1
|
Wang X, Wang Y, Yang H, Liu F, Cai Y, Xiao J, Fu Q, Wan P. Integrative Omics Strategies for Understanding and Combating Brown Planthopper Virulence in Rice Production: A Review. Int J Mol Sci 2024; 25:10981. [PMID: 39456764 PMCID: PMC11507613 DOI: 10.3390/ijms252010981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The brown planthopper (Nilaparvata lugens, BPH) is a serious insect pest responsible for causing immense economic losses to rice growers around the globe. The development of high-throughput sequencing technologies has significantly improved the research on this pest, and its genome structure, gene expression profiles, and host-plant interactions are being unveiled. The integration of genomic sequencing, transcriptomics, proteomics, and metabolomics has greatly increased our understanding of the biological characteristics of planthoppers, which will benefit the identification of resistant rice varieties and strategies for their control. Strategies like more optimal genome assembly and single-cell RNA-seq help to update our knowledge of gene control structure and cell type-specific usage, shedding light on how planthoppers adjust as well. However, to date, a comprehensive genome-wide investigation of the genetic interactions and population dynamics of BPHs has yet to be exhaustively performed using these next-generation omics technologies. This review summarizes the recent advances and new perspectives regarding the use of omics data for the BPH, with specific emphasis on the integration of both fields to help develop more sustainable pest management strategies. These findings, in combination with those of post-transcriptional and translational modifications involving non-coding RNAs as well as epigenetic variations, further detail intricate host-brown planthopper interaction dynamics, especially regarding resistant rice varieties. Finally, the symbiogenesis of the symbiotic microbial community in a planthopper can be characterized through metagenomic approaches, and its importance in enhancing virulence traits would offer novel opportunities for plant protection by manipulating host-microbe interactions. The concerted diverse omics approaches collectively identified the holistic and complex mechanisms of virulence variation in BPHs, which enables efficient deployment into rice resistance breeding as well as sustainable pest management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiang Fu
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou 311401, China; (X.W.); (Y.W.); (H.Y.); (F.L.); (Y.C.); (J.X.)
| | - Pinjun Wan
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou 311401, China; (X.W.); (Y.W.); (H.Y.); (F.L.); (Y.C.); (J.X.)
| |
Collapse
|
2
|
Yan W, Zhu Y, Zou C, Liu W, Jia B, Niu J, Zhou Y, Chen B, Li R, Ding SW, Wu Q, Guo Z. Virome Characterization of Native Wild-Rice Plants Discovers a Novel Pathogenic Rice Polerovirus With World-Wide Circulation. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39390751 DOI: 10.1111/pce.15204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Pandemics originating from zoonotic viruses have posed significant threats to human health and agriculture. Recent discoveries have revealed that wild-rice plants also harbour viral pathogens capable of severely impacting rice production, a cornerstone food crop. In this study, we conducted virome analysis on ~1000 wild-rice individual colonies and discovered a novel single-strand positive-sense RNA virus prevalent in these plants. Through comprehensive genomic characterization and comparative sequence analysis, this virus was classified as a new species in the genus Polerovirus, designated Rice less tiller virus (RLTV). Our investigations elucidated that RLTV could be transmitted from wild rice to cultivated rice via a specific insect vector, the aphid Rhopalosiphum padi, causing less tiller disease symptoms in rice plants. We generated an infectious cDNA clone for RLTV and demonstrated systemic infection of rice cultivars and induction of severe disease symptoms following mechanical inoculation or stable genetic transformation. We further illustrated transmission of RLTV from stable transgenic lines to healthy rice plants by the aphid vector, leading to the development of disease symptoms. Notably, our database searches showed that RLTV and another polerovirus isolated from a wild plant species are widely circulating not only in wild rice but also cultivated rice around the world. Our findings provide strong evidence for a wild plant origin for rice viruses and underscore the imminent threat posed by aphid-transmitted rice Polerovirus to rice cultivar.
