1
|
Houyel L. Ventricular Septal Defects: Molecular Pathways and Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:535-549. [PMID: 38884730 DOI: 10.1007/978-3-031-44087-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ventricular septation is a complex process which involves the major genes of cardiac development, acting on myocardial cells from first and second heart fields, and on mesenchymal cells from endocardial cushions. These genes, coding for transcription factors, interact with each other, and their differential expression conditions the severity of the phenotype. In this chapter, we will describe the formation of the ventricular septum in the normal heart, as well as the molecular mechanisms leading to the four main anatomic types of ventricular septal defects: outlet, inlet, muscular, and central perimembranous, resulting from failure of development of the different parts of the ventricular septum. Experiments on animal models, particularly transgenic mouse lines, have helped us to decipher the molecular determinants of ventricular septation. However, a precise description of the anatomic phenotypes found in these models is mandatory to achieve a better comprehension of the complex mechanisms responsible for the various types of VSDs.
Collapse
Affiliation(s)
- Lucile Houyel
- Pediatric and Congenital Cardiology Unit, Necker-Enfants Malades Hospital - M3C, University of Paris, Paris, France.
| |
Collapse
|
2
|
Grunert M, Dorn C, Rickert-Sperling S. Cardiac Transcription Factors and Regulatory Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:295-311. [PMID: 38884718 DOI: 10.1007/978-3-031-44087-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
3
|
Leid J, Gray R, Rakita P, Koenig AL, Tripathy R, Fitzpatrick JAJ, Kaufman C, Solnica-Krezel L, Lavine KJ. Deletion of taf1 and taf5 in zebrafish capitulate cardiac and craniofacial abnormalities associated with TAFopathies through perturbations in metabolism. Biol Open 2023; 12:bio059905. [PMID: 37746814 PMCID: PMC10354717 DOI: 10.1242/bio.059905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 09/26/2023] Open
Abstract
Intellectual disability is a neurodevelopmental disorder that affects 2-3% of the general population. Syndromic forms of intellectual disability frequently have a genetic basis and are often accompanied by additional developmental anomalies. Pathogenic variants in components of TATA-binding protein associated factors (TAFs) have recently been identified in a subset of patients with intellectual disability, craniofacial hypoplasia, and congenital heart disease. This syndrome has been termed as a TAFopathy and includes mutations in TATA binding protein (TBP), TAF1, TAF2, and TAF6. The underlying mechanism by which TAFopathies give rise to neurodevelopmental, craniofacial, and cardiac abnormalities remains to be defined. Through a forward genetic screen in zebrafish, we have recovered a recessive mutant phenotype characterized by craniofacial hypoplasia, ventricular hypoplasia, heart failure at 96 h post-fertilization and lethality, and show it is caused by a nonsense mutation in taf5. CRISPR/CAS9 mediated gene editing revealed that these defects where phenocopied by mutations in taf1 and taf5. Mechanistically, taf5-/- zebrafish displayed misregulation in metabolic gene expression and metabolism as evidenced by RNA sequencing, respiration assays, and metabolite studies. Collectively, these findings suggest that the TAF complex may contribute to neurologic, craniofacial, and cardiac development through regulation of metabolism.
Collapse
Affiliation(s)
- Jamison Leid
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Gray
- Departments of Nutritional Sciences, Dell Pediatrics Research Institute, University of Texas at Austin, Austin, TX 78723, USA
| | - Peter Rakita
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L. Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohan Tripathy
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A. J. Fitzpatrick
- Departments of Neuroscience and Cell Biology, Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles Kaufman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Zhang X, Zhen D, Li X, Yi F, Zhang Z, Yang W, Li X, Sheng Y, Liu X, Jin T, He Y. NOTCH2, ATIC, MRI1, SLC6A13, ATP13A2 Genetic Variations are Associated with Ventricular Septal Defect in the Chinese Tibetan Population Through Whole-Exome Sequencing. Pharmgenomics Pers Med 2023; 16:389-400. [PMID: 37138656 PMCID: PMC10150769 DOI: 10.2147/pgpm.s404438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Background Ventricular septal defect (VSD) is the most common congenital cardiac abnormality in children and the second most common in adults. This study aimed to explore the potentially causative genes in VSD patients in the Chinese Tibetan population, and to provide a theoretical basis for the genetic mechanism of VSD. Methods Peripheral venous blood was collected from 20 VSD subjects, and whole-genome DNA was extracted. High-throughput sequencing was performed on qualified DNA samples using whole-exome sequencing (WES) technology. After filtering, detecting, and annotating qualified data, single nucleotide variations (SNVs) and insertion-deletion (InDel) markers were analyzed, and data processing software such as GATK, SIFT, Polyphen, and MutationTaster were used for comparative evaluation and prediction of pathogenic deleterious variants associated with VSD. Results A total of 4793 variant loci, including 4168 SNVs, 557 InDels and 68 unknown loci and 2566 variant genes were obtained from 20 VSD subjects through bioinformatics analysis. According to the screening of the prediction software and database, the occurrence of VSD was predicted to be associated with five inherited pathogenic gene mutations, all of which were missense mutations, including NOTCH2 (c.1396C >A:p.Gln466Lys), ATIC (c.235C >T:p.Arg79Cys), MRI1 (c.629G >A:p.Arg210Gln), SLC6A13 (c.1138G >A:p.Gly380Arg), ATP13A2 (c.1363C >T:p.Arg455Trp). Conclusion This study demonstrated that NOTCH2, ATIC, MRI1, SLC6A13, ATP13A2 gene variants were potentially associated with VSD in Chinese Tibetan population.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Department of Ultrasound, the Affiliated Hospital of Xizang Minzu University, Xianyang, People’s Republic of China
| | - Da Zhen
- Department of Medical, Tibet Autonomous Region Maternity and Children’s Hospital, Lhasa, People’s Republic of China
| | - Xuemei Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Faling Yi
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Zhanhao Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Wei Yang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Department of Emergency, the Affiliated Hospital of Xizang Minzu University, Xianyang, People’s Republic of China
| | - Xuguang Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Yemeng Sheng
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Xiaoli Liu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Tianbo Jin
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Correspondence: Tianbo Jin; Yongjun He, Xizang Minzu University, #6 East Wenhui Road, Xianyang, Shaanxi, 712082, People’s Republic of China, Email ;
| | - Yongjun He
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| |
Collapse
|
5
|
Yan S, Peng Y, Lu J, Shakil S, Shi Y, Crossman DK, Johnson WH, Liu S, Rokosh DG, Lincoln J, Wang Q, Jiao K. Differential requirement for DICER1 activity during the development of mitral and tricuspid valves. J Cell Sci 2022; 135:jcs259783. [PMID: 35946425 PMCID: PMC9482344 DOI: 10.1242/jcs.259783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
Mitral and tricuspid valves are essential for unidirectional blood flow in the heart. They are derived from similar cell sources, and yet congenital dysplasia affecting both valves is clinically rare, suggesting the presence of differential regulatory mechanisms underlying their development. Here, we specifically inactivated Dicer1 in the endocardium during cardiogenesis and found that Dicer1 deletion caused congenital mitral valve stenosis and regurgitation, whereas it had no impact on other valves. We showed that hyperplastic mitral valves were caused by abnormal condensation and extracellular matrix (ECM) remodeling. Our single-cell RNA sequencing analysis revealed impaired maturation of mesenchymal cells and abnormal expression of ECM genes in mutant mitral valves. Furthermore, expression of a set of miRNAs that target ECM genes was significantly lower in tricuspid valves compared to mitral valves, consistent with the idea that the miRNAs are differentially required for mitral and tricuspid valve development. We thus reveal miRNA-mediated gene regulation as a novel molecular mechanism that differentially regulates mitral and tricuspid valve development, thereby enhancing our understanding of the non-association of inborn mitral and tricuspid dysplasia observed clinically.
