1
|
El Abd A, Dasari H, Dodin P, Trottier H, Ducharme FM. Associations between vitamin D status and biomarkers linked with inflammation in patients with asthma: a systematic review and meta-analysis of interventional and observational studies. Respir Res 2024; 25:344. [PMID: 39322954 PMCID: PMC11423515 DOI: 10.1186/s12931-024-02967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Numerous studies indicate an association between vitamin D status and inflammatory biomarkers in patients with asthma, but findings are inconsistent. This review aims to summarize the relationship between serum vitamin D status, assessed by 25-hydroxyvitamin D (25(OH)D) level, and inflammatory biomarkers in children and adults with asthma. METHODS A literature search of interventional and observational studies on 25(OH)D up to November 2022 was conducted across six electronic databases. Outcomes of interest included a range of inflammatory biomarkers classified in four categories: T helper 2 (Th2) pro-inflammatory, non-Th2 pro-inflammatory, anti-inflammatory, and non-specific biomarkers. Study characteristics were extracted and risk of bias was evaluated using the American Academy of Nutrition and Dietetics tool. Meta-analysis was conducted on studies with a low risk of bias, while narrative reporting was used to present the direction of associations (positive, no association, or negative) for each biomarker, overall and within the low-risk studies. RESULTS We included 71 studies (3 interventional, 68 observational) involving asthma patients. These studies investigated the association between serum 25(OH)D and Th2 pro-inflammatory biomarkers (N = 58), non-Th2 pro-inflammatory biomarkers (N = 18), anti-inflammatory biomarkers (N = 16), and non-specific biomarkers (N = 10). Thirteen (18.3%) studies, 50 (70.4%), and 8 (11.3%) were at high, moderate, and low risk of bias, respectively. In all studies, irrespective of risk of bias, the most frequently reported finding was no significant association, followed by a negative association between 25(OH)D and pro-inflammatory biomarkers and a positive association with anti-inflammatory biomarkers. In low-risk studies, one biomarker could be meta-analysed. The pooled estimate for 25(OH)D and serum IgE showed a negative association (β (95% CI)= - 0.33 (-0.65 to - 0.01); I2 = 88%; N = 4 studies). A negative association between 25(OH)D and blood eosinophils was also observed in the largest of three studies, as well as with cathelicidin (LL-37) in the only study reporting it. For other biomarkers, most low-risk studies revealed no significant association with 25(OH)D. CONCLUSION Serum 25(OH)D is negatively associated with serum IgE and possibly with blood eosinophils and LL-37, supporting an in vivo immunomodulatory effect of 25(OH)D. Future research should employ rigorous methodologies and standardized reporting for meta-analysis aggregation to further elucidate these associations.
Collapse
Affiliation(s)
- Asmae El Abd
- Sainte-Justine University Health Center, Research Center, Montreal, Quebec, Canada.
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Quebec, Canada.
| | - Harika Dasari
- Sainte-Justine University Health Center, Research Center, Montreal, Quebec, Canada
| | - Philippe Dodin
- Sainte-Justine University Health Center, Research Center, Montreal, Quebec, Canada
| | - Helen Trottier
- Sainte-Justine University Health Center, Research Center, Montreal, Quebec, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Quebec, Canada
| | - Francine M Ducharme
- Sainte-Justine University Health Center, Research Center, Montreal, Quebec, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Sainte-Justine Hospital, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Bartone RD, Tisch LJ, Dominguez J, Payne CK, Bonner JC. House Dust Mite Proteins Adsorb on Multiwalled Carbon Nanotubes Forming an Allergen Corona That Intensifies Allergic Lung Disease in Mice. ACS NANO 2024. [PMID: 39259863 PMCID: PMC11440643 DOI: 10.1021/acsnano.4c07893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The increasing use of multiwalled carbon nanotubes (MWCNTs) could increase the risk of allergic lung disease in occupational or consumer settings. We previously reported that MWCNTs exacerbated allergic lung disease in mice induced by extract from house dust mites (HDM), a common cause of asthma in humans. Because MWCNTs avidly bind biomolecules to form protein coronas that can modify immunotoxicity, we hypothesized that exacerbation of allergic lung disease in mice caused by coexposure to MWCNTs and HDM extract was due to the formation of an allergen corona. In a first set of experiments, male and female C57BL/6J mice were coexposed to MWCNTs and HDM extract over 3 weeks compared to MWCNTs or HDM extract alone. In a second set of experiments, mice were exposed to pristine MWCNTs or MWCNTs with an HDM allergen corona (HDM-MWCNTs). HDM-MWCNTs were formed by incubating MWCNTs with HDM extract, where ∼7% of proteins adsorbed to MWCNTs, including Der p 1 and Der p 2. At necropsy, bronchoalveolar lavage fluid was collected from lungs to assess lactate dehydrogenase, total protein and inflammatory cells, while lung tissue was used for histopathology, qPCR, and Western blotting. Compared to MWCNTs or HDM extract alone, coexposure to MWCNTs and HDM extract or exposure to HDM-MWCNTs increased pathological outcomes associated with allergic lung disease (eosinophilia, fibrosis, mucous cell metaplasia), increased mRNAs associated with fibrosis (Col1A1, Arg1) and enhanced STAT6 phosphorylation in lung tissue. These findings indicated that exacerbation of HDM-induced allergic lung disease by MWCNTs is due to an allergen corona.
Collapse
Affiliation(s)
- Ryan D Bartone
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Logan J Tisch
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Judith Dominguez
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Shan L, Matloubi M, Okwor I, Kung S, Almiski MS, Basu S, Halayko A, Koussih L, Gounni AS. CD11c+ dendritic cells PlexinD1 deficiency exacerbates airway hyperresponsiveness, IgE and mucus production in a mouse model of allergic asthma. PLoS One 2024; 19:e0309868. [PMID: 39213301 PMCID: PMC11364237 DOI: 10.1371/journal.pone.0309868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic cells (DCs) are pivotal in regulating allergic asthma. Our research has shown that the absence of Sema3E worsens asthma symptoms in acute and chronic asthma models. However, the specific role of PlexinD1 in these processes, particularly in DCs, remains unclear. This study investigates the role of PlexinD1 in CD11c+ DCs using a house dust mite (HDM) model of asthma. We generated CD11c+ DC-specific PlexinD1 knockout (CD11cPLXND1 KO) mice and subjected them, alongside wild-type controls (PLXND1fl/fl), to an HDM allergen protocol. Airway hyperresponsiveness (AHR) was measured using FlexiVent, and immune cell populations were analyzed via flow cytometry. Cytokine levels and immunoglobulin concentrations were assessed using mesoscale and ELISA, while collagen deposition and mucus production were examined through Sirius-red and periodic acid Schiff (PAS) staining respectively. Our results indicate that CD11cPLXND1 KO mice exhibit significantly exacerbated AHR, characterized by increased airway resistance and tissue elastance. Enhanced mucus production and collagen gene expression were observed in these mice compared to wild-type counterparts. Flow cytometry revealed higher CD11c+ MHCIIhigh CD11b+ cell recruitment into the lungs, and elevated total and HDM-specific serum IgE levels in CD11cPLXND1 KO mice. Mechanistically, co-cultures of B cells with DCs from CD11cPLXND1 KO mice showed significantly increased IgE production compared to wild-type mice.These findings highlight the critical regulatory role of the plexinD1 signaling pathway in CD11c+ DCs in modulating asthma features.
Collapse
Affiliation(s)
- Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojdeh Matloubi
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ifeoma Okwor
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sam Kung
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohamed Sadek Almiski
- Department of Anatomy, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Halayko
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Experimental Biology, Université de Saint-Boniface, Winnipeg, Manitoba
| | - Abdelilah S. Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Phayangkhe C, Ek-Eudomsuk P, Soontrapa K. The bioflavonoid hispidulin effectively attenuates T helper type 2-driven allergic lung inflammation in the ovalbumin-induced allergic asthma mouse model. Respir Investig 2024; 62:558-565. [PMID: 38657289 DOI: 10.1016/j.resinv.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Allergic asthma affects nearly 300 million people worldwide and causes ahigh burden of disability and death. Effective treatments rely heavily on corticosteroids, which are associated with various complications. So, the alternative treatment is of significance. Hispidulin is a bioflavonoid found in herbs that were used in traditional medicine to treat inflammatory diseases, including asthma. This study aims to investigate the efficacy of hispidulin compound in the treatment of allergic lung inflammation using the mouse model of allergic asthma. METHODS BALB/c mice were sensitized and challenged with chicken egg ovalbumin. Cells and cytokines from bronchoalveolar lavage (BAL) fluid were examined. Lung tissues were collected for histologic study. Mouse splenic CD4+ cells were cultured to observe the effect of hispidulin on T-helper 2 (Th2) cell differentiation in vitro. RESULTS Hispidulin treatment could alleviate allergic airway inflammation as evidenced by a significant reduction in the inflammatory cell count and Th2 cytokines interleukin (IL)-4, IL-5, IL-13 in BAL fluid. Histologic examination of lung tissues revealed lower inflammatory cell infiltration to the bronchi and less airway goblet cell hyperplasia in the treatment group compared to the control group. At the cellular level, hispidulin (25, 50, and 100 μM) was found to directly suppress the differentiation and proliferation of Th2 cells and to suppress the production of Th2 cytokines, such as IL-4, IL-5, and IL-13, in vitro. CONCLUSIONS Hispidulin treatment was shown to effectively decrease type 2 lung inflammation in an ovalbumin-induced allergic asthma mouse model by directly suppressing Th2 cell differentiation and functions.
Collapse
Affiliation(s)
- Chaiphichit Phayangkhe
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Pornpimon Ek-Eudomsuk
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
5
|
Ghorbanzadeh S, Khojini JY, Abouali R, Alimardan S, Zahedi M, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Clearing the Path: Exploring Apoptotic Cell Clearance in Inflammatory and Autoimmune Disorders for Therapeutic Advancements. Mol Biotechnol 2024:10.1007/s12033-024-01222-6. [PMID: 38935260 DOI: 10.1007/s12033-024-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 06/28/2024]
Abstract
Inflammatory and autoimmune disorders, characterized by dysregulated immune responses leading to tissue damage and chronic inflammation, present significant health challenges. This review uniquely focuses on efferocytosis-the phagocyte-mediated clearance of apoptotic cells-and its pivotal role in these disorders. We delve into the intricate mechanisms of efferocytosis' four stages and their implications in disease pathogenesis, distinguishing our study from previous literature. Our findings highlight impaired efferocytosis in conditions like atherosclerosis and asthma, proposing its targeting as a novel therapeutic strategy. We discuss the therapeutic potential of efferocytosis in modulating immune responses and resolving inflammation, offering a new perspective in treating inflammatory disorders.
Collapse
Affiliation(s)
- Shadi Ghorbanzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, IR, Iran
| | - Reza Abouali
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Sajad Alimardan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, IR, Iran.