Collapse
Affiliation(s)
- Wenkai Yan
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wencheng Liu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Jia
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangshuai Niu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yaogui Zhou
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Qingfa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhongxin Guo
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
3
|
Xiao J, Yang G, Liu R, Ge D. Identification and Characterization of Four Novel Viruses in Balclutha incisa. INSECTS 2024; 15:772. [PMID: 39452348 PMCID: PMC11508223 DOI: 10.3390/insects15100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Balclutha incisa (Cicadellidae: Deltocephalinae), a leafhopper prevalent in tropical and temperate regions, is notably abundant in grasses and rice. The virome of B. incisa was investigated using deep transcriptome sequencing, leading to the first identification of four viruses belonging to the families Aliusviridae, Iflaviridae, and Totiviridae in B. incisa. These viruses have been provisionally named B. incisa ollusvirus 1 (BiOV1), B. incisa ollusvirus 2 (BiOV2), B. incisa iflavirus 1 (BiIV1), and B. incisa totivirus 1 (BiTV1). The complete genome sequences of these viruses were obtained through rapid amplification of cDNA ends (RACE). BiOV1 has a linear genome of 15,125 nucleotides (nt), while BiOV2 possesses a circular genome of 14,853 nt. The BiIV1 genome, excluding the poly(A) tail, is 10,903 nt in length and encodes a single open reading frame (ORF) for a polyprotein consisting of 3194 amino acids (aa). The BiTV1 genome is 4357 nt long and contains two overlapping ORFs, with the viral RNA-dependent RNA polymerase (RdRp) translated via a -1 ribosomal frameshift. Phylogenetic and sequence identity analyses suggest that all these viruses are novel members of their respective families. This study significantly expands our understanding of the virome associated with B. incisa by reporting and characterizing these novel viruses.
Collapse
Affiliation(s)
- Jiajing Xiao
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (G.Y.)
| | - Guang Yang
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (G.Y.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (G.Y.)
| | - Danfeng Ge
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (G.Y.)
| |
Collapse
|
4
|
Wu N, Shi W, Zhang L, Wang H, Liu W, Ren Y, Li X, Gao Z, Wang X. Dynamic alterations and ecological implications of rice rhizosphere bacterial communities induced by an insect-transmitted reovirus across space and time. MICROBIOME 2024; 12:189. [PMID: 39363340 PMCID: PMC11448278 DOI: 10.1186/s40168-024-01910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/17/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Cereal diseases caused by insect-transmitted viruses are challenging to forecast and control because of their intermittent outbreak patterns, which are usually attributed to increased population densities of vector insects due to cereal crop rotations and indiscriminate use of pesticides, and lack of resistance in commercial varieties. Root microbiomes are known to significantly affect plant health, but there are significant knowledge gaps concerning epidemics of cereal virus diseases at the microbiome-wide scale under a variety of environmental and biological factors. RESULTS Here, we characterize the diversity and composition of rice (Oryza sativa) root-associated bacterial communities after infection by an insect-transmitted reovirus, rice black-streaked dwarf virus (RBSDV, genus Fijivirus, family Spinareoviridae), by sequencing the bacterial 16S rRNA gene amplified fragments from 1240 samples collected at a consecutive 3-year field experiment. The disease incidences gradually decreased from 2017 to 2019 in both Langfang (LF) and Kaifeng (KF). BRSDV infection significantly impacted the bacterial community in the rice rhizosphere, but this effect was highly susceptible to both the rice-intrinsic and external conditions. A greater correlation between the bacterial community in the rice rhizosphere and those in the root endosphere was found after virus infection, implying a potential relationship between the rice-intrinsic conditions and the rhizosphere bacterial community. The discrepant metabolites in rhizosphere soil were strongly and significantly correlated with the variation of rhizosphere bacterial communities. Glycerophosphates, amino acids, steroid esters, and triterpenoids were the metabolites most closely associated with the bacterial communities, and they mainly linked to the taxa of Proteobacteria, especially Rhodocyclaceae, Burkholderiaceae, and Xanthomonadales. In addition, the greenhouse pot experiments demonstrated that bulk soil microbiota significantly influenced the rhizosphere and endosphere communities and also regulated the RBSDV-mediated variation of rhizosphere bacterial communities. CONCLUSIONS Overall, this study reveals unprecedented spatiotemporal dynamics in rhizosphere bacterial communities triggered by RBSDV infection with potential implications for disease intermittent outbreaks. The finding has promising implications for future studies exploring virus-mediated plant-microbiome interactions. Video Abstract.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Wenchong Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P. R. China.
| | - Xiangdong Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| |
Collapse
|
5
|
Shangguan X, Yang X, Wang S, Geng L, Wang L, Zhao M, Cao H, Zhang Y, Li X, Yang M, Xu K, Zheng X. Genome-Wide Identification and Expression Pattern of Sugar Transporter Genes in the Brown Planthopper, Nilaparvata lugens (Stål). INSECTS 2024; 15:509. [PMID: 39057242 PMCID: PMC11277001 DOI: 10.3390/insects15070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Sugar transporters play important roles in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells in numerous organisms. In insects, sugar transporters not only play a role in sugar transport but may also act as receptors for virus entry and the accumulation of plant defense compounds. The brown planthopper, Nilaparvata lugens, inflicts damage on rice plants by feeding on their phloem sap, which is rich in sugars. In the present study, we identified 34 sugar transporters in N. lugens, which were classified into three subfamilies based on phylogenetic analysis. The motif numbers varied from seven to eleven, and motifs 2, 3, and 4 were identified in the functional domains of all 34 NlST proteins. Chromosome 1 was found to possess the highest number of NlST genes, harboring 15. The gut, salivary glands, fat body, and ovary were the different tissues enriched with NlST gene expression. The expression levels of NlST2, 3, 4, 7, 20, 27, 28, and 31 were higher in the gut than in the other tissues. When expressed in a Saccharomyces cerevisiae hexose transporter deletion mutant (strain EBY.VW4000), only ApST4 (previously characterized) and NlST4, 28, and 31 were found to transport glucose and fructose, resulting in functional rescue of the yeast mutant. These results provide valuable data for further studies on sugar transporters in N. lugens and lay a foundation for finding potential targets to control N. lugens.
