1
|
Zhang A, Luo X, Li Y, Yan L, Lai X, Yang Q, Zhao Z, Huang G, Li Z, Wu Q, Wang J. Epigenetic changes driven by environmental pollutants in lung carcinogenesis: a comprehensive review. Front Public Health 2024; 12:1420933. [PMID: 39440184 PMCID: PMC11493668 DOI: 10.3389/fpubh.2024.1420933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality globally, with environmental pollutants identified as significant risk factors, especially for nonsmokers. The intersection of these pollutants with epigenetic mechanisms has emerged as a critical area of interest for understanding the etiology and progression of lung cancer. Epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs, can induce alterations in gene expression without affecting the DNA sequence and are influenced by environmental factors, contributing to the transformation of normal cells into malignant cells. This review assessed the literature on the influence of environmental pollutants on lung cancer epigenetics. A comprehensive search across databases such as PubMed, Web of Science, Cochrane Library, and Embase yielded 3,254 publications, with 22 high-quality papers included for in-depth analysis. These studies demonstrated the role of epigenetic markers, such as DNA methylation patterns of genes like F2RL3 and AHRR and alterations in the miRNA expression profiles, as potential biomarkers for lung cancer diagnosis and treatment. The review highlights the need to expand research beyond homogenous adult male groups typically found in high-risk occupational environments to broader population demographics. Such diversification can reduce biases and enhance the relevance of findings to various clinical contexts, fostering the development of personalized preventive and therapeutic measures. In conclusion, our findings underscore the potential of innovative epigenetic therapies, such as DNA demethylating drugs and histone modification agents, to counter environmental toxins' carcinogenic effects. The growing interest in miRNA therapies and studies aiming to correct aberrant methylation patterns indicate significant strides toward better lung cancer management and a healthier future for global communities.
Collapse
Affiliation(s)
- Aijia Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuexing Luo
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Yu Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Lunchun Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Department of Comprehensive Surgery, Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangdong-Macao in-Depth Cooperation Zone in Hengqin, Hengqin, China
| | - Xin Lai
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianxu Yang
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Guanghui Huang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Weber K, Bruer G, Krueger N, Schuster TB, Creutzenberg O, Schaudien D. Regenerative and progressing lesions in lungs and lung-associated lymph nodes from fourteen 90-day inhalation studies with chemically different particulate materials. Toxicol Lett 2024; 399 Suppl 1:49-72. [PMID: 38159619 DOI: 10.1016/j.toxlet.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Rat lungs and lung-associated lymph nodes from 14 inhalation studies with chemically different particulate materials were histopathologically re-evaluated, and the bronchoalveolar lavage fluid (BALF) data and lung burden analyses were compared. All investigated substances caused similar lesions. For most substances, 1 mg/m3 of respirable particulate matter was established as the borderline for adverse morphological changes after the 90-day exposure period, confirmed by the increase in polymorphonuclear neutrophils in BALF. Possible reversibility was demonstrated when recovery groups are included in the study especially allowing the differentiation between regeneration or progressing of inflammatory changes during the recovery period. It was concluded, that the major driver of toxicity is not an intrinsic chemical property of the particle but a particle effect. Concerning classification for specific target organ toxicant (STOT) repeated exposure (RE), this paper highlights that merely comparing the lowest concentration, at which adverse effects were observed, with the Classification Labelling and Packaging (CLP) regulation (EC) no. 1272/2008 guidance values is inappropriate and might lead to a STOT classification under CLP for a large part of the substances discussed in this paper, on the basis of typically mild to moderate findings in rat lung and lung-associated lymph nodes on day 1 after exposure. An in-depth evaluation of the pathologic findings is required and an expert judgement has to be included in the decision on classification and labeling, evaluating the type and severity of effects and comparing these with the classification criteria.
Collapse
Affiliation(s)
| | - Gustav Bruer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Germany
| | - Nils Krueger
- Evonik Operations GmbH, Smart Materials, Hanau, Germany
| | | | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Germany.
| |
Collapse
|
3
|
Lee YF, Phua CZJ, Yuan J, Zhang B, Lee MY, Kannan S, Chiu YHJ, Koh CWQ, Yap CK, Lim EKH, Chen J, Lim Y, Lee JJH, Skanderup AJ, Wang Z, Zhai W, Tan NS, Verma CS, Tay Y, Tan DSW, Tam WL. PARP4 interacts with hnRNPM to regulate splicing during lung cancer progression. Genome Med 2024; 16:91. [PMID: 39034402 PMCID: PMC11265163 DOI: 10.1186/s13073-024-01328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND The identification of cancer driver genes from sequencing data has been crucial in deepening our understanding of tumor biology and expanding targeted therapy options. However, apart from the most commonly altered genes, the mechanisms underlying the contribution of other mutations to cancer acquisition remain understudied. Leveraging on our whole-exome sequencing of the largest Asian lung adenocarcinoma (LUAD) cohort (n = 302), we now functionally assess the mechanistic role of a novel driver, PARP4. METHODS In vitro and in vivo tumorigenicity assays were used to study the functional effects of PARP4 loss and mutation in multiple lung cancer cell lines. Interactomics analysis by quantitative mass spectrometry was conducted to identify PARP4's interaction partners. Transcriptomic data from cell lines and patient tumors were used to investigate splicing alterations. RESULTS PARP4 depletion or mutation (I1039T) promotes the tumorigenicity of KRAS- or EGFR-driven lung cancer cells. Disruption of the vault complex, with which PARP4 is commonly associated, did not alter tumorigenicity, indicating that PARP4's tumor suppressive activity is mediated independently. The splicing regulator hnRNPM is a potentially novel PARP4 interaction partner, the loss of which likewise promotes tumor formation. hnRNPM loss results in splicing perturbations, with a propensity for dysregulated intronic splicing that was similarly observed in PARP4 knockdown cells and in LUAD cohort patients with PARP4 copy number loss. CONCLUSIONS PARP4 is a novel modulator of lung adenocarcinoma, where its tumor suppressive activity is mediated not through the vault complex-unlike conventionally thought, but in association with its novel interaction partner hnRNPM, thus suggesting a role for splicing dysregulation in LUAD tumorigenesis.
Collapse
Affiliation(s)
- Yi Fei Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Ju Yuan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Yui Hei Jasper Chiu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Casslynn Wei Qian Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Choon Kong Yap
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Edwin Kok Hao Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Jianbin Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Yuhua Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Jane Jia Hui Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Zhenxun Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Chandra S Verma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Daniel Shao Weng Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
4
|
Alhajlah S. The molecular mechanisms of various long non-coding RNA (lncRNA) in human lung tumors: Shedding light on the molecular mechanisms. Pathol Res Pract 2024; 256:155253. [PMID: 38513578 DOI: 10.1016/j.prp.2024.155253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Although it is still mostly incomplete, unraveling the gene expression networks controlling the initiation and progression of cancer is crucial. The rapid identification and characterization of long noncoding RNAs (lncRNAs) is made possible by advancements in computational biology and RNA-seq technology. According to recent research, lncRNAs are involved in several stages in the genesis of lung cancer. These lncRNAs interact with DNA, RNA, protein molecules, and/or their combinations. They play a crucial role in transcriptional and post-transcriptional regulation, as well as chromatin architecture. Their misexpression gives cancer cells the ability to start, grow, and spread tumors. This review will focus on their abnormal expression and function in lung cancer, as well as their involvement in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
5
|
Al-Hawary SIS, Ruzibakieva M, Gupta R, Malviya J, Toama MA, Hjazi A, Alkhayyat MRR, Alsaab HO, Hadi A, Alwaily ER. Detailed role of microRNA-mediated regulation of PI3K/AKT axis in human tumors. Cell Biochem Funct 2024; 42:e3904. [PMID: 38102946 DOI: 10.1002/cbf.3904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The regulation of signal transmission and biological processes, such as cell proliferation, apoptosis, metabolism, migration, and angiogenesis are greatly influenced by the PI3K/AKT signaling pathway. Highly conserved endogenous non-protein-coding RNAs known as microRNAs (miRNAs) have the ability to regulate gene expression by inhibiting mRNA translation or mRNA degradation. MiRNAs serve key role in PI3K/AKT pathway as upstream or downstream target, and aberrant activation of this pathway contributes to the development of cancers. A growing body of research shows that miRNAs can control the PI3K/AKT pathway to control the biological processes within cells. The expression of genes linked to cancers can be controlled by the miRNA/PI3K/AKT axis, which in turn controls the development of cancer. There is also a strong correlation between the expression of miRNAs linked to the PI3K/AKT pathway and numerous clinical traits. Moreover, PI3K/AKT pathway-associated miRNAs are potential biomarkers for cancer diagnosis, therapy, and prognostic evaluation. The role and clinical applications of the PI3K/AKT pathway and miRNA/PI3K/AKT axis in the emergence of cancers are reviewed in this article.
Collapse
Affiliation(s)
| | - Malika Ruzibakieva
- Cell Therapy Department, Institute of Immunology and Human Genomics, Uzbekistan Academy of Science, Tashkent, Uzbekistan
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Mariam Alaa Toama
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Murtadha Raad Radhi Alkhayyat
- Department of Islamic Studies, College of Art, The Islamic University of Najaf, Najaf, Iraq
- Department of Islamic Studies, College of Art, The Islamic University of Babylon, Babylon, Iraq
- Department of Islamic Studies, College of Art, The Islamic University of Al Diwaniyah, Diwaniyah, Iraq
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ali Hadi
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
6
|
Lee JY, Lee JW, Park TG, Han SH, Yoo SY, Jung KM, Kim DM, Lee OJ, Kim D, Chi XZ, Kim EG, Lee YS, Bae SC. Runx3 Restoration Regresses K-Ras-Activated Mouse Lung Cancers and Inhibits Recurrence. Cells 2023; 12:2438. [PMID: 37887282 PMCID: PMC10605764 DOI: 10.3390/cells12202438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Oncogenic K-RAS mutations occur in approximately 25% of human lung cancers and are most frequently found in codon 12 (G12C, G12V, and G12D). Mutated K-RAS inhibitors have shown beneficial results in many patients; however, the inhibitors specifically target K-RASG12C and acquired resistance is a common occurrence. Therefore, new treatments targeting all kinds of oncogenic K-RAS mutations with a durable response are needed. RUNX3 acts as a pioneer factor of the restriction (R)-point, which is critical for the life and death of cells. RUNX3 is inactivated in most K-RAS-activated mouse and human lung cancers. Deletion of mouse lung Runx3 induces adenomas (ADs) and facilitates the development of K-Ras-activated adenocarcinomas (ADCs). In this study, conditional restoration of Runx3 in an established K-Ras-activated mouse lung cancer model regressed both ADs and ADCs and suppressed cancer recurrence, markedly increasing mouse survival. Runx3 restoration suppressed K-Ras-activated lung cancer mainly through Arf-p53 pathway-mediated apoptosis and partly through p53-independent inhibition of proliferation. This study provides in vivo evidence supporting RUNX3 as a therapeutic tool for the treatment of K-RAS-activated lung cancers with a durable response.