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
6
|
Mohamed MME, Amrani Y. Obesity Enhances Non-Th2 Airway Inflammation in a Murine Model of Allergic Asthma. Int J Mol Sci 2024; 25:6170. [PMID: 38892358 PMCID: PMC11172812 DOI: 10.3390/ijms25116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Obese patients with asthma present with aggravated symptoms that are also harder to treat. Here, we used a mouse model of allergic asthma sensitised and challenged to house dust mite (HDM) extracts to determine whether high-fat-diet consumption would exacerbate the key features of allergic airway inflammation. C57BL/6 mice were intranasally sensitised and challenged with HDM extracts over a duration of 3 weeks. The impact of high-fat-diet (HFD) vs. normal diet (ND) chow was studied on HDM-induced lung inflammation and inflammatory cell infiltration as well as cytokine production. HFD-fed mice had greater inflammatory cell infiltration around airways and blood vessels, and an overall more severe degree of inflammation than in the ND-fed mice (semiquantitative blinded evaluation). Quantitative assessment of HDM-associated Th2 responses (numbers of lung CD4+ T cells, eosinophils, serum levels of allergen-specific IgE as well as the expression of Th2 cytokines (Il5 and Il13)) did not show significant changes between the HFD and ND groups. Interestingly, the HFD group exhibited a more pronounced neutrophilic infiltration within their lung tissues and an increase in non-Th2 cytokines (Il17, Tnfa, Tgf-b, Il-1b). These findings provide additional evidence that obesity triggered by a high-fat-diet regimen may exacerbate asthma by involving non-Th2 and neutrophilic pathways.
Collapse
Affiliation(s)
| | - Yassine Amrani
- Department of Respiratory Sciences, Clinical Sciences, Glenfield Hospital, University of Leicester, Leicester LE3 9QP, UK;
| |
Collapse
|
7
|
Li M, Jia D, Li J, Li Y, Wang Y, Wang Y, Xie W, Chen S. Scutellarin Alleviates Ovalbumin-Induced Airway Remodeling in Mice and TGF-β-Induced Pro-fibrotic Phenotype in Human Bronchial Epithelial Cells via MAPK and Smad2/3 Signaling Pathways. Inflammation 2024; 47:853-873. [PMID: 38168709 PMCID: PMC11147947 DOI: 10.1007/s10753-023-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. Epithelial-mesenchymal transition (EMT) is an essential player in these alterations. Scutellarin is isolated from Erigeron breviscapus. Its vascular relaxative, myocardial protective, and anti-inflammatory effects have been well established. This study was designed to detect the biological roles of scutellarin in asthma and its related mechanisms. The asthma-like conditions were induced by ovalbumin challenges. The airway resistance and dynamic compliance were recorded as the results of AHR. Bronchoalveolar lavage fluid (BALF) was collected and processed for differential cell counting. Hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson staining were conducted to examine histopathological changes. The levels of asthma-related cytokines were measured by enzyme-linked immunosorbent assay. For in vitro analysis, the 16HBE cells were stimulated with 10 ng/mL transforming growth beta-1 (TGF-β1). Cell migration was estimated by Transwell assays and wound healing assays. E-cadherin, N-cadherin, and α-smooth muscle actin (α-SMA) were analyzed by western blotting, real-time quantitative polymerase chain reaction, immunofluorescence staining, and immunohistochemistry staining. The underlying mechanisms of the mitogen-activated protein kinase (MAPK) and Smad pathways were investigated by western blotting. In an ovalbumin-induced asthmatic mouse model, scutellarin suppressed inflammation and inflammatory cell infiltration into the lungs and attenuated AHR and airway remodeling. Additionally, scutellarin inhibited airway EMT (upregulated E-cadherin level and downregulated N-cadherin and α-SMA) in ovalbumin-challenged asthmatic mice. For in vitro analysis, scutellarin prevented the TGF-β1-induced migration and EMT in 16HBE cells. Mechanistically, scutellarin inhibits the phosphorylation of Smad2, Smad3, ERK, JNK, and p38 in vitro and in vivo. In conclusion, scutellarin can inactivate the Smad/MAPK pathways to suppress the TGF-β1-stimulated epithelial fibrosis and EMT and relieve airway inflammation and remodeling in asthma. This study provides a potential therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Minfang Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dan Jia
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jinshuai Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yaqing Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yaqiong Wang
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yuting Wang
- Department of Respiratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China.
| | - Wei Xie
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| | - Sheng Chen
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
8
|
Farhan M, Rizvi A, Aatif M, Muteeb G, Khan K, Siddiqui FA. Dietary Polyphenols, Plant Metabolites, and Allergic Disorders: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:670. [PMID: 38931338 PMCID: PMC11207098 DOI: 10.3390/ph17060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
Given the ongoing rise in the occurrence of allergic disorders, alterations in dietary patterns have been proposed as a possible factor contributing to the emergence and progression of these conditions. Currently, there is a significant focus on the development of dietary therapies that utilize natural compounds possessing anti-allergy properties. Dietary polyphenols and plant metabolites have been intensively researched due to their well-documented anti-inflammatory, antioxidant, and immunomodulatory characteristics, making them one of the most prominent natural bioactive chemicals. This study seeks to discuss the in-depth mechanisms by which these molecules may exert anti-allergic effects, namely through their capacity to diminish the allergenicity of proteins, modulate immune responses, and modify the composition of the gut microbiota. However, further investigation is required to fully understand these effects. This paper examines the existing evidence from experimental and clinical studies that supports the idea that different polyphenols, such as catechins, resveratrol, curcumin, quercetin, and others, can reduce allergic inflammation, relieve symptoms of food allergy, asthma, atopic dermatitis, and allergic rhinitis, and prevent the progression of the allergic immune response. In summary, dietary polyphenols and plant metabolites possess significant anti-allergic properties and can be utilized for developing both preventative and therapeutic strategies for targeting allergic conditions. The paper also discusses the constraints in investigating and broad usage of polyphenols, as well as potential avenues for future research.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Kimy Khan
- Department of Dermatology, Almoosa Specialist Hospital, Dhahran Road, Al Mubarraz 36342, Al Ahsa, Saudi Arabia;
| | - Farhan Asif Siddiqui
- Department of Laboratory and Blood Bank, King Fahad Hospital, Prince Salman Street, Hofuf 36441, Saudi Arabia;
| |
Collapse
|
9
|
Bai W, Su H, Xu S, Gao Z, Chang Z, Sun X, Liu T. Cyp2e1 protects against OVA-induced allergic rhinitis through the inhibition of Th2 cell activation and differentiation: Mediated by MAFB. Int Immunopharmacol 2024; 132:112003. [PMID: 38603858 DOI: 10.1016/j.intimp.2024.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Allergic rhinitis (AR) is a common allergic disease. Cytochrome P450, family 2, subfamily e, polypeptide 1 (Cyp2e1) is a member of the cytochrome P450 family of enzymes, while its role in AR is still unveiled. In AR mice, T cell-specific overexpression of Cyp2e1 relieved the AR symptoms. Overexpressed-Cyp2e1 restrained the infiltration of eosinophils and mast cells in the nasal mucosa of mice, and the inflammatory cells in nasal lavage fluid (NALF). Cyp2e1 overexpressed mice exhibited decreased goblet cell hyperplasia and mucus secretion as well as decreased MUC5AC expression in nasal mucosa. The epithelial permeability and integrity of nasal mucosa were improved upon Cyp2e1 overexpression in AR mice, as evidenced by decreased fluorescein isothiocyanate-dextran 4 content in serum, increased expression of IL-25, IL-33, and TSLP in NALF, and increased expression of ZO-1 and occluding in nasal mucosa. Cyp2e1 inhibited Th2 immune response by decreasing the expression and secretion of IL-4, IL-5, and IL-13 as well as the expression of GATA-3 in NALF or nasal mucosa. We proved that Cyp2e1 inhibited the differentiation of naïve CD4+ T cells toward the Th2 subtype, which was regulated by MAFB by binding to Cyp2e1 promoter to activate its transcription. Overall, these results show the potential role of Cyp2e1 in alleviating AR symptoms by restraining CD4+ T cells to Th2 cell differentiation. Our findings provide further insight into the AR mechanism.
Collapse
Affiliation(s)
- Weiliang Bai
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Hui Su
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Shengqun Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Zhao Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Ziwen Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Xun Sun
- Department of Immunology, College of Basic Medicine, China Medical University, Shenyang, PR China
| | - Tiancong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
10
|
Kim JH, Kang CE, Lee NK, Paik HD. Heat-Killed Lactilactobacillus sakei WB2305 and Lactiplantibacillus plantarum WB2324 Inhibited LPS-Induced Inflammation in Human Airway Epithelial Cells. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10251-1. [PMID: 38592556 DOI: 10.1007/s12602-024-10251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Asthma is characterized by inflammation of the airways, including the inflammatory and airway structural cells. Probiotics, which have diverse effects, even within the same species, are being studied to prevent and mitigate the severity of asthma. Lactilactobacillus sakei WB2305 and Lactiplantibacillus plantarum WB2324 were isolated from kimchi. These strains have acceptable probiotic properties and are safe. In addition, the anti-inflammatory potential of the heat-killed isolates against lipopolysaccharide (LPS)-induced inflammation in the human pulmonary epithelial cell line (A549) was investigated. The heat-killed Lact. sakei WB2305 and Lact. plantarum WB2324 reduced the chemokine and cytokines mRNA expression levels, as shown by the results of using real-time polymerase chain reaction. Western blotting results showed that the nuclear factor-kappa B (NF-κB) activation and mitogen-activated protein kinases (MAPK) signaling pathways were suppressed by treatment with the heat-killed strains. The production amounts of eotaxin, tumor necrosis factor-ɑ (TNF-α), and interleukin-6 (IL-6) were lower than those in LPS-only treated cells. Additionally, 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining confirmed decreased reactive oxygen species (ROS) production in A549 cells. Therefore, the results of present study demonstrate the anti-inflammatory and anti-asthmatic activities of heat-killed Lact. sakei WB2305 and Lact. plantarum WB2324 in human airway epithelial cells.
Collapse
Affiliation(s)
- Ji Hun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Cho Eun Kang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
11
|
El Abd A, Dasari H, Dodin P, Trottier H, Ducharme FM. The effects of vitamin D supplementation on inflammatory biomarkers in patients with asthma: a systematic review and meta-analysis of randomized controlled trials. Front Immunol 2024; 15:1335968. [PMID: 38545098 PMCID: PMC10965564 DOI: 10.3389/fimmu.2024.1335968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024] Open
Abstract
Background While the association between vitamin D and several inflammatory biomarkers in asthma patients has been extensively reported, it remains unclear whether supplementation modifies these biomarkers. This review aims to evaluate the impact of vitamin D supplementation on inflammatory biomarkers measured in vivo in individuals with asthma. Methods We conducted a systematic review of randomized controlled trials (RCTs) published until November 2022 in six electronic databases evaluating the impact of vitamin D supplementation (any dose, form, administration route, frequency, or duration) compared to placebo in children or adults. The two co-primary outcomes were serum IgE and blood eosinophils reported at the endpoint. Secondary outcomes included other markers of type 2 inflammation (e.g., sputum eosinophils, fractional exhaled nitric oxide, etc.), anti-inflammatory biomarkers (e.g., interleukin (IL)-10, etc.), markers of non-type 2 inflammation (e.g., high-sensitivity C-reactive protein, etc.), and non-specific biomarkers (e.g., macrophages, etc.). Data were aggregated using fixed or random effect models. Results Thirteen RCTs (5 in adults, 5 in pediatric patients, and 3 in mixed age groups) testing doses of vitamin D supplementation ranging from 800 to 400,000 IU over periods of 6 weeks to 12 months were included. Eight studies provided data on serum IgE and four on blood eosinophils. As secondary outcomes, three studies reported on sputum eosinophils, four on FeNO, five on serum IL-10, and two on airway IL-10. Compared to placebo, vitamin D supplementation had no significant effect on serum IgE (Mean difference [MD] [95% CI]: 0.06 [-0.13, 0.26] IU/mL), blood eosinophils (MD [95% CI]: - 0.02 [-0.11, 0.07] 103/μL), or FeNO (MD [95% CI]: -4.10 [-10.95, 2.75] ppb) at the endpoint. However, the vitamin D supplementation group showed higher serum IL-10 levels compared to placebo (MD [95% CI]: 18.85 [1.11, 36.59] pg/ml) at the endpoint. Although data could not be aggregated, narrative synthesis suggested no significant effect of supplementation on sputum eosinophils and IL-10 in both sputum and exhaled breath condensate, at the endpoint. Conclusion Vitamin D supplementation in individuals with asthma was not associated with lower inflammatory biomarkers related to type 2 inflammation. However, it was significantly associated with higher serum IL-10 compared to placebo. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022365666.