Collapse
Affiliation(s)
- Xinxin Shangguan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaoyu Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Siyin Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Lijie Geng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Lina Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Mengfan Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Haohao Cao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaohong Zheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| |
Collapse
|
6
|
Liu D, Zhong Y, Li Z, Hou M. Rice varietal resistance to the vector Sogatella furcifera hinders transmission of Southern rice black-streaked dwarf virus. PEST MANAGEMENT SCIENCE 2024; 80:3684-3690. [PMID: 38459962 DOI: 10.1002/ps.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND The Southern rice black-streaked dwarf virus (SRBSDV) transmitted by Sogatella furcifera constitutes a threat to sustainable rice production. However, most rice varieties are highly vulnerable to SRBSDV, whereas the occurrence of the viral disease varies significantly under field conditions. This study aimed to evaluate the potential of rice varietal resistance to S. furcifera in reducing SRBSDV transmission. RESULTS Among the five rice varieties, Zhongzheyou8 and Deyou108 exhibited high resistance to S. furcifera, Baixiangnuo33 was susceptible, and TN1 and Diantun502 were highly susceptible. The S. furcifera generally showed non-preference for and low feeding on the Zhongzheyou8 and Deyou108 plants, which may explain the resistance of these varieties to S. furcifera. Transmission of SRBSDV by S. furcifera was significantly impaired on the resistant varieties, both inoculation and acquisition rates were much lower on Zhongzheyou8 than on TN1. The short durations of S. furcifera salivation and phloem-related activities and the low S. furcifera feeding amount may explain the reduced SRBSDV inoculation and acquisition rates associated with Zhongzheyou8. Spearman's rank correlation revealed a significant negative correlation between S. furcifera resistance and SRBSDV transmission among the tested varieties. CONCLUSION The results indicate that rice varietal resistance to the vector S. furcifera hinders SRBSDV transmission, which is largely associated with the host plant selection and feeding behaviors of the vector. The current findings shed light on the management of the SRBSDV viral disease through incorporation of S. furcifera resistant rice varieties in the management protocol. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqi Zhong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengxi Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Sun K, Fu K, Hu T, Shentu X, Yu X. Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. PEST MANAGEMENT SCIENCE 2024; 80:2515-2527. [PMID: 37948321 DOI: 10.1002/ps.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
The potential of insect viruses in the biological control of agricultural pests is well-recognized, yet their practical application faces obstacles such as host specificity, variable virulence, and resource scarcity. High-throughput sequencing (HTS) technologies have significantly advanced our capabilities in discovering and identifying new insect viruses, thereby enriching the arsenal for pest management. Concurrently, progress in reverse genetics has facilitated the development of versatile viral expression vectors. These vectors have enhanced the specificity and effectiveness of insect viruses in targeting specific pests, offering a more precise approach to pest control. This review provides a comprehensive examination of the methodologies employed in the identification of insect viruses using HTS. Additionally, it explores the domain of genetically modified insect viruses and their associated challenges in pest management. The adoption of these cutting-edge approaches holds great promise for developing environmentally sustainable and effective pest control solutions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kang Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tao Hu
- Zhejinag Seed Industry Group Xinchuang Bio-breeding Co., Ltd., Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
8
|
Chen B, Cao G, Chen Y, Zhang T, Zhou G, Yang X. Reduced cold tolerance of viral-infected leafhoppers attenuates viral persistent epidemics. mBio 2024; 15:e0321123. [PMID: 38564693 PMCID: PMC11077983 DOI: 10.1128/mbio.03211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Most arthropod-borne viruses produce intermittent epidemics in infected plants. However, the underlying mechanisms of these epidemics are unclear. Here, we demonstrated that rice stripe mosaic virus (RSMV), a viral pathogen, significantly increases the mortality of its overwintering vector, the leafhopper species Recilia dorsalis. Cold-stress assays indicated that RSMV reduces the cold tolerance of leafhoppers, a process associated with the downregulation of leafhopper cuticular protein genes. An RSMV-derived small RNA (vsiR-t00355379) was found to facilitate the downregulation of a leafhopper endocuticle gene that is mainly expressed in the abdomen (named RdABD-5) and is conserved across dipteran species. The downregulation of RdABD-5 expression in R. dorsalis resulted in fewer and thinner endocuticle lamellae, leading to decreased cold tolerance. This effect was correlated with a reduced incidence rate of RSMV in early-planted rice plants. These findings contribute to our understanding of the mechanism by which viral pathogens reduce cold tolerance in arthropod vectors and suggest an approach to managing the fluctuating prevalence of arboviruses. IMPORTANCE Increasing arthropod vector dispersal rates have increased the susceptibility of crop to epidemic viral diseases. However, the incidence of some viral diseases fluctuates annually. In this study, we demonstrated that a rice virus reduces the cold tolerance of its leafhopper vector, Recilia dorsalis. This effect is linked to the virus-derived small RNA-mediated downregulation of a gene encoding a leafhopper abdominal endocuticle protein. Consequently, the altered structural composition of the abdominal endocuticle reduces the overwinter survival of leafhoppers, resulting in a lower incidence of RSMV infection in early-planted rice plants. Our findings illustrate the important roles of RNA interference in virus-vector insect-environment interactions and help explain the annual fluctuations of viral disease epidemics in rice fields.
