1
|
Yu J, Hong K, Yao L, Shi D, Zhang J. Effect of long-stranded non-coding RNA-BANCR on the progression of thyroid papillary carcinoma and its mechanism. Discov Oncol 2025; 16:147. [PMID: 39928209 DOI: 10.1007/s12672-025-01755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
OBJECTIVE This study aims to investigate the role of BRAF-activated long non-coding RNA (BANCR) in papillary thyroid carcinoma (PTC) progression and its association with clinical and molecular characteristics. METHODS Sixteen PTC patients were stratified into four groups (PTC, HT, HT-LNM, and PTC-LNM) based on cervical lymph node metastasis and concurrent Hashimoto's thyroiditis (HT) to explore BANCR expression and its relationship with immune-related factors and tumor microenvironment (TME). Functional assays, including Transwell invasion, colony formation, and CCK8 were performed to evaluate the biological effects of BANCR in PTC cell lines. Bioinformatics analysis further identified BANCR-related pathways and clinical relevance. RESULTS BANCR expression was significantly reduced in PTC tissues compared to normal thyroid tissues and was inversely correlated with tumor grade, lymph node metastasis, and T stage. Overexpression of BANCR in PTC cell lines inhibited proliferation, invasion and migration. Bioinformatics analysis demonstrated significant associations between BANCR and immune cell infiltration, immune-related genes, and stromal scores. CONCLUSIONS BANCR acts as a tumor suppressor in PTC, suppressing tumor growth and metastasis. These findings provide insights into BANCR's potential as a prognostic marker and therapeutic target in PTC.
Collapse
Affiliation(s)
- Jiayi Yu
- Medical School, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Kai Hong
- Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institute of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Lingli Yao
- Department of Breast Surgery, First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Dongbo Shi
- Department of Breast Surgery, First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Jiabo Zhang
- Department of Breast Surgery, First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
2
|
Wang L, Song J, Yang Z, Zhang H, Wang Y, Liu J, Wang S, Shi J, Tong X. SERCA2 dysfunction accelerates angiotensin II-induced aortic aneurysm and atherosclerosis by induction of oxidative stress in aortic smooth muscle cells. J Mol Cell Cardiol 2025; 200:68-81. [PMID: 39884553 DOI: 10.1016/j.yjmcc.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND AND AIM Our previous research indicates that sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) dysfunction facilitates the phenotypic transformation of aortic smooth muscle cells (ASMCs) and intensifies aortic aneurysm through the regulation of calcium-dependent pathways and endoplasmic reticulum stress. Our hypothesis is that additional mechanisms are involved in aortic aneurysm and atherosclerosis induced by SERCA2 dysfunction from the perspective of ASMC phenotypic transformation. METHODS & RESULTS In SERCA2 dysfunctional mice and their control littermates, ASMCs were isolated to analyze protein expression and cell functions, and angiotensin II was infused into these mice that were backcrossed into LDL receptor deficient background to induce aortic aneurysm and atherosclerosis. In ASMCs from SERCA2 dysfunctional mice, the cell cycle was accelerated, and proliferation and migration were enhanced, which could be reversed by SERCA agonist CDN1163 or calcium chelator BAPTA-AM. In ASMCs, SERCA2 dysfunction increased reactive oxygen species (ROS) production, activating extracellular signal-regulated kinases 1 and 2 (ERK1/2) and angiotensin II/angiotensin II type 1 receptor (AT1R) pathways. Both ERK1/2 and angiotensin II/AT1R activations are implicated in SERCA2 dysfunction-induced ASMC phenotypic transformation and ROS production. The redox modulator Tempol suppressed ERK1/2 and angiotensin II/AT1R pathways, inhibiting ASMC phenotypic transformation and alleviating angiotensin II-induced aortic aneurysm and atherosclerosis. CONCLUSION SERCA2 dysfunction accelerates aortic aneurysm and atherosclerosis by inducing oxidative stress in ASMCs, with activations of ERK1/2 and angiotensin II/AT1R involved in ASMC phenotypic transformation. Inhibition of oxidative stress in ASMCs is beneficial in alleviating angiotensin II-induced aortic aneurysm and atherosclerosis caused by SERCA2 dysfunction.
Collapse
Affiliation(s)
- Langtao Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China; The Third Affiliated Hospital, Chengdu Medical College, Chengdu 610500, China
| | - Jiarou Song
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhen Yang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hailong Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yaping Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Sai Wang
- Southwest Medical University Zigong Affiliated Hospital, Zigong 643020, China.
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, China; Chongqing Key Laboratory of New Drug Delivery System, Chongqing 400038, China.
| |
Collapse
|
3
|
Filipovich E, Gorodkova E, Shcherbakova A, Asaad W, Popov S, Melnichenko G, Mokrysheva N, Utkina M. The role of cell cycle-related genes in the tumorigenesis of adrenal and thyroid neuroendocrine tumors. Heliyon 2025; 11:e41457. [PMID: 39834406 PMCID: PMC11742855 DOI: 10.1016/j.heliyon.2024.e41457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
The molecular mechanisms underlying adrenal and thyroid neuroendocrine tumors, including their tumorigenesis, progression, and metastasis, involve unique pathways regulating cell cycle progression. To better understand these mechanisms and pathways, extensive in-depth research on cell cycle-related genes is necessary. This review aims to describe and interpret current single-cell RNA sequencing studies on neuroblastoma, medullary thyroid cancer, and pheochromocytoma tumors. Our review summarizes differentially expressed cell cycle-related genes with distinct functions, highlighting their potential as therapeutic targets and components of panels used to determine tumor type or aggressiveness. Although some insights have been gained, there is still limited information on these topics, and further research is required to explore the regulatory mechanisms of these tumors.
Collapse
Affiliation(s)
- Ekaterina Filipovich
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Ekaterina Gorodkova
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Anastasia Shcherbakova
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Walaa Asaad
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Sergey Popov
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Galina Melnichenko
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Natalya Mokrysheva
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Marina Utkina
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| |
Collapse
|
4
|
Celada SI, Li G, Celada LJ, Kanagasabai T, Lu W, Brown LK, Mark ZA, Izban MG, Ballard BR, Zhou X, Adunyah SE, Matusik RJ, Wang X, Chen Z. Castration-resistant prostate cancer is resensitized to androgen deprivation by autophagy-dependent apoptosis induced by blocking SKP2. Sci Signal 2024; 17:eadk4122. [PMID: 39689183 PMCID: PMC11784317 DOI: 10.1126/scisignal.adk4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/04/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Resistance to androgen receptor (AR)-targeted therapies for prostate cancer (PCa) is characteristic of an aggressive subtype called castration-resistant prostate cancer (CRPC) and is often associated with tumor relapse. Both relapse and poor prognosis in patients with CRPC are associated with increased abundance of the E3 ubiquitin ligase SKP2. Therefore, we investigated the therapeutic potential of combined inhibition of AR and SKP2 for CRPC. We found that combined targeting of AR and SKP2 with small-molecule inhibitors decreased proliferation in two CRPC cell lines in culture and in xenografts in humanized mice. Furthermore, combined therapy in mice markedly decreased the growth of Pten/Trp53 double-knockout tumors, a particularly invasive model of CRPC, whereas disruption of either AR or SKP2 alone only modestly suppressed their growth. Mechanistically, the inhibition of SKP2 in CRPC cells induced autophagy-dependent apoptosis and promoted luminal-associated phenotypes, which promoted responsiveness to AR-targeted therapy. These effects were further enhanced by coinhibition of AR and were not induced by the AR inhibitor alone. Our findings indicate that targeting both AR and SKP2 signaling pathways is necessary to treat CRPC.
Collapse
Affiliation(s)
- Sherly I. Celada
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Lindsay J. Celada
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Wenfu Lu
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - LaKendria K. Brown
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zaniya A. Mark
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Michael G. Izban
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Billy R. Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Robert J. Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaofei Wang
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
5
|
Teodoro L, Carreira ACO, Sogayar MC. Exploring the Complexity of Pan-Cancer: Gene Convergences and in silico Analyses. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:913-934. [PMID: 39691553 PMCID: PMC11651076 DOI: 10.2147/bctt.s489246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
Cancer is a complex and multifaceted group of diseases characterized by highly intricate mechanisms of tumorigenesis and tumor progression, which complicates diagnosis, prognosis, and treatment. In recent years, targeted therapies have gained prominence by focusing on specific mutations and molecular features unique to each tumor type, offering more effective and personalized treatment options. However, it is equally critical to explore the genetic commonalities across different types of cancer, which has led to the rise of pan-cancer studies. These approaches help identify shared therapeutic targets across various tumor types, enabling the development of broader and potentially more widely applicable treatment strategies. This review aims to provide a comprehensive overview of key concepts related to tumors, including tumorigenesis processes, the tumor microenvironment, and the role of extracellular vesicles in tumor biology. Additionally, we explore the molecular interactions and mechanisms driving tumor progression, with a particular focus on the pan-cancer perspective. To achieve this, we conducted an in silico analysis using publicly available datasets, which facilitated the identification of both common and divergent genetic and molecular patterns across different tumor types. By integrating these diverse areas, this review offers a clearer and deeper understanding of the factors influencing tumorigenesis and highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Leandro Teodoro
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Ana Claudia O Carreira
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Center of Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09280-560, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
6
|
Ramzan A, Rashid MU, Malkani N. Unlocking the role of miR-17: Driving G1-S cell cycle transition in oral tongue cancer through integrated bioinformatics and laboratory analyses. Arch Oral Biol 2024; 171:106160. [PMID: 39674084 DOI: 10.1016/j.archoralbio.2024.106160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE This study aims to identify miRNA-mediated regulation of the cell cycle in oral tongue cancer. METHODS Comprehensive computational analysis was performed on the GEO dataset "GSE168227". DIANA Tool-mir path v.3, STRING, Cytoscape 3.6.0, Enrichr, and TargetScan Human 7.2 were utilized to identify and analyze miRNAs and their targets in oral tongue cancer. The identified miRNA and its target genes were further analyzed in oral tongue cancer patients using qPCR and immunohistochemistry (IHC). RESULTS Computational analysis revealed miR-17 as a differentially expressed miRNA in oral tongue cancer. Database analysis indicated potential binding sites of miR-17 for CDKN1A and CCND1 mRNA at 3'-UTR. In oral tongue cancer samples, miR-17, CDKN1A, and CCND1expression were upregulated compared to controls. IHC demonstrated overexpression of p21 and Cyclin D1 across various tumor grades, with predominant cytoplasmic expression of p21 observed in oral tongue cancer samples. CONCLUSION The findings suggest that miR-17 may regulate the G1-S transition of the cell cycle in oral tongue cancer. Further validation and functional studies are warranted to confirm their role as biomarkers.