Collapse
Affiliation(s)
- Asmae El Abd
- Sainte-Justine University Health Center, Research Center, Montreal, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Harika Dasari
- Sainte-Justine University Health Center, Research Center, Montreal, QC, Canada
| | - Philippe Dodin
- Sainte-Justine University Health Center, Research Center, Montreal, QC, Canada
| | - Helen Trottier
- Sainte-Justine University Health Center, Research Center, Montreal, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Francine M Ducharme
- Sainte-Justine University Health Center, Research Center, Montreal, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Sainte-Justine Hospital, Montreal, QC, Canada
| |
Collapse
|
12
|
Jiang Y, Nguyen TV, Jin J, Yu ZN, Song CH, Chai OH. Tectorigenin inhibits oxidative stress by activating the Keap1/Nrf2/HO-1 signaling pathway in Th2-mediated allergic asthmatic mice. Free Radic Biol Med 2024; 212:207-219. [PMID: 38147892 DOI: 10.1016/j.freeradbiomed.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Asthma is a chronic obstructive airway condition and one of the most common non-communicable illnesses worldwide. Tectorigenin (Tec) is an isoflavonoid found in plants that possesses significant antioxidative and anti-inflammatory abilities. Nevertheless, the antioxidative properties of Tec have not yet been documented in allergic asthma. In this study, we created an asthmatic BALB/c mouse model induced by ovalbumin (OVA) and used it to assess the efficacy of Tec as a possible therapy agent. Tec decreased the serum OVA-specific immunoglobulin (Ig) E and IgG1 secretion levels. The total number of cells and the distribution of inflammatory cells decreased significantly in bronchoalveolar lavage fluid (BALF), with weakened inflammatory reaction in pulmonary tissues. Additionally, Tec regulated the T helper 1(Th1)/Th2 balance by increasing the expression of Th1- related factors (interleukin (IL)-12 and T-bet) and decreasing the expression of Th2-related factors (IL-4, IL-5, IL-13, and GATA binding protein 3. In addition, the pro-inflammatory cytokines such as IL-6, tumor necrosis factor-alpha, and IL-1β were also inhibited by Tec. Tec also dramatically increased antioxidant (catalase and superoxide dismutase) concentrations while lowering the intensity of the indicators of oxidative stress such as reactive oxygen species and malondialdehyde in BALF. Finally, Tec effectively activated the Keap1/Nrf2/HO-1 signaling pathway and prevented the epithelial-mesenchymal transition. The results of the current study show that Tec may be useful in relieving the inflammatory and oxidative stress responses associated with asthma.
Collapse
Affiliation(s)
- Yuna Jiang
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54896, Jeonbuk, Republic of Korea.
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54896, Jeonbuk, Republic of Korea.
| |
Collapse
|
13
|
Flanagan T, Foster TP, Galbato TE, Lum PY, Louie B, Song G, Halberstadt AL, Billac GB, Nichols CD. Serotonin-2 Receptor Agonists Produce Anti-inflammatory Effects through Functionally Selective Mechanisms That Involve the Suppression of Disease-Induced Arginase 1 Expression. ACS Pharmacol Transl Sci 2024; 7:478-492. [PMID: 38357283 PMCID: PMC10863441 DOI: 10.1021/acsptsci.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Functional selectivity in the context of serotonin 2A (5-HT2A) receptor agonists is often described as differences psychedelic compounds have in the activation of Gq vs β-arrestin signaling in the brain and how that may relate to inducing psychoactive and hallucinatory properties with respect to each other. However, the presence of 5-HT2A receptors throughout the body in several cell types, including endothelial, endocrine, and immune-related tissues, suggests that functional selectivity may exist in the periphery as well. Here, we examine functional selectivity between two 5-HT2A receptor agonists of the phenylalkylamine class: (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] and (R)-2,5-dimethoxy-4-trifluoromethylamphetamine [(R)-DOTFM]. Despite comparable in vitro activity at the 5-HT2A receptor as well as similar behavioral potency, (R)-DOTFM does not exhibit an ability to prevent inflammation or elevated airway hyperresponsiveness (AHR) in an acute murine ovalbumin-induced asthma model as does (R)-DOI. Furthermore, there are distinct differences between protein expression and inflammatory-related gene expression in pulmonary tissues between the two compounds. Using (R)-DOI and (R)-DOTFM as tools, we further elucidated the anti-inflammatory mechanisms underlying the powerful anti-inflammatory effects of certain psychedelics and identified key mechanistic components of the anti-inflammatory effects of psychedelics, including suppression of arginase 1 expression.
Collapse
Affiliation(s)
- Thomas
W. Flanagan
- Department
of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Timothy P. Foster
- Department
of Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Thomas E. Galbato
- Department
of Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Pek Yee Lum
- Auransa
Inc.Palo Alto, California94301, United States
| | - Brent Louie
- Auransa
Inc.Palo Alto, California94301, United States
| | - Gavin Song
- Auransa
Inc.Palo Alto, California94301, United States
| | - Adam L. Halberstadt
- Department
of PsychiatryUniversity of San Diego, California, San Diego, California92093, United States
| | - Gerald B. Billac
- Department
of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Charles D. Nichols
- Department
of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| |
Collapse
|
14
|
Moura PC, Raposo M, Vassilenko V. Breath biomarkers in Non-Carcinogenic diseases. Clin Chim Acta 2024; 552:117692. [PMID: 38065379 DOI: 10.1016/j.cca.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The analysis of volatile organic compounds (VOCs) from human matrices like breath, perspiration, and urine has received increasing attention from academic and medical researchers worldwide. These biological-borne VOCs molecules have characteristics that can be directly related to physiologic and pathophysiologic metabolic processes. In this work, gathers a total of 292 analytes that have been identified as potential biomarkers for the diagnosis of various non-carcinogenic diseases. Herein we review the advances in VOCs with a focus on breath biomarkers and their potential role as minimally invasive tools to improve diagnosis prognosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Maria Raposo
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| |
Collapse
|
15
|
Drake LY, Wicher SA, Roos BB, Khalfaoui L, Nesbitt L, Fang YH, Pabelick CM, Prakash YS. Functional role of glial-derived neurotrophic factor in a mixed allergen murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 326:L19-L28. [PMID: 37987758 PMCID: PMC11279745 DOI: 10.1152/ajplung.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
16
|
Chen SW, Lin CY, Chen CY, Lin CL, Hsieh TL, Tsai FJ, Chang KH. Long-term exposure to air pollution and risk of Sarcopenia in adult residents of Taiwan: a nationwide retrospective cohort study. BMC Public Health 2023; 23:2172. [PMID: 37932727 PMCID: PMC10629182 DOI: 10.1186/s12889-023-17091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Sarcopenia is an age-related, multifactorial syndrome. Previous studies have shown that air pollutants are associated with inflammation and oxidative stress. However, the association between long-term exposure to air pollution and sarcopenia is not completely understood. METHODS The Taiwan National Health Research Database (NHIRD) contains medical records of almost all Taiwanese residents. Daily air pollution data collected by the Taiwan Environmental Protection Agency was used to analyze concentrations of sulfur oxide (SO2), carbon monoxide (CO), nitrogen monoxide (NO), nitrogen dioxide (NO2), and particulate matter (PM2.5, PM10). The databases were merged according to the insurants' living area and the location of the air quality monitoring station. We categorized the pollutants into quartiles (Q1, Q2, Q3, and Q4). RESULTS Our study population consisted of 286,044 patients, among whom 54.9% were female and 45.1% were male. Compared to Q1 levels of pollutants, Q4 levels of SO2 (adjusted hazard ratio [aHR] = 8.43; 95% confidence interval [CI] = 7.84, 9.07); CO (aHR = 3.03; 95%CI = 2.83, 3.25); NO (aHR = 3.47; 95%CI = 3.23, 3.73); NO2 (aHR = 3.72; 95%CI = 3.48, 3.98); PM2.5 (aHR = 21.9; 95% CI = 19.7, 24.5) and PM10 (aHR = 15.6; 95%CI = 14.1, 17.4) increased risk of sarcopenia. CONCLUSIONS Our findings indicated a significantly increased risk of sarcopenia in both male and female residents exposed to high levels of air pollutants.
Collapse
Affiliation(s)
- Ssu-Wen Chen
- Department of Family Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan
| | - Chih-Ying Lin
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Chiu-Ying Chen
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, 404, Taiwan
- College of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Tsai-Ling Hsieh
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan
- Department of Otolaryngology, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, 404, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, 413, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan.
- Center for General Education, China Medical University, Taichung, 404, Taiwan.
- General Education Center, Nursing and Management, Jen-Teh Junior College of Medicine, Miaoli, 356, Taiwan.
| |
Collapse
|
17
|
Peng H, Sun F, Jiang Y, Guo Z, Liu X, Zuo A, Lu D. Semaphorin 7a aggravates TGF-β1-induced airway EMT through the FAK/ERK1/2 signaling pathway in asthma. Front Immunol 2023; 14:1167605. [PMID: 38022556 PMCID: PMC10646317 DOI: 10.3389/fimmu.2023.1167605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background TGF-β1 can induce epithelial-mesenchymal transition (EMT) in primary airway epithelial cells (AECs). Semaphorin7A (Sema7a) plays a crucial role in regulating immune responses and initiating and maintaining transforming growth factor β1 TGF-β1-induced fibrosis. Objective To determine the expression of Sema7a, in serum isolated from asthmatics and non-asthmatics, the role of Sema7a in TGF-β1 induced proliferation, migration and airway EMT in human bronchial epithelial cells (HBECs) in vitro. Methods The concentrations of Sema7a in serum of asthmatic patients was detected by enzyme-linked immunosorbent assay (ELISA). The expressions of Sema7a and integrin-β1 were examined using conventional western blotting and real-time quantitative PCR (RT-PCR). Interaction between the Sema7a and Integrin-β1 was detected using the Integrin-β1 blocking antibody (GLPG0187). The changes in EMT indicators were performed by western blotting and immunofluorescence, as well as the expression levels of phosphorylated Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2 (ERK1/2) were analyzed by western blot and their mRNA expression was determined by RT-PCR. Results We described the first differentially expressed protein of sema7a, in patients with diagnosed bronchial asthma were significantly higher than those of healthy persons (P<0.05). Western blotting and RT-PCR showed that Sema7a and Integrin-β1 expression were significantly increased in lung tissue from the ovalbumin (OVA)-induced asthma model. GLPG0187 inhibited TGF-β1-mediated HBECs EMT, proliferation and migration, which was associated with Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2 (ERK1/2) phosphorylation. Conclusion Sema7a may play an important role in asthma airway remodeling by inducing EMT. Therefore, new therapeutic approaches for the treatment of chronic asthma, could be aided by the development of agents that target the Sema7a.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Degan Lu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| |
Collapse
|
18
|
Barbosa JAS, da Silva LLS, João JMLG, de Campos EC, Fukuzaki S, Camargo LDN, dos Santos TM, dos Santos HT, Bezerra SKM, Saraiva-Romanholo BM, Lopes FDTQDS, Bonturi CR, Oliva MLV, Leick EA, Righetti RF, Tibério IDFLC. Investigating the Effects of a New Peptide, Derived from the Enterolobium contortisiliquum Proteinase Inhibitor (EcTI), on Inflammation, Remodeling, and Oxidative Stress in an Experimental Mouse Model of Asthma-Chronic Obstructive Pulmonary Disease Overlap (ACO). Int J Mol Sci 2023; 24:14710. [PMID: 37834157 PMCID: PMC10573003 DOI: 10.3390/ijms241914710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The synthesized peptide derived from Enterolobium contortisiliquum (pep3-EcTI) has been associated with potent anti-inflammatory and antioxidant effects, and it may be a potential new treatment for asthma-COPD overlap-ACO). Purpose: To investigate the primary sequence effects of pep3-EcTI in an experimental ACO. BALB/c mice were divided into eight groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep3-EcTI (treated with inhibitor), ACO-DX (treated with dexamethasone), ACO-DX-pep3-EcTI (treated with dexamethasone and inhibitor), and SAL-pep3-EcTI (saline group treated with inhibitor). We evaluated the hyperresponsiveness to methacholine, exhaled nitric oxide, bronchoalveolar lavage fluid (BALF), mean linear intercept (Lm), inflammatory markers, tumor necrosis factor (TNF-α), interferon (IFN)), matrix metalloproteinases (MMPs), growth factor (TGF-β), collagen fibers, the oxidative stress marker inducible nitric oxide synthase (iNOS), transcription factors, and the signaling pathway NF-κB in the airways (AW) and alveolar septa (AS). Statistical analysis was conducted using one-way ANOVA and t-tests, significant when p < 0.05. ACO caused alterations in the airways and alveolar septa. Compared with SAL, ACO-pep3-EcTI reversed the changes in the percentage of resistance of the respiratory system (%Rrs), the elastance of the respiratory system (%Ers), tissue resistance (%Gtis), tissue elastance (%Htis), airway resistance (%Raw), Lm, exhaled nitric oxide (ENO), lymphocytes, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, transforming growth factor (TGF)-β, collagen fibers, and iNOS. ACO-DX reversed the changes in %Rrs, %Ers, %Gtis, %Htis, %Raw, total cells, eosinophils, neutrophils, lymphocytes, macrophages, IL-1β, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, TGF-β, collagen fibers, and iNOS. ACO-DX-pep3-EcTI reversed the changes, as was also observed for the pep3-EcTI and the ACO-DX-pep3-EcTI. Significance: The pep3-EcTI was revealed to be a promising strategy for the treatment of ACO, asthma, and COPD.