Collapse
Affiliation(s)
- Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Gehui Cao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yulu Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Li C, Yang W, Zhang Y, Zhu F, Qiu Y, Du L, Lin F, Lan Y, Xu K, Zhou T. Investigation and characterization of rice dwarfing epidemic caused by southern rice black-streaked dwarf virus in Jiangsu in 2023. Virology 2024; 593:110027. [PMID: 38417251 DOI: 10.1016/j.virol.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
During the field surveys in Jiangsu Province, China, contiguous patches of rice plants with varying degrees of dwarfing, wax-white or dark brown enations at the base of stems, and abnormal heading symptoms were observed in the fields located in Jiangning District in Nanjing City, Jurong County in Zhenjiang City, and Zhangjiagang County in Suzhou City. Through molecular analyses, the presence of southern rice black-streaked dwarf virus was confirmed in symptomatic rice plants. The infections of other rice viruses that cause dwarfing were also ruled out. Additionally, Koch's postulates were fulfilled, further validating SRBSDV as the causal agent for the observed dwarfing disease epidemic. Furthermore, the phylogenetic analyses revealed that the SRBSDV prevalent in Jiangsu in 2023 may originate from multiple regions in Vietnam. Our study has documented the emergence of an SRBSDV epidemic in Jiangsu in 2023, marking the first incidence of southern rice black-streaked dwarf disease in this region.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenxuan Yang
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yuanming Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Feng Zhu
- Jiangsu Station of Plant Protection and Quarantine, Nanjing 210014, Jiangsu, China
| | - Yanglin Qiu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Linlin Du
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Feng Lin
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ying Lan
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Li T, Ye ZX, Feng KH, Mao QZ, Hu QL, Zhuo JC, Zhang CX, Chen JP, Li JM. Molecular and biological characterization of a bunyavirus infecting the brown planthopper ( Nilaparvata lugens). J Gen Virol 2024; 105. [PMID: 38602389 DOI: 10.1099/jgv.0.001977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.
Collapse
Affiliation(s)
- Ting Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, PR China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Ke-Hui Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Qing-Ling Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Jian-Ping Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, PR China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
11
|
Hyder M, Lodhi AM, Wang Z, Bukero A, Gao J, Mao R. Wolbachia Interactions with Diverse Insect Hosts: From Reproductive Modulations to Sustainable Pest Management Strategies. BIOLOGY 2024; 13:151. [PMID: 38534421 DOI: 10.3390/biology13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Effective in a variety of insect orders, including dipteran, lepidopteran, and hemipteran, Wolbachia-based control tactics are investigated, noting the importance of sterile and incompatible insect techniques. Encouraging approaches for controlling Aedes mosquitoes are necessary, as demonstrated by the evaluation of a new SIT/IIT combination and the incorporation of SIT into Drosophila suzukii management. For example, Wolbachia may protect plants from rice pests, demonstrating its potential for agricultural biological vector management. Maternal transmission and cytoplasmic incompatibility dynamics are explored, while Wolbachia phenotypic impacts on mosquito and rice pest management are examined. The importance of host evolutionary distance is emphasised in recent scale insect research that addresses host-shifting. Using greater information, a suggested method for comprehending Wolbachia host variations in various contexts emphasises ecological connectivity. Endosymbionts passed on maternally in nematodes and arthropods, Wolbachia are widely distributed around the world and have evolved both mutualistic and parasitic traits. Wolbachia is positioned as a paradigm for microbial symbiosis due to advancements in multiomics, gene functional assays, and its effect on human health. The challenges and opportunities facing Wolbachia research include scale issues, ecological implications, ethical conundrums, and the possibility of customising strains through genetic engineering. It is thought that cooperative efforts are required to include Wolbachia-based therapies into pest management techniques while ensuring responsible and sustainable ways.