Collapse
Affiliation(s)
- Ammara Ramzan
- Department of Zoology, GC University, Lahore, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Naila Malkani
- Department of Zoology, GC University, Lahore, Pakistan.
| |
Collapse
|
7
|
Yang J, Zhong B, Yang L, Luo Z, Jia L, Zheng K, Tang W, Shang W, Jiang X, Lyu Z, Gai Q, Chen J, Chen G. Ulp1 Regulates Cell Proliferation Through INO1 in Pichia pastoris. Genes (Basel) 2024; 15:1459. [PMID: 39596659 PMCID: PMC11593471 DOI: 10.3390/genes15111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Ulp1 is a vital regulator of the cell cycle, with its absence leading to G2/M phase arrest in Saccharomyces cerevisiae. This study aims to investigate the role of Ulp1 in cell cycle regulation in Pichia pastoris and to elucidate its mechanisms of action, particularly through the modulation of the gene INO1. METHODS We generated Ulp1 knockout strains in Pichia pastoris using the FLP-FRT system and performed RNA sequencing (RNA-seq) to analyze gene expression changes. We assessed cell proliferation in Ulp1 knockout and INO1 overexpressing strains, as well as the effects of inositol supplementation. RESULTS Our findings revealed significant downregulation of INO1 and other genes in Ulp1 knockout strains. Importantly, overexpression of INO1 restored cell proliferation, indicating that Ulp1 regulates this process via INO1. Notably, supplementation with exogenous inositol did not rescue cell proliferation, suggesting that the enzymatic activity of INO1 is not required for Ulp1's regulatory function. CONCLUSIONS This study demonstrates that Ulp1 modulates cell proliferation in Pichia pastoris through INO1, independent of its enzymatic activity. These insights enhance our understanding of Ulp1's role in cell cycle regulation and open new avenues for exploring the molecular mechanisms governing yeast cell division. Further investigations are warranted to delineate the intricate regulatory pathways involved in this process.
Collapse
Affiliation(s)
- Junjie Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Bo Zhong
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Lan Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Zhan Luo
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Lei Jia
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Kaixi Zheng
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Wenjie Tang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Wenna Shang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Xiaofeng Jiang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312369, China
| | - Qijing Gai
- Zhejiang Q-Peptide Biotechnology Co., Ltd., Shaoxing 312366, China;
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312369, China
- Zhejiang Q-Peptide Biotechnology Co., Ltd., Shaoxing 312366, China;
| | - Guodong Chen
- School of Life Sciences, Central South University, Changsha 410031, China
| |
Collapse
|
8
|
Zeng G, Wang Y, Zhu M, Yi J, Ma J, Yang B, Sun W, Dai F, Yin J, Zeng G. Inhibition of DNA Topoisomerase Ι by Flavonoids and Polyacetylenes Isolated from Bidens pilosa L. Molecules 2024; 29:3547. [PMID: 39124952 PMCID: PMC11314063 DOI: 10.3390/molecules29153547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Human DNA topoisomerase I (Topo I) is an essential enzyme in regulating DNA supercoiling during transcription and replication, and it is an important therapeutic target for anti-tumor agents. Bidens pilosa L. is a medicinal herb that is used as a folk medicine for cancers in China. A new flavonoid (1) and a new polyacetylene (20), along with eighteen flavonoids (2-19) and nine polyacetylenes (21-29), were isolated and identified from the methanol extract of the whole plant of B. pilosa, and some of the compounds (4, 5, 6 and 7) exhibited potent cytotoxicity against a panel of five human cancer cell lines. The DNA relaxation assay revealed that some flavonoids and polyacetylenes exerted inhibitory activities on human DNA Topo I, among them compounds 1, 2, 5, 6, 7, 8, 15, 19, 20, 22, and 24 were the most active ones, with IC50 values of 393.5, 328.98, 145.57, 239.27, 224.38, 189.84, 89.91, 47.5, 301.32, 178.03, and 218.27 μM, respectively. The structure-activity analysis of flavonoids was performed according to the results from the Topo I inhibition assay. The DNA content analysis revealed that 5, 6, and 7 potently arrested cell cycle at the G1/S and G2/M phases in human colon cancer cell DLD-1 depending on the concentration of the inhibitors. The levels of protein expression related to the G1/S and G2/M cell cycle checkpoints were in accordance with the results from the DNA content analysis. These findings suggest that flavonoids are one of the key active ingredients accounting for the anti-tumor effect of B. pilosa.
Collapse
Affiliation(s)
- Guiyuan Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China; (G.Z.); (Y.W.); (M.Z.); (J.Y.); (J.M.); (B.Y.); (W.S.)
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming 650504, China
| | - Yinyue Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China; (G.Z.); (Y.W.); (M.Z.); (J.Y.); (J.M.); (B.Y.); (W.S.)
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming 650504, China
| | - Meihua Zhu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China; (G.Z.); (Y.W.); (M.Z.); (J.Y.); (J.M.); (B.Y.); (W.S.)
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming 650504, China
| | - Jumei Yi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China; (G.Z.); (Y.W.); (M.Z.); (J.Y.); (J.M.); (B.Y.); (W.S.)
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming 650504, China
| | - Junjie Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China; (G.Z.); (Y.W.); (M.Z.); (J.Y.); (J.M.); (B.Y.); (W.S.)
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming 650504, China
| | - Bijuan Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China; (G.Z.); (Y.W.); (M.Z.); (J.Y.); (J.M.); (B.Y.); (W.S.)
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming 650504, China
| | - Weiqing Sun
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China; (G.Z.); (Y.W.); (M.Z.); (J.Y.); (J.M.); (B.Y.); (W.S.)
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming 650504, China
| | - Fang Dai
- School of Chemistry and Environmental Engineering, Qujing Normal University, Qujing 655011, China;
| | - Junlin Yin
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China; (G.Z.); (Y.W.); (M.Z.); (J.Y.); (J.M.); (B.Y.); (W.S.)
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming 650504, China
| | - Guangzhi Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China; (G.Z.); (Y.W.); (M.Z.); (J.Y.); (J.M.); (B.Y.); (W.S.)
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming 650504, China
| |
Collapse
|
9
|
Yao Y, Zhang Q, Li Z, Zhang H. MDM2: current research status and prospects of tumor treatment. Cancer Cell Int 2024; 24:170. [PMID: 38741108 DOI: 10.1186/s12935-024-03356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Mousedouble minute 2 (MDM2) is one of the molecules activated by p53 and plays an important role in the regulation of p53. MDM2 is generally believed to function as a negative regulator of p53 by facilitating its ubiquitination and subsequent degradation. Consequently, blocked p53 activity often fails in damaged cells to undergo cell cycle arrest or apoptosis. Given that around 50% of human cancers involve the inactivation of p53 through genetic mutations, and directly targeting p53 through drug development has limited feasibility, targeting molecular regulation related to p53 has great potential and has become a research hotspot. For example, developing drugs that target the interaction between p53 and MDM2. Such drugs aim to reactivate p53 by targeting either MDM2 binding or p53 phosphorylation. Researchers have identified various compounds that can serve as inhibitors, either by directly binding to MDM2 or by modifying p53 through phosphorylation. Furthermore, a significant correlation exists between the expression of MDM2 in tumors and the effectiveness of immunotherapy, predominantly in the context of immune checkpoint inhibition. This review presents a comprehensive overview of the molecular characteristics of MDM2 and the current state of research on MDM2-targeting inhibitors. It includes a review of the impact of MDM2 targeting on the efficacy of immunotherapy, providing guidance and direction for the development of drugs targeting the p53-MDM2 interaction and optimization of immunotherapy.
Collapse
Affiliation(s)
- Yumei Yao
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Qian Zhang
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Zhi Li
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Hushan Zhang
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China.
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, 650302, People's Republic of China.
| |
Collapse
|
10
|
Rej RK, Allu SR, Roy J, Acharyya RK, Kiran INC, Addepalli Y, Dhamodharan V. Orally Bioavailable Proteolysis-Targeting Chimeras: An Innovative Approach in the Golden Era of Discovering Small-Molecule Cancer Drugs. Pharmaceuticals (Basel) 2024; 17:494. [PMID: 38675453 PMCID: PMC11054475 DOI: 10.3390/ph17040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are an emerging therapeutic modality that show promise to open a target space not accessible to conventional small molecules via a degradation-based mechanism. PROTAC degraders, due to their bifunctional nature, which is categorized as 'beyond the Rule of Five', have gained attention as a distinctive therapeutic approach for oral administration in clinical settings. However, the development of PROTACs with adequate oral bioavailability remains a significant hurdle, largely due to their large size and less than ideal physical and chemical properties. This review encapsulates the latest advancements in orally delivered PROTACs that have entered clinical evaluation as well as developments highlighted in recent scholarly articles. The insights and methodologies elaborated upon in this review could be instrumental in supporting the discovery and refinement of novel PROTAC degraders aimed at the treatment of various human cancers.
Collapse
Affiliation(s)
- Rohan Kalyan Rej
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Srinivasa Rao Allu
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Joyeeta Roy
- Rogel Cancer Center, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ranjan Kumar Acharyya
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - I. N. Chaithanya Kiran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA;
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - V. Dhamodharan
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|
11
|
Jiang Y, Huang H, Liu J, Luo D, Mu R, Yuan J, Lin J, Chen Q, Tao W, Yang L, Zhang M, Zhang P, Fang F, Xu J, Gong Q, Xie Z, Zhang Y. Hippo cooperates with p53 to maintain foregut homeostasis and suppress the malignant transformation of foregut basal progenitor cells. Proc Natl Acad Sci U S A 2024; 121:e2320559121. [PMID: 38408237 PMCID: PMC10927585 DOI: 10.1073/pnas.2320559121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Basal progenitor cells serve as a stem cell pool to maintain the homeostasis of the epithelium of the foregut, including the esophagus and the forestomach. Aberrant genetic regulation in these cells can lead to carcinogenesis, such as squamous cell carcinoma (SCC). However, the underlying molecular mechanisms regulating the function of basal progenitor cells remain largely unknown. Here, we use mouse models to reveal that Hippo signaling is required for maintaining the homeostasis of the foregut epithelium and cooperates with p53 to repress the initiation of foregut SCC. Deletion of Mst1/2 in mice leads to epithelial overgrowth in both the esophagus and forestomach. Further molecular studies find that Mst1/2-deficiency promotes epithelial growth by enhancing basal cell proliferation in a Yes-associated protein (Yap)-dependent manner. Moreover, Mst1/2 deficiency accelerates the onset of foregut SCC in a carcinogen-induced foregut SCC mouse model, depending on Yap. Significantly, a combined deletion of Mst1/2 and p53 in basal progenitor cells sufficiently drives the initiation of foregut SCC. Therefore, our studies shed light on the collaborative role of Hippo signaling and p53 in maintaining squamous epithelial homeostasis while suppressing malignant transformation of basal stem cells within the foregut.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Haidi Huang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiangying Liu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dan Luo
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Rongzi Mu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jianghong Yuan
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
| | - Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai200433, China
| | - Ling Yang
- Clinical Medical Research Center of The Affiliated Hospital and Inner Mongolia Key Laboratory of Medical Cellular Biology, Inner Mongolia Medical University, Hohhot010050, China
| | - Man Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou510120, China
| | - Pingping Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Fengqin Fang
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200336, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
12
|
Wang Z, Zhang Z, Luo S, Zhou T, Zhang J. Power-law behavior of transcriptional bursting regulated by enhancer-promoter communication. Genome Res 2024; 34:106-118. [PMID: 38171575 PMCID: PMC10903953 DOI: 10.1101/gr.278631.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Revealing how transcriptional bursting kinetics are genomically encoded is challenging because genome structures are stochastic at the organization level and are suggestively linked to gene transcription. To address this challenge, we develop a generic theoretical framework that integrates chromatin dynamics, enhancer-promoter (E-P) communication, and gene-state switching to study transcriptional bursting. The theory predicts that power law can be a general rule to quantitatively describe bursting modulations by E-P spatial communication. Specifically, burst frequency and burst size are up-regulated by E-P communication strength, following power laws with positive exponents. Analysis of the scaling exponents further reveals that burst frequency is preferentially regulated. Bursting kinetics are down-regulated by E-P genomic distance with negative power-law exponents, and this negative modulation desensitizes at large distances. The mutual information between burst frequency (or burst size) and E-P spatial distance further reveals essential characteristics of the information transfer from E-P communication to transcriptional bursting kinetics. These findings, which are in agreement with experimental observations, not only reveal fundamental principles of E-P communication in transcriptional bursting but also are essential for understanding cellular decision-making.