Collapse
Affiliation(s)
- Jéssica Anastácia Silva Barbosa
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Luana Laura Sales da Silva
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Juliana Morelli Lopes Gonçalves João
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Elaine Cristina de Campos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Leandro do Nascimento Camargo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Tabata Maruyama dos Santos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Henrique Tibucheski dos Santos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Suellen Karoline Moreira Bezerra
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Beatriz Mangueira Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Department of Medicine, University City of São Paulo, São Paulo 03071-000, Brazil
| | - Fernanda Degobbi Tenório Quirino dos Santos Lopes
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil; (C.R.B.); (M.L.V.O.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil; (C.R.B.); (M.L.V.O.)
| | - Edna Aparecida Leick
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Iolanda de Fátima Lopes Calvo Tibério
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| |
Collapse
|
19
|
Silva LLSD, Barbosa JAS, João JMLG, Fukuzaki S, Camargo LDN, Dos Santos TM, Campos ECD, Costa AS, Saraiva-Romanholo BM, Bezerra SKM, Lopes FTQDS, Bonturi CR, Oliva MLV, Leick EA, Righetti RF, Tibério IDFLC. Effects of a Peptide Derived from the Primary Sequence of a Kallikrein Inhibitor Isolated from Bauhinia bauhinioides (pep-BbKI) in an Asthma-COPD Overlap (ACO) Model. Int J Mol Sci 2023; 24:11261. [PMID: 37511021 PMCID: PMC10379932 DOI: 10.3390/ijms241411261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
(1) There are several patients with asthma-COPD overlap (ACO). A peptide derived from the primary sequence of a kallikrein inhibitor isolated from Bauhinia bauhinioides (pep-BbKI) has potent anti-inflammatory and antioxidant effects. Purpose: To investigate the effects of pep-BbKI treatment in an ACO model and compare them with those of corticosteroids. (2) BALB/c mice were divided into groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep-BbKI (treated with inhibitor), ACO-DX (dexamethasone treatment), ACO-DX-pep-BbKI (both treatments), and SAL-pep-BbKI (saline group treated with inhibitor). We evaluated: hyperresponsiveness to methacholine, bronchoalveolar lavage fluid (BALF), exhaled nitric oxide (eNO), IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IFN-γ, TNF-α, MMP-9, MMP-12, TGF-β, collagen fibers, iNOS, eNO, linear mean intercept (Lm), and NF-κB in airways (AW) and alveolar septa (AS). (3) ACO-pep-BbKI reversed ACO alterations and was similar to SAL in all mechanical parameters, Lm, neutrophils, IL-5, IL-10, IL-17, IFN-γ, TNF-α, MMP-12 (AW), collagen fibers, iNOS (AW), and eNO (p > 0.05). ACO-DX reversed ACO alterations and was similar to SAL in all mechanical parameters, Lm, total cells and differentials, IL-1β(AS), IL-5 (AS), IL-6 (AS), IL-10 (AS), IL-13 (AS), IFN-γ, MMP-12 (AS), TGF-β (AS), collagen fibers (AW), iNOS, and eNO (p > 0.05). SAL was similar to SAL-pep-BbKI for all comparisons (p > 0.05). (4) Pep-BbKI was similar to dexamethasone in reducing the majority of alterations of this ACO model.
Collapse
Affiliation(s)
| | | | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | | | | | | | - Arthur Silva Costa
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Beatriz Mangueira Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
- Department of Medicine, University City of São Paulo, São Paulo 03071-000, Brazil
| | | | | | - Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Edna Aparecida Leick
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
- Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | | |
Collapse
|
20
|
Jiang Y, Nguyen TV, Jin J, Yu ZN, Song CH, Chai OH. Bergapten ameliorates combined allergic rhinitis and asthma syndrome after PM2.5 exposure by balancing Treg/Th17 expression and suppressing STAT3 and MAPK activation in a mouse model. Biomed Pharmacother 2023; 164:114959. [PMID: 37267637 DOI: 10.1016/j.biopha.2023.114959] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Combined allergic rhinitis and asthma syndrome (CARAS) causes chronic respiratory inflammation in allergic individuals. Long-term exposure to particulate matter 2.5 (PM2.5; particles 2.5 µm or less in diameter) can aggravate respiratory damage. Bergapten (5-methoxysporalen) is a furocoumarin mostly found in bergamot essential oil and has significant antioxidant, anticancer, and anti-inflammatory activity. This study created a model in which CARAS was exacerbated by PM2.5 exposure, in BALB/c mice and explored the potential of bergapten as a therapeutic agent. The bergapten medication increased ovalbumin (OVA)-specific immunoglobulin (Ig) G2a level in serum and decreased OVA-specific IgE and IgG1 expression. Clinical nasal symptoms diminished significantly, with weakened inflammatory reaction in both the nasal mucosa and lungs. Furthermore, bergapten controlled the T helper (Th)1 to Th2 ratio by increasing cytokines associated with Th1-like interleukin (IL)-12 and interferon gamma and decreasing the Th2 cytokines IL-4, IL-5, and IL-13. Factors closely related to the balance between regulatory T cells and Th17 (such as IL-10, IL-17, Forkhead box protein P3, and retinoic-related orphan receptor gamma) were also regulated. Notably, pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor-alpha were reduced by bergapten, which suppressed the activation of both the signal transducer and activator of transcription 3 signaling pathway and the mitogen-activated protein kinase signaling pathway. Therefore, bergapten might have potential as a therapeutic agent for CARAS.
Collapse
Affiliation(s)
- Yuna Jiang
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, the Republic of Korea.
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, the Republic of Korea.
| |
Collapse
|
21
|
Gomułka K, Tota M, Brzdąk K. Effect of VEGF Stimulation on CD11b Receptor on Peripheral Eosinophils in Asthmatics. Int J Mol Sci 2023; 24:ijms24108880. [PMID: 37240226 DOI: 10.3390/ijms24108880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Asthma is a chronic, complex disease associated with heterogeneity in molecular pathways. Airway inflammation with different cell activation (e.g., eosinophils) and with hypersecretion of many cytokines (e.g., vascular endothelial growth factor-VEGF) might be relevant for asthma pathogenesis and responsible for airway hyperresponsiveness and remodeling. The aim of our study was to reveal the expression of activation marker CD11b on peripheral eosinophils unstimulated and after VEGF in vitro stimulation in asthmatics with different degrees of airway narrowing. The study population included a total of 118 adult subjects: 78 patients with asthma (among them 39 patients with irreversible bronchoconstriction and 39 patients with reversible bronchoconstriction according to the bronchodilation test) and 40 healthy participants as a control group. CD11b expression on peripheral blood eosinophils was detected in vitro using the flow cytometric method without exogenous stimulation (negative control), after N-formyl-methionine-leucyl-phenylalanine stimulation (fMLP; positive control) and after stimulation with VEGF in two concentrations (250 ng/mL and 500 ng/mL). CD11b marker was slightly presented on unstimulated eosinophils in asthmatics and the subgroup with irreversible airway narrowing (p = 0.06 and p = 0.07, respectively). Stimulation with VEGF enhanced the activity of peripheral eosinophils and induced CD11b expression in asthmatics in comparison with a healthy control (p < 0.05), but it was dependent neither on the concentration of VEGF nor on the degree of airways narrowing in patients with asthma. We present our findings to draw attention to the potential role of VEGF in the eosinophil priming and CD11b-mediated signaling in patients with asthma which is currently undervalued.
Collapse
Affiliation(s)
- Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
| | - Maciej Tota
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
| | - Kacper Brzdąk
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
| |
Collapse
|
22
|
Qin T, Rong X, Zhang X, Kong L, Kang Y, Liu X, Hu M, Liang H, Tie C. Lipid Mediators Metabolic Chaos of Asthmatic Mice Reversed by Rosmarinic Acid. Molecules 2023; 28:molecules28093827. [PMID: 37175237 PMCID: PMC10179739 DOI: 10.3390/molecules28093827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Asthma is a common chronic inflammatory disease of the airways with no known cure. Lipid mediators (LMs) are a kind of inflammatory signaling molecules which are believed to be involved in the development of asthma. Hyssopus cuspidatus Boriss. is a traditional Uyghur medicine, which is widely used in the treatment of asthma and other respiratory diseases. Extraction of Hyssopus cuspidatus Boriss. was reported to neutralize asthma symptoms. The purpose of the study was to investigate both the anti-inflammatory and immunoregulation properties of the Hyssopus cuspidatus Boriss. extract (SXCF) and its main active constituent, rosmarinic acid (RosA), in vivo. The effect of RosA, a major constituent of SXCF, was evaluated on an asthmatic model, with both anti-inflammatory and immunoregulation properties. MATERIALS AND METHODS Anti-inflammatory effect of SXCF and RosA was assessed using OVA-induced asthma model mice by UPLC-MS/MS method. RESULTS Overall, RosA played a critical role in anti-asthma treatment. In total, 90% of LMs species that were significantly regulated by SXCF were covered. On the most important LMs associated with asthma, RosA equivalent induced similar effects as SXCF did. It is believed that some constituents in SXCF could neutralize RosA excessive impacts on LMs.