Collapse
Affiliation(s)
- Moazam Hyder
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Abdul Mubeen Lodhi
- Department Plant Protection, Sindh Agriculture University, Tandojam 70080, Pakistan
| | - Zhaohong Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Aslam Bukero
- Department of Entomology, Sindh Agriculture University, Tandojam 70080, Pakistan
| | - Jing Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Runqian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
12
|
Chang X, Guo Y, Xie Y, Ren Y, Bi Y, Wang F, Fang Q, Ye G. Rice volatile compound (E)-β-caryophyllene induced by rice dwarf virus (RDV) attracts the natural enemy Cyrtorhinus lividipennis to prey on RDV insect vectors. PEST MANAGEMENT SCIENCE 2024; 80:874-884. [PMID: 37814777 DOI: 10.1002/ps.7822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Rice dwarf virus (RDV)-induced rice plant volatiles (E)-β-caryophyllene and 2-heptanol modulate the olfactory behavior of RDV insect vectors that promote viral acquisition and transmission. However, it remains elusive whether these two volatiles could influence the behaviors of the natural enemies of RDV insect vectors. Herein, we determined the effects of these two volatiles on the olfactory and predatory behaviors of Cyrtorhinus lividipennis (Hemiptera: Miridae), an important predator of RDV insect vectors in rice paddies. RESULTS The results showed that C. lividipennis preferred RDV-infected rice plant odors over RDV-free rice plant odors. C. lividipennis was attracted by (E)-β-caryophyllene, but showed no behavioral responses to 2-heptanol. The attraction of (E)-β-caryophyllene towards C. lividipennis was further confirmed using oscas1 rice plants, which do not release (E)-β-caryophyllene in response to RDV infection, through a series of complementary assays. The oviposition preference of the RDV vector insect Nephotettix cincticeps (Hemiptera: Cicadellidae) showed no significant difference between RDV-infected and RDV-free wild-type plants, nor between oscas1-RDV and oscas1 plants. However, the predation rate of C. lividipennis for N. cincticeps eggs on RDV-infected plants was higher than that on RDV-free plants, whereas there was no significant difference between oscas1-RDV and oscas1 plants. CONCLUSION (E)-β-caryophyllene induced by RDV attracted more C. lividipennis to prey on N. cincticeps eggs and played a crucial role in plant-virus-vector-enemy interactions. These novel findings will promote the design of new strategies for disease control by controlling the populations of insect vectors, for example recruiting more natural enemies by virus-induced plant volatiles. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuefei Chang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yating Guo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yujia Xie
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yijia Ren
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yaluan Bi
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Wang H, Chao S, Yan Q, Zhang S, Chen G, Mao C, Hu Y, Yu F, Wang S, Lv L, Yang B, He J, Zhang S, Zhang L, Simmonds P, Feng G. Genetic diversity of RNA viruses infecting invertebrate pests of rice. SCIENCE CHINA. LIFE SCIENCES 2024; 67:175-187. [PMID: 37946067 DOI: 10.1007/s11427-023-2398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 11/12/2023]
Abstract
Invertebrate species are a natural reservoir of viral genetic diversity, and invertebrate pests are widely distributed in crop fields. However, information on viruses infecting invertebrate pests of crops is limited. In this report, we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields. We identified 296 new RNA viruses and 13 known RNA viruses. These viruses clustered within 31 families, with many highly divergent viruses constituting potentially new families and genera. Of the identified viruses, 13 RNA viruses clustered within the Fiersviridae family of bacteriophages, and 48 RNA viruses clustered within families and genera of mycoviruses. We detected known rice viruses in novel invertebrate hosts at high abundances. Furthermore, some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species. Forty-five potential insect pathogenic RNA viruses were detected in invertebrate species. Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity. Cross-species transmission of RNA viruses was detected between invertebrate hosts. Newly identified viral genomes showed extensive variation for invertebrate viral families or genera. Together, the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species, the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases.
Collapse
Affiliation(s)
- Haoran Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shufen Chao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Qing Yan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Shu Zhang
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Chonghui Mao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Fengquan Yu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Shuo Wang
- Sanya Agricultural Technology Extension and Service Centre, Sanya, 572000, China
| | - Liang Lv
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Baojun Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Jiachun He
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Songbai Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310012, China
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China.