Collapse
Affiliation(s)
- Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Songhao Luo
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China;
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China;
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
13
|
Bouges E, Segers C, Leys N, Lebeer S, Zhang J, Mastroleo F. Human Intestinal Organoids and Microphysiological Systems for Modeling Radiotoxicity and Assessing Radioprotective Agents. Cancers (Basel) 2023; 15:5859. [PMID: 38136404 PMCID: PMC10741417 DOI: 10.3390/cancers15245859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients' quality of life.
Collapse
Affiliation(s)
- Eloïse Bouges
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Charlotte Segers
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Natalie Leys
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Jianbo Zhang
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, 1105 BK Amsterdam, The Netherlands
| | - Felice Mastroleo
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| |
Collapse
|
14
|
Wang Z, Luo S, Zhang Z, Zhou T, Zhang J. 4D nucleome equation predicts gene expression controlled by long-range enhancer-promoter interaction. PLoS Comput Biol 2023; 19:e1011722. [PMID: 38109463 PMCID: PMC10760824 DOI: 10.1371/journal.pcbi.1011722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/02/2024] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Recent experimental evidence strongly supports that three-dimensional (3D) long-range enhancer-promoter (E-P) interactions have important influences on gene-expression dynamics, but it is unclear how the interaction information is translated into gene expression over time (4D). To address this question, we developed a general theoretical framework (named as a 4D nucleome equation), which integrates E-P interactions on chromatin and biochemical reactions of gene transcription. With this equation, we first present the distribution of mRNA counts as a function of the E-P genomic distance and then reveal a power-law scaling of the expression level in this distance. Interestingly, we find that long-range E-P interactions can induce bimodal and trimodal mRNA distributions. The 4D nucleome equation also allows for model selection and parameter inference. When this equation is applied to the mouse embryonic stem cell smRNA-FISH data and the E-P genomic-distance data, the predicted E-P contact probability and mRNA distribution are in good agreement with experimental results. Further statistical inference indicates that the E-P interactions prefer to modulate the mRNA level by controlling promoter activation and transcription initiation rates. Our model and results provide quantitative insights into both spatiotemporal gene-expression determinants (i.e., long-range E-P interactions) and cellular fates during development.
Collapse
Affiliation(s)
- Zihao Wang
- Guangdong Province Key Laboratory of Computational, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Songhao Luo
- Guangdong Province Key Laboratory of Computational, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Morais M, Machado V, Figueiredo P, Dias F, Craveiro R, Lencart J, Palmeira C, Mikkonen KS, Teixeira AL, Medeiros R. Silver Nanoparticles (AgNPs) as Enhancers of Everolimus and Radiotherapy Sensitivity on Clear Cell Renal Cell Carcinoma. Antioxidants (Basel) 2023; 12:2051. [PMID: 38136171 PMCID: PMC10741111 DOI: 10.3390/antiox12122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Nanomedicine's advent has promised to revolutionize different biomedical fields, including oncology. Silver Nanoparticles (AgNPs) showed promising results in different tumor models. Clear cell Renal Cell Carcinoma (ccRCC) is especially challenging due to its late diagnosis, poor prognosis and treatment resistance. Therefore, defining new therapeutic targets and regimens could improve patient management. This study intends to evaluate AgNPs' effect in ccRCC cells and explore their potential combinatory effect with Everolimus and Radiotherapy. AgNPs were synthesized, and their effect was evaluated regarding their entering pathway, cellular proliferation capacity, ROS production, mitochondrial membrane depolarization, cell cycle analysis and apoptosis assessment. AgNPs were combined with Everolimus or used to sensitize cells to radiotherapy. AgNPs are cytotoxic to 786-O cells, a ccRCC cell line, entering through endocytosis, increasing ROS, depolarizing mitochondrial membrane, and blocking the cell cycle, leading to a reduction of proliferation capacity and apoptosis. Combined with Everolimus, AgNPs reduce cell viability and inhibit proliferation capacity. Moreover, 786-O is intrinsically resistant to radiation, but after AgNPs' administration, radiation induces cytotoxicity through mitochondrial membrane depolarization and S phase blockage. These results demonstrate AgNPs' cytotoxic potential against ccRCC and seem promising regarding the combination with Everolimus and sensitization to radiotherapy, which can, in the future, benefit ccRCC patients' management.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.M.); (V.M.); (F.D.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.M.); (V.M.); (F.D.); (R.M.)
| | - Patrícia Figueiredo
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014 Helsinki, Finland; (P.F.); (K.S.M.)
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.M.); (V.M.); (F.D.); (R.M.)
| | - Rogéria Craveiro
- Radiobiology and Radiological Protection Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.C.); (J.L.)
| | - Joana Lencart
- Radiobiology and Radiological Protection Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.C.); (J.L.)
- Department of Medical Physics, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carlos Palmeira
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Kirsi S. Mikkonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014 Helsinki, Finland; (P.F.); (K.S.M.)
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, FI-00014 Helsinki, Finland
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.M.); (V.M.); (F.D.); (R.M.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.M.); (V.M.); (F.D.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Biomedical Reasearch Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Research Department, LPCC-Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
16
|
Martin HL, Turner AL, Higgins J, Tang AA, Tiede C, Taylor T, Siripanthong S, Adams TL, Manfield IW, Bell SM, Morrison EE, Bond J, Trinh CH, Hurst CD, Knowles MA, Bayliss RW, Tomlinson DC. Affimer-mediated locking of p21-activated kinase 5 in an intermediate activation state results in kinase inhibition. Cell Rep 2023; 42:113184. [PMID: 37776520 DOI: 10.1016/j.celrep.2023.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
Kinases are important therapeutic targets, and their inhibitors are classified according to their mechanism of action, which range from blocking ATP binding to covalent inhibition. Here, a mechanism of inhibition is highlighted by capturing p21-activated kinase 5 (PAK5) in an intermediate state of activation using an Affimer reagent that binds in the P+1 pocket. PAK5 was identified from a non-hypothesis-driven high-content imaging RNAi screen in urothelial cancer cells. Silencing of PAK5 resulted in reduced cell number, G1/S arrest, and enlargement of cells, suggesting it to be important in urothelial cancer cell line survival and proliferation. Affimer reagents were isolated to identify mechanisms of inhibition. The Affimer PAK5-Af17 recapitulated the phenotype seen with siRNA. Co-crystallization revealed that PAK5-Af17 bound in the P+1 pocket of PAK5, locking the kinase into a partial activation state. This mechanism of inhibition indicates that another class of kinase inhibitors is possible.
Collapse
Affiliation(s)
- Heather L Martin
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy L Turner
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Julie Higgins
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Anna A Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Taylor
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sitthinon Siripanthong
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas L Adams
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Iain W Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sandra M Bell
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Ewan E Morrison
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Jacquelyn Bond
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Chi H Trinh
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Richard W Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Darren C Tomlinson
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
17
|
Dong Y, Wei J, Yang F, Qu Y, Huang J, Shi D. Nutrient-Based Approaches for Melanoma: Prevention and Therapeutic Insights. Nutrients 2023; 15:4483. [PMID: 37892558 PMCID: PMC10609833 DOI: 10.3390/nu15204483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Melanoma, a prevalent and lethal form of skin cancer, remains a formidable challenge in terms of prevention and treatment. While significant progress has been made in understanding its pathogenesis and treatment, the quest for effective prevention strategies and therapeutic approaches remains ongoing. Considering the increased advancements in understanding the dynamic interplay between nutrients and melanoma, we aim to offer a refreshed perspective on nutrient-based approaches for melanoma prevention and adjunctive therapy. In contrast to other studies, we have innovatively provided a detailed exposition of the nutrients' influences on melanoma prognosis and treatment. This review firstly examines various nutrients, including antioxidants (namely vitamins A, D, C, and E; selenium; and caffeine), polyunsaturated fatty acids, and flavonoids, for their effects and underlying mechanisms in reducing melanoma risk. Among these nutrients, caffeine shows the most promising potential, as it is supported by multiple cohort studies for its protective effect against melanoma. In contrast, there is a certain degree of inconsistency in the research of other nutrients, possibly due to inherent differences between animal studies and epidemiological research, as well as variations in the definition of nutrient intake. To comprehensively investigate the impact of nutrients on melanoma progression and therapeutic approaches, the following sections will explore how nutrients influence immune responses and other physiological processes. While there is robust support from cell and animal studies regarding the immunomodulatory attributes of vitamins D and zinc, the anti-angiogenic potential of polyphenols, and the cell growth-inhibitory effects of flavonoids, the limited availability of human-based research substantially constrains their practical relevance in clinical contexts. As for utilizing nutrients in adjuvant melanoma treatments, multiple approaches have garnered clinical research support, including the utilization of vitamin D to decrease the postoperative recurrence rates among melanoma patients and the adoption of a high-fiber diet to enhance the effectiveness of immunotherapy. In general, the effects of most nutrients on reducing the risk of melanoma are not entirely clear. However, several nutrients, including vitamin D and dietary fiber, have demonstrated their potential to improve the melanoma prognosis and enhance the treatment outcomes, making them particularly deserving of clinical attention. A personalized and interdisciplinary approach, involving dermatologists, oncologists, nutritionists, and researchers, holds the promise of optimizing melanoma treatment strategies.