Collapse
Affiliation(s)
- Tuo Qin
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Xiaojuan Rong
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lingfei Kong
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Yutong Kang
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Xuanlin Liu
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Mengying Hu
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Handong Liang
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Cai Tie
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
23
|
Lu C, Liu Q, Deng M, Liao H, Yang X, Ma P. Interaction of high temperature and NO 2 exposure on asthma risk: In vivo experimental evidence of inflammation and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161760. [PMID: 36702287 DOI: 10.1016/j.scitotenv.2023.161760] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Allergic asthma is a complicated respiratory disease with many concerns. Mounting epidemiological evidence linked temperature (T) and NO2 with allergic asthma, yet toxicological studies remain scarce. We conducted an in vivo study to explore toxicological evidence in T-NO2 interaction on allergic asthma, to investigate underlying toxicological mechanisms. 90 male Balb/c mice were randomly and equally divided into 6 groups including saline control, ovalbumin (OVA)-sensitized, OVA + 35 °C, OVA + NO2, OVA + 35 °C + NO2, and OVA + 35 °C + NO2 + capsazepine (CZP), adopting treatment for 38 days. We measured pulmonary functions of inspiratory resistance (Ri), expiratory resistance (Re) and airway compliance (Cldyn), serum protein biomarkers, indexes of pulmonary inflammation, histopathological changes and protective effects of CZP. Airway hyperresponsiveness (AHR) was aggravated by high T (35 °C) and NO2 (5 ppm) co-exposure with a series of aggravating asthmatic symptoms including airway wall thickening, lumen stenosis, goblet cell proliferation, mucus hypersecretion, and subepithelial fibrotic hyperplasia, providing evidence in the toxicological impact of high T-NO2 interaction. The biomarkers of serum immune functions (Total-IgE, OVA-sIgE and IL-4), pro-inflammation (IL-6 and TNF-α), oxidative stress cytokines (8-OHdG, ROS and MDA), airway resistance (Ri and Re), and TRPV1 expression significantly increased, while IFN-γ, GSH and airway compliance (Cldyn) significantly decreased with co-exposure to high T and NO2. We observed that CZP addition significantly ameliorated these toxicological effects and biomarker levels induced by heat-NO2 interaction. Our results suggest a toxicity of heat-NO2 interaction on asthma with clear mechanisms, which can be ameliorated by CZP, indicating that both oxidative stress and TRPV1 expression may be primarily responsible for asthma of heat-NO2-induced toxicity.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, China.
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Miaomiao Deng
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Xu Yang
- School of Public Health, Hubei University of Science and Technology, Xianning 437100, China
| | - Ping Ma
- School of Public Health, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
24
|
Yu S, Zhang M, Ye Z, Wang Y, Wang X, Chen YG. Development of a 32-gene signature using machine learning for accurate prediction of inflammatory bowel disease. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:8. [PMID: 36600111 PMCID: PMC9813306 DOI: 10.1186/s13619-022-00143-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/09/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by multiple genetic and environmental factors. Numerous genes are implicated in the etiology of IBD, but the diagnosis of IBD is challenging. Here, XGBoost, a machine learning prediction model, has been used to distinguish IBD from healthy cases following elaborative feature selection. Using combined unsupervised clustering analysis and the XGBoost feature selection method, we successfully identified a 32-gene signature that can predict IBD occurrence in new cohorts with 0.8651 accuracy. The signature shows enrichment in neutrophil extracellular trap formation and cytokine signaling in the immune system. The probability threshold of the XGBoost-based classification model can be adjusted to fit personalized lifestyle and health status. Therefore, this study reveals potential IBD-related biomarkers that facilitate an effective personalized diagnosis of IBD.
Collapse
Affiliation(s)
- Shicheng Yu
- grid.9227.e0000000119573309Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510530 China ,Guangzhou Laboratory, Guangzhou, 510700 China
| | - Mengxian Zhang
- grid.12527.330000 0001 0662 3178The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zhaofeng Ye
- grid.12527.330000 0001 0662 3178School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Yalong Wang
- grid.9227.e0000000119573309Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510530 China ,Guangzhou Laboratory, Guangzhou, 510700 China
| | - Xu Wang
- Guangzhou Laboratory, Guangzhou, 510700 China
| | - Ye-Guang Chen
- Guangzhou Laboratory, Guangzhou, 510700 China ,grid.12527.330000 0001 0662 3178The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China ,grid.260463.50000 0001 2182 8825School of Basic Medicine, Nanchang University, Nanchang, 330031 China
| |
Collapse
|
25
|
Thiam F, Yazeedi SA, Feng K, Phogat S, Demirsoy E, Brussow J, Abokor FA, Osei ET. Understanding fibroblast-immune cell interactions via co-culture models and their role in asthma pathogenesis. Front Immunol 2023; 14:1128023. [PMID: 36911735 PMCID: PMC9996007 DOI: 10.3389/fimmu.2023.1128023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Asthma is a chronic lung disease involving airway inflammation and fibrosis. Fibroblasts are the main effector cells important for lung tissue production which becomes abnormal in asthmatics and is one of the main contributors to airway fibrosis. Although fibroblasts were traditionally viewed solely as structural cells, they have been discovered to be highly active, and involved in lung inflammatory and fibrotic processes in asthma. In line with this, using 2D and 3D in vitro co-culture models, a complex interaction between lung fibroblasts and various immune cells important for the pathogenesis of asthma have been recently uncovered. Hence, in this review, we provide the first-ever summary of various studies that used 2D and 3D in vitro co-culture models to assess the nature of aberrant immune cell-fibroblast interactions and their contributions to chronic inflammation and fibrotic mechanisms in asthma pathogenesis.
Collapse
Affiliation(s)
- F Thiam
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - S Al Yazeedi
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - K Feng
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - S Phogat
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - E Demirsoy
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - J Brussow
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - F A Abokor
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - E T Osei
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
26
|
Islam F, Muni M, Mitra S, Emran TB, Chandran D, Das R, Rauf A, Safi SZ, Chidambaram K, Dhawan M, Cheon C, Kim B. Recent advances in respiratory diseases: Dietary carotenoids as choice of therapeutics. Biomed Pharmacother 2022; 155:113786. [PMID: 36271564 DOI: 10.1016/j.biopha.2022.113786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
|
27
|
Duodu P, Sosa G, Canar J, Chhugani O, Gamero AM. Exposing the Two Contrasting Faces of STAT2 in Inflammation. J Interferon Cytokine Res 2022; 42:467-481. [PMID: 35877097 PMCID: PMC9527059 DOI: 10.1089/jir.2022.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation is a natural immune defense mechanism of the body's response to injury, infection, and other damaging triggers. Uncontrolled inflammation may become chronic and contribute to a range of chronic inflammatory diseases. Signal transducer and activator of transcription 2 (STAT2) is an essential transcription factor exclusive to type I and type III interferon (IFN) signaling pathways. Both pathways are involved in multiple biological processes, including powering the immune system as a means of controlling infection that must be tightly regulated to offset the development of persistent inflammation. While studies depict STAT2 as protective in promoting host defense, new evidence is accumulating that exposes the deleterious side of STAT2 when inappropriately regulated, thus prompting its reevaluation as a signaling molecule with detrimental effects in human disease. This review aims to provide a comprehensive summary of the findings based on literature regarding the inflammatory behavior of STAT2 in microbial infections, cancer, autoimmune, and inflammatory diseases. In conveying the extent of our knowledge of STAT2 as a proinflammatory mediator, the aim of this review is to stimulate further investigations into the role of STAT2 in diseases characterized by deregulated inflammation and the mechanisms responsible for triggering severe responses.
Collapse
Affiliation(s)
- Philip Duodu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Geohaira Sosa
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jorge Canar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Olivia Chhugani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Ana M. Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Moeintaghavi A, Akbari A, Rezaeetalab F. Association between periodontitis and periodontal indices in newly diagnosed bronchial asthma. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2022; 14:97-103. [PMID: 36714086 PMCID: PMC9871182 DOI: 10.34172/japid.2022.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023]
Abstract
Background. Periodontitis is an inflammatory disease of the tooth-supporting structures. Current data suggest that periodontal disease may be a risk factor for asthma. The present study aimed to assess the prevalence of periodontitis and its relationship with the severity of asthma in asthmatic patients. Methods. This study was conducted on 70 newly diagnosed asthmatic patients as the case group and 70 healthy subjects as the control group, aged 20‒50. The asthma was diagnosed by a pulmonologist according to Global Initiative for Asthma (GINA) guideline. All the participants underwent peri-odontal examinations, which included measuring the pocket depth (PD), attachment loss (AL), gingi-val index (GI), and plaque index (PI) in one tooth from each sextant, including the incisor/canine and left and right premolar/molar regions for both the maxillary and mandibular dental arches. Results. Periodontal disease was significantly more prevalent in newly diagnosed asthma patients. Patients with asthma had significantly higher PI, GI, PD, and AL scores (P<0.001). Furthermore, dry mouth in asthmatic patients with cough and mucosal changes in asthmatic patients with wheeze were significantly more common than in non-asthmatic patients (P<0.05). The median AL in wheezing patients and the median AL and PD in participants who had asthma attacks within the previous month were significantly higher than in other patients. Furthermore, there was a significant negative correlation between AL with Forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) and PD with FEV1 and FVC. Conclusion. Our results showed that periodontal diseases were more prevalent in newly diagnosed asthmatic patients, and asthma was more severe in periodontitis patients.
Collapse
Affiliation(s)
- Amir Moeintaghavi
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Akbari
- Department of Periodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Afsaneh Akbari. E-mail:
| | - Fariba Rezaeetalab
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Korean Red Ginseng Ameliorates Allergic Asthma through Reduction of Lung Inflammation and Oxidation. Antioxidants (Basel) 2022; 11:antiox11081422. [PMID: 35892624 PMCID: PMC9331112 DOI: 10.3390/antiox11081422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Six-year-old red ginseng, which is processed from the whole ginseng root via steaming and drying, has been shown to have preventive effects such as antioxidative, anti-inflammatory, and immunomodulatory. In this study, we evaluated the therapeutic effects of Korean red ginseng (KRG) against ovalbumin (OVA)-induced allergic asthma and the underlying mechanisms involved. We injected 20 µg of OVA on days 0 and 14, and mice were challenged with aerosolized OVA via a nebulizer for 1 h on days 21, 22, and 23. KRG was administered at 100 and 300 mg/kg from days 18 to 23. The KRG-treated mice showed significant reductions in their airway hyperresponsiveness, production of reactive oxygen species (ROS), and the number of inflammatory cells compared with the OVA-treated mice. The levels of type 2 cytokines in the bronchoalveolar lavage fluid and expression of OVA-specific immunoglobulin E in the serum, which were elevated in the OVA group, were reduced in the KRG-treated groups. The pro-inflammatory factors, inducible nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells, were downregulated by the KRG administration in a dose-dependent manner. KRG effectively suppressed the inflammatory response by inhibiting ROS production. Our results suggest that KRG may have the potential to alleviate asthma.