Collapse
Affiliation(s)
- Ja-Yeol Lee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| | - Jung-Won Lee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| | - Tae-Geun Park
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| | - Sang-Hyun Han
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| | - Seo-Yeong Yoo
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| | - Kyoung-Mi Jung
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| | - Da-Mi Kim
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| | - Ok-Jun Lee
- Department of Pathology, School of Medicine, Chungbuk National University and Hospital, Cheongju 28644, Republic of Korea;
| | - Dohun Kim
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungbuk National University and Hospital, Cheongju 28644, Republic of Korea;
| | - Xin-Zi Chi
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| | - Eung-Gook Kim
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| | - You-Soub Lee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.); (J.-W.L.); (T.-G.P.); (S.-H.H.); (S.-Y.Y.); (K.-M.J.); (D.-M.K.); (X.-Z.C.); (E.-G.K.)
| |
Collapse
|
7
|
Shen J, Sun N, Wang J, Zens P, Kunzke T, Buck A, Prade VM, Wang Q, Feuchtinger A, Hu R, Berezowska S, Walch A. Patterns of Carbon-Bound Exogenous Compounds Impact Disease Pathophysiology in Lung Cancer Subtypes in Different Ways. ACS NANO 2023; 17:16396-16411. [PMID: 37639684 PMCID: PMC10510585 DOI: 10.1021/acsnano.2c11161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Carbon-bound exogenous compounds, such as polycyclic aromatic hydrocarbons (PAHs), tobacco-specific nitrosamines, aromatic amines, and organohalogens, are known to affect both tumor characteristics and patient outcomes in lung squamous cell carcinoma (LUSC); however, the roles of these compounds in lung adenocarcinoma (LUAD) remain unclear. We analyzed 11 carbon-bound exogenous compounds in LUAD and LUSC samples using in situ high mass-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging and performed a cluster analysis to compare the patterns of carbon-bound exogenous compounds between these two lung cancer subtypes. Correlation analyses were conducted to investigate associations among exogenous compounds, endogenous metabolites, and clinical data, including patient survival outcomes and smoking behaviors. Additionally, we examined differences in exogenous compound patterns between normal and tumor tissues. Our analyses revealed that PAHs, aromatic amines, and organohalogens were more abundant in LUAD than in LUSC, whereas the tobacco-specific nitrosamine nicotine-derived nitrosamine ketone was more abundant in LUSC. Patients with LUAD and LUSC could be separated according to carbon-bound exogenous compound patterns detected in the tumor compartment. The same compounds had differential impacts on patient outcomes, depending on the cancer subtype. Correlation and network analyses indicated substantial differences between LUAD and LUSC metabolomes, associated with substantial differences in the patterns of the carbon-bound exogenous compounds. These data suggest that the contributions of these carcinogenic compounds to cancer biology may differ according to the cancer subtypes.
Collapse
Affiliation(s)
- Jian Shen
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
- Nanxishan
Hospital of Guangxi Zhuang Autonomous Region, Institute of Pathology, Guilin 541002, People’s Republic of China
| | - Na Sun
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jun Wang
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Philipp Zens
- Institute
of Tissue Medicine and Pathology, University
of Bern, Murtenstrasse 31, Bern 3008, Switzerland
- Graduate
School for Health Sciences, University of
Bern, Mittelstrasse 43, Bern 3012, Switzerland
| | - Thomas Kunzke
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Achim Buck
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Verena M. Prade
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Qian Wang
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Annette Feuchtinger
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Ronggui Hu
- Center
for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200030, People’s
Republic of China
| | - Sabina Berezowska
- Institute
of Tissue Medicine and Pathology, University
of Bern, Murtenstrasse 31, Bern 3008, Switzerland
- Department
of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Axel Walch
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| |
Collapse
|
8
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
9
|
Li PY, Li L, Wang YZ. Traditional uses, chemical compositions and pharmacological activities of Dendrobium: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116382. [PMID: 36948262 DOI: 10.1016/j.jep.2023.116382] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium is a kind of medicine food homology plant. Dendrobium has long been used to strengthen "Yin" and tonify five viscera. AIM OF THIS REVIEW This paper presents a systematic review of the folk usage, chemical composition and pharmacological activity of Dendrobium, aiming to provide a reference for subsequent in-depth understanding and better exploitation of health food, medicine, and natural products. MATERIALS AND METHODS Available information about the genus Dendrobium was collected via Web of Science, PubMed, Science Direct, Scopus, APA-Psy Articles, Google Scholar, Connected Papers, Springer Search, and KNCI. The keywords for this article are Dendrobium, traditional use, chemical diversity and pharmacological activity. Use the "Dictionary of Chinese Ethnic Medicine" to provide 23 kinds of Dendrobium with medicinal value, the Latin name of Dendrobium is verified by the Flora of China (www.iplant.cn), and its species distribution and related information are collected. RESULTS There are 78 species of Dendrobium in China, 14 of which are endemic to China. At present, 450 compounds including sesquiterpenoids, lignans compounds, phenolic compounds, phenanthrene compounds, bibenzyls, polysaccharides and flavonoids have been isolated and identified from at least 50 species of Dendrobium. Among them, bibenzyls and polysaccharides are the main active components, phenolics and lignans are widely distributed, sesquiterpenes are the most common chemical constituents in genus Dendrobium plants. The most popular research objects are Dendrobium officinale and Dendrobium huoshanense. CONCLUSIONS Based on traditional folk uses, chemical composition and pharmacological studies, Dendrobium is considered a promising medicinal and edible plant with multiple pharmacological activities. In addition, a large number of clinical applications and further studies on single chemical components based on the diversity of chemical structures should be conducted, which will lay the foundation for the scientific utilization of genus Dendrobium.
Collapse
Affiliation(s)
- Pei-Yuan Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China; College of Biological Resources and Environmental Sciences of Hunan Province, Jishou University, Jishou, 416000, China
| | - Li Li
- College of Biological Resources and Environmental Sciences of Hunan Province, Jishou University, Jishou, 416000, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| |
Collapse
|
10
|
Schaefer D, Cheng X. Recent Advances in Covalent Drug Discovery. Pharmaceuticals (Basel) 2023; 16:ph16050663. [PMID: 37242447 DOI: 10.3390/ph16050663] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In spite of the increasing number of biologics license applications, the development of covalent inhibitors is still a growing field within drug discovery. The successful approval of some covalent protein kinase inhibitors, such as ibrutinib (BTK covalent inhibitor) and dacomitinib (EGFR covalent inhibitor), and the very recent discovery of covalent inhibitors for viral proteases, such as boceprevir, narlaprevir, and nirmatrelvir, represent a new milestone in covalent drug development. Generally, the formation of covalent bonds that target proteins can offer drugs diverse advantages in terms of target selectivity, drug resistance, and administration concentration. The most important factor for covalent inhibitors is the electrophile (warhead), which dictates selectivity, reactivity, and the type of protein binding (i.e., reversible or irreversible) and can be modified/optimized through rational designs. Furthermore, covalent inhibitors are becoming more and more common in proteolysis, targeting chimeras (PROTACs) for degrading proteins, including those that are currently considered to be 'undruggable'. The aim of this review is to highlight the current state of covalent inhibitor development, including a short historical overview and some examples of applications of PROTAC technologies and treatment of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Daniel Schaefer
- Buchmann Institute for Molecular Life Sciences, Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
- Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
- Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Muñoz-Bernart M, Budnick N, Castro A, Manzi M, Monge ME, Pioli J, Defranchi S, Parrilla G, Santilli JP, Davies K, Espinosa JM, Kobayashi K, Vigliano C, Perez-Castro C. S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) inhibits lung cancer tumorigenesis by regulating cell plasticity. Biol Direct 2023; 18:8. [PMID: 36872327 PMCID: PMC9985837 DOI: 10.1186/s13062-023-00364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most frequently diagnosed cancers characterized by high mortality, metastatic potential, and recurrence. Deregulated gene expression of lung cancer, likewise in many other solid tumors, accounts for their cell heterogeneity and plasticity. S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1), also known as Inositol triphosphate (IP(3)) receptor-binding protein released with IP(3) (IRBIT), plays roles in many cellular functions, including autophagy and apoptosis but AHCYL1 role in lung cancer is largely unknown. RESULTS Here, we analyzed the expression of AHCYL1 in Non-Small Cell Lung Cancer (NSCLC) cells from RNA-seq public data and surgical specimens, which revealed that AHCYL1 expression is downregulated in tumors and inverse correlated to proliferation marker Ki67 and the stemness signature expression. AHCYL1-silenced NSCLC cells showed enhanced stem-like properties in vitro, which correlated with higher expression levels of stem markers POU5F1 and CD133. Also, the lack of AHCYL1 enhanced tumorigenicity and angiogenesis in mouse xenograft models highlighting stemness features. CONCLUSIONS These findings indicate that AHCYL1 is a negative regulator in NSCLC tumorigenesis by modulating cell differentiation state and highlighting AHCYL1 as a potential prognostic biomarker for lung cancer.