Collapse
Affiliation(s)
- Yucheng Dong
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Jiaxin Wei
- Department of Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Fan Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Yang Qu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Jiuzuo Huang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Di Shi
- Department of Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| |
Collapse
|
18
|
Nagel S, Fischer A, Bens S, Hauer V, Pommerenke C, Uphoff CC, Zaborski M, Siebert R, Quentmeier H. PI3K/AKT inhibitor BEZ-235 targets CCND2 and induces G1 arrest in breast implant-associated anaplastic large cell lymphoma. Leuk Res 2023; 133:107377. [PMID: 37647808 DOI: 10.1016/j.leukres.2023.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a mature, CD30-positive T-cell lymphoma lacking expression of the anaplastic lymphoma kinase (ALK). In contrast to ALK-positive ALCL, BIA-ALCL cells express cyclin D2 (CCND2) which controls cyclin dependent kinases 4 and 6 (CDK4/6). DNA methylation and expression analyses performed with cell lines and primary cells suggest that the expression of CCND2 in BIA-ALCL cell lines conforms to the physiological status of differentiated T-cells, and that it is not the consequence of genomic alterations as observed in other hematopoietic tumors. Using cell line model systems we show that treatment with the CDK4/6 inhibitor palbociclib effects dephosphorylation of the retinoblastoma protein (RB) and causes cell cycle arrest in G1 in BIA-ALCL. Moreover, we show that the PI3K/AKT inhibitor BEZ-235 induces dephosphorylation of the mTORC1 target S6 and of GSK3β, indicators for translational inhibition and proteasomal degradation. Consequently, CCND2 protein levels declined after stimulation with BEZ-235, RB was dephosphorylated and the cell cycle was arrested in G1. Taken together, our data imply potential application of CDK4/6 inhibitors and PI3K/AKT inhibitors for the therapy of BIA-ALCL.
Collapse
Affiliation(s)
- Stefan Nagel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany.
| | - Anja Fischer
- Ulm University and Ulm University Medical Center, Institute of Human Genetics, Ulm, Germany
| | - Susanne Bens
- Ulm University and Ulm University Medical Center, Institute of Human Genetics, Ulm, Germany
| | - Vivien Hauer
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Claudia Pommerenke
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Bioinformatics and Databases, Braunschweig, Germany
| | - Cord C Uphoff
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Margarete Zaborski
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Reiner Siebert
- Ulm University and Ulm University Medical Center, Institute of Human Genetics, Ulm, Germany
| | - Hilmar Quentmeier
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| |
Collapse
|
19
|
Liang XB, Dai ZC, Zou R, Tang JX, Yao CW. The Therapeutic Potential of CDK4/6 Inhibitors, Novel Cancer Drugs, in Kidney Diseases. Int J Mol Sci 2023; 24:13558. [PMID: 37686364 PMCID: PMC10487876 DOI: 10.3390/ijms241713558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammation is a crucial pathological feature in cancers and kidney diseases, playing a significant role in disease progression. Cyclin-dependent kinases CDK4 and CDK6 not only contribute to cell cycle progression but also participate in cell metabolism, immunogenicity and anti-tumor immune responses. Recently, CDK4/6 inhibitors have gained approval for investigational treatment of breast cancer and various other tumors. Kidney diseases and cancers commonly exhibit characteristic pathological features, such as the involvement of inflammatory cells and persistent chronic inflammation. Remarkably, CDK4/6 inhibitors have demonstrated impressive efficacy in treating non-cancerous conditions, including certain kidney diseases. Current studies have identified the renoprotective effect of CDK4/6 inhibitors, presenting a novel idea and potential direction for treating kidney diseases in the future. In this review, we briefly reviewed the cell cycle in mammals and the role of CDK4/6 in regulating it. We then provided an introduction to CDK4/6 inhibitors and their use in cancer treatment. Additionally, we emphasized the importance of these inhibitors in the treatment of kidney diseases. Collectively, growing evidence demonstrates that targeting CDK4 and CDK6 through CDK4/6 inhibitors might have therapeutic benefits in various cancers and kidney diseases and should be further explored in the future.
Collapse
Affiliation(s)
| | | | | | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Cui-Wei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
20
|
Mathew AM, Deng Z, Nelson CJ, Mayberry TG, Bai Q, Lequio M, Fajardo E, Xiao H, Wakefield MR, Fang Y. Artichoke as a melanoma growth inhibitor. Med Oncol 2023; 40:262. [PMID: 37544953 DOI: 10.1007/s12032-023-02077-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 08/08/2023]
Abstract
Melanoma is the most lethal malignancy in skin cancers. About 97,610 new cases of melanoma are projected to occur in the United States (US) in 2023. Artichoke is a very popular plant widely consumed in the US due to its nutrition. In recent years, it has been shown that artichoke shows powerful anti-cancer effects on cancers such as breast cancer, colon cancer, liver cancer, and leukemia. However, there is little known about its effect on melanoma. This study was designed to investigate if artichoke extract (AE) has any direct effect on the growth of melanoma. Clonogenic survival assay, cell proliferation, and caspase-3 activity kits were used to evaluate the effects AE has on cell survival, proliferation, and apoptosis of the widely studied melanoma cell line HTB-72. We further investigated the possible molecular mechanisms using RT-PCR and immunohistochemical staining. The percentage of colonies of HTB-72 melanoma cells decreased significantly after treated with AE. This was paralleled with the decrease in the optic density (OD) value of cancer cells after treatment with AE. This was further supported by the decreased expression of PCNA mRNA after treated with AE. Furthermore, the cellular caspase-3 activity increased after treated with AE. The anti-proliferative effect of AE on melanoma cells correlated with increased p21, p27, and decreased CDK4. The pro-apoptotic effect of AE on melanoma cells correlated with decreased survivin. Artichoke inhibits growth of melanoma by inhibition of proliferation and promotion of apoptosis. Such a study might be helpful to develop a new promising treatment for melanoma.
Collapse
Affiliation(s)
- Annette M Mathew
- The Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Zuliang Deng
- The Center of Early Screening and Diagnosis of Gastrointestinal Tumors of Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Christian J Nelson
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Trenton G Mayberry
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Marco Lequio
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Emerson Fajardo
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- The Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- The Center of Early Screening and Diagnosis of Gastrointestinal Tumors of Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- The Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA.
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
| |
Collapse
|
21
|
Petrohilos C, Patchett A, Hogg CJ, Belov K, Peel E. Tasmanian devil cathelicidins exhibit anticancer activity against Devil Facial Tumour Disease (DFTD) cells. Sci Rep 2023; 13:12698. [PMID: 37542170 PMCID: PMC10403513 DOI: 10.1038/s41598-023-39901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
The Tasmanian devil (Sarcophilus harrisii) is endangered due to the spread of Devil Facial Tumour Disease (DFTD), a contagious cancer with no current treatment options. Here we test whether seven recently characterized Tasmanian devil cathelicidins are involved in cancer regulation. We measured DFTD cell viability in vitro following incubation with each of the seven peptides and describe the effect of each on gene expression in treated cells. Four cathelicidins (Saha-CATH3, 4, 5 and 6) were toxic to DFTD cells and caused general signs of cellular stress. The most toxic peptide (Saha-CATH5) also suppressed the ERBB and YAP1/TAZ signaling pathways, both of which have been identified as important drivers of cancer proliferation. Three cathelicidins induced inflammatory pathways in DFTD cells that may potentially recruit immune cells in vivo. This study suggests that devil cathelicidins have some anti-cancer and inflammatory functions and should be explored further to determine whether they have potential as treatment leads.
Collapse
Affiliation(s)
- Cleopatra Petrohilos
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Amanda Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Li R, Kato H, Nakata T, Yamawaki I, Yamauchi N, Imai K, Taguchi Y, Umeda M. Essential amino acid starvation induces cell cycle arrest, autophagy, and inhibits osteogenic differentiation in murine osteoblast. Biochem Biophys Res Commun 2023; 672:168-176. [PMID: 37354610 DOI: 10.1016/j.bbrc.2023.06.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
This study investigates the effects of essential amino acid (EAA) starvation on murine osteoblasts cells and the underlying mechanisms. We performed and observed the cell proliferation, autophagy, and osteogenic differentiation under deprivation of EAA in vitro. The results showed that EAA starvation resulted in cell cycle arrest via phosphorylation of the MAPK signaling pathway, leading to inhibition of cell proliferation and osteogenic differentiation. Additionally, the LKB1-AMPK signaling pathway was also found to be phosphorylated, inducing autophagy. These findings highlight the significant role of EAA in regulating cellular processes. Furthermore, this study contributes to our understanding of the effects of nutrient deprivation on cellular physiology and may aid in the development of novel therapeutic strategies for diseases associated with amino acid metabolism.
Collapse
Affiliation(s)
- Runbo Li
- Department of Periodontology, Osaka Dental University, Japan
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University, Japan
| | - Takaya Nakata
- Department of Periodontology, Osaka Dental University, Japan
| | - Isao Yamawaki
- Department of Periodontology, Osaka Dental University, Japan
| | | | - Kazutaka Imai
- Department of Periodontology, Osaka Dental University, Japan
| | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Japan
| |
Collapse
|
23
|
Sun SY, Crago A. MDM2 Implications for Potential Molecular Pathogenic Therapies of Soft-Tissue Tumors. J Clin Med 2023; 12:3638. [PMID: 37297833 PMCID: PMC10253559 DOI: 10.3390/jcm12113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Murine double minute 2 (MDM2, gene name MDM2) is an oncogene that mainly codes for a protein that acts as an E3 ubiquitin ligase, which targets the tumor suppressor protein p53 for degradation. Overexpression of MDM2 regulates the p53 protein levels by binding to it and promoting its degradation by the 26S proteasome. This leads to the inhibition of p53's ability to regulate cell cycle progression and apoptosis, allowing for uncontrolled cell growth, and can contribute to the development of soft-tissue tumors. The application of cellular stress leads to changes in the binding of MDM2 to p53, which prevents MDM2 from degrading p53. This results in an increase in p53 levels, which triggers either cell cycle arrest or apoptosis. Inhibiting the function of MDM2 has been identified as a potential therapeutic strategy for treating these types of tumors. By blocking the activity of MDM2, p53 function can be restored, potentially leading to tumor cell death and inhibiting the growth of tumors. However, further research is needed to fully understand the implications of MDM2 inhibition for the treatment of soft-tissue tumors and to determine the safety and efficacy of these therapies in clinical trials. An overview of key milestones and potential uses of MDM2 research is presented in this review.