Collapse
Affiliation(s)
- Shun Yan
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yin Peng
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jin Lu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saima Shakil
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yang Shi
- Department of Population Health Science, and Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - David K. Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Walter H. Johnson
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Donald G. Rokosh
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- The Herma Heart Institute, Division of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI 53226, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, August, GA 30912, USA
| | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Yan K, Mei Z, Zhao J, Prodhan MAI, Obal D, Katragadda K, Doelling B, Hoetker D, Posa DK, He L, Yin X, Shah J, Pan J, Rai S, Lorkiewicz PK, Zhang X, Liu S, Bhatnagar A, Baba SP. Integrated Multilayer Omics Reveals the Genomic, Proteomic, and Metabolic Influences of Histidyl Dipeptides on the Heart. J Am Heart Assoc 2022; 11:e023868. [PMID: 35730646 PMCID: PMC9333374 DOI: 10.1161/jaha.121.023868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Histidyl dipeptides such as carnosine are present in a micromolar to millimolar range in mammalian hearts. These dipeptides facilitate glycolysis by proton buffering. They form conjugates with reactive aldehydes, such as acrolein, and attenuate myocardial ischemia–reperfusion injury. Although these dipeptides exhibit multifunctional properties, a composite understanding of their role in the myocardium is lacking. Methods and Results To identify histidyl dipeptide–mediated responses in the heart, we used an integrated triomics approach, which involved genome‐wide RNA sequencing, global proteomics, and unbiased metabolomics to identify the effects of cardiospecific transgenic overexpression of the carnosine synthesizing enzyme, carnosine synthase (Carns), in mice. Our result showed that higher myocardial levels of histidyl dipeptides were associated with extensive changes in the levels of several microRNAs, which target the expression of contractile proteins, β‐fatty acid oxidation, and citric acid cycle (TCA) enzymes. Global proteomic analysis showed enrichment in the expression of contractile proteins, enzymes of β‐fatty acid oxidation, and the TCA in the Carns transgenic heart. Under aerobic conditions, the Carns transgenic hearts had lower levels of short‐ and long‐chain fatty acids as well as the TCA intermediate—succinic acid; whereas, under ischemic conditions, the accumulation of fatty acids and TCA intermediates was significantly attenuated. Integration of multiple data sets suggested that β‐fatty acid oxidation and TCA pathways exhibit correlative changes in the Carns transgenic hearts at all 3 levels. Conclusions Taken together, these findings reveal a central role of histidyl dipeptides in coordinated regulation of myocardial structure, function, and energetics.
Collapse
Affiliation(s)
- Keqiang Yan
- Beijing Institute of Genomics Chinese Academy of Sciences, Beishan Industrial Zone Shenzhen China
| | - Zhanlong Mei
- Beijing Institute of Genomics Chinese Academy of Sciences, Beishan Industrial Zone Shenzhen China
| | - Jingjing Zhao
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | | | - Detlef Obal
- Department of Anesthesiology and Perioperative and Pain Medicine Stanford University Palo Alto CA
| | - Kartik Katragadda
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Benjamin Doelling
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - David Hoetker
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Liqing He
- Department of Chemistry University of Louisville KY
| | - Xinmin Yin
- Department of Chemistry University of Louisville KY
| | - Jasmit Shah
- Department of Medicine, Medical college The Aga Khan University Nairobi Kenya
| | - Jianmin Pan
- Biostatistics Shared Facility University of Louisville Health, Brown Cancer Center Louisville KY
| | - Shesh Rai
- Biostatistics Shared Facility University of Louisville Health, Brown Cancer Center Louisville KY
| | - Pawel Konrad Lorkiewicz
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Xiang Zhang
- Department of Chemistry University of Louisville KY
| | - Siqi Liu
- Beijing Institute of Genomics Chinese Academy of Sciences, Beishan Industrial Zone Shenzhen China
| | - Aruni Bhatnagar
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Shahid P Baba
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| |
Collapse
|
7
|
Mubeen H, Farooq M, Rehman AU, Zubair M, Haque A. Gene expression and transcriptional regulation driven by transcription factors involved in congenital heart defects. Ir J Med Sci 2022; 192:595-604. [PMID: 35441975 DOI: 10.1007/s11845-022-02974-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most important birth defects caused by more than one mutated gene. Mutations in the genes could cause different types of congenital heart defects including atrial septal defect (ASD), tetralogy of Fallot (TOF), and ventricular septal defect (VSD). OBJECTIVES Cardiac transcription factors are key players for heart development and are actively involved in controlling stress regulation of the heart. Transcription factors are sequence-specific DNA binding proteins that control the process of transcription and work in a synergistic manner. We aim to characterize core cardiac transcription factors including NKX2-5, TBX, SRF, GATA4, and MEF2, which encode homeobox and MADS domain and play a crucial role in heart development. METHODS In this study, we have explored the important transcription factors involved in cardiac development and genes controlling the expression and regulation process by using the bioinformatics approach. RESULTS We have predicted the orthologs and homologs based on their evolutionary history, conserved protein domains, functional sites, and 3D structures for better understanding and presentation of factors responsible for causing CHD. Results showed the importance of these transcription factors for normal heart functioning and development. CONCLUSION Understanding the molecular pathways and genetic basis of CHD will help to open a new door for the treatment of patients with cardiac defects.
Collapse
Affiliation(s)
- Hira Mubeen
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan. .,Department of Bioinformatics, Institute of Biochemistry, Biotechnology & Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | | | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
8
|
Paolucci M, Vincenzi C, Romoli M, Amico G, Ceccherini I, Lattanzi S, Bersano A, Longoni M, Sacco S, Vernieri F, Pascarella R, Valzania F, Zedde M. The Genetic Landscape of Patent Foramen Ovale: A Systematic Review. Genes (Basel) 2021; 12:genes12121953. [PMID: 34946902 PMCID: PMC8700998 DOI: 10.3390/genes12121953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022] Open
Abstract
Patent Foramen Ovale (PFO) is a common postnatal defect of cardiac atrial septation. A certain degree of familial aggregation has been reported. Animal studies suggest the involvement of the Notch pathway and other cardiac transcription factors (GATA4, TBX20, NKX2-5) in Foramen Ovale closure. This review evaluates the contribution of genetic alterations in PFO development. We systematically reviewed studies that assessed rare and common variants in subjects with PFO. The protocol was registered with PROSPERO and followed MOOSE guidelines. We systematically searched English studies reporting rates of variants in PFO subjects until the 30th of June 2021. Among 1231 studies, we included four studies: two of them assessed the NKX2-5 gene, the remaining reported variants of chromosome 4q25 and the GATA4 S377G variant, respectively. We did not find any variant associated with PFO, except for the rs2200733 variant of chromosome 4q25 in atrial fibrillation patients. Despite the scarceness of evidence so far, animal studies and other studies that did not fulfil the criteria to be included in the review indicate a robust genetic background in PFO. More research is needed on the genetic determinants of PFO.
Collapse
Affiliation(s)
- Matteo Paolucci
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University Hospital, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
- Neurology Unit, “M. Bufalini” Hospital, AUSL Romagna, Viale Giovanni Ghirotti, 286, 47521 Cesena, Italy; (M.R.); (M.L.)
- Correspondence:
| | - Chiara Vincenzi
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (C.V.); (F.V.); (M.Z.)
| | - Michele Romoli
- Neurology Unit, “M. Bufalini” Hospital, AUSL Romagna, Viale Giovanni Ghirotti, 286, 47521 Cesena, Italy; (M.R.); (M.L.)
| | - Giulia Amico
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (G.A.); (I.C.)
- DINOGMI-Universite degli Studi di Genova, Largo P. Daneo,3, 16132 Genova, Italy
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (G.A.); (I.C.)
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60121 Ancona, Italy;
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Marco Longoni
- Neurology Unit, “M. Bufalini” Hospital, AUSL Romagna, Viale Giovanni Ghirotti, 286, 47521 Cesena, Italy; (M.R.); (M.L.)
| | - Simona Sacco
- Neuroscience Section, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Fabrizio Vernieri
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University Hospital, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
| | - Rosario Pascarella
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (C.V.); (F.V.); (M.Z.)
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (C.V.); (F.V.); (M.Z.)
| |
Collapse
|
9
|
Katraki-Pavlou S, Kastana P, Bousis D, Ntenekou D, Varela A, Davos CH, Nikou S, Papadaki E, Tsigkas G, Athanasiadis E, Herradon G, Mikelis CM, Beis D, Papadimitriou E. Protein tyrosine phosphatase receptor zeta 1 deletion triggers defective heart morphogenesis in mice and zebrafish. Am J Physiol Heart Circ Physiol 2021; 322:H8-H24. [PMID: 34767486 PMCID: PMC8754060 DOI: 10.1152/ajpheart.00400.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein tyrosine phosphatase receptor-ζ1 (PTPRZ1) is a transmembrane
tyrosine phosphatase receptor highly expressed in embryonic stem cells. In the
present work, gene expression analyses of Ptprz1−/− and Ptprz1+/+ mice endothelial cells and hearts pointed to
an unidentified role of PTPRZ1 in heart development through the regulation of
heart-specific transcription factor genes. Echocardiography analysis in mice
identified that both systolic and diastolic functions are affected in Ptprz1−/− compared with Ptprz1+/+ hearts, based on a dilated left
ventricular (LV) cavity, decreased ejection fraction and fraction shortening,
and increased angiogenesis in Ptprz1−/−
hearts, with no signs of cardiac hypertrophy. A zebrafish ptprz1−/− knockout was also generated and exhibited
misregulated expression of developmental cardiac markers, bradycardia, and
defective heart morphogenesis characterized by enlarged ventricles and defected
contractility. A selective PTPRZ1 tyrosine phosphatase inhibitor affected
zebrafish heart development and function in a way like what is observed in the
ptprz1−/− zebrafish. The same
inhibitor had no effect in the function of the adult zebrafish heart, suggesting
that PTPRZ1 is not important for the adult heart function, in line with data
from the human cell atlas showing very low to negligible PTPRZ1 expression in
the adult human heart. However, in line with the animal models, Ptprz1 was expressed in many different cell types in
the human fetal heart, such as valvar, fibroblast-like, cardiomyocytes, and
endothelial cells. Collectively, these data suggest that PTPRZ1 regulates
cardiac morphogenesis in a way that subsequently affects heart function and
warrant further studies for the involvement of PTPRZ1 in idiopathic congenital
cardiac pathologies. NEW & NOTEWORTHY Protein tyrosine phosphatase receptor
ζ1 (PTPRZ1) is expressed in fetal but not adult heart and seems
to affect heart development. In both mouse and zebrafish animal models, loss of
PTPRZ1 results in dilated left ventricle cavity, decreased ejection fraction,
and fraction shortening, with no signs of cardiac hypertrophy. PTPRZ1 also seems
to be involved in atrioventricular canal specification, outflow tract
morphogenesis, and heart angiogenesis. These results suggest that PTPRZ1 plays a
role in heart development and support the hypothesis that it may be involved in
congenital cardiac pathologies.