Collapse
Affiliation(s)
- Melina Muñoz-Bernart
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Nicolás Budnick
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Araceli Castro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI, Buenos Aires, Argentina
| | - Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160 C1428EGA, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Desarrollo Analítico y Control de Procesos, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Julieta Pioli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Sebastián Defranchi
- Servicio de Cirugía Torácica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Gustavo Parrilla
- Servicio de Cirugía Torácica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Juan Pablo Santilli
- Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Kevin Davies
- Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Ken Kobayashi
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160 C1428EGA, Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Vigliano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI, Buenos Aires, Argentina.,Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Melling N, Reeh M, Ghadban T, Tachezy M, Hajek A, Izbicki JR, Grupp K. RAI3 expression is not associated with clinical outcomes of patients with non-small cell lung cancer. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04631-3. [PMID: 36781501 PMCID: PMC10356878 DOI: 10.1007/s00432-023-04631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE Retinoic acid inducible protein 3 (RAI3) has been suggested as prognostic biomarker in several cancer types. The present study aimed to examine the role of RAI3 expression in non-small cell lung cancers (NSCLCs). METHODS RAI3 protein expression was evaluated by immunohistochemistry in tissue microarray (TMA) sections from a retrospective cohort of more than 600 surgically resected NSCLCs and results were compared with clinicopathological features and follow-up data. RESULTS While membranous RAI3 immunostaining was always strong in benign lung, strong RAI3 staining was only detectable in 14.7% of 530 interpretable NSCLCs. Within NSCLC subtypes, immunostaining intensity for RAI3 was significantly decreased in large cell lung cancers (LCLCs) and squamous cell carcinomas (SQCCs) relative to lung adenocarcinomas (LUACs) (P < 0.0001 each). However, RAI3 staining was neither associated with pathological features of NSCLCs nor with survival of patients (P = 0.6915). CONCLUSION Our study shows that RAI3 expression was not associated with clinical outcomes of NSCLC patients and cannot be considered as prognostic marker in lung cancer patients.
Collapse
Affiliation(s)
- Nathaniel Melling
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Reeh
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tarik Ghadban
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - André Hajek
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Robert Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Grupp
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department of Plastic, Reconstructive and Aesthetic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Safdar MA, Aslam RMN, Shakeel A, Shiza, Waqar M, Jmail A, Mehmood MH, Gul H. Cyanidin as potential anticancer agent targeting various proliferative pathways. Chem Biol Drug Des 2023; 101:438-452. [PMID: 36326796 DOI: 10.1111/cbdd.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
A natural compound cyanidin, which is a type of anthocyanin present in pigmented leaves, fruits, and flowers; distributed widely in berries, apples, and oranges possess anticancer activities, thus curing various types of cancer such as breast, liver, lung, prostate, and thyroid cancer. The article provides an insight into the potential of using a single phytochemical, cyanidin to treat various cancer types including breast, liver, lung, prostate, and thyroid cancer. Information about cyanidin and its pharmacological impact on cancer was collected from books, scientific journals, and reports through electronic data search (Web of Science, Scifinder, PubMed, Scopus, Google Scholar, Elsevier, Springer, Wiley, ACS, Science Direct, CNKI as well as Kew Plants of the Word Online) and library. Cyanidin produces its effects against cancer probably by inhibiting (RAS, MAPK) and activating (caspases-3 and P-38) innovative molecular pathways. It may cause cell cycle arrest, cell differentiation processes and changes in redox status which trigger the cytotoxic chemotherapeutic effects. However, it also optimizes the chemotherapeutic targets which are cancer cells less responsive to chemotherapy. Cancer is considered the most widely spread disease and cyanidin from natural origin provides an essential role in treatment of cancer by approaching various mechanistic pathways.
Collapse
Affiliation(s)
- Muhammad Azhaf Safdar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Rana Muhammad Nabeel Aslam
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Amna Shakeel
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Shiza
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Mashael Waqar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Abdullah Jmail
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Humaira Gul
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| |
Collapse
|
14
|
Vikas, Mehata AK, Suseela MNL, Behera C, Kumari P, Mahto SK, Muthu MS. Chitosan-alginate nanoparticles of cabazitaxel: Design, dual-receptor targeting and efficacy in lung cancer model. Int J Biol Macromol 2022; 221:874-890. [PMID: 36089091 DOI: 10.1016/j.ijbiomac.2022.09.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Cabazitaxel (CZT) loaded chitosan-alginate based (CSA) nanoparticles were developed with dual targeting functions of both folate receptor and epidermal growth factor receptor (EGFR) using ionic gelation technique. The chitosan-folate conjugate was synthesized, and characterized by using FTIR, NMR and Mass spectroscopy. The physicochemical parameters and morphology of all CSA nanoparticles were examined. The degree of conjugation of folic acid and cetuximab (CTXmab) was determined by UV-Visible spectroscopy and Bradford assay, respectively. Moreover, XPS analysis also supported the presence of the ligands on nanoparticles. The cellular-uptake study performed on A-549 cells demonstrated a significant enhancement in the uptake of dual-receptor targeted CSA nanoparticles than non-targeted and single-receptor targeted CSA nanoparticles. Further, CZT-loaded dual receptors targeted CSA nanoparticles also showed significantly lower IC50 values (~38 folds) than the CZT control against A-549 cells. Further, in-vivo histopathological evaluations of dual receptor-targeted CSA nanoparticles have demonstrated better safety in Wistar rats. Moreover, its treatment on the Benzo(a)pyrene (B(a)P) induced lung cancer mice model has showed the enhanced anticancer efficacy of CZT with a prolonged survival rate.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - M Nikitha Lakshmi Suseela
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Chittaranjan Behera
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Pooja Kumari
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
15
|
Anticancer activity of silver nanoparticles from the aqueous extract of Dictyota ciliolata on non-small cell lung cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Ultrasound-Assisted Synthesis and In Silico Modeling of Methanesulfonyl-Piperazine-Based Dithiocarbamates as Potential Anticancer, Thrombolytic, and Hemolytic Structural Motifs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154776. [PMID: 35897953 PMCID: PMC9369641 DOI: 10.3390/molecules27154776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Piperazine-based dithiocarbamates serve as important scaffolds for numerous pharmacologically active drugs. The current study investigates the design and synthesis of a series of dithiocarbamates with a piperazine unit as well as their biological activities. Under ultrasound conditions, the corresponding piperazine-1-carbodithioates 5a–5j were synthesized from monosubstituted piperazine 2 and N-phenylacetamides 4a–4j in the presence of sodium acetate and carbon disulfide in methanol. The structures of the newly synthesized piperazines were confirmed, and their anti-lung carcinoma effects were evaluated. A cytotoxic assay was performed to assess the hemolytic and thrombolytic potential of the synthesized piperazines 5a–5j. The types of substituents on the aryl ring were found to affect the anticancer activity of piperazines 5a–5j. Piperazines containing 2-chlorophenyl (5b; cell viability = 25.11 ± 2.49) and 2,4-dimethylphenyl (5i; cell viability = 25.31 ± 3.62) moieties demonstrated the most potent antiproliferative activity. On the other hand, piperazines containing 3,4-dichlorophenyl (5d; 0.1%) and 3,4-dimethylphenyl (5j; 0.1%) rings demonstrated the least cytotoxicity. The piperazine with the 2,5-dimethoxyphenyl moiety (5h; 60.2%) showed the best thrombolytic effect. To determine the mode of binding, in silico modeling of the most potent piperazine (i.e., 5b) was performed, and the results were in accordance with those of antiproliferation. It exhibits a similar binding affinity to PQ10 and an efficient conformational alignment with the lipophilic site of PDE10A conserved for PQ10A.
Collapse
|
17
|
Sinjab A, Rahal Z, Kadara H. Cell-by-Cell: Unlocking Lung Cancer Pathogenesis. Cancers (Basel) 2022; 14:3424. [PMID: 35884485 PMCID: PMC9320562 DOI: 10.3390/cancers14143424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
For lung cancers, cellular trajectories and fates are strongly pruned by cell intrinsic and extrinsic factors. Over the past couple of decades, the combination of comprehensive molecular and genomic approaches, as well as the use of relevant pre-clinical models, enhanced micro-dissection techniques, profiling of rare preneoplastic lesions and surrounding tissues, as well as multi-region tumor sequencing, have all provided in-depth insights into the early biology and evolution of lung cancers. The advent of single-cell sequencing technologies has revolutionized our ability to interrogate these same models, tissues, and cohorts at an unprecedented resolution. Single-cell tracking of lung cancer pathogenesis is now transforming our understanding of the roles and consequences of epithelial-microenvironmental cues and crosstalk during disease evolution. By focusing on non-small lung cancers, specifically lung adenocarcinoma subtype, this review aims to summarize our knowledge base of tumor cells-of-origin and tumor-immune dynamics that have been primarily fueled by single-cell analysis of lung adenocarcinoma specimens at various stages of disease pathogenesis and of relevant animal models. The review will provide an overview of how recent reports are rewriting the mechanistic details of lineage plasticity and intra-tumor heterogeneity at a magnified scale thanks to single-cell studies of early- to late-stage lung adenocarcinomas. Future advances in single-cell technologies, coupled with analysis of minute amounts of rare clinical tissues and novel animal models, are anticipated to help transform our understanding of how diverse micro-events elicit macro-scale consequences, and thus to significantly advance how basic genomic and molecular knowledge of lung cancer evolution can be translated into successful targets for early detection and prevention of this lethal disease.
Collapse
Affiliation(s)
- Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Z.R.); (H.K.)
| | | | | |
Collapse
|
18
|
Keith RL, Miller YE, Ghosh M, Franklin WA, Nakachi I, Merrick DT. Lung cancer: Premalignant biology and medical prevention. Semin Oncol 2022; 49:254-260. [PMID: 35305831 DOI: 10.1053/j.seminoncol.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Lung cancer (both adenocarcinoma and squamous cell) progress through a series of pre-malignant histologic changes before the development of invasive disease. Each of these carcinogenic cascades is defined by genetic and epigenetic alterations in pulmonary epithelial cells. Additionally, alterations in the immune response, progenitor cell function, mutational burden, and microenvironmental mediated survival of mutated clones contribute to the risk of pre-malignant lesions progressing to cancer. Medical preventions studies have been completed and current and future trials are informed by the improved understanding of pre-malignancy. This will lead to precision chemoprevention trials based on lesional biology and histologic characteristics.