Collapse
Affiliation(s)
- Sylvia Yao Sun
- Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, 417 E 618 St, New York, NY 10065, USA
| | - Aimee Crago
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Department of Surgery, Weill Cornell Medical Center, 525 E 68th St M 404, New York, NY 10065, USA
| |
Collapse
|
24
|
Ando H, Eshima K, Ishida T. A polyethylene glycol-conjugate of deoxycytidine analog, DFP-14927, produces potential antitumor effects on pancreatic tumor-xenograft murine models via inducing G2/M arrest. Eur J Pharmacol 2023; 950:175758. [PMID: 37121563 DOI: 10.1016/j.ejphar.2023.175758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/02/2023]
Abstract
A deoxycytidine analog is a potential agent for the treatment of several cancers, which includes poorly prognostic pancreatic cancer. We previously developed deoxycytidine analog DFP-10917, and long-term/low-dose infusions of this analog has produced antitumor effects in leukemia cancer- and ovarian cancer-xenograft models. DFP-10917 is now undergoing clinical Phase III study in the United States for the treatment of patients with relapsed or refractory acute myeloid leukemia. PEG-drug conjugation has become a promising technique to improve the pharmacokinetic and pharmacodynamic properties of anti-cancer drugs. In the present study, we synthesized a novel PEG-drug conjugate of DFP-10917, referred to hereafter as DFP-14927, using a 4-armed CTPEG system to endow the DFP-10917 drug with favorable long-circulating properties that maximize its utility and antitumor efficacy. Intravenous injection of the synthesized DFP-14927 returned encouraging antitumor effects in a Panc-1 human pancreatic tumor- and a BxPC-3 human pancreatic tumor-xenograft models. These effects were comparable to that of free DFP-10917 as well as to that of gemcitabine, which is considered a standard in the treatment of pancreatic cancer. In vitro studies revealed that DFP-14927 inhibits cell division on human pancreatic cancer cell lines via arrest of the G2/M phase in the cell cycle, which is consistent with the effects of free DFP-10917. Intravenous administration of the newly synthesized DFP-14927 has induced G2/M arrest in human pancreatic tumor-xenograft murine models, which represents an improvement in the pharmacokinetics of DFP-10917. DFP-14927 could be an alternative for patients who cannot accept prolonged or continuous infusions of DFP-10917.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | | | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
25
|
Ostalé CM, Vega-Cuesta P, González T, López-Varea A, de Celis JF. RNAi screen in the Drosophila wing of genes encoding proteins related to cytoskeleton organization and cell division. Dev Biol 2023; 498:61-76. [PMID: 37015290 DOI: 10.1016/j.ydbio.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Cell division and cytoskeleton organization are fundamental processes participating in the development of Drosophila imaginal discs. In this manuscript we describe the phenotypes in the adult fly wing generated by knockdowns of 85% of Drosophila genes encoding proteins likely related to the regulation of cell division and cytoskeleton organization. We also compile a molecular classification of these proteins into classes that describe their expected or known main biochemical characteristics, as well as mRNA expression in the wing disc and likely protein subcellular localization for a subset of these genes. Finally, we analyze in more detail one protein family of cytoskeleton genes (Arp2/3 complex), and define the consequences of interfering with cell division for wing growth and patterning.
Collapse
|
26
|
Zuch DT, Herrmann A, Kim ED, Torii KU. Cell Cycle Dynamics during Stomatal Development: Window of MUTE Action and Ramification of Its Loss-of-Function on an Uncommitted Precursor. PLANT & CELL PHYSIOLOGY 2023; 64:325-335. [PMID: 36609867 PMCID: PMC10016323 DOI: 10.1093/pcp/pcad002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Plants develop in the absence of cell migration. As such, cell division and differentiation need to be coordinated for functional tissue formation. Cellular valves on the plant epidermis, stomata, are generated through a stereotypical sequence of cell division and differentiation events. In Arabidopsis, three master regulatory transcription factors, SPEECHLESS (SPCH), MUTE and FAMA, sequentially drive initiation, proliferation and differentiation of stomata. Among them, MUTE switches the cell cycle mode from proliferative asymmetric division to terminal symmetric division and orchestrates the execution of the single symmetric division event. However, it remains unclear to what extent MUTE regulates the expression of cell cycle genes through the symmetric division and whether MUTE accumulation itself is gated by the cell cycle. Here, we show that MUTE directly upregulates the expression of cell cycle components throughout the terminal cell cycle phases of a stomatal precursor, not only core cell cycle engines but also check-point regulators. Time-lapse live imaging using the multicolor Plant Cell Cycle Indicator revealed that MUTE accumulates up to the early G2 phase, whereas its successor and direct target, FAMA, accumulate at late G2 through terminal mitosis. In the absence of MUTE, meristemoids fail to differentiate and their G1 phase elongates as they reiterate asymmetric divisions. Together, our work provides the framework of cell cycle and master regulatory transcription factors to coordinate a single symmetric cell division and suggests a mechanism for the eventual cell cycle arrest of an uncommitted stem-cell-like precursor at the G1 phase.
Collapse
Affiliation(s)
| | | | - Eun-Deok Kim
- Department of Molecular Biosciences, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
- Howard Hughes Medical Institute, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | | |
Collapse
|
27
|
Hong Y, Kim HJ, Park S, Yi S, Lim MA, Lee SE, Chang JW, Won HR, Kim JR, Ko H, Kim SY, Kim SK, Park JL, Chu IS, Kim JM, Kim KH, Lee JH, Ju YS, Shong M, Koo BS, Park WY, Kang YE. Single Cell Analysis of Human Thyroid Reveals the Transcriptional Signatures of Aging. Endocrinology 2023; 164:7040488. [PMID: 36791033 DOI: 10.1210/endocr/bqad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/14/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The thyroid gland plays a critical role in the maintenance of whole-body metabolism. However, aging frequently impairs homeostatic maintenance by thyroid hormones due to increased prevalence of subclinical hypothyroidism associated with mitochondrial dysfunction, inflammation, and fibrosis. To understand the specific aging-related changes of endocrine function in thyroid epithelial cells, we performed single-cell RNA sequencing (RNA-seq) of 54 726 cells derived from pathologically normal thyroid tissues from 7 patients who underwent thyroidectomy. Thyroid endocrine epithelial cells were clustered into 5 distinct subpopulations, and a subset of cells was found to be particularly vulnerable with aging, showing functional deterioration associated with the expression of metallothionein (MT) and major histocompatibility complex class II genes. We further validated that increased expression of MT family genes are highly correlated with thyroid gland aging in bulk RNAseq datasets. This study provides evidence that aging induces specific transcriptomic changes across multiple cell populations in the human thyroid gland.
Collapse
Affiliation(s)
- Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Shinae Yi
- Research Institute of Medical Science, Chungnam National University, Daejeon, Korea
| | - Mi Ae Lim
- Research Institute of Medical Science, Chungnam National University, Daejeon, Korea
| | - Seong Eun Lee
- Research Institute of Medical Science, Chungnam National University, Daejeon, Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Je-Ryong Kim
- Genome Insight Technology, Daejeon, Korea
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyemi Ko
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - In-Sun Chu
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jin Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Kun Ho Kim
- Department of Nuclear Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Research Institute of Medical Science, Chungnam National University, Daejeon, Korea
| | - Minho Shong
- Genome Insight Technology, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Yea Eun Kang
- Genome Insight Technology, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
28
|
Zhao J, Carbone J, Farruggia G, Janecka A, Gentilucci L, Calonghi N. Synthesis and Antiproliferative Activity against Cancer Cells of Indole-Aryl-Amide Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010265. [PMID: 36615458 PMCID: PMC9822155 DOI: 10.3390/molecules28010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Indoles constitute a large family of heterocyclic compounds widely occurring in nature which are present in a number of bioactive natural and synthetic compounds, including anticancer agents or atypical opioid agonists. As a result, exponential increases in the development of novel methods for the synthesis of indole-containing compounds have been reported in the literature. A series of indole-aryl amide derivatives 1-7 containing tryptamine or an indolylacetic acid nucleus were designed, synthesized, and evaluated as opioid ligands. These new indole derivatives showed negligible to very low affinity for μ- and δ-opioid receptor (OR). On the other hand, compounds 2, 5 and 7 showed Ki values in the low μM range for κ-OR. Since indoles are well known for their anticancer potential, their effect against a panel of tumor cell lines was tested. The target compounds were evaluated for their in vitro cytotoxicity in HT29, HeLa, IGROV-1, MCF7, PC-3, and Jurkat J6 cells. Some of the synthesized compounds showed good activity against the selected tumor cell lines, with the exception of IGROV1. In particular, compound 5 showed a noteworthy selectivity towards HT29 cells, a malignant colonic cell line, without affecting healthy human intestinal cells. Further studies revealed that 5 caused the cell cycle arrest in the G1 phase and promoted apoptosis in HT29 cells.
Collapse
Affiliation(s)
- Junwei Zhao
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Jacopo Carbone
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Correspondence: (L.G.); (N.C.); Tel.: +39-05-1209-9570 (L.G.); +39-05-1209-1231 (N.C.)
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
- Correspondence: (L.G.); (N.C.); Tel.: +39-05-1209-9570 (L.G.); +39-05-1209-1231 (N.C.)
| |
Collapse
|
29
|
Czerny CC, Borschel A, Cai M, Otto M, Hoyer-Fender S. FOXA1 is a transcriptional activator of Odf2/Cenexin and regulates primary ciliation. Sci Rep 2022; 12:21468. [PMID: 36509813 PMCID: PMC9744847 DOI: 10.1038/s41598-022-25966-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are sensory organelles essential for embryonic and postnatal development, and tissue homeostasis in adulthood. They are generated in a cell cycle-dependent manner and found on most cells of the body. Although cilia formation is intensively investigated virtually nothing is known about the transcriptional regulation of primary ciliation. We used here Odf2/Cenexin, encoding a protein of the mother centriole and the basal body that is mandatory for primary cilia formation, as the target gene for the identification of transcriptional activators. We identified a consensus binding site for Fox transcription factors (TFs) in its promoter region and focused here on the Fox family. We found transcriptional activation of Odf2 neither by FOXO TFs nor by the core TF for multiciliation, FOXJ1. However, we identified FOXA1 as a transcriptional activator of Odf2 by reporter gene assays and qRT-PCR, and showed by qWB that Foxa1 knockdown caused a decrease in ODF2 and CP110 proteins. We verified the binding sequence of FOXA1 in the Odf2 promoter by ChIP. Finally, we demonstrated that knockdown of FOXA1 affected primary cilia formation. We, thus, showed for the first time, that FOXA1 regulates primary ciliation by transcriptional activation of ciliary genes.
Collapse
Affiliation(s)
- Christian Carl Czerny
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Anett Borschel
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Mingfang Cai
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Madeline Otto
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany ,grid.424957.90000 0004 0624 9165Present Address: Thermo Fisher Scientific GENEART, Regensburg, Germany
| | - Sigrid Hoyer-Fender
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| |
Collapse
|
30
|
Ziesemer S, Meyer S, Edelmann J, Vennmann J, Gudra C, Arndt D, Effenberg M, Hayas O, Hayas A, Thomassen JS, Kubickova B, Pöther DC, Hildebrandt JP. Target Mechanisms of the Cyanotoxin Cylindrospermopsin in Immortalized Human Airway Epithelial Cells. Toxins (Basel) 2022; 14:toxins14110785. [PMID: 36422959 PMCID: PMC9698144 DOI: 10.3390/toxins14110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Cylindrospermopsin (CYN) is a cyanobacterial toxin that occurs in aquatic environments worldwide. It is known for its delayed effects in animals and humans such as inhibition of protein synthesis or genotoxicity. The molecular targets and the cell physiological mechanisms of CYN, however, are not well studied. As inhalation of CYN-containing aerosols has been identified as a relevant route of CYN uptake, we analyzed the effects of CYN on protein expression in cultures of immortalized human bronchial epithelial cells (16HBE14o-) using a proteomic approach. Proteins whose expression levels were affected by CYN belonged to several functional clusters, mainly regulation of protein stability, cellular adhesion and integration in the extracellular matrix, cell proliferation, cell cycle regulation, and completion of cytokinesis. With a few exceptions of upregulated proteins (e.g., ITI inhibitor of serine endopeptidases and mRNA stabilizer PABPC1), CYN mediated the downregulation of many proteins. Among these, centrosomal protein 55 (CEP55) and osteonectin (SPARC) were significantly reduced in their abundance. Results of the detailed semi-quantitative Western blot analyses of SPARC, claudin-6, and CEP55 supported the findings from the proteomic study that epithelial cell adhesion, attenuation of cell proliferation, delayed completion of mitosis, as well as induction of genomic instability are major effects of CYN in eukaryotic cells.