Collapse
Affiliation(s)
- Stamatiki Katraki-Pavlou
- Zebrafish Disease Models Lab, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece.,Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Greece
| | - Pinelopi Kastana
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Greece
| | - Dimitris Bousis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Greece
| | - Despoina Ntenekou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Greece
| | - Aimilia Varela
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Greece
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Greece
| | - Sophia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Greece
| | - Eleni Papadaki
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Greece
| | - Grigorios Tsigkas
- Department of Cardiology, Patras University Hospital, Rio, Patras, Greece
| | | | - Gonzalo Herradon
- Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Dimitris Beis
- Zebrafish Disease Models Lab, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Greece
| |
Collapse
|
10
|
Abbasi S, Mohsen-Pour N, Naderi N, Rahimi S, Maleki M, Kalayinia S. In silico analysis of GATA4 variants demonstrates main contribution to congenital heart disease. J Cardiovasc Thorac Res 2021; 13:336-354. [PMID: 35047139 PMCID: PMC8749364 DOI: 10.34172/jcvtr.2021.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction: Congenital heart disease (CHD) is the most common congenital abnormality and the main cause of infant mortality worldwide. Some of the mutations that occur in the GATA4 gene region may result in different types of CHD. Here, we report our in silico analysis of gene variants to determine the effects of the GATA4 gene on the development of CHD.
Methods: Online 1000 Genomes Project, ExAC, gnomAD, GO-ESP, TOPMed, Iranome, GME, ClinVar, and HGMD databases were drawn upon to collect information on all the reported GATA4 variations.The functional importance of the genetic variants was assessed by using SIFT, MutationTaster, CADD,PolyPhen-2, PROVEAN, and GERP prediction tools. Thereafter, network analysis of the GATA4protein via STRING, normal/mutant protein structure prediction via HOPE and I-TASSER, and phylogenetic assessment of the GATA4 sequence alignment via ClustalW were performed.
Results: The most frequent variant was c.874T>C (45.58%), which was reported in Germany.Ventricular septal defect was the most frequent type of CHD. Out of all the reported variants of GATA4,38 variants were pathogenic. A high level of pathogenicity was shown for p.Gly221Arg (CADD score=31), which was further analyzed.
Conclusion: The GATA4 gene plays a significant role in CHD; we, therefore, suggest that it be accorded priority in CHD genetic screening.
Collapse
Affiliation(s)
- Shiva Abbasi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Mohsen-Pour
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Rahimi
- Department of Cardiology, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Montaña-Jimenez LP, Lasalvia P, Diaz Puentes M, Olaya-C M. Congenital heart defects and umbilical cord abnormalities, an unknown association? J Neonatal Perinatal Med 2021; 15:81-88. [PMID: 34542034 DOI: 10.3233/npm-210799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Few studies exist that research the association between umbilical cord characteristics with cardiac malformations. In this study, we describe a population of newborns with congenital heart defects (CHD) and the frequency of presentation of umbilical cord (UC) alterations, based upon the hypothesis that the continuity of the cardio-placental circuit can be affected by similar noxas during early development. METHODS We carried out a descriptive study at a hospital in Bogota based on clinical records from newborns with congenital heart disease with placental and UC pathology results. Group analyses were done according to the major categories of the ICD-10. RESULTS We analyzed 122 cases and found that the most frequent alterations where hypercoiling (27.9%) and abnormal UC insertion (16.4%). Additionally, in almost every group of CHD, more than 65%of patients had some type of cord alteration. CONCLUSION We discovered a high frequency of UC alterations in patients with CHD. This outcome suggests that a possible association exists between the two phenomena, further research is needed.
Collapse
Affiliation(s)
- L P Montaña-Jimenez
- Hospital Universitario San Ignacio, Bogotá D.C, Colombia.,Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | | | | | - M Olaya-C
- Hospital Universitario San Ignacio, Bogotá D.C, Colombia.,Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| |
Collapse
|
12
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
13
|
Budhram-Mahadeo VS, Solomons MR, Mahadeo-Heads EAO. Linking metabolic dysfunction with cardiovascular diseases: Brn-3b/POU4F2 transcription factor in cardiometabolic tissues in health and disease. Cell Death Dis 2021; 12:267. [PMID: 33712567 PMCID: PMC7955040 DOI: 10.1038/s41419-021-03551-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Metabolic and cardiovascular diseases are highly prevalent and chronic conditions that are closely linked by complex molecular and pathological changes. Such adverse effects often arise from changes in the expression of genes that control essential cellular functions, but the factors that drive such effects are not fully understood. Since tissue-specific transcription factors control the expression of multiple genes, which affect cell fate under different conditions, then identifying such regulators can provide valuable insight into the molecular basis of such diseases. This review explores emerging evidence that supports novel and important roles for the POU4F2/Brn-3b transcription factor (TF) in controlling cellular genes that regulate cardiometabolic function. Brn-3b is expressed in insulin-responsive metabolic tissues (e.g. skeletal muscle and adipose tissue) and is important for normal function because constitutive Brn-3b-knockout (KO) mice develop profound metabolic dysfunction (hyperglycaemia; insulin resistance). Brn-3b is highly expressed in the developing hearts, with lower levels in adult hearts. However, Brn-3b is re-expressed in adult cardiomyocytes following haemodynamic stress or injury and is necessary for adaptive cardiac responses, particularly in male hearts, because male Brn-3b KO mice develop adverse remodelling and reduced cardiac function. As a TF, Brn-3b regulates the expression of multiple target genes, including GLUT4, GSK3β, sonic hedgehog (SHH), cyclin D1 and CDK4, which have known functions in controlling metabolic processes but also participate in cardiac responses to stress or injury. Therefore, loss of Brn-3b and the resultant alterations in the expression of such genes could potentially provide the link between metabolic dysfunctions with adverse cardiovascular responses, which is seen in Brn-3b KO mutants. Since the loss of Brn-3b is associated with obesity, type II diabetes (T2DM) and altered cardiac responses to stress, this regulator may provide a new and important link for understanding how pathological changes arise in such endemic diseases.
Collapse
Affiliation(s)
- Vishwanie S Budhram-Mahadeo
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.
| | - Matthew R Solomons
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Eeshan A O Mahadeo-Heads
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.,College of Medicine and Health, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
14
|
Visualization of cardiovascular development, physiology and disease at the single-cell level: Opportunities and future challenges. J Mol Cell Cardiol 2020; 142:80-92. [PMID: 32205182 DOI: 10.1016/j.yjmcc.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq), a method of transcriptome sequencing at the single-cell level, has recently emerged as a revolutionary technology in the field of biomedical research. Compared to conventional gene expression profiling in bulk, scRNA-seq resolves biological differences among individual cells and enables the identification of rare cell populations that are easily overlooked. This review introduces the method of scRNA-seq, summarizes its applications in the field of cardiovascular disease research, and discusses existing limitations and prospects for future applications.