| |
Collapse
|
14
|
Tan Q, Zhu J, Ju Y, Chi X, Cao T, Zheng L, Chen Q. Antiviral Activity of Ailanthone from Ailanthus altissima on the Rice Stripe Virus. Viruses 2023; 16:73. [PMID: 38257773 PMCID: PMC10820994 DOI: 10.3390/v16010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Rice stripe disease caused by the rice stripe virus (RSV), which infects many Poaceae species in nature, is one of the most devastating plant viruses in rice that causes enormous losses in production. Ailanthone is one of the typical C20 quassinoids synthesized by the secondary metabolism of Ailanthus altissima, which has been proven to be a biologically active natural product with promising prospects and great potential for use as a lead structure for pesticide development. Based on the achievement of the systemic infection and replication of RSV in Nicotiana benthamiana plants and rice protoplasts, the antiviral properties of Ailanthone were investigated by determining its effects on viral-coding RNA gene expression using reverse transcription polymerase chain reaction, and Western blot analysis. Ailanthone exhibited a dose-dependent inhibitory effect on RSV NSvc3 expression in the assay in both virus-infected tobacco plants and rice protoplasts. Further efforts revealed a potent inhibitory effect of Ailanthone on the expression of seven RSV protein-encoding genes, among which NS3, NSvc3, NS4, and NSvc4 are the most affected genes. These facts promoted an extended and greater depth of understanding of the antiviral nature of Ailanthone against plant viruses, in addition to the limited knowledge of its anti-tobacco mosaic virus properties. Moreover, the leaf disc method introduced and developed in the study for the detection of the antiviral activity of Ailanthone facilitates an available and convenient screening method for anti-RSV natural products or synthetic chemicals.
Collapse
Affiliation(s)
- Qingwei Tan
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
- Institute of Plant Virus Research, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianxuan Zhu
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Yuanyuan Ju
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Xinlin Chi
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Tangdan Cao
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Luping Zheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
- Institute of Plant Virus Research, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qijian Chen
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
- Institute of Plant Virus Research, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Sun Y, Jing D, Zhang J, Du L, Li C, Lan Y, Lin F, Zhou T. Yield components affected by rice black-streaked dwarf virus disease in rice cultivars with different resistance levels. Front Microbiol 2023; 14:1323569. [PMID: 38156012 PMCID: PMC10752958 DOI: 10.3389/fmicb.2023.1323569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Rice black-streaked dwarf virus disease (RBSDVD) is one of the most destructive rice viral diseases, leading to severe yield losses in rice production. However, little is known about the yield-related components associated with the disease and no resistance cultivars have been successfully used in rice breeding. Methods Seven rice cultivars were analyzed in this study, including six commercial rice varieties and a new line Zhongjian No. 201 (ZJ201) containing the resistance gene OsAP47. Resistance levels of these cultivars were evaluated by artificial inoculation and yield components were collected, including panicle length (PL), spikelets per panicle (SPP), ripened grains per panicle (RGPP), as well as panicles per square meter (PPSM) and 1000-grain weight (TGW). Seed setting rate (SSR) were calculated with the data of SPP and RGPP. Results and discussion The results showed that ZJ201 displayed the highest resistance level and most of the commercial rice cultivars exhibited susceptible to RBSDVD. Yields of all the rice cultivars were significantly declined except ZJ201 and yield losses produced by RBSDVD were mainly due to the reduction of PL, SPP, RGPP, and TGW, suggesting that developments of these traits are associated with RBSDV infection. Resistant rice cultivar could reduce yield losses by maintaining normal development of these traits. Significant correlations were identified between resistance levels and the yield components except SSR and PPSM. The results provided useful clues for understanding the mechanisms of RBSDV invasion and its effect on rice production. ZJ201 was demonstrated as a resistance material that could be used in rice breeding.
Collapse
Affiliation(s)
- Yue Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Dedao Jing
- Zhenjiang Institute of Agricultural Sciences of the Ning-Zhen Hilly District, Zhenjiang, Jiangsu, China
| | - Jiayuan Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Linlin Du
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Chenyang Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Ying Lan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Feng Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- International Joint Center for Japonica Rice Research, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Wu Z, Luo D, Zhang S, Zhang C, Zhang Y, Chen M, Li X. A systematic review of southern rice black-streaked dwarf virus in the age of omics. PEST MANAGEMENT SCIENCE 2023; 79:3397-3407. [PMID: 37291065 DOI: 10.1002/ps.7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is one of the most damaging rice viruses. The virus decreases rice quality and yield, and poses a serious threat to food security. From this perspective, this review performed a survey of published studies in recent years to understand the current status of SRBSDV and white-backed planthopper (WBPH, Sogatella furcifera) transmission processes in rice. Recent studies have shown that the interactions between viral virulence proteins and rice susceptibility factors shape the transmission of SRBSDV. Moreover, the transmission of SRBSDV is influenced by the interactions between viral virulence proteins and S. furcifera susceptibility factors. This review focused on the molecular mechanisms of key genes or proteins associated with SRBSDV infection in rice via the S. furcifera vector, and the host defense response mechanisms against viral infection. A sustainable control strategy using RNAi was summarized to address this pest. Finally, we also present a model for screening anti-SRBSDV inhibitors using viral proteins as targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zilin Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chun Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Moriyama M, Nishide Y, Toyoda A, Itoh T, Fukatsu T. Complete genomes of mutualistic bacterial co-symbionts " Candidatus Sulcia muelleri" and " Candidatus Nasuia deltocephalinicola" of the rice green leafhopper Nephotettix cincticeps. Microbiol Resour Announc 2023; 12:e0035323. [PMID: 37623315 PMCID: PMC10508130 DOI: 10.1128/mra.00353-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The genomes of obligate bacterial co-symbionts of the green rice leafhopper Nephotettix cincticeps, which is notorious as an agricultural pest, were determined. The streamlined genomes of "Candidatus Sulcia muelleri" and "Candidatus Nasuia deltocephalinicola" exhibited complementary metabolic pathways for synthesizing essential nutrients that contribute to host adaptation.