Collapse
Affiliation(s)
- R L Keith
- Division of Pulmonary Sciences and Critical Care Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO.
| | - Y E Miller
- Division of Pulmonary Sciences and Critical Care Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - M Ghosh
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Wilbur A Franklin
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - I Nakachi
- Department of Pulmonary Medicine, Keio University, Tokyo, Japan
| | - D T Merrick
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
19
|
Comparison of tumor and two types of paratumoral tissues highlighted epigenetic regulation of transcription during field cancerization in non-small cell lung cancer. BMC Med Genomics 2022; 15:66. [PMID: 35313869 PMCID: PMC8939144 DOI: 10.1186/s12920-022-01192-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Field cancerization is the process in which a population of normal or pre-malignant cells is affected by oncogenic alterations leading to progressive molecular changes that drive malignant transformation. Aberrant DNA methylation has been implicated in early cancer development in non-small cell lung cancer (NSCLC); however, studies on its role in field cancerization (FC) are limited. This study aims to identify FC-specific methylation patterns that could distinguish between pre-malignant lesions and tumor tissues in NSCLC. Methods We enrolled 52 patients with resectable NSCLC and collected resected tumor (TUM), tumor-adjacent (ADJ) and tumor-distant normal (DIS) tissue samples, among whom 36 qualified for subsequent analyses. Methylation levels were profiled by bisulfite sequencing using a custom lung-cancer methylation panel. Results ADJ and DIS samples demonstrated similar methylation profiles, which were distinct from distinct from that of TUM. Comparison of TUM and DIS profiles led to identification of 1740 tumor-specific differential methylated regions (DMRs), including 1675 hypermethylated and 65 hypomethylated (adjusted P < 0.05). Six of the top 10 tumor-specific hypermethylated regions were associated with cancer development. We then compared the TUM, ADJ, and DIS to further identify the progressively aggravating aberrant methylations during cancer initiation and early development. A total of 332 DMRs were identified, including a predominant proportion of 312 regions showing stepwise increase in methylation levels as the sample drew nearer to the tumor (i.e. DIS < ADJ < TUM) and 20 regions showing a stepwise decrease pattern. Gene set enrichment analysis (GSEA) for KEGG and GO terms consistently suggested enrichment of DMRs located in transcription factor genes, suggesting a central role of epigenetic regulation of transcription factors in FC and tumorigenesis. Conclusion We revealed distinct methylation patterns between pre-malignant lesions and malignant tumors, suggesting the essential role of DNA methylation as an early step in pre-malignant field defects. Moreover, our study also identified differentially methylated genes, especially transcription factors, that could potentially be used as markers for lung cancer screening and for mechanistic studies of FC and early cancer development. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01192-1.
Collapse
|
20
|
Kubczak M, Michlewska S, Bryszewska M, Aigner A, Ionov M. Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev 2021; 179:114038. [PMID: 34742826 DOI: 10.1016/j.addr.2021.114038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
An overview of the application of natural and synthetic, non-viral vectors for oligonucleotide delivery into the lung is presented in this review, with a special focus on lung cancer. Due to the specificity of the respiratory tract, its structure and natural barriers, the administration of drugs (especially those based on nucleic acids) is a particular challenge. Among widely tested non-viral drug and oligonucleotides carriers, synthetic polymers seem to be most promising. Unique properties of these nanoparticles allow for essentially unlimited possibilities regarding their design and modification. This gives hope that optimal nanoparticles with ideal nucleic acid carrier properties for lung cancer therapy will eventually emanate.
Collapse
|
21
|
Concepcion CP, Ma S, LaFave LM, Bhutkar A, Liu M, DeAngelo LP, Kim JY, Del Priore I, Schoenfeld AJ, Miller M, Kartha VK, Westcott PMK, Sanchez-Rivera FJ, Meli K, Gupta M, Bronson RT, Riely GJ, Rekhtman N, Rudin CM, Kim CF, Regev A, Buenrostro JD, Jacks T. SMARCA4 inactivation promotes lineage-specific transformation and early metastatic features in the lung. Cancer Discov 2021; 12:562-585. [PMID: 34561242 DOI: 10.1158/2159-8290.cd-21-0248] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/30/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
SMARCA4/BRG1 encodes for one of two mutually exclusive ATPases present in mammalian SWI/SNF chromatin remodeling complexes and is frequently mutated in human lung adenocarcinoma. However, the functional consequences of SMARCA4 mutation on tumor initiation, progression, and chromatin regulation in lung cancer remain poorly understood. Here, we demonstrate that loss of Smarca4 sensitizes CCSP+ cells within the lung in a cell-type dependent fashion to malignant transformation and tumor progression, resulting in highly advanced dedifferentiated tumors and increased metastatic incidence. Consistent with these phenotypes, Smarca4-deficient primary tumors lack lung lineage transcription factor activities and resemble a metastatic cell state. Mechanistically, we show that Smarca4 loss impairs the function of all three classes of SWI/SNF complexes, resulting in decreased chromatin accessibility at lung lineage motifs and ultimately accelerating tumor progression. Thus, we propose that the SWI/SNF complex - via Smarca4 - acts as a gatekeeper for lineage-specific cellular transformation and metastasis during lung cancer evolution.
Collapse
Affiliation(s)
- Carla P Concepcion
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | - Lindsay M LaFave
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology
| | - Manyuan Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Lydia P DeAngelo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | - Isabella Del Priore
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | - Manon Miller
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | - Peter M K Westcott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | - Kevin Meli
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | | | | | | | - Charles M Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center
| | - Carla F Kim
- Stem Cell Program, Harvard University, Boston Children's Hospital
| | | | | | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| |
Collapse
|
22
|
Kadara H, Tran LM, Liu B, Vachani A, Li S, Sinjab A, Zhou XJ, Dubinett SM, Krysan K. Early Diagnosis and Screening for Lung Cancer. Cold Spring Harb Perspect Med 2021; 11:a037994. [PMID: 34001525 PMCID: PMC8415293 DOI: 10.1101/cshperspect.a037994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer interception refers to actively blocking the cancer development process by preventing progression of premalignancy to invasive disease. The rate-limiting steps for effective lung cancer interception are the incomplete understanding of the earliest molecular events associated with lung carcinogenesis, the lack of preclinical models of pulmonary premalignancy, and the challenge of developing highly sensitive and specific methods for early detection. Recent advances in cancer interception are facilitated by developments in next-generation sequencing, computational methodologies, as well as the renewed emphasis in precision medicine and immuno-oncology. This review summarizes the current state of knowledge in the areas of molecular abnormalities in lung cancer continuum, preclinical human models of lung cancer pathogenesis, and the advances in early lung cancer diagnostics.
Collapse
Affiliation(s)
- Humam Kadara
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Linh M Tran
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Bin Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Anil Vachani
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania and Philadelphia VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xianghong J Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Steven M Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, California 90024, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| |
Collapse
|
23
|
Galland L, Le Page AL, Lecuelle J, Bibeau F, Oulkhouir Y, Derangère V, Truntzer C, Ghiringhelli F. Prognostic value of Thyroid Transcription Factor-1 expression in lung adenocarcinoma in patients treated with anti PD-1/PD-L1. Oncoimmunology 2021; 10:1957603. [PMID: 34377595 PMCID: PMC8331027 DOI: 10.1080/2162402x.2021.1957603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Anti-PD1/PD-L1-directed immune checkpoint inhibitors are game changers in advanced non-small-cell lung cancer, but biomarkers are lacking. The aim of our study was to find clinically relevant biomarkers of the efficacy of ICI in non-squamous NSCLC. We conducted a retrospective study of patients receiving ICI for advanced non squamous NSCLC in two cohorts. For a subset of patients, RNAseq data were generated on tumor biopsy taken before ICI. The primary end point was progression-free survival under ICI. Secondary end point was overall survival from ICI initiation. In the cohort, we studied 231 patients. Clinico-pathological characteristics included KRAS mutant status (n = 88), TTF1-positive expression (n = 136), LIPI (Lung Immune Prognostic Index) score of 0 (n = 116). In our cohort, lack of TTF1 expression, LIPI score >0, line of treatment >1, and liver metastases were associated with poorer PFS. TTF1 and PD-L1 status could be used to stratify survival and improve the AUC for prediction of prognosis in comparison with the PD-L1 gold standard. Using an external cohort of 154 patients, we confirmed the independent prognostic role of TTF1. TTF1 expression and PD-L1 can be used to stratify risk and predict PFS and OS in patients treated with ICI for NS-NSCLC.
Collapse
Affiliation(s)
- Loïck Galland
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Medical school, University of Burgundy-Franche Comté, Maison de l'université Esplanade Erasme, Dijon, Burgundy, France.,Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France
| | - Anne Laure Le Page
- Department of Pathology, Caen University Hospital, Normandy University, Caen, France
| | - Julie Lecuelle
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France
| | - Frederic Bibeau
- Department of Pathology, Caen University Hospital, Normandy University, Caen, France
| | | | - Valentin Derangère
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Medical school, University of Burgundy-Franche Comté, Maison de l'université Esplanade Erasme, Dijon, Burgundy, France.,Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France.,Umr Inserm 1231, Dijon, France
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France.,Umr Inserm 1231, Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Medical school, University of Burgundy-Franche Comté, Maison de l'université Esplanade Erasme, Dijon, Burgundy, France.,Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France.,Umr Inserm 1231, Dijon, France
| |
Collapse
|
24
|
Miura A, Yamada D, Nakamura M, Tomida S, Shimizu D, Jiang Y, Takao T, Yamamoto H, Suzawa K, Shien K, Yamane M, Sakaguchi M, Toyooka S, Takarada T. Oncogenic potential of human pluripotent stem cell-derived lung organoids with HER2 overexpression. Int J Cancer 2021; 149:1593-1604. [PMID: 34152598 DOI: 10.1002/ijc.33713] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
Lung adenocarcinoma (LUAD) is the most common types among lung cancers generally arising from terminal airway and understanding of multistep carcinogenesis is crucial to develop novel therapeutic strategy for LUAD. Here we used human induced pluripotent stem cells (hiPSCs) to establish iHER2-hiPSCs in which doxycycline induced the expression of the oncoprotein human epidermal growth factor receptor 2 (HER2)/ERBB2. Lung progenitors that differentiated from iHER2-hiPSCs, which expressed NKX2-1/TTF-1 known as a lung lineage maker, were cocultured with human fetal fibroblast and formed human lung organoids (HLOs) comprising alveolar type 2-like cells. HLOs that overexpressed HER2 transformed to tumor-like structures similar to atypical adenomatous hyperplasia, which is known for lung precancerous lesion and upregulated the activities of oncogenic signaling cascades such as RAS/RAF/MAPK and PI3K/AKT/mTOR. The degree of morphological irregularity and proliferation capacity were significantly higher in HLOs from iHER2-hiPSCs. Moreover, the transcriptome profile of the HLOs shifted from a normal lung tissue-like state to one characteristic of clinical LUAD with HER2 amplification. Our results suggest that hiPSC-derived HLOs may serve as a model to recapitulate the early tumorigenesis of LUAD and would provide new insights into the molecular basis of tumor initiation and progression.