Collapse
|
15
|
Wei W, Li B, Li F, Sun K, Jiang X, Xu R. Identification of FOXH1 mutations in patients with sporadic conotruncal heart defect. Clin Genet 2020; 97:576-585. [PMID: 32003456 DOI: 10.1111/cge.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/26/2022]
Abstract
Conotruncal heart defects (CTD) are an important subtype of congenital heart disease that occur due to abnormality in the development of the cardiac outflow tract (OFT). FOXH1 is a transcription factor that participates in the morphogenesis of the right ventricle and OFT. In this study, we confirmed the expression of FOXH1 in mouse and human embryos during OFT development. We also scanned the coding exons and splicing regions of the FOXH1 gene in 605 patients with sporadic CTD and 300 unaffected controls, from which we identified seven heterozygous FOXH1 gene mutations. According to bioinformatics analysis results, they were predicted potentially deleterious at conserved amino acid sites. Western blot was used to show that all the variants decreased the expression of FOXH1 protein, while dual-luciferase reporter assay showed that six of them, with an exception of p.P35R, had enhanced abilities to modulate the expression of MEF2C, which interacts with NKX2.5 and is involved in cardiac growth. The electrophoretic mobility shift assays result showed that two mutations altered DNA-binding abilities of mutant FOXH1 proteins. Phenotype heterogeneity was found in patients with the same mutation. These results indicate that FOXH1 mutations lead to disease-causing functional changes that contribute to the occurrence of CTD.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bojian Li
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Li
- Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University School, Shanghai, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University School, Shanghai, China
| |
Collapse
|
16
|
Shang X, Ji X, Dang J, Wang L, Sun C, Liu K, Sik A, Jin M. α-asarone induces cardiac defects and QT prolongation through mitochondrial apoptosis pathway in zebrafish. Toxicol Lett 2020; 324:1-11. [PMID: 32035120 DOI: 10.1016/j.toxlet.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
α-asarone is a natural phenylpropene found in several plants, which are widely used for flavoring foods and treating diseases. Previous studies have demonstrated that α-asarone has many pharmacological functions, while some reports indicated its toxicity. However, little is known about its cardiovascular effects. This study investigated developmental toxicity of α-asarone in zebrafish, especially the cardiotoxicity. Zebrafish embryos were exposed to different concentrations of α-asarone (1, 3, 5, 10, and 30 μM). Developmental toxicity assessments revealed that α-asarone did not markedly affect mortality and hatching rate. In contrast, there was a concentration-dependent increase in malformation rate of zebrafish treated with α-asarone. The most representative cardiac defects were increased heart malformation rate, pericardial edema areas, sinus venosus-bulbus arteriosus distance, and decreased heart rate. Notably, we found that α-asarone impaired the cardiac function of zebrafish by prolonging the mean QTc duration and causing T-wave abnormalities. The expressions of cardiac development-related key transcriptional regulators tbx5, nkx2.5, hand2, and gata5 were all changed under α-asarone exposure. Further investigation addressing the mechanism indicated that α-asarone triggered apoptosis mainly in the heart region of zebrafish. Moreover, the elevated expression of puma, cyto C, afap1, caspase 3, and caspase 9 in treated zebrafish suggested that mitochondrial apoptosis is likely to be the main reason for α-asarone induced cardiotoxicity. These findings revealed the cardiac developmental toxicity of α-asarone, expanding our knowledge about the toxic effect of α-asarone on living organisms.
Collapse
Affiliation(s)
- Xueliang Shang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China.
| |
Collapse
|
17
|
Sun Y, Li Z, Lau C, Lu J. Antibody free ELISA-like assay for the detection of transcription factors based on double-stranded DNA thermostability. Analyst 2020; 145:3339-3344. [DOI: 10.1039/c9an02631b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs) play critical roles in gene expression regulation and disease development. Herein we report a chemiluminescence assay for the detection of transcription factor based on double-stranded DNA thermostability.
Collapse
Affiliation(s)
- Yue Sun
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| | - Zhiyan Li
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| | - Choiwan Lau
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| | - Jianzhong Lu
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| |
Collapse
|
18
|
Engineer A, Saiyin T, Greco ER, Feng Q. Say NO to ROS: Their Roles in Embryonic Heart Development and Pathogenesis of Congenital Heart Defects in Maternal Diabetes. Antioxidants (Basel) 2019; 8:antiox8100436. [PMID: 31581464 PMCID: PMC6826639 DOI: 10.3390/antiox8100436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart defects (CHDs) are the most prevalent and serious birth defect, occurring in 1% of all live births. Pregestational maternal diabetes is a known risk factor for the development of CHDs, elevating the risk in the child by more than four-fold. As the prevalence of diabetes rapidly rises among women of childbearing age, there is a need to investigate the mechanisms and potential preventative strategies for these defects. In experimental animal models of pregestational diabetes induced-CHDs, upwards of 50% of offspring display congenital malformations of the heart, including septal, valvular, and outflow tract defects. Specifically, the imbalance of nitric oxide (NO) and reactive oxygen species (ROS) signaling is a major driver of the development of CHDs in offspring of mice with pregestational diabetes. NO from endothelial nitric oxide synthase (eNOS) is crucial to cardiogenesis, regulating various cellular and molecular processes. In fact, deficiency in eNOS results in CHDs and coronary artery malformation. Embryonic hearts from diabetic dams exhibit eNOS uncoupling and oxidative stress. Maternal treatment with sapropterin, a cofactor of eNOS, and antioxidants such as N-acetylcysteine, vitamin E, and glutathione as well as maternal exercise have been shown to improve eNOS function, reduce oxidative stress, and lower the incidence CHDs in the offspring of mice with pregestational diabetes. This review summarizes recent data on pregestational diabetes-induced CHDs, and offers insights into the important roles of NO and ROS in embryonic heart development and pathogenesis of CHDs in maternal diabetes.
Collapse
Affiliation(s)
- Anish Engineer
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Tana Saiyin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Elizabeth R Greco
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| |
Collapse
|
19
|
Dianatpour S, Khatami M, Heidari MM, Hadadzadeh M. Novel Point Mutations of CITED2 Gene Are Associated with Non-familial Congenital Heart Disease (CHD) in Sporadic Pediatric Patients. Appl Biochem Biotechnol 2019; 190:896-906. [PMID: 31515672 DOI: 10.1007/s12010-019-03125-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
CITED2 is a cardiac transcription factor that plays a critical role in cardiac development. Gene mutations in CITED2 lead to a series of cardiac malformations and congenital heart defects (CHD). Congenital heart disease generally refers to defects in the heart's structure or function and often seen in many forms such as ventricular septal defects (VSDs), atrial septal defects (ASDs), and tetralogy of Fallot (TOF). However, the mechanisms involved in these mutations are poorly understood. The aim of the present study was to evaluate the mutations of the CITED2 gene in pediatric patients with congenital heart defects. We studied the potential impact of sequence variations of the CITED2 gene in a cohort of 150 patients with non-familial CHD and 98 control individuals by polymerase chain reaction-single-stranded conformation polymorphism (PCR-SSCP) and subsequently direct sequencing. We identified seven novel CITED2 nucleotide changes. Four of these alterations were found in the coding region (c.716insG, c.389A>G, c.450G>C and c.512-538del27) and were only seen in our patients, and not detected in the control group. These mutations are leading to changes in the amino acid sequence in the position of p.Gly236fs, p.Asn125Ser, p.Gln145His, and p.Ser170-Gly178del, respectively. Other variations are located in the 5'UTR region of the gene (c.-43C>T, c.-64C>T and c.-90A>G). CITED2 gene mutations in control subjects were not observed. Our Bioinformatics assay results showed that these novel mutations alter the RNA folding, protein structure, and, therefore, probable effect on the protein function and may play a significant role in the development of congenital heart diseases.
Collapse
Affiliation(s)
- Sima Dianatpour
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Mehri Khatami
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran.
| | | | - Mehdi Hadadzadeh
- Department of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
20
|
Zhao Z, Zhan Y, Chen W, Ma X, Sheng W, Huang G. Functional analysis of rare variants of GATA4 identified in Chinese patients with congenital heart defect. Genesis 2019; 57:e23333. [PMID: 31513339 DOI: 10.1002/dvg.23333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022]
Abstract
Congenital heart defect (CHD) is one of the most common cardiovascular diseases, affecting approximately 0.8% of live births. The transcription factor GATA4 has been known to play a key role in cardiac development. In this study, we performed whole exome sequencing in nine unrelated CHD patients and found two rare deleterious missense variants in the GATA4 gene (c.C487T,p.P163S and c.C1223A,p.P408Q) (ExAC <0.001 and CADD >15) in three cases that were confirmed by Sanger sequencing. Subsequently, these two variants were screened for in an additional 226 patients with CHD and 206 healthy controls by Sanger sequencing, and no variants were observed. These two variants were predicted to be damaging to protein function using a functional prediction program. Co-IP indicated that both of the GATA4 variants (P163S and P408Q) blocked heterodimer formation between GATA4 and ZFPM2 protein. Immunofluorescence showed that the two GATA4 variants diminished the colocalization formation between GATA4 and ZFPM2 protein compared to that of WT protein. These findings indicate that the two rare variants of GATA4 might disturb its interaction with ZFPM2 and influence corresponding downstream gene activity, suggesting that the GATA4 variants may be associated with the pathogenesis of CHD.