Collapse
|
30
|
Alqahtani T, Parveen S, Alghazwani Y, Alharbi HM, Gahtani RM, Hussain N, Rehman KU, Hussain M. Pharmacological Validation for the Folklore Use of Ipomoea nil against Asthma: In Vivo and In Vitro Evaluation. Molecules 2022; 27:4653. [PMID: 35889525 PMCID: PMC9324646 DOI: 10.3390/molecules27144653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is the key factor that strengthens free radical generation which stimulates lung inflammation. The aim was to explore antioxidant, bronchodilatory along with anti-asthmatic potential of folkloric plants and the aqueous methanolic crude extract of Ipomoea nil (In.Cr) seeds which may demonstrate as more potent, economically affordable, having an improved antioxidant profile and providing evidence as exclusive therapeutic agents in respiratory pharmacology. In vitro antioxidant temperament was executed by DPPH, TFC, TPC and HPLC in addition to enzyme inhibition (cholinesterase) analysis; a bronchodilator assay on rabbit’s trachea as well as in vivo OVA-induced allergic asthmatic activity was performed on mice. In vitro analysis of 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH) expressed as % inhibition 86.28 ± 0.25 with IC50 17.22 ± 0.56 mol/L, TPC 115.5 ± 1.02 mg GAE/g of dry sample, TFC 50.44 ± 1.06 mg QE/g dry weight of sample, inhibition in cholinesterase levels for acetyl and butyryl with IC50 (0.60 ± 0.67 and 1.5 ± 0.04 mol/L) in comparison with standard 0.06 ± 0.002 and 0.30 ± 0.003, respectively, while HPLC characterization of In.Cr confirmed the existence with identification as well as quantification of various polyphenolics and flavonoids i.e., gallic acid, vanillic acid, chlorogenic acid, quercetin, kaempferol and others. However, oral gavage of In.Cr at different doses in rabbits showed a better brochodilation profile as compared to carbachol and K+-induced bronchospasm. More significant (p < 0.01) reduction in OVA-induced allergic hyper-responses i.e., inflammatory cells grade, antibody IgE as well as altered IFN-α in airways were observed at three different doses of In.Cr. It can be concluded that sound mechanistic basis i.e., the existence of antioxidants: various phenolic and flavonoids, calcium antagonist(s) as well as enzymes’ inhibition profile, validates folkloric consumptions of this traditionally used plant to treat ailments of respiration.
Collapse
Affiliation(s)
- Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (Y.A.)
| | - Sajida Parveen
- Faculty of Pharmacy, TheIslamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.P.); (K.u.R.)
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (Y.A.)
| | - Hanan M. Alharbi
- Department of Pharmaceutics, College of Pharmacy, Umm A-Qura University, Makkah 21955, Saudi Arabia;
| | - Reem M. Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Kashif ur Rehman
- Faculty of Pharmacy, TheIslamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.P.); (K.u.R.)
| | - Musaddique Hussain
- Faculty of Pharmacy, TheIslamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.P.); (K.u.R.)
| |
Collapse
|
31
|
Sex Steroids Effects on Asthma: A Network Perspective of Immune and Airway Cells. Cells 2022; 11:cells11142238. [PMID: 35883681 PMCID: PMC9318292 DOI: 10.3390/cells11142238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022] Open
Abstract
A multitude of evidence has suggested the differential incidence, prevalence and severity of asthma between males and females. A compilation of recent literature recognized sex differences as a significant non-modifiable risk factor in asthma pathogenesis. Understanding the cellular and mechanistic basis of sex differences remains complex and the pivotal point of this ever elusive quest, which remains to be clarified in the current scenario. Sex steroids are an integral part of human development and evolution while also playing a critical role in the conditioning of the immune system and thereby influencing the function of peripheral organs. Classical perspectives suggest a pre-defined effect of sex steroids, generalizing estrogens popularly under the “estrogen paradox” due to conflicting reports associating estrogen with a pro- and anti-inflammatory role. On the other hand, androgens are classified as “anti-inflammatory,” serving a protective role in mitigating inflammation. Although considered mainstream and simplistic, this observation remains valid for numerous reasons, as elaborated in the current review. Women appear immune-favored with stronger and more responsive immune elements than men. However, the remarkable female predominance of diverse autoimmune and allergic diseases contradicts this observation suggesting that hormonal differences between the sexes might modulate the normal and dysfunctional regulation of the immune system. This review illustrates the potential relationship between key elements of the immune cell system and their interplay with sex steroids, relevant to structural cells in the pathophysiology of asthma and many other lung diseases. Here, we discuss established and emerging paradigms in the clarification of observed sex differences in asthma in the context of the immune system, which will deepen our understanding of asthma etiopathology.
Collapse
|
32
|
Gandomani EA, Mosaffa N, Zendehdel R, Kohneshahri MH, Vahabi M, Sabour S. Release of Interleukin-1β evaluation among mineral oil mist–exposed workers. Toxicol Ind Health 2022; 38:270-276. [DOI: 10.1177/07482337221090708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to aerosols has been found to be linked to respiratory impairment. Although the effects of both indoor and outdoor exposures to particulates have been extensively reported, exposures to mists are less studied. Herein, we reported a survey of mineral oil mist toxicity in an occupational exposure scenario. For the purpose of this study, 65 lathe workers of the metal processing industry, as mineral oil mist–exposed population, were studied. Thereafter, the participants’ age, smoking habits and work experience were matched with those of the control workers ( n = 65) who were not occupationally exposed to mist. Thereafter, air samples were evaluated from the breathing zone of the workers using NIOSH method 5026. Plasma Interleukin-1β as a pro-inflammatory indicator was assessed in all the studied subjects. Mean ± standard deviation of mineral oil mist time-weighted average exposure in lathe workers was 7.10± 3.49 mg/m3. IL-1β cytokine levels were significantly higher in the lathe groups compared to the control group. The mean level of Interleukin-1β in the control subjects (2922 pg/L) was selected as the cut-off point of the inflammation effect. Based on this pro-inflammatory point, the results of monitoring showed that 60% of the exposed were affected. A Spearman correlation was also found between mineral oil mist exposure and inflammation in the affected subjects. Our findings highlighted the immunological potential of mineral oil mist in occupational exposure. Overall, the results of this study suggested that Interleukin-1β evaluation in mineral oil mist exposure could be considered as both an acute and chronic inflammation marker.
Collapse
Affiliation(s)
- Elham A Gandomani
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad H Kohneshahri
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoomeh Vahabi
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Aktar A, Shan L, Koussih L, Almiski MS, Basu S, Halayko A, Okwor I, Uzonna JE, Gounni AS. PlexinD1 Deficiency in Lung Interstitial Macrophages Exacerbates House Dust Mite-Induced Allergic Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1272-1279. [PMID: 35110420 DOI: 10.4049/jimmunol.2100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Interstitial macrophages (IMs) are key regulators of allergic inflammation. We previously showed that the absence of semaphorin 3E (Sema3E) exacerbates asthma features in both acute and chronic asthma models. However, it has not been studied whether Sema3E, via its receptor plexinD1, regulates IM function in allergic asthma. Therefore, we investigated the role of plexinD1 deficiency on IMs in allergic asthma. We found that the absence of plexinD1 in IMs increased airway hyperresponsiveness, airway leukocyte numbers, allergen-specific IgE, goblet cell hyperplasia, and Th2/Th17 cytokine response in the house dust mite (HDM)-induced allergic asthma model. Muc5ac, Muc5b, and α-SMA genes were increased in mice with Plxnd1-deficient IMs compared with wild-type mice. Furthermore, plexinD1-deficient bone marrow-derived macrophages displayed reduced IL-10 mRNA expression, at both the baseline and following HDM challenge, compared with their wild-type counterpart mice. Our data suggest that Sema3E/plexinD1 signaling in IMs is a critical pathway that modulates airway inflammation, airway resistance, and tissue remodeling in the HDM murine model of allergic asthma. Reduced IL-10 expression by plexinD1-deficient macrophages may account for these enhanced allergic asthma features.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Experimental Biology, Université de Saint-Boniface, Winnipeg, MB, Canada
| | - Mohamed S Almiski
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; and
| | - Sujata Basu
- Department of Physiology and Physiopathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Andrew Halayko
- Department of Physiology and Physiopathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ifeoma Okwor
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada;
| |
Collapse
|
34
|
Abdel-Fattah MM, Salama AAA, Messiha BAS. Immunomodulatory and anti-inflammatory effects of N-acetylcysteine in ovalbumin-sensitized rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-021-00188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pro-inflammatory cytokines such as interleukin-5 (IL-5) and tumor necrosis factor-alpha (TNF-α) as well as immunoglobulin-E (IgE) appear to play a role in asthma. N-acetylcysteine (NAC), an antioxidant, might have clinical benefits in asthma prevention. The possible preventive effects of NAC against experimentally induced asthma in rats are investigated. The rats were allocated into five groups: a normal control, asthma control, a standard dexamethasone (DEXA, 1 mg/kg, orally) group, and two NAC groups (300 and 500 mg/kg, orally, respectively). Ovalbumin (OVA) sensitization was used to trigger asthma, which was then followed by an intra-nasal challenge. Test gents were administrated for 14 days before the challenge and during the three challenge days (20, 21, and 22). The tidal volume (TV) and peak expiratory flow rate (PEFR) as respiratory functions were determined. The pro-inflammatory cytokines as IL-5 and TNF-α were evaluated in lung homogenate. Serum IgE and absolute eosinophil count (AEC) in bronchoalveolar lavage fluid (BALF) were measured. In addition, the oxidative markers in lung tissue and nitrosative marker in BALF were assessed; finally, lungs were isolated for histopathological study.
Results
NAC restored lung functions, inhibited the asthma-dependent increase in TNF-α, IL-5, IgE, AEC, nitric oxide, and malondialdehyde levels. NAC further re-established lung glutathione content and superoxide dismutase activity, resulting in milder overall lung pathology.
Conclusions
Experimental bronchial asthma may be protected by NAC. The anti-asthmatic potential of NAC may be explained by its suppressant influence on IgE antibody formation, pro-inflammatory cytokines production, eosinophil infiltration, and oxidative stress.
Collapse
|
35
|
Allergic Diseases: A Comprehensive Review on Risk Factors, Immunological Mechanisms, Link with COVID-19, Potential Treatments, and Role of Allergen Bioinformatics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212105. [PMID: 34831860 PMCID: PMC8622387 DOI: 10.3390/ijerph182212105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
The prevalence of allergic diseases is regarded as one of the key challenges in health worldwide. Although the precise mechanisms underlying this rapid increase in prevalence are unknown, emerging evidence suggests that genetic and environmental factors play a significant role. The immune system, microbiota, viruses, and bacteria have all been linked to the onset of allergy disorders in recent years. Avoiding allergen exposure is the best treatment option; however, steroids, antihistamines, and other symptom-relieving drugs are also used. Allergen bioinformatics encompasses both computational tools/methods and allergen-related data resources for managing, archiving, and analyzing allergological data. This study highlights allergy-promoting mechanisms, algorithms, and concepts in allergen bioinformatics, as well as major areas for future research in the field of allergology.
Collapse
|
36
|
Gao S, Wang J, Zhang Q, Shu J, Li C, Li H, Lin J. Cytokine antibody array-based analysis of IL-37 treatment effects in asthma. Aging (Albany NY) 2021; 13:21729-21742. [PMID: 34516405 PMCID: PMC8457575 DOI: 10.18632/aging.203515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Asthma is driven by group 2 innate lymphoid cells, antigen-specific CD4+ T helper type 2 cells and their cytokines such as interleukin (IL)-4, IL-5, IL-13. IL-37 is decreased in asthma and negatively related to Th2 cytokines and other pro-inflammatory cytokines. Our study showed that IL-37 level in asthmatic peripheral blood mononuclear cells was lower than in healthy. Further, IL-37 was negatively correlated with exhaled nitric oxide, asthma control test score, atopy and rhinitis history in asthmatics. Then an OVA-induced asthma mice model treated with rhIL-37 was established. An antibody array was employed to uncover altered cytokines induced by IL-37 in mice lung tissue. 20 proteins differentially expressed after rhIL-37 treatment and five of them were validated in asthmatic peripheral blood mononuclear cells. Consistent with cytokine antibody array, CCL3, CCL4, CCL5 decreased after IL-37 administration. While CXCL9 and CXCL13 were no change. We concluded that IL-37 reduce asthmatic symptoms by inhibit pro-inflammatory cytokine such as CCL3, CCL4, CCL5.