Collapse
Affiliation(s)
- Sabine Ziesemer
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Susann Meyer
- Federal Institute for Occupational Safety and Occupational Medicine, Nöldnerstrasse 40-42, D-10317 Berlin, Germany
| | - Julia Edelmann
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Janita Vennmann
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Celine Gudra
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Denise Arndt
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Marcus Effenberg
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Olla Hayas
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Aref Hayas
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Johanna Sophia Thomassen
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Barbara Kubickova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Dierk-Christoph Pöther
- Federal Institute for Occupational Safety and Occupational Medicine, Nöldnerstrasse 40-42, D-10317 Berlin, Germany
| | - Jan-Peter Hildebrandt
- Federal Institute for Occupational Safety and Occupational Medicine, Nöldnerstrasse 40-42, D-10317 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)3834-4204295
| |
Collapse
|
31
|
Descriptive and functional analyses of four cyclin proteins in Trichomonas vaginalis. Mol Biochem Parasitol 2022; 252:111528. [PMID: 36273631 DOI: 10.1016/j.molbiopara.2022.111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 12/31/2022]
Abstract
Trichomonas vaginalis is an early divergent protozoan parasite that causes trichomoniasis, the most common non-viral sexually transmitted infection. In metazoans, there is abundant and detailed research on the cell cycle and the components involved in the regulation mechanisms. Regulators such as the cyclin-dependent kinases (CDKs) and cyclins activate the highly regulated processes of cell division. While CDKs have important roles in the phosphorylation of specific substrates, cyclins are important activating-components of CDKs that allow orderly passage through the different stages of the cell cycle. Cell cycle cyclins are characterized by showing drastic changes in their concentration during the cell cycle progression. However, in protists such as T. vaginalis, some biological processes such as cell cycle regulation remain less well studied. In an attempt to gain insight into cell cycle regulation in T. vaginalis, as an initial approach we characterized four proteins with features of cyclins. The genes encoding these putative cyclins were cloned to produce the recombinant proteins TvCYC1, TvCYC2, TvCYC3, and TvCYC4. The functional activity of TvCYC2, TvCYC3, and TvCYC4 was assessed through their complementation of a yeast cln1,2,3Δ mutant strain; TvCYC1 was not able to complement this mutant. Furthermore, our results suggest that TvCYC1, TvCYC2, and TvCYC3, are able to interact with and activate the kinase activity of TvCRK1, a kinase previously characterized by our group. The present study represents the first characterization of cyclins potentially involved in cell cycle regulation in T. vaginalis.
Collapse
|
32
|
Hicks JA, Pike BE, Liu HC. Alterations in hepatic mitotic and cell cycle transcriptional networks during the metabolic switch in broiler chicks. Front Physiol 2022; 13:1020870. [PMID: 36353371 PMCID: PMC9639855 DOI: 10.3389/fphys.2022.1020870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 09/08/2024] Open
Abstract
During embryonic life, chicks mainly derive energy from hepatic oxidation of yolk lipids. After hatch, chicks must rely on carbohydrate-rich feed to obtain energy. This requires an abrupt and intensive switch of metabolic processes, particularly in the liver. We recently identified a number of transcriptional and post-transcriptional regulatory networks that work concordantly to tune metabolic processes during the metabolic switch. Here, we used delayed feeding post-hatch (48 h) to impede the metabolic switch in broilers. We used RNA-seq to identify hepatic transcriptome differences between late stage embryos (E18) and two-day-old chicks (D2), which were either fed-from-hatch (FED) or not fed (DLY). Between FED and E18, 2,430 genes were differentially expressed (fold-change≥ 2; FDR p-value 0.05), of these 1,237 were downregulated in FED birds and 1,193 were upregulated. Between DLY and E18, 1979 genes were differentially expressed, of these 1,043 were downregulated and 936 were upregulated in DLY birds. Between DLY and FED, 880 genes were differentially expressed, of these 543 were downregulated and 337 were upregulated in DLY birds. We found that in addition to disturbances in a number of metabolic pathways, unfed chicks had a widespread suppression of gene networks associated with cell proliferation, cell cycle progression and mitosis. Expression patterns suggest that hepatocytes of delayed-fed birds have abnormal mitosis and increased polyploidization. This suggests that post-hatch feed consumption maintains the rate and integrity of liver growth immediately, which in turn, likely helps facilitate the appropriate programming of hepatic metabolic networks.
Collapse
Affiliation(s)
| | | | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
33
|
Genome-Wide Identification, Expression Profiling, and Characterization of Cyclin-like Genes Reveal Their Role in the Fertility of the Diamondback Moth. BIOLOGY 2022; 11:biology11101493. [PMID: 36290396 PMCID: PMC9598266 DOI: 10.3390/biology11101493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Simple Summary Cyclin genes are known as cell cycle regulators and play a significant role in the fertility of different organisms, including mice and insects. Until now, no study has been performed on the complete identification of the cyclin genes in insects. Here, we identified 21 cyclin genes in the diamondback moth (DBM) genome through a comprehensive genome-wide analysis and evaluated the gene structure, genomic location, and evolutionary relationship. Cis-regulatory elements and potential miRNA targeting the cyclin genes were also assessed. By analyzing the transcriptomic and RT-qPCR based expression profiling at different stages and tissues, we found that the majority of the cyclin genes were significantly expressed in the reproductive tissues. Moreover, RNAi-mediated characterization of PxCyc B1 showed its role in female fertility. The current study provides a basis for further evaluation of the cyclin genes, which may be used as a potential target for pest management programs. Abstract Cyclin-like genes are primarily considered as cell cycle regulators and have shown to be crucial for insect growth, development, reproduction, and fertility. However, no research has been performed on the cyclin-like genes in the diamondback moth (Plutella xylostella). Here, we identified the 21 cyclin genes in the genome of P. xylostella and clustered them into four groups. Most cyclin genes showed a well-maintained gene structure and motif distribution within the same group. The putative promoter regions of cyclin genes contained several transcription binding factors related to reproduction, along with growth and development. Furthermore, 16 miRNAs were identified targeting the 13 cyclin genes. Transcriptome and quantitative real-time PCR (qRT-PCR)-based expression profiling of cyclin-like genes at different stages and tissues were evaluated, revealing that 16 out of 21 cyclin genes were highly expressed in reproductive tissues of adult females and males. The Cyclin B1 gene (PxCyc B1) was only expressed in the ovary of the adult female and selected for the subsequent analysis. RNAi-mediated suppression of PxCyc B1 interrupted the external genitalia and length of the ovariole of female adults. Furthermore, the egg-laying capacity and hatching rate were also significantly decreased by suppressing the PxCyc B1, indicating the importance of cyclin genes in the reproduction and fertility of P. xylostella. The current study explained the detailed genome-wide analysis of cyclin-like genes in P. xylostella, which provided a basis for subsequent research to assess the roles of cyclin genes in reproduction, and the cyclin gene may be considered an effective target site to control this pest.
Collapse
|
34
|
Nobre AR, Dalla E, Yang J, Huang X, Wullkopf L, Risson E, Razghandi P, Anton ML, Zheng W, Seoane JA, Curtis C, Kenigsberg E, Wang J, Aguirre-Ghiso JA. ZFP281 drives a mesenchymal-like dormancy program in early disseminated breast cancer cells that prevents metastatic outgrowth in the lung. NATURE CANCER 2022; 3:1165-1180. [PMID: 36050483 DOI: 10.1038/s43018-022-00424-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Increasing evidence shows that cancer cells can disseminate from early evolved primary lesions much earlier than the classical metastasis models predicted. Here, we reveal at a single-cell resolution that mesenchymal-like (M-like) and pluripotency-like programs coordinate dissemination and a long-lived dormancy program of early disseminated cancer cells (DCCs). The transcription factor ZFP281 induces a permissive state for heterogeneous M-like transcriptional programs, which associate with a dormancy signature and phenotype in vivo. Downregulation of ZFP281 leads to a loss of an invasive, M-like dormancy phenotype and a switch to lung metastatic outgrowth. We also show that FGF2 and TWIST1 induce ZFP281 expression to induce the M-like state, which is linked to CDH1 downregulation and upregulation of CDH11. We found that ZFP281 not only controls the early dissemination of cancer cells but also locks early DCCs in a dormant state by preventing the acquisition of an epithelial-like proliferative program and consequent metastases outgrowth.
Collapse
Affiliation(s)
- Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Erica Dalla
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, USA
- Zhang Boli Intelligent Health Innovation Lab, Hangzhou, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lena Wullkopf
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Risson
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pedram Razghandi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Melisa Lopez Anton
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jose A Seoane
- Cancer Computational Biology Group, Vall d´Hebron Institute of Oncology, Barcelona, Spain
- Department of Medicine and Department of Genetics, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Medicine and Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ephraim Kenigsberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
35
|
Yue C, Chai Z, Hu Z, Shang L, Deng Y, Tang YZ. Deficiency of nitrogen but not phosphorus triggers the life cycle transition of the dinoflagellate Scrippsiella acuminata from vegetative growth to resting cyst formation. HARMFUL ALGAE 2022; 118:102312. [PMID: 36195426 DOI: 10.1016/j.hal.2022.102312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) and phosphorus (P) are essential elements for algal growth. When N and P are deficient, dinoflagellates will take a series of measures to achieve population continuation including formation of resting cysts, an important ecological strategy of dinoflagellates that plays a key role in the initiation and termination of harmful algal blooms (HABs). How the deficiency of N and P affects algal growth and cyst formation has been investigated in some dinoflagellate species, but how it affects the life cycle transition in dinoflagellates has been poorly understood. In this study, we further explored the effect of N and P deficiency on the algal growth and resting cyst production in the cosmopolitan HABs-causing species Scrippsiella acuminata via refining the N and P concentration gradients. Further, we tracked the expression patterns of one CyclinB and one CDK1 genes of S. acuminata at different growth stages under three deficiency concentrations (1/1000 dilutions of N, P, and both N and P). The results suggest that N deficiency always triggered the cyst formation but P deficiency mainly inhibited the vegetative growth instead of inducing cyst formation. We also observed the highest cyst production when S. acuminata was cultured in the f/2-Si medium that was a one-thousandth dilution of N and P (N∼ 0.882 μM; P∼ 0.0362 μM). Our results for the expressions of CyclinB and CDK1 were well consistent with the results of algal growth and cyst formation at different deficiencies of N and P in terms of that higher expressions of these two genes were corresponding to higher rates of vegetative cell growth, while their expressions in resting cysts maintained to be moderate but significantly lower than that in fast-growing vegetative cells. Although we are still not sure whether the changing expressions of the two genes did regulate the transition of life cycle (i.e. cyst formation), or happened as parallels to the expressions of other truly regulating genes, our observations are surely inspirational for further investigations on the genetic regulation of life cycle transition in dinoflagellates. Our work will provide clues to probe the physiological and molecular mechanisms underlying the nutrient deficiency-induced alternation between life cycle stages in dinoflagellates.