Collapse
Affiliation(s)
- Zhengshan Zhao
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yongkun Zhan
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Wei Sheng
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Guoying Huang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
21
|
Zhao Q, Sun Q, Zhou L, Liu K, Jiao K. Complex Regulation of Mitochondrial Function During Cardiac Development. J Am Heart Assoc 2019; 8:e012731. [PMID: 31215339 PMCID: PMC6662350 DOI: 10.1161/jaha.119.012731] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Qiancong Zhao
- Department of Cardiovascular SurgeryThe Second Hospital of Jilin UniversityChangchunChina
- Department of GeneticsThe University of Alabama at BirminghamAL
| | - Qianchuang Sun
- Department of AnesthesiologyThe Second Hospital of Jilin UniversityChangchunChina
- Department of GeneticsThe University of Alabama at BirminghamAL
| | - Lufang Zhou
- Department of MedicineThe University of Alabama at BirminghamAL
| | - Kexiang Liu
- Department of Cardiovascular SurgeryThe Second Hospital of Jilin UniversityChangchunChina
| | - Kai Jiao
- Department of GeneticsThe University of Alabama at BirminghamAL
| |
Collapse
|
22
|
Fardoun M, Dehaini H, Kamar A, Bitar F, Majdalani M, El-Rassi I, Nemer G, Arabi M. A Novel Somatic Variant in HEY2 Unveils an Alternative Splicing Isoform Linked to Ventricular Septal Defect. Pediatr Cardiol 2019; 40:1084-1091. [PMID: 30955100 DOI: 10.1007/s00246-019-02099-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
Congenital heart defects (CHDs) are the leading cause of death in infants under 1 year of age. Aberrations in the expression and function of cardiac transcription factors (TFs) are a major contributor to CHDs. Despite the numerous studies undertaken to functionally characterize these TFs, their exact role in different stages of cardiogenesis is still not fully elucidated. Here we focused on HEY2, a basic helix loop helix transcriptional repressor, and its potential role in human ventricular septal defects. Genetic analysis was performed based on sequencing of DNA and cDNA obtained from post-operational cardiac tissues and blood of 17 Lebanese patients with various CHDs. The screen covered the entire coding regions of the GATA4, NKX2.5, TBX5, TBX20 and HEY2 genes. Our results revealed two novel somatic mutations, namely p.Ala229Thr and p.161_190 del, affecting HEY2 in the diseased cardiac tissues of two patients with VSD. These results suggest a potential role of HEY2 in regulating ventricular septation in humans.
Collapse
Affiliation(s)
- Manal Fardoun
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hassan Dehaini
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Amina Kamar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Fadi Bitar
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Marianne Majdalani
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Issam El-Rassi
- Department of Surgery, American University of Beirut, Beirut, Lebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Mariam Arabi
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
23
|
Kalayinia S, Maleki M, Rokni-Zadeh H, Changi-Ashtiani M, Ahangar H, Biglari A, Shahani T, Mahdieh N. GATA4 screening in Iranian patients of various ethnicities affected with congenital heart disease: Co-occurrence of a novel de novo translocation (5;7) and a likely pathogenic heterozygous GATA4 mutation in a family with autosomal dominant congenital heart disease. J Clin Lab Anal 2019; 33:e22923. [PMID: 31115957 PMCID: PMC6757118 DOI: 10.1002/jcla.22923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/20/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is the most common birth defect and a major health problem around the world. However, its exact etiology has remained unclear. Among various genetic contributing factors, GATA4 transcription factor plays a significant role in the CHD pathogenesis. In this study, GATA4 coding sequence was screened in Iranian patients of various ethnicities. METHODS Sixty six individuals with familial CHD referred to our center were recruited in this study. After receiving written informed consent from each individual or their parents, chromosomal analyses and GATA4 variant screening were performed. Pathogenicity of the suspected variants was evaluated using available online software tools: CADD, Mutation Taster, SIFT, and PolyPhen-2. RESULTS A total of twelve GATA4 variants were detected including five intronic, 2 exonic and 3 polymorphisms as well as 2 missense mutations, the c.1220C>A and c.1309G>A. Unlike the c.1220C>A, the likely pathogenic heterozygous c.1309G>A has not been previously associated with any phenotype. Here, we not only report, for the first time, a c.1309G>A-related CHD, but also report a novel de novo balanced translocation, 46,XY,t(5;7)(qter13;qter11), in the same patient which may have influenced the disease severity. CONCLUSION From screening GATA4 sequence in 66 Iranian patients of various ethnicities, we conclude that cytogenetic analysis and PCR-direct sequencing of different candidate genes may not be the best approach for genetic diagnosis in CHD. Applying novel approaches such as next-generation sequencing (NGS) may provide a better understating of genetic contributing factors in CHD patients for whom conventional methods could not reveal any genetic causative factor.
Collapse
Affiliation(s)
- Samira Kalayinia
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.,Cardiogenetics Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetics Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Rokni-Zadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Majid Changi-Ashtiani
- School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Hassan Ahangar
- Department of Cardiology, Mousavi Hospital, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.,Department of Cardiology, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Alireza Biglari
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Tina Shahani
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Nejat Mahdieh
- Cardiogenetics Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Sun Q, Peng Y, Zhao Q, Yan S, Liu S, Yang Q, Liu K, Rokosh DG, Jiao K. SEMA6D regulates perinatal cardiomyocyte proliferation and maturation in mice. Dev Biol 2019; 452:1-7. [PMID: 31042497 DOI: 10.1016/j.ydbio.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022]
Abstract
Cardiomyocytes undergo dramatic changes during the fetal to neonatal transition stage to adapt to the new environment. The molecular and genetic mechanisms regulating these changes remain elusive. In this study, we showed Sema6D as a novel signaling molecule regulating perinatal cardiomyocyte proliferation and maturation. SEMA6D is a member of the Semaphorin family of signaling molecules. To reveal its function during cardiogenesis, we specifically inactivated Sema6D in embryonic cardiomyocytes using a conditional gene deletion approach. All mutant animals showed hypoplastic myocardial walls in neonatal hearts due to reduced cell proliferation. We further revealed that expression of MYCN and its downstream cell cycle regulators is impaired in late fetal hearts in which Sema6D is deleted, suggesting that SEMA6D acts through MYCN to regulate cardiomyocyte proliferation. In early postnatal mutant hearts, expression of adult forms of sarcomeric proteins is increased, while expression of embryonic forms is decreased. These data collectively suggest that SEMA6D is required to maintain late fetal/early neonatal cardiomyocytes at a proliferative and less mature status. Deletion of Sema6D in cardiomyocytes led to reduced proliferation and accelerated maturation. We further examined the consequence of these defects through echocardiographic analysis. Embryonic heart deletion of Sema6D significantly impaired the cardiac contraction of male adult hearts, while having a minor effect on female mutant hearts, suggesting that the effect of Sema6D-deletion in adult hearts is sex dependent.
Collapse
Affiliation(s)
- Qianchuang Sun
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130041, China; Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yin Peng
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiancong Zhao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shun Yan
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shuyan Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinglin Yang
- Department of Pharmacology, Louisiana State University School of Medicine, New Orleans, LA 70803, USA
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Donald G Rokosh
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A, Dandara C. Genomics and Epigenomics of Congenital Heart Defects: Expert Review and Lessons Learned in Africa. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:301-321. [PMID: 29762087 PMCID: PMC6016577 DOI: 10.1089/omi.2018.0033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Congenital heart defects (CHD) are structural malformations found at birth with a prevalence of 1%. The clinical trajectory of CHD is highly variable and thus in need of robust diagnostics and therapeutics. Major surgical interventions are often required for most CHDs. In Africa, despite advances in life sciences infrastructure and improving education of medical scholars, the limited clinical data suggest that CHD detection and correction are still not at par with the rest of the world. But the toll and genetics of CHDs in Africa has seldom been systematically investigated. We present an expert review on CHD with lessons learned on Africa. We found variable CHD phenotype prevalence in Africa across countries and populations. There are important gaps and paucity in genomic studies of CHD in African populations. Among the available genomic studies, the key findings in Africa were variants in GATA4 (P193H), MTHFR 677TT, and MTHFR 1298CC that were associated with atrial septal defect, ventricular septal defect (VSD), Tetralogy of Fallot (TOF), and patent ductus arteriosus phenotypes and 22q.11 deletion, which is associated with TOF. There were no data on epigenomic association of CHD in Africa, however, other studies have shown an altered expression of miR-421 and miR-1233-3p to be associated with TOF and hypermethylation of CpG islands in the promoter of SCO2 gene also been associated with TOF and VSD in children with non-syndromic CHD. These findings signal the urgent need to develop and implement genetic and genomic research on CHD to identify the hereditary and genome-environment interactions contributing to CHD. These projected studies would also offer comparisons on CHD pathophysiology between African and other populations worldwide. Genomic research on CHD in Africa should be developed in parallel with next generation technology policy research and responsible innovation frameworks that examine the social and political factors that shape the emergence and societal embedding of new technologies.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
- 2 School of Medical Sciences, University of Cape Coast , Cape Coast, Ghana
| | - Kevin Dzobo
- 3 ICGEB, Cape Town Component, University of Cape Town , Cape Town, South Africa
- 4 Division of Medical Biochemistry, IIDMM, Department of IBM, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Nana Akyaa Yao
- 5 National Cardiothoracic Centre, Korle Bu Teaching Hospital , Accra, Ghana
- 6 University of Ghana Medical School, University of Ghana , Accra, Ghana
| | - Emile Chimusa
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Jonathan Evans
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Emmanuel Okai
- 2 School of Medical Sciences, University of Cape Coast , Cape Coast, Ghana
- 7 Cape Coast Teaching Hospital , Cape Coast, Ghana
| | - Paul Kruszka
- 8 National Human Genome Research Institute, Medical Genetics Branch, National Institutes of Health , Bethesda, Maryland, USA
| | - Maximilian Muenke
- 8 National Human Genome Research Institute, Medical Genetics Branch, National Institutes of Health , Bethesda, Maryland, USA
| | - Gordon Awandare
- 9 Department of Biochemistry, WACCBIP, University of Ghana , Legon, Accra, Ghana
| | - Ambroise Wonkam
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Collet Dandara
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
26
|
RCAN1 Mutation and Functional Characterization in Children with Sporadic Congenital Heart Disease. Pediatr Cardiol 2018; 39:226-235. [PMID: 28993896 DOI: 10.1007/s00246-017-1746-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/30/2017] [Indexed: 01/15/2023]
Abstract
Congenital heart disease (CHD) is the most frequent birth defect. RCAN1 (regulator of calcineurin 1) contributes to CHD in Down syndrome. However, whether RCAN1 is also associated with nonsyndromic CHD remains unclear. This study sequenced the exons and flanking region of RCAN1 in 128 sporadic CHD patients and 150 normal controls. We identified six novel heterozygous mutations in CHD patients. Functional assay showed that the g.482G>T could obviously raise the promoter activity of RCAN1.4 in vitro; However, we failed to detect the expression of RCAN1 in the right auricle, which made it confused to evaluate the pathogenicity of this mutation. In addition, we demonstrated that c.290T>C and g.1056+58C>A had no effect on the alternative splicing of RCAN1. The *196C>T, *790G>A, and *1278C>G did not influence the translation of RCAN1 post transcription. In conclusion, a novel mutation of g.482G>T in RCAN1 may be related to CHD by causing overexpression of RCAN1.4.