Collapse
Affiliation(s)
- Shengnan Gao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, China.,Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 10029, China
| | - Jingru Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 10029, China
| | - Qing Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, China.,Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 10029, China
| | - Jun Shu
- Institute of Clinical Medicine Science, China-Japan Friendship Hospital, Beijing 10029, China
| | - Chunxiao Li
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 10029, China
| | - Hongwen Li
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 10029, China
| | - Jiangtao Lin
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, China.,Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 10029, China
| |
Collapse
|
37
|
Akkoc T, O'Mahony L, Ferstl R, Akdis C, Akkoc T. Mouse Models of Asthma: Characteristics, Limitations and Future Perspectives on Clinical Translation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:119-133. [PMID: 34398449 DOI: 10.1007/5584_2021_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asthma is a complex and heterogeneous inflammatory airway disease primarily characterized by airway obstruction, which affects up to 15% of the population in Westernized countries with an increasing prevalence. Descriptive laboratory and clinical studies reveal that allergic asthma is due to an immunological inflammatory response and is significantly influenced by an individual's genetic background and environmental factors. Due to the limitations associated with human experiments and tissue isolation, direct mouse models of asthma provide important insights into the disease pathogenesis and in the discovery of novel therapeutics. A wide range of asthma models are currently available, and the correct model system for a given experimental question needs to be carefully chosen. Despite recent advances in the complexity of murine asthma models, for example humanized murine models and the use of clinically relevant allergens, the limitations of the murine system should always be acknowledged, and it remains to be seen if any single murine model can accurately replicate all the clinical features associated with human asthmatic disease.
Collapse
Affiliation(s)
- Tolga Akkoc
- Genetic Engineering and Biotechnology Institute, Tubitak Marmara Research Center, Kocaeli, Turkey.
| | - Liam O'Mahony
- Department of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ruth Ferstl
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Tunc Akkoc
- Department of Pediatric Allergy-Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
38
|
Koussih L, Atoui S, Tliba O, Gounni AS. New Insights on the Role of pentraxin-3 in Allergic Asthma. FRONTIERS IN ALLERGY 2021; 2:678023. [PMID: 35387000 PMCID: PMC8974764 DOI: 10.3389/falgy.2021.678023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.
Collapse
Affiliation(s)
- Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department des Sciences Experimentales, Universite de Saint-Boniface, Winnipeg, MB, Canada
| | - Samira Atoui
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Abdelilah S. Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Abdelilah S. Gounni
| |
Collapse
|
39
|
Sensory modulation of airways immunity. Neurosci Lett 2021; 760:136042. [PMID: 34118306 DOI: 10.1016/j.neulet.2021.136042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
The airways are constantly exposed to a multitude of inhaled particles and, as such, require a finely tuned discrimination between harmful or potentially threatening stimuli, and discrete responses to maintain homeostasis. Both the immune and nervous systems have the ability to sense environmental (and internal) signals, to integrate the obtained information and to initiate a protective reaction. Lung immunity and innervation are known to be individually involved in these processes, but it is becoming clear that they can also influence one another via a multitude of complex mechanisms. Here, we specifically describe how sensory innervation affects airways immunity with a focus on pathological conditions such as asthma or infections, describing cellular and molecular mechanisms, and highlighting potentially novel therapeutic targets.
Collapse
|
40
|
Semaphorin3E/plexinD1 Axis in Asthma: What We Know So Far! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:205-213. [PMID: 34019271 DOI: 10.1007/978-3-030-68748-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Semaphorin3E belongs to the large family of semaphorin proteins. Semaphorin3E was initially identified as axon guidance cues in the neural system. It is universally expressed beyond the nervous system and contributes to regulating essential cell functions such as cell migration, proliferation, and adhesion. Binding of semaphorin3E to its receptor, plexinD1, triggers diverse signaling pathways involved in the pathogenesis of various diseases from cancer to autoimmune and allergic disorders. Here, we highlight the novel findings on the role of semaphorin3E in airway biology. In particular, we highlight our recent findings on the function and potential mechanisms by which semaphorin3E and its receptor, plexinD1, impact airway inflammation, airway hyperresponsiveness, and remodeling in the context of asthma.
Collapse
|
41
|
Bai J, Li Y, Li M, Tan S, Wu D. IL-37 As a Potential Biotherapeutics of Inflammatory Diseases. Curr Drug Targets 2021; 21:855-863. [PMID: 32348214 DOI: 10.2174/1389450121666200429114926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
Interleukin-37 (IL-37) was discovered as a new member of pro-inflammatory IL-1 superfamily. However, further studies suggested that IL-37 plays a critical anti-inflammatory role in innate and adaptive immunity. IL-37 may suppress the inflammatory process via intracellular SMAD family member 3 (SMAD3) and extracellular IL-18 Receptor alpha (IL-18Rα) signaling pathway, respectively. Meanwhile, the abnormal expression of IL-37 was observed in immune-mediated inflammatory diseases, such as inflammatory bowel disease, rheumatoid arthritis, atherosclerosis, systemic lupus erythematosus, asthma, and multiple sclerosis, which suggest IL-37 is a potential therapeutic target for these diseases. In this review, we summarize the anti-inflammatory mechanism of IL-37 and discuss the critical roles of IL-37 in the pathogenesis of these diseases. Further studies are required to confirm the effectiveness of IL-37 as a novel target for these inflammatory diseases.
Collapse
Affiliation(s)
- Junhui Bai
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Yukun Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| |
Collapse
|
42
|
Rao SP, Rastle-Simpson S, Dileepan M, Sriramarao P. Procedures to Evaluate Inflammatory and Pathological Changes During Allergic Airway Inflammation. Methods Mol Biol 2021; 2223:217-236. [PMID: 33226598 DOI: 10.1007/978-1-0716-1001-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular inflammation, with elevated levels of Th1/Th2 cytokines, airway mucus hypersecretion, and thickening of the airway smooth muscle, are characteristic features of the allergic lung. Assessment of pathophysiological changes in allergic lungs serves as an important tool to determine disease progression and understand the underlying mechanisms of pathogenesis. This can be achieved by evaluating the lung tissue for inflammation and airway structural changes along with the measurement of important pro-inflammatory mediators such as Th1/Th2 cytokines and eotaxins. This chapter describes procedures to histologically evaluate inflammatory and pathological changes observed during allergic airway inflammation using lung tissue from mice.
Collapse
Affiliation(s)
- Savita P Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.
| | | | - Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - P Sriramarao
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
43
|
Wang J, Li T, Cai H, Jin L, Li R, Shan L, Cai W, Jiang J. Protective effects of total flavonoids from Qu Zhi Qiao (fruit of Citrus paradisi cv. Changshanhuyou) on OVA-induced allergic airway inflammation and remodeling through MAPKs and Smad2/3 signaling pathway. Biomed Pharmacother 2021; 138:111421. [PMID: 33752061 DOI: 10.1016/j.biopha.2021.111421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/06/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Allergic asthma is one of the inflammatory diseases, which has become a major public health problem. Qu zhi qiao (QZQ), a dry and immature fruit of Citrus paradisi cv. Changshanhuyou, has various flavonoids with pharmacological properties. However, there is a knowledge gap on the pharmacological properties of QZQ on allergic asthma. Therefore, here, we explored the efficacy and mechanism of total flavonoids from QZQ (TFCH) on allergic asthma. We extracted and purified TFCH and conducted animal experiments using an Ovalbumin (OVA)-induced mice model. Bronchoalveolar lavage fluid and Swiss-Giemsa staining were used to count different inflammatory cells in allergic asthma mice. We conducted histopathology and immunohistochemistry to evaluate the changes in the lungs of allergic asthma mice. Moreover, we used ELISA assays to analyze chemokines and inflammatory cytokines. Furthermore, western blot analyses were conducted to elucidate the mechanism of TFCH on allergic asthma. We established that TFCH has anti-inflammatory effects and inhibits airway remodeling, providing a potential therapeutic strategy for allergic asthma.
Collapse
Affiliation(s)
- Jianping Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China; Songyang County People's Hospital, Lishui 323400, China
| | - Ting Li
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Haiying Cai
- Shaoxing people's Hospital, Shaoxing 312000, China
| | - Liangyan Jin
- Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Run Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Letian Shan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China.
| | - Wei Cai
- Department of Chinese Materia Medica, Zhejiang Pharmaceutical College, Ningbo 315100, China
| | - Jianping Jiang
- Zhejiang You-du Biotech Limited Company, Quzhou 324200, China; Department of Pharmacy, School of Medicine, Zhejiang University City College, 310015 China.
| |
Collapse
|
44
|
She L, Barrera GD, Yan L, Alanazi HH, Brooks EG, Dube PH, Sun Y, Zan H, Chupp DP, Zhang N, Zhang X, Liu Y, Li XD. STING activation in alveolar macrophages and group 2 innate lymphoid cells suppresses IL-33-driven type 2 immunopathology. JCI Insight 2021; 6:143509. [PMID: 33400692 PMCID: PMC7934858 DOI: 10.1172/jci.insight.143509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
2'3'-cGAMP is known as a nonclassical second messenger and small immune modulator that possesses potent antitumor and antiviral activities via inducing the stimulator of IFN genes-mediated (STING-mediated) signaling pathway. However, its function in regulating type 2 immune responses remains unknown. Therefore, we sought to determine a role of STING activation by 2'3'-cGAMP in type 2 inflammatory reactions in multiple mouse models of eosinophilic asthma. We discovered that 2'3'-cGAMP administration strongly attenuated type 2 lung immunopathology and airway hyperreactivity induced by IL-33 and a fungal allergen, Aspergillus flavus. Mechanistically, upon the respiratory delivery, 2'3'-cGAMP was mainly internalized by alveolar macrophages, in which it activated the STING/IFN regulatory factor 3/type I IFN signaling axis to induce the production of inhibitory factors containing IFN-α, which blocked the IL-33-mediated activation of group 2 innate lymphoid (ILC2) cells in vivo. We further demonstrated that 2'3'-cGAMP directly suppressed the proliferation and function of both human and mouse ILC2 cells in vitro. Taken together, our findings suggest that STING activation by 2'3'-cGAMP in alveolar macrophages and ILC2 cells can negatively regulate type 2 immune responses, implying that the respiratory delivery of 2'3'-cGAMP might be further developed as an alternative strategy for treating type 2 immunopathologic diseases such as eosinophilic asthma.