Collapse
Affiliation(s)
- Akihiro Miura
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Nakamura
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Dai Shimizu
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yan Jiang
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masaomi Yamane
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
25
|
Li S, Counter CM. Signaling levels mold the RAS mutation tropism of urethane. eLife 2021; 10:67172. [PMID: 33998997 PMCID: PMC8128437 DOI: 10.7554/elife.67172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022] Open
Abstract
RAS genes are commonly mutated in human cancer. Despite many possible mutations, individual cancer types often have a 'tropism' towards a specific subset of RAS mutations. As driver mutations, these patterns ostensibly originate from normal cells. High oncogenic RAS activity causes oncogenic stress and different oncogenic mutations can impart different levels of activity, suggesting a relationship between oncoprotein activity and RAS mutation tropism. Here, we show that changing rare codons to common in the murine Kras gene to increase protein expression shifts tumors induced by the carcinogen urethane from arising from canonical Q61 to biochemically less active G12 Kras driver mutations, despite the carcinogen still being biased towards generating Q61 mutations. Conversely, inactivating the tumor suppressor p53 to blunt oncogenic stress partially reversed this effect, restoring Q61 mutations. One interpretation of these findings is that the RAS mutation tropism of urethane arises from selection in normal cells for specific mutations that impart a narrow window of signaling that promotes proliferation without causing oncogenic stress.
Collapse
Affiliation(s)
- Siqi Li
- Pharmacology and Cancer Biology, Duke University, Durham, United States
| | | |
Collapse
|
26
|
Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med 2021; 11:e367. [PMID: 33931980 PMCID: PMC8021541 DOI: 10.1002/ctm2.367] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains a major threat to human health. Low dose CT scan (LDCT) has become the main method of early screening for lung cancer due to the low sensitivity of chest X-ray. However, LDCT not only has a high false positive rate, but also entails risks of overdiagnosis and cumulative radiation exposure. In addition, cumulative radiation by LDCT screening and subsequent follow-up can increase the risk of lung cancer. Many studies have shown that long noncoding RNAs (lncRNAs) remain stable in blood, and profiling of blood has the advantages of being noninvasive, readily accessible and inexpensive. Serum or plasma assay of lncRNAs in blood can be used as a novel detection method to assist LDCT while improving the accuracy of early lung cancer screening. LncRNAs can participate in the regulation of various biological processes. A large number of researches have reported that lncRNAs are key regulators involved in the progression of human cancers through multiple action models. Especially, some lncRNAs can affect various hallmarks of lung cancer. In addition to their diagnostic value, lncRNAs also possess promising potential in other clinical applications toward lung cancer. LncRNAs can be used as predictive markers for chemosensitivity, radiosensitivity, and sensitivity to epidermal growth factor receptor (EGFR)-targeted therapy, and as well markers of prognosis. Different lncRNAs have been implicated to regulate chemosensitivity, radiosensitivity, and sensitivity to EGFR-targeted therapy through diverse mechanisms. Although many challenges need to be addressed in the future, lncRNAs have bright prospects as an adjunct to radiographic methods in the clinical management of lung cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Emory Zitello
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Rui Guo
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Youping Deng
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
27
|
Zhao Y, Bilal M, Raza A, Khan MI, Mehmood S, Hayat U, Hassan STS, Iqbal HMN. Tyrosine kinase inhibitors and their unique therapeutic potentialities to combat cancer. Int J Biol Macromol 2021; 168:22-37. [PMID: 33290765 DOI: 10.1016/j.ijbiomac.2020.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023]
Abstract
Cancer is one of the leading causes of death with a mortality rate of 12%. Although significant progress has been achieved in cancer research, the effective treatment of cancer remains the greatest global challenge in medicine. Dysregulation of tyrosine kinases (TK) is one of the characteristics of several types of cancers. Thus, drugs that target and inhibit these enzymes, known as TK inhibitors (TKIs), are considered vital chemotherapeutics to combat various types of cancer. The oral bioavailability of available TKIs and their targeted therapy are their potential benefits. Based on these characteristics, most TKIs are included in first/second-line therapy for the treatment of different cancers. This review aims to shed light on orally-active TKIs (natural and synthetic molecules) and their promising implication in the therapy of numerous types of tumors along with their mechanisms of action. Further, recent progress in the development of synthetic and isolation of natural TKIs is reviewed. A significant growth in research regarding the development of new-generation TKIs is made with time (23 FDA-approved TKIs from 2018) due to their better therapeutic response. Oral bioavailability should be considered as an important parameter while developing of new-generation TKIs; however, drug delivery systems can also be used to address issue of poor bioavailability to a certain extent. Moreover, clinical trials should be designed in consideration of the development of resistance and tumor heterogeneity.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 165 21 Prague, Czech Republic
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
28
|
Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field Cancerization in NSCLC: A New Perspective on MicroRNAs in Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22020746. [PMID: 33451052 PMCID: PMC7828565 DOI: 10.3390/ijms22020746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is currently the first cause of cancer-related death. The major lung cancer subtype is non-small cell lung cancers (NSCLC), which accounts for approximatively 85% of cases. The major carcinogenic associated with lung cancer is tobacco smoke, which produces long-lasting and progressive damage to the respiratory tract. The progressive and diffuse alterations that occur in the respiratory tract of patients with cancer and premalignant lesions have been described as field cancerization. At the level of tumor cells, adjacent tumor microenvironment (TME) and cancerized field are taking place dynamic interactions through direct cell-to-cell communication or through extracellular vesicles. These molecular messages exchanged between tumor and nontumor cells are represented by proteins, noncoding RNAs (ncRNAs) and microRNAs (miRNAs). In this paper, we analyze the miRNA roles in the macrophage polarization at the level of TME and cancerized field in NSCLC. Identifying molecular players that can influence the phenotypic states at the level of malignant cells, tumor microenvironment and cancerized field can provide us new insights into tumor regulatory mechanisms that can be further modulated to restore the immunogenic capacity of the TME. This approach could revert alterations in the cancerized field and could enhance currently available therapy approaches.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Functional Sciences, Immunology and Allergology, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- The Functional Genomics Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-743-111-800
| |
Collapse
|
29
|
Lee YS, Lee JY, Song SH, Kim DM, Lee JW, Chi XZ, Ito Y, Bae SC. K-Ras-Activated Cells Can Develop into Lung Tumors When Runx3-Mediated Tumor Suppressor Pathways Are Abrogated. Mol Cells 2020; 43:889-897. [PMID: 33115981 PMCID: PMC7604022 DOI: 10.14348/molcells.2020.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/27/2022] Open
Abstract
K-RAS is frequently mutated in human lung adenocarcinomas (ADCs), and the p53 pathway plays a central role in cellular defense against oncogenic K-RAS mutation. However, in mouse lung cancer models, oncogenic K-RAS mutation alone can induce ADCs without p53 mutation, and loss of p53 does not have a significant impact on early K-RAS-induced lung tumorigenesis. These results raise the question of how K-RAS-activated cells evade oncogene surveillance mechanisms and develop into lung ADCs. RUNX3 plays a key role at the restriction (R)-point, which governs multiple tumor suppressor pathways including the p14ARF-p53 pathway. In this study, we found that K-RAS activation in a very limited number of cells, alone or in combination with p53 inactivation, failed to induce any pathologic lesions for up to 1 year. By contrast, when Runx3 was inactivated and K-RAS was activated by the same targeting method, lung ADCs and other tumors were rapidly induced. In a urethane-induced mouse lung tumor model that recapitulates the features of K-RAS-driven human lung tumors, Runx3 was inactivated in both adenomas (ADs) and ADCs, whereas K-RAS was activated only in ADCs. Together, these results demonstrate that the R-point-associated oncogene surveillance mechanism is abrogated by Runx3 inactivation in AD cells and these cells cannot defend against K-RAS activation, resulting in the transition from AD to ADC. Therefore, K-RAS-activated lung epithelial cells do not evade oncogene surveillance mechanisms; instead, they are selected if they occur in AD cells in which Runx3 has been inactivated.
Collapse
Affiliation(s)
- You-Soub Lee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Korea
| | - Ja-Yeol Lee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Korea
| | - Soo-Hyun Song
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Korea
| | - Da-Mi Kim
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Korea
| | - Jung-Won Lee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Korea
| | - Xin-Zi Chi
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Korea
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
30
|
Jacob M, Romano J, Araújo D, Pereira JM, Ramos I, Hespanhol V. Predicting lung nodules malignancy. Pulmonology 2020; 28:454-460. [PMID: 32739327 DOI: 10.1016/j.pulmoe.2020.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND It is critical to developing an accurate method for differentiating between malignant and benign solitary pulmonary nodules. This study aimed was to establish a predicting model of lung nodules malignancy in a real-world setting. METHODS The authors retrospectively analysed the clinical and computed tomography (CT) data of 121 patients with lung nodules, submitted to percutaneous CT-guided transthoracic biopsy, between 2014 and 2015. Multiple logistic regression was used to screen independent predictors for malignancy and to establish a clinical prediction model to evaluate the probability of malignancy. RESULTS From a total of 121 patients, 75 (62%) were men and with a mean age of 64.7 years old. Multivariate logistic regression analysis identified six independent predictors of malignancy: age, gender, smoking status, current extra-pulmonary cancer, air bronchogram and nodule size (p<0.05). The area under the curve (AUC) was 0.8573. CONCLUSIONS The prediction model established in this study can be used to assess the probability of malignancy in the Portuguese population, thereby providing help for the diagnosis of lung nodules and the selection of follow-up interventions.