Collapse
Affiliation(s)
- Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yudai Nishide
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics (NIG), Mishima, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
Guo Y, Shao J, Wu Y, Li Y. Using Wolbachia to control rice planthopper populations: progress and challenges. Front Microbiol 2023; 14:1244239. [PMID: 37779725 PMCID: PMC10537216 DOI: 10.3389/fmicb.2023.1244239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Wolbachia have been developed as a tool for protecting humans from mosquito populations and mosquito-borne diseases. The success of using Wolbachia relies on the facts that Wolbachia are maternally transmitted and that Wolbachia-induced cytoplasmic incompatibility provides a selective advantage to infected over uninfected females, ensuring that Wolbachia rapidly spread through the target pest population. Most transinfected Wolbachia exhibit a strong antiviral response in novel hosts, thus making it an extremely efficient technique. Although Wolbachia has only been used to control mosquitoes so far, great progress has been made in developing Wolbachia-based approaches to protect plants from rice pests and their associated diseases. Here, we synthesize the current knowledge about the important phenotypic effects of Wolbachia used to control mosquito populations and the literature on the interactions between Wolbachia and rice pest planthoppers. Our aim is to link findings from Wolbachia-mediated mosquito control programs to possible applications in planthoppers.
Collapse
Affiliation(s)
| | | | | | - Yifeng Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
19
|
Simon EV, Hechanova SL, Hernandez JE, Li CP, Tülek A, Ahn EK, Jairin J, Choi IR, Sundaram RM, Jena KK, Kim SR. Available cloned genes and markers for genetic improvement of biotic stress resistance in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1247014. [PMID: 37731986 PMCID: PMC10507716 DOI: 10.3389/fpls.2023.1247014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying. Fast deployment of the available and suitable genes/alleles in local elite varieties through marker-assisted selection (MAS) is crucial for stable high-yield rice production. In this review, we focused on consolidating all the available cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria, and fungus) and insect pests, the corresponding donor materials, and the DNA markers linked to the identified genes. To date, 48 genes (independent loci) have been cloned for only major biotic stresses: seven genes for brown planthopper (BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of the 48 genes were graphically mapped on the 12 rice chromosomes so that breeders can easily find the locations of the target genes and distances among all the biotic stress resistance genes and any other target trait genes. For efficient use of the cloned genes, we collected all the publically available DNA markers (~500 markers) linked to the identified genes. In case of no available cloned genes yet for the other biotic stresses, we provided brief information such as donor germplasm, quantitative trait loci (QTLs), and the related papers. All the information described in this review can contribute to the fast genetic improvement of biotic stress resistance in rice for stable high-yield rice production.