Collapse
|
27
|
Peng Y, Song L, Li D, Kesterson R, Wang J, Wang L, Rokosh G, Wu B, Wang Q, Jiao K. Sema6D acts downstream of bone morphogenetic protein signalling to promote atrioventricular cushion development in mice. Cardiovasc Res 2018; 112:532-542. [PMID: 28172500 DOI: 10.1093/cvr/cvw200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yin Peng
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lanying Song
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ding Li
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert Kesterson
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lizhong Wang
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregg Rokosh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
Li J, Tang J, Jiang B, Xiang Y, Yuan R. Amplified probing of protein/DNA interactions for sensitive fluorescence detection of transcription factors. J Mater Chem B 2018; 6:6002-6007. [DOI: 10.1039/c8tb02056f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Coupling the enzyme protection strategy with metal-ion dependent DNAzyme amplification leads to sensitive monitoring of protein/DNA interactions.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Jinshan Tang
- School of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
29
|
Bose D, D V, Shetty M, J K, Kutty AVM. Identification of intronic-splice site mutations in GATA4 gene in Indian patients with congenital heart disease. Mutat Res 2017; 803-805:26-34. [PMID: 28843068 DOI: 10.1016/j.mrfmmm.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/01/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
Congenital Heart Disease (CHD) is the most common birth defect among congenital anomalies that arise before birth. GATA4 transcription factor plays an important role in foetal heart development. Mutational analysis of GATA4 gene in CHD patients revealed five known heterozygous mutations (p.T355S, p.S377G, p.V380M, p.P394T and p.D425N) identified in exons 5 and 6 regions and fifteen intronic variants in the non-coding regions (g.76885T>C/Y,g.76937G>S, g.78343G>R, g.83073T>Y, g.83271C>A/M, g.83318G>K, g.83415G>R, g.83502A>C/M, g.84991G>R, g.85294C>Y, g.85342C>T/Y, g.86268A>R, g.87409G>A/R, g.87725T>Y, g.87813A>T/W). In silico analysis of these intronic variants identified two potential branch point mutations (g.83271C>A/M, g.86268A>R) and predicted effects of these on intronic splice sites as enhancer and silencer motifs. This study attempts to correlate the pattern of intronic variants of GATA4 gene which might provide new insights to unravel the possible molecular etiology of CHD.
Collapse
Affiliation(s)
- Divya Bose
- Division of Genomics, Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, Karnataka, India
| | - Vaigundan D
- Division of Genomics, Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, Karnataka, India
| | - Mitesh Shetty
- Division of Genomics, Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, Karnataka, India
| | - Krishnappa J
- Department of Pediatrics, Sri Devaraj Urs Medical College, R. L. Jalappa Hospital and Research Centre, Tamaka, Kolar, Karnataka, India
| | - A V M Kutty
- Division of Genomics, Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, Karnataka, India.
| |
Collapse
|
30
|
Liu S, Su Z, Tan S, Ni B, Pan H, Liu B, Wang J, Xiao J, Chen Q. Functional Analyses of a Novel CITED2 Nonsynonymous Mutation in Chinese Tibetan Patients with Congenital Heart Disease. Pediatr Cardiol 2017; 38:1226-1231. [PMID: 28687891 DOI: 10.1007/s00246-017-1649-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
Abstract
CITED2 gene is an important cardiac transcription factor that plays a fundamental role in the formation and development of embryonic cardiovascular. Previous studies have showed that knock-out of CITED2 in mice might result in various cardiac malformations. However, the mechanisms of CITED2 mutation on congenital heart disease (CHD) in Chinese Tibetan population are still poorly understood. In the present study, 187 unrelated Tibetan patients with CHD and 200 unrelated Tibetan healthy controls were screened for variants in the CITED2 gene; we subsequently identified one potential disease-causing mutation p.G143A in a 6-year-old girl with PDA and functional analyses of the mutation were carried out. Our study showed that the novel mutation of CITED2 significantly enhanced the expression activity of vascular endothelial growth factor (VEGF) under the role of co-receptor hypoxia inducible factor 1-aipha (HIF-1A), which is closely related with embryonic cardiac development. As a result, CITED2 gene mutation may play a significant role in the development of pediatric congenital heart disease.
Collapse
Affiliation(s)
- Shiming Liu
- Qinghai High Altitude Medical Research Institute, No.7, Zhuanchang Road, West District, Xining, 810012, China
| | - Zhaobing Su
- Department of Cardiology, The Dongguan Affiliated Hospital of Medical College of Jinan University, The Fifth People's Hospital of Dongguan, 154 Humen Road, Humen, 523900, Guangdong, China
| | - Sainan Tan
- Key Laboratory of Genetics and Birth Health of Hunan Province, Family Planning Institute of Hunan Province, Changsha, China
| | - Bin Ni
- Key Laboratory of Genetics and Birth Health of Hunan Province, Family Planning Institute of Hunan Province, Changsha, China
| | - Hong Pan
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Beihong Liu
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Jing Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jianmin Xiao
- Department of Cardiology, The Dongguan Affiliated Hospital of Medical College of Jinan University, The Fifth People's Hospital of Dongguan, 154 Humen Road, Humen, 523900, Guangdong, China.
| | - Qiuhong Chen
- Qinghai High Altitude Medical Research Institute, No.7, Zhuanchang Road, West District, Xining, 810012, China.
| |
Collapse
|
31
|
Maskell LJ, Qamar K, Babakr AA, Hawkins TA, Heads RJ, Budhram-Mahadeo VS. Essential but partially redundant roles for POU4F1/Brn-3a and POU4F2/Brn-3b transcription factors in the developing heart. Cell Death Dis 2017; 8:e2861. [PMID: 28594399 PMCID: PMC5520879 DOI: 10.1038/cddis.2017.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/15/2023]
Abstract
Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a (POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation, Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a-/- : Brn-3b-/-) mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts.
Collapse
Affiliation(s)
- Lauren J Maskell
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Kashif Qamar
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Aram A Babakr
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Thomas A Hawkins
- Division of Biosciences, Cell and Developmental Biology, UCL, London, UK
| | - Richard J Heads
- Cardiovascular Division, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Vishwanie S Budhram-Mahadeo
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| |
Collapse
|
32
|
Desjardins CA, Naya FJ. The Function of the MEF2 Family of Transcription Factors in Cardiac Development, Cardiogenomics, and Direct Reprogramming. J Cardiovasc Dev Dis 2016; 3. [PMID: 27630998 PMCID: PMC5019174 DOI: 10.3390/jcdd3030026] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families to ensure accuracy and specificity in the system. Unsurprisingly, perturbations in this elaborate transcriptional circuitry can lead to severe cardiac abnormalities. Myocyte enhancer factor–2 (MEF2) transcription factor belongs to the evolutionarily conserved cardiac gene regulatory network. Given its central role in muscle gene regulation and its evolutionary conservation, MEF2 is considered one of only a few core cardiac transcription factors. In addition to its firmly established role as a differentiation factor, MEF2 regulates wide variety of, sometimes antagonistic, cellular processes such as cell survival and death. Vertebrate genomes encode multiple MEF2 family members thereby expanding the transcriptional potential of this core transcription factor in the heart. This review highlights the requirement of the MEF2 family and their orthologs in cardiac development in diverse animal model systems. Furthermore, we describe the recently characterized role of MEF2 in direct reprogramming and genome-wide cardiomyocyte gene regulation. A thorough understanding of the regulatory functions of the MEF2 family in cardiac development and cardiogenomics is required in order to develop effective therapeutic strategies to repair the diseased heart.