Collapse
Affiliation(s)
- M Jacob
- Pulmonology Department, Centro Hospitalar Universitário de São João, Porto, Portugal.
| | - J Romano
- Physical Medicine and Rehabilitation Department, Unidade de Saúde Local de Matosinhos, Porto, Portugal
| | - D Araújo
- Pulmonology Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - J M Pereira
- Radiology Department, Centro Hospitalar Universitário de São João, Porto, Portugal; Faculty of Medicine of Porto University, Porto, Portugal
| | - I Ramos
- Radiology Department, Centro Hospitalar Universitário de São João, Porto, Portugal; Faculty of Medicine of Porto University, Porto, Portugal
| | - V Hespanhol
- Pulmonology Department, Centro Hospitalar Universitário de São João, Porto, Portugal; Faculty of Medicine of Porto University, Porto, Portugal
| |
Collapse
|
31
|
Jiang C, Chen Q, Xie M. Smoking increases the risk of infectious diseases: A narrative review. Tob Induc Dis 2020; 18:60. [PMID: 32765200 PMCID: PMC7398598 DOI: 10.18332/tid/123845] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/17/2023] Open
Abstract
Smoking is relevant to infectious diseases resulting in increased prevalence and mortality. In this article, we aim to provide an overview of the effects of smoking in various infections and to explain the potential mechanisms. We searched PubMed and other relevant databases for scientific studies that explored the relationship between smoking and infection. The mechanisms of susceptibility to infection in smokers may include alteration of the structural, functional and immunologic host defences. Smoking is one of the main risk factors for infections in the respiratory tract, digestive tract, reproductive tract, and other systems in humans, increasing the prevalence of HIV, tuberculosis, SARS-CoV, and the current SARS-CoV-2. Smoking cessation can reduce the risk of infection. Smoking increases the incidence of infections and aggravates the progress and prognosis of infectious diseases in a dose-dependent manner. Smoking cessation promotion and education are the most practical and economical preventive measures to reduce aggravation of disease infection owing to tobacco use.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Chen
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Mingxuan Xie
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Ulke HM, Mutze K, Lehmann M, Wagner DE, Heinzelmann K, Günther A, Eickelberg O, Königshoff M. The Oncogene ECT2 Contributes to a Hyperplastic, Proliferative Lung Epithelial Cell Phenotype in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2020; 61:713-726. [PMID: 31145635 DOI: 10.1165/rcmb.2019-0047oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and lung cancer are progressive lung diseases with a poor prognosis. IPF is a risk factor for the development of lung cancer, and the incidence of lung cancer is increased in patients with IPF. The disease pathogenesis of IPF and lung cancer involves common genetic alterations, dysregulated pathways, and the emergence of hyperplastic and metaplastic epithelial cells. Here, we aimed to identify novel, common mediators that might contribute to epithelial cell reprogramming in IPF. Gene set enrichment analysis of publicly available non-small cell lung cancer and IPF datasets revealed a common pattern of misregulated genes linked to cell proliferation and transformation. The oncogene ECT2 (epithelial cell transforming sequence 2), a guanine nucleotide exchange factor for Rho GTPases, was highly enriched in both IPF and non-small cell lung cancer compared with nondiseased controls. Increased expression of ECT2 was verified by qPCR and Western blotting in bleomycin-induced lung fibrosis and human IPF tissue. Immunohistochemistry demonstrated strong expression of ECT2 staining in hyperplastic alveolar epithelial type II (ATII) cells in IPF, as well as its colocalization with proliferating cell nuclear antigen, a well-known proliferation marker. Increased ECT2 expression coincided with enhanced proliferation of primary mouse ATII cells as analyzed by flow cytometry. ECT2 knockdown in ATII cells resulted in decreased proliferation and collagen I expression in vitro. These data suggest that the oncogene ECT2 contributes to epithelial cell reprogramming in IPF, and further emphasize the hyperplastic, proliferative ATII cell as a potential target in patients with IPF and lung cancer.
Collapse
Affiliation(s)
- Henrik M Ulke
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Kathrin Mutze
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Mareike Lehmann
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Darcy E Wagner
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany.,Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Katharina Heinzelmann
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Andreas Günther
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research, Giessen, Germany; and
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Aurora, Colorado
| | - Melanie Königshoff
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Aurora, Colorado
| |
Collapse
|
33
|
Sarode P, Mansouri S, Karger A, Schaefer MB, Grimminger F, Seeger W, Savai R. Epithelial cell plasticity defines heterogeneity in lung cancer. Cell Signal 2019; 65:109463. [PMID: 31693875 DOI: 10.1016/j.cellsig.2019.109463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of cancer death for both men and women and accounts for almost 18.4% of all deaths due to cancer worldwide, with the global incidence increasing by approximately 0.5% per year. Lung cancer is regarded as a devastating type of cancer owing to its high prevalence, reduction in the health-related quality of life, frequently delayed diagnosis, low response rate, high toxicity, and resistance to available therapeutic options. The highly heterogeneous nature of this cancer with a proximal-to-distal distribution throughout the respiratory tract dramatically affects its diagnostic and therapeutic management. The diverse composition and plasticity of lung epithelial cells across the respiratory tract are regarded as significant factors underlying lung cancer heterogeneity. Therefore, definitions of the cells of origin for different types of lung cancer are urgently needed to understand lung cancer biology and to achieve early diagnosis and develop cell-targeted therapies. In the present review, we will discuss the current understanding of the cellular and molecular alterations in distinct lung epithelial cells that result in each type of lung cancer.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Annika Karger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Martina Barbara Schaefer
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany.
| |
Collapse
|
34
|
Laryngeal Squamous Cell Carcinomas are Commonly Associated With Differentiated Squamous Intraepithelial Neoplasia With or Without an Admixture With Usual Type of Squamous Intraepithelial Neoplasia: Clinical and Pathologic Significance. Appl Immunohistochem Mol Morphol 2019; 26:351-359. [PMID: 27556819 DOI: 10.1097/pai.0000000000000425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Differentiated squamous intraepithelial neoplasia (dSIN) is a pathway in the development of invasive squamous cell carcinoma (SCC) distinct from the usual-type squamous intraepithelial neoplasia (uSIN) and has not been described in the larynx. MATERIALS AND METHODS Sixty-nine consecutive cases of SCC were identified which included 25 dSIN, 13 uSIN, and 31 mixed dSIN+usual-like SIN (u-like SIN) cases. RESULTS dSIN was characterized by atypical squamous cells limited to the basal/parabasal layers and u-like SIN was characterized by cytologic atypia limited to less than full thickness. Despite the lack of neoplastic involvement of the full thickness of the epithelium, these types of SIN were commonly connected with invasive carcinoma. Prior biopsies demonstrating only dSIN, without the underlying invasive SCC, were underdiagnosed in 2 cases. Because of the frequent keratinization, u-like SIN likely represents the "keratinized dysplasia" and shows changes suggestive of dSIN with upward spread of neoplastic cells into the upper layer of the epithelium. CONCLUSIONS Laryngeal dSIN represents an important but under recognized pathway of invasive SCC development. As moderate dysplasia of uSIN type are not associated with invasive SCC, labeling u-like SIN as dysplasia of grade 2 or 3 likely leads to the controversies in the current grading systems in the upper aerodigestive system and causes confusion for clinicians.
Collapse
|
35
|
Li X, Zhong M, Wang J, Wang L, Lin Z, Cao Z, Huang Z, Zhang F, Li Y, Liu M, Ma X. miR-301a promotes lung tumorigenesis by suppressing Runx3. Mol Cancer 2019; 18:99. [PMID: 31122259 PMCID: PMC6532219 DOI: 10.1186/s12943-019-1024-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Our previous report demonstrated that genetic ablation of miR-301a reduces Kras-driven lung tumorigenesis in mice. However, the impact of miR-301a on host anti-tumor immunity remains unexplored. Here we assessed the underlying molecular mechanisms of miR-301a in the tumor microenvironment. METHODS The differentially expressed genes were identified by using deep sequencing. The immune cell counts, and cytokines expression were analyzed by realtime PCR, immunohistochemistry and flow cytometry. The role of miR-301a/Runx3 in lung tumor was evaluated on cell growth, migration and invasion. The function of miR-301a/Runx3 in regulating tumor microenvironment and tumor metastasis were evaluated in Kras transgenic mice and B16/LLC1 syngeneic xenografts tumor models. RESULTS In this work, we identified 1166 up-regulated and 475 down-regulated differentially expressed genes in lung tumor tissues between KrasLA2 and miR-301a-/-; KrasLA2 mice. Immune response and cell cycle were major pathways involved in the protective role of miR-301a deletion in lung tumorigenesis. Overexpression of the miR-301a target, Runx3, was an early event identified in miR-301a-/-; KrasLA2 mice compared to WT-KrasLA2 mice. We found that miR-301a deletion enhanced CD8+ T cell accumulation and IFN-γ production in the tumor microenvironment and mediated antitumor immunity. Further studies revealed that miR-301a deficiency in the tumor microenvironment effectively reduced tumor metastasis by elevating Runx3 and recruiting CD8+ T cells, whereas miR-301a knockdown in tumor cells themselves restrained cell migration by elevating Runx3 expression. CONCLUSIONS Our findings further underscore that miR-301a facilitates tumor microenvironment antitumor immunity by Runx3 suppression in lung tumorigenesis.
Collapse
Affiliation(s)
- Xun Li
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631 China
| | - Mingtian Zhong
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Jiexuan Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120 China
| | - Lei Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631 China
| | - Zhanwen Lin
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631 China
| | - Zhi Cao
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Zhujuan Huang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Fengxue Zhang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120 China
| | - Xiaodong Ma
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| |
Collapse
|
36
|
Genomic landscape of allelic imbalance in premalignant atypical adenomatous hyperplasias of the lung. EBioMedicine 2019; 42:296-303. [PMID: 30905849 PMCID: PMC6491940 DOI: 10.1016/j.ebiom.2019.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background Genomic investigation of atypical adenomatous hyperplasia (AAH), the only known precursor lesion to lung adenocarcinomas (LUAD), presents challenges due to the low mutant cell fractions. This necessitates sensitive methods for detection of chromosomal aberrations to better study the role of critical alterations in early lung cancer pathogenesis and the progression from AAH to LUAD. Methods We applied a sensitive haplotype-based statistical technique to detect chromosomal alterations leading to allelic imbalance (AI) from genotype array profiling of 48 matched normal lung parenchyma, AAH and tumor tissues from 16 stage-I LUAD patients. To gain insights into shared developmental trajectories among tissues, we performed phylogenetic analyses and integrated our results with point mutation data, highlighting significantly-mutated driver genes in LUAD pathogenesis. Findings AI was detected in nine AAHs (56%). Six cases exhibited recurrent loss of 17p. AI and the enrichment of 17p events were predominantly identified in patients with smoking history. Among the nine AAH tissues with detected AI, seven exhibited evidence for shared chromosomal aberrations with matched LUAD specimens, including losses harboring tumor suppressors on 17p, 8p, 9p, 9q, 19p, and gains encompassing oncogenes on 8q, 12p and 1q. Interpretation Chromosomal aberrations, particularly 17p loss, appear to play critical roles early in AAH pathogenesis. Genomic instability in AAH, as well as truncal chromosomal aberrations shared with LUAD, provide evidence for mutation accumulation and are suggestive of a cancerized field contributing to the clonal selection and expansion of these premalignant lesions. Fund Supported in part by Cancer Prevention and Research Institute of Texas (CPRIT) grant RP150079 (PS and HK), NIH grant R01HG005859 (PS) and The University of Texas MD Anderson Cancer Center Core Support Grant.