Collapse
Affiliation(s)
- Li She
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Gema D. Barrera
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Liping Yan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Hamad H. Alanazi
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Edward G. Brooks
- Division of Immunology and Infectious Disease, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Peter H. Dube
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yilun Sun
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel P. Chupp
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Xin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, and
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, and
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Dong Li
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
45
|
Dong L, Wang Y, Zheng T, Pu Y, Ma Y, Qi X, Zhang W, Xue F, Shan Z, Liu J, Wang X, Mao C. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Res Ther 2021; 12:4. [PMID: 33407872 PMCID: PMC7789736 DOI: 10.1186/s13287-020-02072-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND As one of the main functional forms of mesenchymal stem cells (MSCs), MSC-derived extracellular vesicles (MSC-EVs) have shown an alternative therapeutic option in experimental models of allergic asthma. Oxygen concentration plays an important role in the self-renewal, proliferation, and EV release of MSCs and a recent study found that the anti-asthma effect of MSCs was enhanced by culture in hypoxic conditions. However, the potential of hypoxic MSC-derived EVs (Hypo-EVs) in asthma is still unknown. METHODS BALB/c female mice were sensitized and challenged with ovalbumin (OVA), and each group received PBS, normoxic human umbilical cord MSC-EVs (Nor-EVs), or Hypo-EVs weekly. After treatment, the animals were euthanized, and their lungs and bronchoalveolar lavage fluid (BALF) were collected. With the use of hematoxylin and eosin (HE), periodic acid-Schiff (PAS) and Masson's trichrome staining, enzyme-linked immune sorbent assay (ELISA), Western blot analysis, and real-time PCR, the inflammation and collagen fiber content of airways and lung parenchyma were investigated. RESULTS Hypoxic environment can promote human umbilical cord MSCs (hUCMSCs) to release more EVs. In OVA animals, the administration of Nor-EVs or Hypo-EVs significantly ameliorated the BALF total cells, eosinophils, and pro-inflammatory mediators (IL-4 and IL-13) in asthmatic mice. Moreover, Hypo-EVs were generally more potent than Nor-EVs in suppressing airway inflammation in asthmatic mice. Compared with Nor-EVs, Hypo-EVs further prevented mouse chronic allergic airway remodeling, concomitant with the decreased expression of pro-fibrogenic markers α-smooth muscle actin (α-SMA), collagen-1, and TGF-β1-p-smad2/3 signaling pathway. In vitro, Hypo-EVs decreased the expression of p-smad2/3, α-SMA, and collagen-1 in HLF-1 cells (human lung fibroblasts) stimulated by TGF-β1. In addition, we showed that miR-146a-5p was enriched in Hypo-EVs compared with that in Nor-EVs, and Hypo-EV administration unregulated the miR-146a-5p expression both in asthma mice lung tissues and in TGF-β1-treated HLF-1. More importantly, decreased miR-146a-5p expression in Hypo-EVs impaired Hypo-EV-mediated lung protection in OVA mice. CONCLUSION Our findings provided the first evidence that hypoxic hUCMSC-derived EVs attenuated allergic airway inflammation and airway remodeling in chronic asthma mice, potentially creating new avenues for the treatment of asthma.
Collapse
Affiliation(s)
- Liyang Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| | - Ying Wang
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, People's Republic of China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Yanan Pu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yongbin Ma
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,Department of Neurology Laboratory, The Affiliated Jintan Hospital of Jiangsu University, Jintan, Jiangsu, 213200, People's Republic of China
| | - Xin Qi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Wenzhe Zhang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Zirui Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Xuefeng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China. .,Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| |
Collapse
|
46
|
Kumari MV, Amarasiri L, Rajindrajith S, Devanarayana NM. Functional abdominal pain disorders and asthma: two disorders, but similar pathophysiology? Expert Rev Gastroenterol Hepatol 2021; 15:9-24. [PMID: 32909837 DOI: 10.1080/17474124.2020.1821652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Functional abdominal pain disorders (FAPDs) and asthma are common ailments affecting both children and adults worldwide. Multiple studies have demonstrated an association between these two disorders. However, the exact reason for this observed association is not apparent. AREAS COVERED The current review has explored available literature and outlined multiple underlying pathophysiological mechanisms, common to both asthma and FAPDs, as possible reasons for this association. EXPERT OPINION Smooth muscle dysfunction, hypersensitivity and hyper-responsiveness, mucosal inflammation, and barrier dysfunction involving gastrointestinal and respiratory tracts are the main underlying pathophysiological mechanisms described for the generation of symptoms in FAPDs and asthma. In addition, alterations in neuroendocrine regulatory functions, immunological dysfunction, and microbial dysbiosis have been described in both disorders. We believe that the pathophysiological processes that were explored in this article would be able to expand the mechanisms of the association. The in-depth knowledge is needed to be converted to therapeutic and preventive strategies to improve the quality of care of children suffering from FAPDs and asthma.
Collapse
Affiliation(s)
- Manori Vijaya Kumari
- Department of Physiology, Faculty of Medicine & Allied Sciences, Rajarata University of Sri Lanka , Anuradhapura, Sri Lanka
| | - Lakmali Amarasiri
- Department of Physiology, Faculty of Medicine, University of Colombo , Colombo, Sri Lanka
| | | | | |
Collapse
|
47
|
Amelioration of airway inflammation and pulmonary edema by Teucrium stocksianum via attenuation of pro-inflammatory cytokines and up-regulation of AQP1 and AQP5. Respir Physiol Neurobiol 2020; 284:103569. [PMID: 33144273 DOI: 10.1016/j.resp.2020.103569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 01/21/2023]
Abstract
Current study investigates the immunomodulatory effects of T. stocksianum using mouse model of ovalbumin (OVA)-induced allergic asthma. The mice were treated with methanolic extract, n-hexane, and ethyl acetate fractions for consecutive 7 days along with intranasal challenge. The mRNA expression levels of interleukin-4 (IL-4), IL-5, Aquaporin-1 (AQP1) and Aquaporin-5 (AQP5) were evaluated using reverse transcription polymerase chain reaction. The data showed that T. stocksianum significantly reduced airway inflammation as indicated by reduced inflammatory cell infiltration in lungs, and attenuated total and differential leukocyte counts both in blood and BALF. Expression levels of pro-inflammatory IL-4 and IL-5 in lungs were also found significantly reduced. T. stocksianum significantly reduced pulmonary edema as indicated by reduced lung wet/dry ratio and goblet cell hyperplasia. AQP1 and AQP5 expression levels were also found elevated in treatment groups. In conclusion, T. stocksianum possesses anti-asthmatic activity which may be attributed to reduction in IL-4 and IL-5 expression levels, and elevation in AQP1 and AQP5 expression levels.
Collapse
|
48
|
The anti-asthmatic potential of flavonol kaempferol in an experimental model of allergic airway inflammation. Eur J Pharmacol 2020; 891:173698. [PMID: 33129789 DOI: 10.1016/j.ejphar.2020.173698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022]
Abstract
Flavonol kaempferol possesses a broad spectrum of potent pharmacological activities that seem to be effective in the modulation of allergic respiratory diseases. In our study, an experimental animal model of ovalbumin (OVA)-induced allergic airway inflammation in guinea pigs was used to determine the anti-asthmatic potential of kaempferol. The parameters of specific airway resistance (sRaw) and cough reflex response were evaluated in vivo. In vitro, an assessment of tracheal smooth muscle (TSM) contractility and analyses of inflammatory cytokines (IL-4, IL-5, IL-13, GM-CSF, IFN-γ), transforming growth factor (TGF-β1), immune cells count and ciliary beating frequency (CBF) were performed. Both single (6, 20 mg/kg b. w. p. o.) and long-term administered doses of kaempferol (20 mg/kg b. w. p. o., 21 days) suppressed sRaw provoked by histamine in conscious animals. The administration of kaempferol for 21 days attenuated histamine-induced TSM contractility in vitro and ameliorated the progression of chronic airway inflammation by decreasing the levels of IL-5, IL-13, GM-CSF, eosinophil count in bronchoalveolar lavage (BAL) fluid and TGF-β1 protein level in lung tissue. Kaempferol also eliminated the alterations in cough reflex sensitivity invoked by OVA-sensitization, but it did not affect CBF. The results demonstrate that flavonol kaempferol can modulate allergic airway inflammation and associated asthma features (AHR, aberrant stimulation of cough reflex).
Collapse
|
49
|
Mandlik DS, Mandlik SK. New perspectives in bronchial asthma: pathological, immunological alterations, biological targets, and pharmacotherapy. Immunopharmacol Immunotoxicol 2020; 42:521-544. [PMID: 32938247 DOI: 10.1080/08923973.2020.1824238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is the most common, long-lasting inflammatory airway disease that affects more than 10% of the world population. It is characterized by bronchial narrowing, airway hyperresponsiveness, vasodilatation, airway edema, and stimulation of sensory nerve endings that lead to recurring events of breathlessness, wheezing, chest tightness, and coughing. It is the main reason for global morbidity and occurs as a result of the weakening of the immune system in response to exposure to allergens or environmental exposure. In asthma condition, it results in the activation of numerous inflammatory cells like the mast and dendritic cells along with the accumulation of activated eosinophils and lymphocytes at the inflammation site. The structural cells such as airway epithelial cells and smooth muscle cells release inflammatory mediators that promote the bronchial inflammation. Long-lasting bronchial inflammation can cause pathological alterations, viz. the improved thickness of the bronchial epithelium and friability of airway epithelial cells, epithelium fibrosis, hyperplasia, and hypertrophy of airway smooth muscle, angiogenesis, and mucus gland hyperplasia. The stimulation of bronchial epithelial cell would result in the release of inflammatory cytokines and chemokines that attract inflammatory cells into bronchial airways and plays an important role in asthma. Asthma patients who do not respond to marketed antiasthmatic drugs needed novel biological medications to regulate the asthmatic situation. The present review enumerates various types of asthma, etiological factors, and in vivo animal models for the induction of asthma. The underlying pathological, immunological mechanism of action, the role of inflammatory mediators, the effect of inflammation on the bronchial airways, newer treatment approaches, and novel biological targets of asthma have been discussed in this review.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth Deemed University, Poona College of Pharmacy, Erandawane, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon, Maharashtra, India
| |
Collapse
|
50
|
Ding F, Liu B, Niu C, Wang T, Wang Y, Geng G, Tian D, Dai J, Fu Z. Low-Dose LPS Induces Tolerogenic Treg Skewing in Asthma. Front Immunol 2020; 11:2150. [PMID: 33072079 PMCID: PMC7538595 DOI: 10.3389/fimmu.2020.02150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022] Open
Abstract
The mechanism(s) underlying endotoxin tolerance in asthma remain elusive. As the endotoxin lipopolysaccharide (LPS) affects the expression of the regulatory T-cell (Treg)-suppressive glucocorticoid-induced tumor necrosis factor receptor ligand (GITRL) on antigen-presenting dendritic cells (DCs), we hypothesized that LPS-induced changes in DC GITRL expression may impact Treg-mediated T-helper (Th) cell suppression and the induction of endotoxin tolerance. Here, we propose a novel mechanism by which low-dose LPS inhalation in neonatal mice induces endotoxin tolerance, thereby offering protection from later asthma development. Three-day old wild-type and Toll-like receptor 4 (TLR4)-deficient neonatal mice were exposed to low-dose LPS (1 μg) intranasally for 10 consecutive days prior to ovalbumin (OVA)-induced asthma to better understand the tolerogenic mechanism(s) of low-dose LPS pre-exposure. In vivo findings were validated using in vitro co-culturing studies of primary CD11c+ DCs and CD4+ T-cells with or without low-dose LPS pre-exposure before OVA stimulation. Low-dose LPS pre-exposure upregulated the Treg response and downregulated pathogenic Th2 and Th17 responses through promoting apoptosis of Th2 and Th17 cells. Low-dose LPS pre-exposure downregulated DC GITRL expression and T-cell GITR expression. Artificial DC GITRL expression abrogated the tolerogenic Treg-skewing effect of low-dose LPS pre-exposure. Low-dose LPS pre-exposure inhibited TRIF/IRF3/IFNβ signaling and upregulated expression of tolerogenic TRIF/IRF3/IFNβ negative regulators in a TLR4-dependent manner. This tolerogenic DC GITRL downregulation was attributable to TRIF/IRF3/IFNβ signaling inhibition. Low-dose LPS pre-exposure produces tolerogenic Treg skewing in neonatal asthmatic mice, a phenomenon attributable to TLR4-dependent TRIF/IRF3/IFNβ-mediated DC GITRL downregulation.
Collapse
Affiliation(s)
- Fengxia Ding
- Department of Pediatric Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Bo Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Niu
- Department of Pediatric Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Ting Wang
- Department of Pediatric Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yaping Wang
- Department of Pediatric Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Gang Geng
- Department of Pediatric Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Daiyin Tian
- Department of Pediatric Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Jihong Dai
- Department of Pediatric Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Zhou Fu
- Department of Pediatric Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| |
Collapse
|