Collapse
|
33
|
Sha L, Zhang X, Wang G. A label-free and enzyme-free ultra-sensitive transcription factors biosensor using DNA-templated copper nanoparticles as fluorescent indicator and hairpin DNA cascade reaction as signal amplifier. Biosens Bioelectron 2016; 82:85-92. [DOI: 10.1016/j.bios.2016.03.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 11/30/2022]
|
34
|
Functions of miRNAs during Mammalian Heart Development. Int J Mol Sci 2016; 17:ijms17050789. [PMID: 27213371 PMCID: PMC4881605 DOI: 10.3390/ijms17050789] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) play essential roles during mammalian heart development and have emerged as attractive therapeutic targets for cardiovascular diseases. The mammalian embryonic heart is mainly derived from four major cell types during development. These include cardiomyocytes, endocardial cells, epicardial cells, and neural crest cells. Recent data have identified various miRNAs as critical regulators of the proper differentiation, proliferation, and survival of these cell types. In this review, we briefly introduce the contemporary understanding of mammalian cardiac development. We also focus on recent developments in the field of cardiac miRNAs and their functions during the development of different cell types.
Collapse
|
35
|
Furtado MB, Wilmanns JC, Chandran A, Tonta M, Biben C, Eichenlaub M, Coleman HA, Berger S, Bouveret R, Singh R, Harvey RP, Ramialison M, Pearson JT, Parkington HC, Rosenthal NA, Costa MW. A novel conditional mouse model for Nkx2-5 reveals transcriptional regulation of cardiac ion channels. Differentiation 2016; 91:29-41. [PMID: 26897459 DOI: 10.1016/j.diff.2015.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/30/2023]
Abstract
Nkx2-5 is one of the master regulators of cardiac development, homeostasis and disease. This transcription factor has been previously associated with a suite of cardiac congenital malformations and impairment of electrical activity. When disease causative mutations in transcription factors are considered, NKX2-5 gene dysfunction is the most common abnormality found in patients. Here we describe a novel mouse model and subsequent implications of Nkx2-5 loss for aspects of myocardial electrical activity. In this work we have engineered a new Nkx2-5 conditional knockout mouse in which flox sites flank the entire Nkx2-5 locus, and validated this line for the study of heart development, differentiation and disease using a full deletion strategy. While our homozygous knockout mice show typical embryonic malformations previously described for the lack of the Nkx2-5 gene, hearts of heterozygous adult mice show moderate morphological and functional abnormalities that are sufficient to sustain blood supply demands under homeostatic conditions. This study further reveals intriguing aspects of Nkx2-5 function in the control of cardiac electrical activity. Using a combination of mouse genetics, biochemistry, molecular and cell biology, we demonstrate that Nkx2-5 regulates the gene encoding Kcnh2 channel and others, shedding light on potential mechanisms generating electrical abnormalities observed in patients bearing NKX2-5 dysfunction and opening opportunities to the study of novel therapeutic targets for anti-arrhythmogenic therapies.
Collapse
Affiliation(s)
- Milena B Furtado
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic 3800, Australia; The Jackson Laboratory, ME 04609, United States
| | - Julia C Wilmanns
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic 3800, Australia; Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Anjana Chandran
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic 3800, Australia
| | - Mary Tonta
- Department of Physiology, Monash University, Clayton, Vic 3800, Australia
| | - Christine Biben
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Vic 3052, Australia
| | - Michael Eichenlaub
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic 3800, Australia
| | - Harold A Coleman
- Department of Physiology, Monash University, Clayton, Vic 3800, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic 3800, Australia
| | - Romaric Bouveret
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Reena Singh
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic 3800, Australia
| | - James T Pearson
- Department of Physiology, Monash University, Clayton, Vic 3800, Australia; Monash Biomedical Imaging, Monash University, Clayton, Vic 3800, Australia
| | | | - Nadia A Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic 3800, Australia; National Heart and Lung Institute, Imperial College London, SW3 6LY England, UK; The Jackson Laboratory, ME 04609, United States
| | - Mauro W Costa
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic 3800, Australia; The Jackson Laboratory, ME 04609, United States.
| |
Collapse
|
36
|
Xiong Y, Lin L, Zhang X, Wang G. Label-free electrochemiluminescent detection of transcription factors with hybridization chain reaction amplification. RSC Adv 2016. [DOI: 10.1039/c6ra00701e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Label-free and efficient ECL strategy for detection of NF-κB based on the HCR signal amplification.
Collapse
Affiliation(s)
- Yunfang Xiong
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| | - Lin Lin
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| | - Xiaojun Zhang
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| |
Collapse
|
37
|
Understanding Genetics and Pediatric Cardiac Health. J Pediatr Nurs 2016; 31:3-10. [PMID: 26652210 DOI: 10.1016/j.pedn.2015.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED Congenital heart defects (CHD) continue to be the most prevalent birth defect that occurs worldwide in approximately 6-8 of every 1,000 live births. High rates of morbidity and mortality in infants, children, and adults living with CHD place a growing need for health care professionals (HCPs) to better understand potentially modifiable genetic and environmental influences. This paper will present examples of research and governmental initiatives that support genetics education and research and a review of known genetic factors associated with CHD development. ORGANIZING CONSTRUCT A review of the known genetic factors on risk for CHD formation in infants will be provided to help health care professionals gain a greater understanding of the genetic influences on pediatric cardiac health. CONCLUSIONS There are known genetic pathways and risk factors that contribute to development of CHD. This paper is a primer for nurses and HCPs providing information of the genetics and inheritance patterns of CHD to be useful in daily clinical practice. CLINICAL RELEVANCE Nurses work in multiple communities where they are uniquely positioned to educate and provide information about research and current models of care with families affected by CHD. Nurses and HCPs who better understand genetic risk factors associated with CHD development can more promptly refer and offer treatment for these children and families thus providing individuals of childbearing age with the necessary resources and information about risk factors.
Collapse
|
38
|
Li K, Wang L, Xu X, Gao T, Yan P, Jiang W. Protein binding-protected DNA three-way junction-mediated rolling circle amplification for sensitive and specific detection of transcription factors. RSC Adv 2016. [DOI: 10.1039/c6ra12535b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A novel fluorescent strategy for transcription factors assay was developed based on protein binding-protected DNA three-way junction-mediated rolling circle amplification.
Collapse
Affiliation(s)
- Kan Li
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Lei Wang
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
- P. R. China
| | - Xiaowen Xu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Ting Gao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Ping Yan
- Jinan Maternity and Child Care Hospital
- 250001 Jinan
- P. R. China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| |
Collapse
|
39
|
Ren HX, Liu SQ, Zhang XC, Zeng YJ. Spike Timing-Dependent Plasticity in the CA1 Pyramidal Neuron in a Modeled Hippocampal Circuit. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Ren H, Liu SQ, Zhang X, Zeng YJ. Spike Timing-Dependent Plasticity in CA1 Pyramidal Neuron-Controlling Hippocampal Circuits: a Model Study. NEUROPHYSIOLOGY+ 2014. [DOI: 10.1007/s11062-014-9448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Gittenberger-de Groot AC, Calkoen EE, Poelmann RE, Bartelings MM, Jongbloed MRM. Morphogenesis and molecular considerations on congenital cardiac septal defects. Ann Med 2014; 46:640-52. [PMID: 25307363 DOI: 10.3109/07853890.2014.959557] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The primary unseptated heart tube undergoes extensive remodeling including septation at the atrial, atrioventricular, ventricular, and ventriculo-arterial level. Alignment and fusion of the septal components is required to ensure full septation of the heart. Deficiencies lead to septal defects at various levels. Addition of myocardium and mesenchymal tissues from the second heart field (SHF) to the primary heart tube, as well as a population of neural crest cells, provides the necessary cellular players. Surprisingly, the study of the molecular background of these defects does not show a great diversity of responsible transcription factors and downstream gene pathways. Epigenetic modulation and mutations high up in several transcription factor pathways (e.g. NODAL and GATA4) may lead to defects at all levels. Disturbance of modulating pathways, involving primarily the SHF-derived cell populations and the genes expressed therein, results at the arterial pole (e.g. TBX1) in a spectrum of ventricular septal defects located at the level of the outflow tract. At the venous pole (e.g. TBX5), it can explain a variety of atrial septal defects. The various defects can occur as isolated anomalies or within families. In this review developmental, morphological, genetic, as well as epigenetic aspects of septal defects are discussed.