Collapse
|
37
|
Lu J, Zhong H, Chu T, Zhang X, Li R, Sun J, Zhong R, Yang Y, Alam MS, Lou Y, Xu J, Zhang Y, Wu J, Li X, Zhao X, Li K, Lu L, Han B. Role of anlotinib-induced CCL2 decrease in anti-angiogenesis and response prediction for nonsmall cell lung cancer therapy. Eur Respir J 2019; 53:13993003.01562-2018. [PMID: 30578392 DOI: 10.1183/13993003.01562-2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Anlotinib has been demonstrated in clinical trials to be effective in prolonging the progression-free survival (PFS) and overall survival (OS) of refractory advanced nonsmall cell lung cancer (NSCLC) patients. However, the underlying molecular mechanisms and predictive biomarkers of anlotinib are still unclear. METHODS A retrospective analysis of anlotinib administered to 294 NSCLC patients was performed to screen for underlying biomarkers of anlotinib-responsive patients. Transcriptome and functional assays were performed to understand the antitumour molecular mechanisms of anlotinib. Changes in serum CCL2 levels were analysed to examine the correlation of the anlotinib response between responders and nonresponders. RESULTS Anlotinib therapy was beneficial for prolonging OS in NSCLC patients harbouring positive driver gene mutations, especially patients harbouring the epithelial growth factor receptor (EGFR)T790M mutation. Moreover, anlotinib inhibited angiogenesis in an NCI-H1975-derived xenograft model via inhibiting CCL2. Finally, anlotinib-induced serum CCL2 level decreases were associated with the benefits of PFS and OS in refractory advanced NSCLC patients. CONCLUSIONS Our study reports a novel anti-angiogenesis mechanism of anlotinib via inhibiting CCL2 in an NCI-H1975-derived xenograft model and suggests that changes in serum CCL2 levels may be used to monitor and predict clinical outcomes in anlotinib-administered refractory advanced NSCLC patients using third-line therapy or beyond.
Collapse
Affiliation(s)
- Jun Lu
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Central laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Ton University School of Medicine, Shanghai, China
| | - Hua Zhong
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Ton University School of Medicine, Shanghai, China
| | - Tianqing Chu
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyan Zhang
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Li
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayuan Sun
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Runbo Zhong
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqin Yang
- Central laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mohammad Shah Alam
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Lou
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlin Xu
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanwei Zhang
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiaowei Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,These authors contributed equally: Jun Lu and Hua Zhong
| | - Kai Li
- Dept of Thoracic Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,These authors contributed equally: Jun Lu and Hua Zhong
| | - Liming Lu
- Central laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Ton University School of Medicine, Shanghai, China.,These authors contributed equally: Xiaodong Zhao, Kai Li, Liming Lu and Baohui Han
| | - Baohui Han
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,These authors contributed equally: Jun Lu and Hua Zhong
| |
Collapse
|
38
|
Upadhyay P, Sarker S, Ghosh A, Gupta P, Das S, Ahir M, Bhattacharya S, Chattopadhyay S, Ghosh S, Adhikary A. Transferrin-decorated thymoquinone-loaded PEG-PLGA nanoparticles exhibit anticarcinogenic effect in non-small cell lung carcinoma via the modulation of miR-34a and miR-16. Biomater Sci 2019; 7:4325-4344. [DOI: 10.1039/c9bm00912d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The detailed molecular mechanism of transferrin-tagged thymoquinone nanoparticle mediated apoptotic induction in non-small cell lung carcinoma showing the involvement of p53 dependent synergistic activation of miR-34a and miR-16 in the pathway.
Collapse
Affiliation(s)
- Priyanka Upadhyay
- Center for Research in Nanoscience and Nanotechnology
- Technology Campus
- University of Calcutta
- Kolkata-700106
- India
| | - Sushmita Sarker
- Center for Research in Nanoscience and Nanotechnology
- Technology Campus
- University of Calcutta
- Kolkata-700106
- India
| | - Avijit Ghosh
- Center for Research in Nanoscience and Nanotechnology
- Technology Campus
- University of Calcutta
- Kolkata-700106
- India
| | - Payal Gupta
- Department of Physiology
- University of Calcutta
- Kolkata
- India
| | - Shaswati Das
- Center for Research in Nanoscience and Nanotechnology
- Technology Campus
- University of Calcutta
- Kolkata-700106
- India
| | - Manisha Ahir
- Center for Research in Nanoscience and Nanotechnology
- Technology Campus
- University of Calcutta
- Kolkata-700106
- India
| | - Saurav Bhattacharya
- Center for Research in Nanoscience and Nanotechnology
- Technology Campus
- University of Calcutta
- Kolkata-700106
- India
| | | | - Swatilekha Ghosh
- Amity School of Biotechnology
- Amity University
- Kolkata
- Kolkata
- India
| | - Arghya Adhikary
- Center for Research in Nanoscience and Nanotechnology
- Technology Campus
- University of Calcutta
- Kolkata-700106
- India
| |
Collapse
|
39
|
Hendriks LEL, Menis J, Reck M. Prospects of targeted and immune therapies in SCLC. Expert Rev Anticancer Ther 2018; 19:151-167. [DOI: 10.1080/14737140.2019.1559057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lizza E. L. Hendriks
- Department of Pulmonary Diseases, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Medical Oncology, Gustave Roussy, Institut d’Oncologie Thoracique (IOT), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jessica Menis
- Medical Oncology, University of Padua and Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Martin Reck
- Airway Research Center North (ARCN), German Center for Lung Research, LungenClinic, Grosshansdorf, Germany
| |
Collapse
|
40
|
Abstract
The three RAS genes - HRAS, NRAS and KRAS - are collectively mutated in one-third of human cancers, where they act as prototypic oncogenes. Interestingly, there are rather distinct patterns to RAS mutations; the isoform mutated as well as the position and type of substitution vary between different cancers. As RAS genes are among the earliest, if not the first, genes mutated in a variety of cancers, understanding how these mutation patterns arise could inform on not only how cancer begins but also the factors influencing this event, which has implications for cancer prevention. To this end, we suggest that there is a narrow window or 'sweet spot' by which oncogenic RAS signalling can promote tumour initiation in normal cells. As a consequence, RAS mutation patterns in each normal cell are a product of the specific RAS isoform mutated, as well as the position of the mutation and type of substitution to achieve an ideal level of signalling.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
41
|
|
42
|
Garnett S, Dutchak KL, McDonough RV, Dankort D. p53 loss does not permit escape from Braf V600E-induced senescence in a mouse model of lung cancer. Oncogene 2017; 36:6325-6335. [PMID: 28745322 DOI: 10.1038/onc.2017.235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/26/2017] [Accepted: 06/08/2017] [Indexed: 12/19/2022]
Abstract
Lung cancer arises through the acquisition of a number of genetic lesions, with a preponderance of activating mutations in the canonical mitogen-activated protein kinase (MAPK) cascade (RTK-RAS-RAF-MEK). BrafV600E expression induces benign lung adenomas that fail to progress to adenocarcinoma because of oncogene-induced senescence (OIS). BrafV600E expression, coupled with simultaneous p53 ablation, permits bypass of senescence and progression to lung adenocarcinoma. However, spontaneous human tumors sustain mutations in a temporally separated manner. Here, we use a mouse lung cancer model where oncogene activation (BrafV600E expression) and tumor suppressor loss (p53 ablation) are independently controlled through the actions of Flp and Cre recombinase, respectively. We show that p53 loss before OIS is permissive for the transition from lung adenoma to adenocarcinoma. In contrast, p53 loss after senescence is established fails to enable escape from senescence and disease progression. This study demonstrates that BrafV600E induced senescence is irreversible in vivo and suggests that therapy-induced senescence would halt further tumor progression.
Collapse
Affiliation(s)
- S Garnett
- Department of Biology, McGill University, Montréal, QC, Canada
| | - K L Dutchak
- Department of Biology, McGill University, Montréal, QC, Canada
| | - R V McDonough
- Department of Biology, McGill University, Montréal, QC, Canada
| | - D Dankort
- Department of Biology, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, Montréal, QC, Canada
| |
Collapse
|
43
|
Beane J, Mazzilli SA, Tassinari AM, Liu G, Zhang X, Liu H, Buncio AD, Dhillon SS, Platero SJ, Lenburg ME, Reid ME, Lam S, Spira AE. Detecting the Presence and Progression of Premalignant Lung Lesions via Airway Gene Expression. Clin Cancer Res 2017; 23:5091-5100. [PMID: 28533227 DOI: 10.1158/1078-0432.ccr-16-2540] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/23/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Lung cancer is the leading cause of cancer-related death in the United States. The molecular events preceding the onset of disease are poorly understood, and no effective tools exist to identify smokers with premalignant lesions (PMLs) that will progress to invasive cancer. Prior work identified molecular alterations in the smoke-exposed airway field of injury associated with lung cancer. Here, we focus on an earlier stage in the disease process leveraging the airway field of injury to study PMLs and its utility in lung cancer chemoprevention.Experimental Design: Bronchial epithelial cells from normal appearing bronchial mucosa were profiled by mRNA-Seq from subjects with (n = 50) and without (n = 25) PMLs. Using surrogate variable and gene set enrichment analysis, we identified genes, pathways, and lung cancer-related gene sets differentially expressed between subjects with and without PMLs. A computational pipeline was developed to build and test a chemoprevention-relevant biomarker.Results: We identified 280 genes in the airway field associated with the presence of PMLs. Among the upregulated genes, oxidative phosphorylation was strongly enriched, and IHC and bioenergetics studies confirmed pathway findings in PMLs. The relationship between PMLs and squamous cell carcinomas (SCC) was also confirmed using published lung cancer datasets. The biomarker performed well predicting the presence of PMLs (AUC = 0.92, n = 17), and changes in the biomarker score associated with progression/stability versus regression of PMLs (AUC = 0.75, n = 51).Conclusions: Transcriptomic alterations in the airway field of smokers with PMLs reflect metabolic and early lung SCC alterations and may be leveraged to stratify smokers at high risk for PML progression and monitor outcome in chemoprevention trials. Clin Cancer Res; 23(17); 5091-100. ©2017 AACR.
