Baptiste Gauthier
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
- Clinical Research Unit, Cantonal Hospital, Neuchâtel2000, Switzerland
| | - Hyeong-Dong Park
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Olaf Blanke
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Geneva1202, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), Lausanne1015, Switzerland
- Department of Clinical Neurosciences, University Hospital Geneva, Geneva1205, Switzerland
| |
Collapse
|
50
|
Jiang Q, Wu KLK, Hu XQ, Cheung MH, Chen W, Ma CW, Shum DKY, Chan YS. Neonatal GABAergic transmission primes vestibular gating of output for adult spatial navigation. Cell Mol Life Sci 2024; 81:147. [PMID: 38502309 PMCID: PMC10951018 DOI: 10.1007/s00018-024-05170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
GABAergic interneurons are poised with the capacity to shape circuit output via inhibitory gating. How early in the development of medial vestibular nucleus (MVN) are GABAergic neurons recruited for feedforward shaping of outputs to higher centers for spatial navigation? The role of early GABAergic transmission in assembling vestibular circuits for spatial navigation was explored by neonatal perturbation. Immunohistochemistry and confocal imaging were utilized to reveal the expression of parvalbumin (PV)-expressing MVN neurons and their perineuronal nets. Whole-cell patch-clamp recording, coupled with optogenetics, was conducted in vitro to examine the synaptic function of MVN circuitry. Chemogenetic targeting strategy was also employed in vivo to manipulate neuronal activity during navigational tests. We found in rats a neonatal critical period before postnatal day (P) 8 in which competitive antagonization of GABAergic transmission in the MVN retarded maturation of inhibitory neurotransmission, as evidenced by deranged developmental trajectory for excitation/inhibition ratio and an extended period of critical period-like plasticity in GABAergic transmission. Despite increased number of PV-expressing GABAergic interneurons in the MVN, optogenetic-coupled patch-clamp recording indicated null-recruitment of these neurons in tuning outputs along the ascending vestibular pathway. Such perturbation not only offset output dynamics of ascending MVN output neurons, but was further accompanied by impaired vestibular-dependent navigation in adulthood. The same perturbations were however non-consequential when applied after P8. Results highlight neonatal GABAergic transmission as key to establishing feedforward output dynamics to higher brain centers for spatial cognition and navigation.
Collapse
Affiliation(s)
- Qiufen Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth Lap-Kei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Xiao-Qian Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Man-Him Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Wenqiang Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Chun-Wai Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Daisy Kwok-Yan Shum
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China.
| |
Collapse
|