Collapse
Affiliation(s)
- Caixia Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
36
|
Morais M, Machado V, Dias F, Figueiredo P, Palmeira C, Martins G, Fernandes R, Malheiro AR, Mikkonen KS, Teixeira AL, Medeiros R. Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cells. Int J Nanomedicine 2022; 17:4321-4337. [PMID: 36147546 PMCID: PMC9489222 DOI: 10.2147/ijn.s364862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Silver nanoparticles (AgNPs) have shown great potential as anticancer agents, namely in therapies’ resistant forms of cancer. The progression of prostate cancer (PCa) to resistant forms of the disease (castration-resistant PCa, CRPC) is associated with poor prognosis and life quality, with current limited therapeutic options. CRPC is characterized by a high glucose consumption, which poses as an opportunity to direct AgNPs to these cancer cells. Thus, this study explores the effect of glucose functionalization of AgNPs in PCa and CRPC cell lines (LNCaP, Du-145 and PC-3). Methods AgNPs were synthesized, further functionalized, and their physical and chemical composition was characterized both in water and in culture medium, through UV-visible spectrum, dynamic light scattering (DLS), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Their effect was assessed in the cell lines regarding AgNPs’ entering pathway, cellular proliferation capacity, ROS production, mitochondrial membrane depolarization, cell cycle analysis and apoptosis evaluation. Results AgNPs displayed an average size of 61nm and moderate monodispersity with a slight increase after functionalization, and a round shape. These characteristics remained stable when redispersed in culture medium. Both AgNPs and G-AgNPs were cytotoxic only to CRPC cells and not to hormone-sensitive ones and their effect was higher after functionalization showing the potential of glucose to favor AgNPs’ uptake by cancer cells. Entering through endocytosis and being encapsulated in lysosomes, the NPs increased the ROS, inducing mitochondrial damage, and arresting cell cycle in S Phase, therefore blocking proliferation, and inducing apoptosis. Conclusion The nanoparticles synthesized in the present study revealed good characteristics and stability for administration to cancer cells. Their uptake through endocytosis leads to promising cytotoxic effects towards CRPC cells, revealing the potential of G-AgNPs as a future therapeutic approach to improve the management of patients with PCa resistant to hormone therapy or metastatic disease.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Patrícia Figueiredo
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carlos Palmeira
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, 4200-072, Portugal.,Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,Biomedical Research Center (CEBIMED, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, 4249-004, Portugal
| | - Gabriela Martins
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, 4200-072, Portugal.,Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Rui Fernandes
- HEMS-Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Ana Rita Malheiro
- HEMS-Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland.,Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, FI-00014, Finland
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal.,Biomedical Research Center (CEBIMED, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, 4249-004, Portugal.,Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|
37
|
Abstract
The transformation of a single fertilised egg into an adult human consisting of tens of trillions of highly diverse cell types is a marvel of biology. The expansion is largely achieved by cell duplication through the process of mitosis. Mitosis is essential for normal growth, development, and tissue repair and is one of the most tightly regulated biological processes studied. This regulation is designed to ensure accurate segregation of chromosomes into each new daughter cell since errors in this process can lead to genetic imbalances, aneuploidy, that can lead to diseases including cancer. Understanding how mitosis operates and the molecular mechanisms that ensure its fidelity are therefore not only of significant intellectual value but provide unique insights into disease pathology. The purpose of this review is to revisit historical evidence that mitosis can be influenced by the ubiquitous second messenger calcium and to discuss this in the context of new findings revealing exciting new information about its role in cell division.
Collapse
Affiliation(s)
- Charlotte Nugues
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
38
|
Tong KL, Tan KE, Lim YY, Tien XY, Wong PF. CircRNA-miRNA interactions in atherogenesis. Mol Cell Biochem 2022; 477:2703-2733. [PMID: 35604519 DOI: 10.1007/s11010-022-04455-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA-miRNA-mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA-miRNA-mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xin-Yi Tien
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
39
|
Dhingra M, Mahalanobis S, Das A. Thyroid receptor β might be responsible for breast cancer associated with Hashimoto's thyroiditis: a new insight into pathogenesis. Immunol Res 2022; 70:441-448. [PMID: 35562625 DOI: 10.1007/s12026-022-09288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Breast cancer is the most common cancer affecting females worldwide. Often it is observed that women suffering from Hashimoto's thyroiditis exhibit a greater propensity towards development of breast cancer. The exact mechanism for the same is unknown. However, multiple experimental evidences suggest a significant role of thyroid receptor β (TR-β) in regulating cell growth and proliferation and thus play a potent role as a tumor suppressor in several cancers, including breast cancer. Thyroid receptor β shows anti-proliferative action through mediators like β-catenin, RUNX2, PI3K/AKT, and cyclin regulation. The present review explores the link between these pathways and how they may be dysregulated due to Hashimoto's thyroiditis. Further, we propose a new mechanism for cancer prognosis associated with Hashimoto's thyroiditis, which may lead to the development of TR-β targeting as a novel therapeutic approach.
Collapse
Affiliation(s)
- Muskaan Dhingra
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Shayon Mahalanobis
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
40
|
Jeibouei S, Hojat A, Mostafavi E, Aref AR, Kalbasi A, Niazi V, Ajoudanian M, Mohammadi F, Saadati F, Javadi SM, Shams F, Moghaddam M, Karami F, Sharifi K, Moradian F, Akbari ME, Zali H. Radiobiological effects of wound fluid on breast cancer cell lines and human-derived tumor spheroids in 2D and microfluidic culture. Sci Rep 2022; 12:7668. [PMID: 35538133 PMCID: PMC9091274 DOI: 10.1038/s41598-022-11023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Intraoperative radiotherapy (IORT) could abrogate cancer recurrences, but the underlying mechanisms are unclear. To clarify the effects of IORT-induced wound fluid on tumor progression, we treated breast cancer cell lines and human-derived tumor spheroids in 2D and microfluidic cell culture systems, respectively. The viability, migration, and invasion of the cells under treatment of IORT-induced wound fluid (WF-RT) and the cells under surgery-induced wound fluid (WF) were compared. Our findings showed that cell viability was increased in spheroids under both WF treatments, whereas viability of the cell lines depended on the type of cells and incubation times. Both WFs significantly increased sub-G1 and arrested the cells in G0/G1 phases associated with increased P16 and P21 expression levels. The expression level of Caspase 3 in both cell culture systems and for both WF-treated groups was significantly increased. Furthermore, our results revealed that although the migration was increased in both systems of WF-treated cells compared to cell culture media-treated cells, E-cadherin expression was significantly increased only in the WF-RT group. In conclusion, WF-RT could not effectively inhibit tumor progression in an ex vivo tumor-on-chip model. Moreover, our data suggest that a microfluidic system could be a suitable 3D system to mimic in vivo tumor conditions than 2D cell culture.
Collapse
Affiliation(s)
- Shabnam Jeibouei
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hojat
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Amir Reza Aref
- Xsphera Biosciences Inc., 6 Tide street, Boston, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alireza Kalbasi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ajoudanian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Mohammadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fariba Saadati
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Seyed Mohammadreza Javadi
- Department of Surgery, School of Medicine, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moghaddam
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Farshid Karami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. Int J Mol Sci 2022; 23:ijms23095005. [PMID: 35563397 PMCID: PMC9103871 DOI: 10.3390/ijms23095005] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Named as the guardian of the genome, p53 is a tumor suppressor that regulates cell function, often through many different mechanisms such as DNA repair, apoptosis, cell cycle arrest, senescence, metabolism, and autophagy. One of the genes that p53 activates is MDM2, which forms a negative feedback loop since MDM2 induces the degradation of p53. When p53 activity is inhibited, damaged cells do not undergo cell cycle arrest or apoptosis. As 50% of human cancers inactivate p53 by mutation, current research focuses on reactivating p53 by developing drugs that target the p53-MDM2 interaction, which includes the binding of MDM2 and phosphorylation of p53. The objective of this article is to provide a short list and description of p53-MDM2 antagonists that may be excellent candidates for inducing cancer cell death. Relevant articles were searched for and identified using online databases such as PubMed and ScienceDirect. Increasing p53 levels, by targeting the p53-MDM2 interaction, can help p53 play its role as a tumor suppressor and induce cancer cell death. Researchers have identified different compounds that can act as inhibitors, either by directly binding to MDM2 or by modifying p53 with phosphorylation. The results associated with the drugs demonstrate the importance of targeting such interactions to inhibit cancer cell growth, which indicates that the use of the compounds may improve cancer therapeutics.
Collapse
|
42
|
Contact guidance as a consequence of coupled morphological evolution and motility of adherent cells. Biomech Model Mechanobiol 2022; 21:1043-1065. [PMID: 35477826 PMCID: PMC9283373 DOI: 10.1007/s10237-022-01570-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
Abstract
Adherent cells seeded on substrates spread and evolve their morphology while simultaneously displaying motility. Phenomena such as contact guidance, viz. the alignment of cells on patterned substrates, are strongly linked to the coupling of morphological evolution with motility. Here, we employ a recently developed statistical thermodynamics framework for modelling the non-thermal fluctuating response of cells to probe this coupling. This thermodynamic framework is first extended via a Langevin style model to predict temporal responses of cells to unpatterned and patterned substrates. The Langevin model is then shown to not only predict the different experimentally observed temporal scales for morphological observables such as cell area and elongation but also the interplay of morphology with motility that ultimately leads to contact guidance.
Collapse
|
43
|
5-Bromo-3,4-dihydroxybenzaldehyde Promotes Hair Growth through Activation of Wnt/β-Catenin and Autophagy Pathways and Inhibition of TGF-β Pathways in Dermal Papilla Cells. Molecules 2022; 27:molecules27072176. [PMID: 35408575 PMCID: PMC9000556 DOI: 10.3390/molecules27072176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Various studies addressing the increasing problem of hair loss, using natural products with few side effects, have been conducted. 5-bromo-3,4-dihydroxybenzaldehyde (BDB) exhibited anti-inflammatory effects in mouse models of atopic dermatitis and inhibited UVB-induced oxidative stress in keratinocytes. Here, we investigated its stimulating effect and the underlying mechanism of action on hair growth using rat vibrissa follicles and dermal papilla cells (DPCs), required for the regulation of hair cycle and length. BDB increased the length of hair fibers in rat vibrissa follicles and the proliferation of DPCs, along with causing changes in the levels of cell cycle-related proteins. We investigated whether BDB could trigger anagen-activating signaling pathways, such as the Wnt/β-catenin pathway and autophagy in DPCs. BDB induces activation of the Wnt/β-catenin pathway through the phosphorylation of GSG3β and β-catenin. BDB increased the levels of autophagic vacuoles and autophagy regulatory proteins Atg7, Atg5, Atg16L, and LC3B. We also investigated whether BDB inhibits the TGF-β pathway, which promotes transition to the catagen phase. BDB inhibited the phosphorylation of Smad2 induced by TGF-β1. Thus, BDB can promote hair growth by modulating anagen signaling by activating Wnt/β-catenin and autophagy pathways and inhibiting the TGF-β pathway in DPCs.