Collapse
|
42
|
Bressan M, Yang PB, Louie JD, Navetta AM, Garriock RJ, Mikawa T. Reciprocal myocardial-endocardial interactions pattern the delay in atrioventricular junction conduction. Development 2014; 141:4149-57. [PMID: 25273084 DOI: 10.1242/dev.110007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient blood flow depends on two developmental processes that occur within the atrioventricular junction (AVJ) of the heart: conduction delay, which entrains sequential chamber contraction; and valve formation, which prevents retrograde fluid movement. Defects in either result in severe congenital heart disease; however, little is known about the interplay between these two crucial developmental processes. Here, we show that AVJ conduction delay is locally assigned by the morphogenetic events that initiate valve formation. Our data demonstrate that physical separation from endocardial-derived factors prevents AVJ myocardium from becoming fast conducting. Mechanistically, this physical separation is induced by myocardial-derived factors that support cardiac jelly deposition at the onset of valve formation. These data offer a novel paradigm for conduction patterning, whereby reciprocal myocardial-endocardial interactions coordinate the processes of valve formation with establishment of conduction delay. This, in turn, synchronizes the electrophysiological and structural events necessary for the optimization of blood flow through the developing heart.
Collapse
Affiliation(s)
- Michael Bressan
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - PoAn Brian Yang
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Jonathan D Louie
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Alicia M Navetta
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Robert J Garriock
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| |
Collapse
|
43
|
Araújo AC, Marques S, Belo JA. Targeted inactivation of Cerberus like-2 leads to left ventricular cardiac hyperplasia and systolic dysfunction in the mouse. PLoS One 2014; 9:e102716. [PMID: 25033293 PMCID: PMC4102536 DOI: 10.1371/journal.pone.0102716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/23/2014] [Indexed: 11/29/2022] Open
Abstract
Previous analysis of the Cerberus like 2 knockout (Cerl2−/−) mouse revealed a significant mortality during the first day after birth, mostly due to cardiac defects apparently associated with randomization of the left-right axis. We have however, identified Cerl2-associated cardiac defects, particularly a large increase in the left ventricular myocardial wall in neonates that cannot be explained by laterality abnormalities. Therefore, in order to access the endogenous role of Cerl2 in cardiogenesis, we analyzed the embryonic and neonatal hearts of Cerl2 null mutants that did not display a laterality phenotype. Neonatal mutants obtained from the compound mouse line Cer2−/−::Mlc1v-nLacZ24+, in which the pulmonary ventricle is genetically marked, revealed a massive enlargement of the ventricular myocardium in animals without laterality defects. Echocardiography analysis in Cerl2−/− neonates showed a left ventricular systolic dysfunction that is incompatible with a long lifespan. We uncovered that the increased ventricular muscle observed in Cerl2−/− mice is caused by a high cardiomyocyte mitotic index in the compact myocardium which is mainly associated with increased Ccnd1 expression levels in the left ventricle at embryonic day (E) 13. Interestingly, at this stage we found augmented left ventricular expression of Cerl2 levels when compared with the right ventricle, which may elucidate the regionalized contribution of Cerl2 to the left ventricular muscle formation. Importantly, we observed an increase of phosphorylated Smad2 (pSmad2) levels in embryonic (E13) and neonatal hearts indicating a prolonged TGFβs/Nodal-signaling activation. Concomitantly, we detected an increase of Baf60c levels, but only in Cerl2−/− embryonic hearts. These results indicate that independently of its well-known role in left-right axis establishment Cerl2 plays an important role during heart development in the mouse, mediating Baf60c levels by exerting an important control of the TGFβs/Nodal-signaling pathway.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- IBB - Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- PhD Program in Biomedical Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sara Marques
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- IBB - Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - José António Belo
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- IBB - Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
44
|
Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy. Proc Natl Acad Sci U S A 2014; 111:9515-20. [PMID: 24938781 DOI: 10.1073/pnas.1406191111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease.
Collapse
|
45
|
Ma F, Yang Y, Zhang CY. Ultrasensitive Detection of Transcription Factors Using Transcription-Mediated Isothermally Exponential Amplification-Induced Chemiluminescence. Anal Chem 2014; 86:6006-11. [DOI: 10.1021/ac5017369] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fei Ma
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Yong Yang
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Chun-yang Zhang
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| |
Collapse
|
46
|
|
47
|
|
48
|
Zhang X, Lin H, Zhao H, Hao Y, Mort M, Cooper DN, Zhou Y, Liu Y. Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation. Hum Mol Genet 2014; 23:3024-34. [PMID: 24436305 DOI: 10.1093/hmg/ddu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small insertions/deletions (INDELs) of ≤21 bp comprise 18% of all recorded mutations causing human inherited disease and are evident in 24% of documented Mendelian diseases. INDELs affect gene function in multiple ways: for example, by introducing premature stop codons that either lead to the production of truncated proteins or affect transcriptional efficiency. However, the means by which they impact post-transcriptional regulation, including alternative splicing, have not been fully evaluated. In this study, we collate disease-causing INDELs from the Human Gene Mutation Database (HGMD) and neutral INDELs from the 1000 Genomes Project. The potential of these two types of INDELs to affect binding-site affinity of RNA-binding proteins (RBPs) was then evaluated. We identified several sequence features that can distinguish disease-causing INDELs from neutral INDELs. Moreover, we built a machine-learning predictor called PinPor (predicting pathogenic small insertions and deletions affecting post-transcriptional regulation, http://watson.compbio.iupui.edu/pinpor/) to ascertain which newly observed INDELs are likely to be pathogenic. Our results show that disease-causing INDELs are more likely to ablate RBP-binding sites and tend to affect more RBP-binding sites than neutral INDELs. Additionally, disease-causing INDELs give rise to greater deviations in binding affinity than neutral INDELs. We also demonstrated that disease-causing INDELs may be distinguished from neutral INDELs by several sequence features, such as their proximity to splice sites and their potential effects on RNA secondary structure. This predictor showed satisfactory performance in identifying numerous pathogenic INDELs, with a Matthews correlation coefficient (MCC) value of 0.51 and an accuracy of 0.75.
Collapse
Affiliation(s)
- Xinjun Zhang
- School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts. Biochem Biophys Res Commun 2013; 441:751-6. [PMID: 24211589 DOI: 10.1016/j.bbrc.2013.10.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/06/2023]
Abstract
Despite considerable advances in surgical repairing procedures, congenital heart diseases (CHDs) remain the leading noninfectious cause of infant morbidity and mortality. Understanding the molecular/genetic mechanisms underlying normal cardiogenesis will provide essential information for the development of novel diagnostic and therapeutic strategies against CHDs. BMP signaling plays complex roles in multiple cardiogenic processes in mammals. SMAD1 is a canonical nuclear mediator of BMP signaling, the activity of which is critically regulated through its interaction partners. We screened a mouse embryonic heart yeast two-hybrid library using Smad1 as bait and identified SERTAD1 as a novel interaction partner of SMAD1. SERTAD1 contains multiple potential functional domains, including two partially overlapping transactivation domains at the C terminus. The SERTAD1-SMAD1 interaction in vitro and in mammalian cells was further confirmed through biochemical assays. The expression of Sertad1 in developing hearts was demonstrated using RT-PCR, western blotting and in situ hybridization analyses. We also showed that SERTAD1 was localized in both the cytoplasm and nucleus of immortalized cardiomyocytes and primary embryonic cardiomyocyte cultures. The overexpression of SERTAD1 in cardiomyocytes not only enhanced the activity of two BMP reporters in a dose-dependent manner but also increased the expression of several known BMP/SMAD regulatory targets. Therefore, these data suggest that SERTAD1 acts as a SMAD1 transcriptional co-activator to promote the expression of BMP target genes during mouse cardiogenesis.
Collapse
|
50
|
Arrington CB, Bleyl SB, Brunelli L, Bowles NE. Family-based studies to identify genetic variants that cause congenital heart defects. Future Cardiol 2013; 9:507-18. [PMID: 23834692 DOI: 10.2217/fca.13.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Congenital heart defects (CHDs) are the most common congenital abnormalities. Analysis of large multigenerational families has led to the identification of a number of genes for CHDs. However, identifiable variations in these genes are the cause of a small proportion of cases of CHDs, suggesting significant genetic heterogeneity. In addition, large families with CHDs are rare, making the identification of additional genes difficult. Next-generation sequencing technologies will provide an opportunity to identify more genes in the future. However, the significant genetic variation between individuals will present a challenge to distinguish between 'pathogenic' and 'benign' variants. We have demonstrated that the analysis of multiple individuals in small families using combinations of algorithms can reduce the number of candidate variants to a small, manageable number. Thus, the analysis of small nuclear families or even distantly related 'sporadic' cases may begin to uncover the 'dark matter' of CHD genetics.
Collapse
Affiliation(s)
- Cammon B Arrington
- Department of Pediatrics (Cardiology) University of Utah School of Medicine, Eccles Institute of Human Genetics, 15 North 2030 East, Room 7110B, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|