Collapse
Affiliation(s)
- Jennifer Beane
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Anna M Tassinari
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Gang Liu
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Xiaohui Zhang
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Hanqiao Liu
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Anne Dy Buncio
- Department of Medicine, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Samjot S Dhillon
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Suso J Platero
- Janssen Research and Development, Spring House, Pennsylvania
| | - Marc E Lenburg
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Mary E Reid
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Stephen Lam
- Department of Medicine, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Avrum E Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
44
|
Sakhawat A, Liu Y, Ma L, Muhammad T, Wang S, Zhang L, Cong X, Huang Y. Upregulation of Coxsackie Adenovirus Receptor Sensitizes Cisplatin-Resistant Lung Cancer Cells to CRAd-Induced Inhibition. J Cancer 2017. [PMID: 28638457 PMCID: PMC5479248 DOI: 10.7150/jca.18371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective. Conditionally replicating adenoviruses (CRAds) have been proven potent oncolytic viruses in previous studies. They selectively replicate in the tumor cells because of incorporated survivin promoter and ultimately lead to their killing with minimal side effects on normal tissue. Chemotherapy with cisplatin is commonly employed for treating tumors, but its cytotoxic effects and development of resistance remained major concerns to be dealt with. The aim of this study was to explore the anticancer potential of survivin regulated CRAd alone or in combination with cisplatin in the A549 lung cancer cell line and cisplatin-resistant lung cancer cell line, A549-DDPR. Methods. CRAd was genetically engineered in our laboratory by removing its E1B region and adding survivin promoter to control its replication. A549, H292, and H661 lung cancer cell lines were procured from the CAS-China. The anti-tumor effectiveness of combined treatment (cisplatin plus CRAd) was evaluated in vitro through MTS assays and in vivo through mouse model experimentation. RT- PCR was used to assess MDR gene and mRNA expression of coxsackie adenoviral receptor (CAR). Results. Results of in vitro studies established that A549 lung cancer cells were highly sensitive to cisplatin showing dose-dependent inhibition. The resistant cells of A549-DDPR exhibited very less sensitivity to cisplatin but were infected with CRAd more efficiently as compared to A549. A549-DDPR cells exhibited higher expression of MDR gene and CAR in the RT-PCR analysis. The nearly similar rise in the CAR expression was seen when lung cancer cell lines received cisplatin in combined treatment (cisplatin plus CRAd). Combined anti-cancer therapy (cisplatin plus oncolytic virus) proved more efficient than monotherapy in the killing of cancer cells. Results of in vivo experiments recapitulated nearly similar tumor inhibition activities. Conclusion. This study highlighted the significant role of survivin in gene therapy as it has the potential to render CRAd more tumor specific. It also establishes that higher CAR expression plays a vital role in the success of adenovirus-based therapies. Furthermore, a careful combination of chemotherapy drugs and oncolytic viruses can culminate in significant therapeutic achievements against cancer.
Collapse
Affiliation(s)
- Ali Sakhawat
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, China
| | - Yanan Liu
- Basic Medical College, Jilin University, China
| | - Ling Ma
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, China
| | - Tahir Muhammad
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, China
| | - Shensen Wang
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, China
| | - Lina Zhang
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, China
| | | | - Yinghui Huang
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, China
| |
Collapse
|
45
|
Role of minimal panel immunostaining in accurate diagnosis of lung cancer using small biopsies. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2017. [DOI: 10.1016/j.ejcdt.2016.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
46
|
Zuo WL, Yang J, Gomi K, Chao I, Crystal RG, Shaykhiev R. EGF-Amphiregulin Interplay in Airway Stem/Progenitor Cells Links the Pathogenesis of Smoking-Induced Lesions in the Human Airway Epithelium. Stem Cells 2017; 35:824-837. [PMID: 27709733 PMCID: PMC5330845 DOI: 10.1002/stem.2512] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 08/16/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
The airway epithelium of cigarette smokers undergoes dramatic remodeling with hyperplasia of basal cells (BC) and mucus-producing cells, squamous metaplasia, altered ciliated cell differentiation and decreased junctional barrier integrity, relevant to chronic obstructive pulmonary disease and lung cancer. In this study, we show that epidermal growth factor receptor (EGFR) ligand amphiregulin (AREG) is induced by smoking in human airway epithelium as a result of epidermal growth factor (EGF)-driven squamous differentiation of airway BC stem/progenitor cells. In turn, AREG induced a unique EGFR activation pattern in human airway BC, distinct from that evoked by EGF, leading to BC- and mucous hyperplasia, altered ciliated cell differentiation and impaired barrier integrity. Further, AREG promoted its own expression and suppressed expression of EGF, establishing an autonomous self-amplifying signaling loop in airway BC relevant for promotion of EGF-independent hyperplastic phenotypes. Thus, EGF-AREG interplay in airway BC stem/progenitor cells is one of the mechanisms that mediates the interconnected pathogenesis of all major smoking-induced lesions in the human airway epithelium. Stem Cells 2017;35:824-837.
Collapse
Affiliation(s)
- Wu-Lin Zuo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jing Yang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Kazunori Gomi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - IonWa Chao
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Renat Shaykhiev
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
47
|
Broodman I, Lindemans J, van Sten J, Bischoff R, Luider T. Serum Protein Markers for the Early Detection of Lung Cancer: A Focus on Autoantibodies. J Proteome Res 2016; 16:3-13. [DOI: 10.1021/acs.jproteome.6b00559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | - Rainer Bischoff
- Analytical
Biochemistry, Department of Pharmacy, University of Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
48
|
Huang H, Zhu J, Li Y, Zhang L, Gu J, Xie Q, Jin H, Che X, Li J, Huang C, Chen LC, Lyu J, Gao J, Huang C. Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells. Autophagy 2016; 12:1687-1703. [PMID: 27467530 PMCID: PMC5079680 DOI: 10.1080/15548627.2016.1196313] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.
Collapse
Affiliation(s)
- Haishan Huang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Junlan Zhu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Yang Li
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Liping Zhang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jiayan Gu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Qipeng Xie
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Honglei Jin
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Xun Che
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingxia Li
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Chao Huang
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Lung-Chi Chen
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Jianxin Lyu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jimin Gao
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Chuanshu Huang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| |
Collapse
|
49
|
Jahchan NS, Lim JS, Bola B, Morris K, Seitz G, Tran KQ, Xu L, Trapani F, Morrow CJ, Cristea S, Coles GL, Yang D, Vaka D, Kareta MS, George J, Mazur PK, Nguyen T, Anderson WC, Dylla SJ, Blackhall F, Peifer M, Dive C, Sage J. Identification and Targeting of Long-Term Tumor-Propagating Cells in Small Cell Lung Cancer. Cell Rep 2016; 16:644-56. [PMID: 27373157 PMCID: PMC4956576 DOI: 10.1016/j.celrep.2016.06.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/19/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023] Open
Abstract
Small cell lung cancer (SCLC) is a neuroendocrine lung cancer characterized by fast growth, early dissemination, and rapid resistance to chemotherapy. We identified a population of long-term tumor-propagating cells (TPCs) in a mouse model of SCLC. This population, marked by high levels of EpCAM and CD24, is also prevalent in human primary SCLC tumors. Murine SCLC TPCs are numerous and highly proliferative but not intrinsically chemoresistant, indicating that not all clinical features of SCLC are linked to TPCs. SCLC TPCs possess a distinct transcriptional profile compared to non-TPCs, including elevated MYC activity. Genetic and pharmacological inhibition of MYC in SCLC cells to non-TPC levels inhibits long-term propagation but not short-term growth. These studies identify a highly tumorigenic population of SCLC cells in mouse models, cell lines, and patient tumors and a means to target them in this most fatal form of lung cancer.
Collapse
Affiliation(s)
- Nadine S Jahchan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jing Shan Lim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Becky Bola
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Karen Morris
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Garrett Seitz
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kim Q Tran
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lei Xu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francesca Trapani
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Christopher J Morrow
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Sandra Cristea
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry L Coles
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dian Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dedeepya Vaka
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael S Kareta
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julie George
- Medical Faculty, Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Pawel K Mazur
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thuyen Nguyen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Fiona Blackhall
- Institute of Cancer Sciences, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Martin Peifer
- Medical Faculty, Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Ryan KR, Cesta MF, Herbert R, Brix A, Cora M, Witt K, Kissling G, Morgan DL. Comparative pulmonary toxicity of inhaled metalworking fluids in rats and mice. Toxicol Ind Health 2016; 33:385-405. [PMID: 27343050 DOI: 10.1177/0748233716653912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metalworking fluids (MWFs) are complex formulations designed for effective lubricating, cooling, and cleaning tools and parts during machining operations. Adverse health effects such as respiratory symptoms, dermatitis, and cancer have been reported in workers exposed to MWFs. Several constituents of MWFs have been implicated in toxicity and have been removed from the formulations over the years. However, animal studies with newer MWFs demonstrate that they continue to pose a health risk. This investigation examines the hypothesis that unrecognized health hazards exist in currently marketed MWF formulations that are presumed to be safe based on hazard assessments of individual ingredients. In vivo 13-week inhalation studies were designed to characterize and compare the potential toxicity of four MWFs: Trim VX, Cimstar 3800, Trim SC210, and Syntilo 1023. Male and female Wistar Han rats or Fischer 344N/Tac rats and B6C3F1/N mice were exposed to MWFs via whole-body inhalation at concentrations of 0, 25, 50, 100, 200, or 400 mg/m3 for 13 weeks, after which, survival, body and organ weights, hematology and clinical chemistry, histopathology, and genotoxicity were assessed following exposure. Although high concentrations were used, survival was not affected and toxicity was primarily within the respiratory tract of male and female rats and mice. Minor variances in toxicity were attributed to differences among species as well as in the chemical components of each MWF. Pulmonary fibrosis was present only in rats and mice exposed to Trim VX. These data confirm that newer MWFs have the potential to cause respiratory toxicity in workers who are repeatedly exposed via inhalation.
Collapse
Affiliation(s)
- Kristen R Ryan
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Mark F Cesta
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ronald Herbert
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Amy Brix
- 2 Experimental Pathology Labs Inc., Morrisville, NC, USA
| | - Michelle Cora
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kristine Witt
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Grace Kissling
- 3 Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Daniel L Morgan
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|