Collapse
|
44
|
Thoma OM, Neurath MF, Waldner MJ. Cyclin-Dependent Kinase Inhibitors and Their Therapeutic Potential in Colorectal Cancer Treatment. Front Pharmacol 2021; 12:757120. [PMID: 35002699 PMCID: PMC8733931 DOI: 10.3389/fphar.2021.757120] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are key players in cell cycle regulation. So far, more than ten CDKs have been described. Their direct interaction with cyclins allow progression through G1 phase, transitions to S and G2 phase and finally through mitosis (M). While CDK activation is important in cell renewal, its aberrant expression can lead to the development of malignant tumor cells. Dysregulations in CDK pathways are often encountered in various types of cancer, including all gastrointestinal (GI) tract tumors. This prompted the development of CDK inhibitors as novel therapies for cancer. Currently, CDK inhibitors such as CDK4/6 inhibitors are used in pre-clinical studies for cancer treatment. In this review, we will focus on the therapeutic role of various CDK inhibitors in colorectal cancer, with a special focus on the CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
45
|
Wu YS, Liang S, Li DY, Wen JH, Tang JX, Liu HF. Cell Cycle Dysregulation and Renal Fibrosis. Front Cell Dev Biol 2021; 9:714320. [PMID: 34900982 PMCID: PMC8660570 DOI: 10.3389/fcell.2021.714320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Precise regulation of cell cycle is essential for tissue homeostasis and development, while cell cycle dysregulation is associated with many human diseases including renal fibrosis, a common process of various chronic kidney diseases progressing to end-stage renal disease. Under normal physiological conditions, most of the renal cells are post-mitotic quiescent cells arrested in the G0 phase of cell cycle and renal cells turnover is very low. Injuries induced by toxins, hypoxia, and metabolic disorders can stimulate renal cells to enter the cell cycle, which is essential for kidney regeneration and renal function restoration. However, more severe or repeated injuries will lead to maladaptive repair, manifesting as cell cycle arrest or overproliferation of renal cells, both of which are closely related to renal fibrosis. Thus, cell cycle dysregulation of renal cells is a potential therapeutic target for the treatment of renal fibrosis. In this review, we focus on cell cycle regulation of renal cells in healthy and diseased kidney, discussing the role of cell cycle dysregulation of renal cells in renal fibrosis. Better understanding of the function of cell cycle dysregulation in renal fibrosis is essential for the development of therapeutics to halt renal fibrosis progression or promote regression.
Collapse
Affiliation(s)
- Yun-Shan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun-Hao Wen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Shunde Women and Children's Hospital, Guangdong Medical University (Foshan Shunde Maternal and Child Healthcare Hospital), Foshan, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
46
|
Lee SM, Kaye KM, Slack FJ. Cellular microRNA-127-3p suppresses oncogenic herpesvirus-induced transformation and tumorigenesis via down-regulation of SKP2. Proc Natl Acad Sci U S A 2021; 118:e2105428118. [PMID: 34725152 PMCID: PMC8609319 DOI: 10.1073/pnas.2105428118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes the endothelial tumor KS, a leading cause of morbidity and mortality in sub-Saharan Africa. KSHV-encoded microRNAs (miRNAs) are known to play an important role in viral oncogenesis; however, the role of host miRNAs in KS tumorigenesis remains largely unknown. Here, high-throughput small-RNA sequencing of the cellular transcriptome in a KS xenograft model revealed miR-127-3p as one of the most significantly down-regulated miRNAs, which we validated in KS patient tissues. We show that restoration of miR-127-3p suppresses KSHV-driven cellular transformation and proliferation and induces G1 cell cycle arrest by directly targeting the oncogene SKP2. This miR-127-3p-induced G1 arrest is rescued by disrupting the miR-127-3p target site in SKP2 messenger RNA (mRNA) using gene editing. Mechanistically, miR-127-3p-mediated SKP2 repression elevates cyclin-dependent kinase (CDK) inhibitor p21Cip1 and down-regulates cyclin E, cyclin A, and CDK2, leading to activation of the RB protein tumor suppressor pathway and suppression of the transcriptional activities of E2F and Myc, key oncoprotein transcription factors crucial for KSHV tumorigenesis. Consequently, metabolomics analysis during miR-127-3p-induced cell cycle arrest revealed significant depletion of dNTP pools, consistent with RB-mediated repression of key dNTP biosynthesis enzymes. Furthermore, miR-127-3p reconstitution in a KS xenograft mouse model suppresses KSHV-positive tumor growth by targeting SKP2 in vivo. These findings identify a previously unrecognized tumor suppressor function for miR-127-3p in KS and demonstrate that the miR-127-3p/SKP2 axis is a viable therapeutic strategy for KS.
Collapse
Affiliation(s)
- Soo Mi Lee
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138
| | - Kenneth M Kaye
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215;
| |
Collapse
|
47
|
Diori Karidio I, Sanlier SH. Reviewing cancer's biology: an eclectic approach. J Egypt Natl Canc Inst 2021; 33:32. [PMID: 34719756 DOI: 10.1186/s43046-021-00088-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer refers to a group of some of the worldwide most diagnosed and deadliest pathophysiological conditions that conquered researchers' attention for decades and yet begs for more questions for a full comprehension of its complex cellular and molecular pathology. MAIN BODY The disease conditions are commonly characterized by unrestricted cell proliferation and dysfunctional replicative senescence pathways. In fact, the cell cycle operates under the rigorous control of complex signaling pathways involving cyclins and cyclin-dependent kinases assumed to be specific to each phase of the cycle. At each of these checkpoints, the cell is checked essentially for its DNA integrity. Genetic defects observed in these molecules (i.e., cyclins, cyclin-dependent kinases) are common features of cancer cells. Nevertheless, each cancer is different concerning its molecular and cellular etiology. These could range from the genetic defects mechanisms and/or the environmental conditions favoring epigenetically harbored homeostasis driving tumorigenesis alongside with the intratumoral heterogeneity with respect to the model that the tumor follows. CONCLUSIONS This review is not meant to be an exhaustive interpretation of carcinogenesis but to summarize some basic features of the molecular etiology of cancer and the intratumoral heterogeneity models that eventually bolster anticancer drug resistance for a more efficient design of drug targeting the pitfalls of the models.
Collapse
Affiliation(s)
- Ibrahim Diori Karidio
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.
| | - Senay Hamarat Sanlier
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.,ARGEFAR, Faculty of Medicine, Ege University, Bornova, 35040, Izmir, Turkey
| |
Collapse
|
48
|
Han X, Song N, Saidahmatov A, Wang P, Wang Y, Hu X, Kan W, Zhu W, Gao L, Zeng M, Wang Y, Li C, Li J, Liu H, Zhou Y, Wang J. Rational Design and Development of Novel CDK9 Inhibitors for the Treatment of Acute Myeloid Leukemia. J Med Chem 2021; 64:14647-14663. [PMID: 34477384 DOI: 10.1021/acs.jmedchem.1c01148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CDK9 is an essential drug target correlated to the development of acute myeloid leukemia (AML). Starting from the hit compound 10, which was discovered through a screening of our in-house compound library, the structural modifications were carried out based on the bioisosterism and scaffold hopping strategies. Consequently, compound 37 displayed the optimal CDK9 inhibitory activity with an IC50 value of 5.41 nM, which was nearly 1500-fold higher than compound 10. In addition, compound 37 exhibited significant antiproliferative activity in broad cancer cell lines. Further investigation of in vivo properties demonstrated that compound 37 could be orally administrated with an acceptable bioavailability (F = 33.7%). In MV-4-11 subcutaneous xenograft mouse model, compound 37 (7.5 mg/kg) could significantly suppress the tumor progression with a T/C value of 27.80%. Compound 37 represents a promising lead compound for the development of a novel class of CDK9 inhibitors for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Xu Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ning Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Peipei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiaobei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan 528400, China
| | - Weijuan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Mingjie Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yujie Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan 528400, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan 528400, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
49
|
Lund PJ, Lopes M, Sidoli S, Coradin M, Vitorino FNDL, da Cunha JPC, Garcia BA. FGF-2 induces a failure of cell cycle progression in cells harboring amplified K-Ras, revealing new insights into oncogene-induced senescence. Mol Omics 2021; 17:725-739. [PMID: 34636387 PMCID: PMC8511509 DOI: 10.1039/d1mo00019e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paradoxically, oncogenes that drive cell cycle progression may also trigger pathways leading to senescence, thereby inhibiting the growth of tumorigenic cells. Knowledge of how these pathways operate, and how tumor cells may evade these pathways, is important for understanding tumorigenesis. The Y1 cell line, which harbors an amplification of the proto-oncogene Ras, rapidly senesces in response to the mitogen fibroblast growth factor-2 (FGF-2). To gain a more complete picture of how FGF-2 promotes senescence, we employed a multi-omics approach to analyze histone modifications, mRNA and protein expression, and protein phosphorylation in Y1 cells treated with FGF-2. Compared to control cells treated with serum alone, FGF-2 caused a delayed accumulation of acetylation on histone H4 and higher levels of H3K27me3. Sequencing analysis revealed decreased expression of cell cycle-related genes with concomitant loss of H3K27ac. At the same time, FGF-2 promoted the expression of p21, various cytokines, and MAPK-related genes. Nuclear envelope proteins, particularly lamin B1, displayed increased phosphorylation in response to FGF-2. Proteome analysis suggested alterations in cellular metabolism, as evident by modulated expression of enzymes involved in purine biosynthesis, tRNA aminoacylation, and the TCA cycle. We propose that Y1 cells senesce due to an inability to progress through the cell cycle, which may stem from DNA damage or TGFb signaling. Altogether, the phenotype of Y1 cells is consistent with rapidly established oncogene-induced senescence, demonstrating the synergy between growth factors and oncogenes in driving senescence and bringing additional insight into this tumor suppressor mechanism.
Collapse
Affiliation(s)
- Peder J Lund
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mariana Lopes
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratório de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mariel Coradin
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Francisca Nathália de Luna Vitorino
- Laboratório de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
Homayoonfal M, Asemi Z, Yousefi B. Targeting microRNAs with thymoquinone: a new approach for cancer therapy. Cell Mol Biol Lett 2021; 26:43. [PMID: 34627167 PMCID: PMC8502376 DOI: 10.1186/s11658-021-00286-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is a global disease involving transformation of normal cells into tumor types via numerous mechanisms, with mortality among all generations, in spite of the breakthroughs in chemotherapy, radiotherapy and/or surgery for cancer treatment. Since one in six deaths is due to cancer, it is one of the overriding priorities of world health. Recently, bioactive natural compounds have been widely recognized due to their therapeutic effects for treatment of various chronic disorders, notably cancer. Thymoquinone (TQ), the most valuable constituent of black cumin seeds, has shown anti-cancer characteristics in a wide range of animal models. The revolutionary findings have revealed TQ's ability to regulate microRNA (miRNA) expression, offering a promising approach for cancer therapy. MiRNAs are small noncoding RNAs that modulate gene expression by means of variation in features of mRNA. MiRNAs manage several biological processes including gene expression and cellular signaling pathways. Accordingly, miRNAs can be considered as hallmarks for cancer diagnosis, prognosis and therapy. The purpose of this study was to review the various molecular mechanisms by which TQ exerts its potential as an anti-cancer agent through modulating miRNAs.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|