Collapse
Affiliation(s)
- Eliza Vie Simon
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
- Institute of Crop Science (ICropS), University of the Philippines Los Baños, Laguna, Philippines
| | - Sherry Lou Hechanova
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
| | - Jose E. Hernandez
- Institute of Crop Science (ICropS), University of the Philippines Los Baños, Laguna, Philippines
| | - Charng-Pei Li
- Taiwan Agricultural Research Institute (TARI), Council of Agriculture, Taiwan
| | - Adnan Tülek
- Trakya Agricultural Research Institute, Edirne, Türkiye
| | - Eok-Keun Ahn
- National Institute of Crop Science, Rural Development Administration (RDA), Republic of Korea
| | - Jirapong Jairin
- Division of Rice Research and Development, Rice Department, Bangkok, Thailand
| | - Il-Ryong Choi
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
- National Institute of Crop Science, Rural Development Administration (RDA), Republic of Korea
| | - Raman M. Sundaram
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Kshirod K. Jena
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, Odisha, India
| | - Sung-Ryul Kim
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
| |
Collapse
|
20
|
Lu C, Miu Q, Jin D, Li A, Cheng Z, Zhou Y, Wang Y, Li S. Genetic variability of rice stripe virus after its pandemic in Jiangsu. Mol Biol Rep 2023; 50:7263-7274. [PMID: 37422539 DOI: 10.1007/s11033-023-08652-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Rice stripe virus (RSV) caused a serious disease pandemic in rice in East China between 2001 and 2010. The continuous integrated managements reduced virus epidemic year by year until it was non-epidemic. As an RNA virus, its genetic variability after undergoing a long-term non-epidemic period was meaningful to study. While in 2019, the sudden occurrence of RSV in Jiangsu provided an opportunity for the study. METHODS AND RESULTS The complete genome of JY2019, an RSV isolate from Jiangyan, was determined. A genotype profile of 22 isolates from China, Japan and Korea indicated that the isolates from Yunnan formed the subtype II, and other isolates clustered the subtype I. RNA 1-3 of JY2019 isolate well-clustered in the subtype I clade, and RNA 4 was also in subtype I, but it had a slight separation from other intra-group isolates. After phylogenetic analyses, it was considered NSvc4 gene contributed to the tendency, because it exhibited an obvious trend towards the subtype II (Yunnan) group. High sequence identity (100%) of NSvc4 between JY2019 and barnyardgrass isolate from different regions demonstrated genetic variation of NSvc4 was consistent in RSV natural populations in Jiangsu in the non-epidemic period. In the phylogenetic tree of all 74 NSvc4 genes, JY2019 belonged to a minor subtype Ib, suggesting the subtype Ib isolates might have existed in natural populations before the non-epidemic period, but not a dominant population. CONCLUSIONS Our results suggested that NSvc4 gene was susceptible to selection pressure, and the subtype Ib might be more adaptable for the interaction between RSV and hosts in the non-epidemic ecological conditions.
Collapse
Affiliation(s)
- Chengye Lu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, 650201, China
| | - Qian Miu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Daoran Jin
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Aiguo Li
- Plant Protection and Quarantine Station, Agricultural Technology Extension Center of Jiangyan, Taizhou, 225500, China
| | - Zhaobang Cheng
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yunyue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuo Li
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
21
|
Song XY, Peng YX, Gao Y, Zhang YC, Ye WN, Lin PX, Gao CF, Wu SF. Resistance Monitoring of Nilaparvata lugens to Pymetrozine Based on Reproductive Behavior. INSECTS 2023; 14:insects14050428. [PMID: 37233057 DOI: 10.3390/insects14050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
On the basis of the inhibition effects of pymetrozine on the reproductive behavior of N. lugens, we established a bioassay method to accurately evaluate the toxicity of pymetrozine in N. lugens and clarified the level of pymetrozine resistance of N. lugens in the field. In this study, pymetrozine's effects on the fecundity of N. lugens were evaluated using the topical application method and rice-seedling-dipping method. Moreover, the resistance of N. lugens to pymetrozine in a pymetrozine-resistant strain (Pym-R) and two field populations (YZ21 and QS21) was determined using the rice-seedling-dipping method and fecundity assay methods. The results showed that treatment of N. lugens third-instar nymphs with LC15, LC50, and LC85 doses of pymetrozine resulted in a significantly reduced fecundity of N. lugens. In addition, N. lugens adults treated with pymetrozine, using the rice-seedling-dipping and topical application method, also exhibited a significantly inhibited fecundity. Using the rice-stem-dipping method, pymetrozine resistance levels were shown to be high in Pym-R (194.6-fold), YZ21 (205.9-fold), and QS21 (212.8-fold), with LC50 values of 522.520 mg/L (Pym-R), 552.962 mg/L (YZ21), and 571.315 (QS21) mg/L. However, when using the rice-seedling-dipping or topical application fecundity assay method, Pym-R (EC50: 14.370 mg/L, RR = 12.4-fold; ED50: 0.560 ng/adult, RR = 10.8-fold), YZ21 (EC50: 12.890 mg/L, RR = 11.2-fold; ED50: 0.280 ng/adult; RR = 5.4-fold), and QS21 (EC50: 13.700 mg/L, RR = 11.9-fold) exhibited moderate or low levels of resistance to pymetrozine. Our studies show that pymetrozine can significantly inhibit the fecundity of N. lugens. The fecundity assay results showed that N. lugens only developed low to moderate levels of resistance to pymetrozine, indicating that pymetrozine can still achieve effective control on the next generation of N. lugens populations.
Collapse
Affiliation(s)
- Xin-Yu Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yu-Xuan Peng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yang Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yan-Chao Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Wen-Nan Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Pin-Xuan Lin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
22
|
Shao Y, Lin F, Wang Y, Cheng P, Lou W, Wang Z, Liu Z, Chen D, Guo W, Lan Y, Du L, Zhou Y, Zhou T, Shen W. Molecular Hydrogen Confers Resistance to Rice Stripe Virus. Microbiol Spectr 2023; 11:e0441722. [PMID: 36840556 PMCID: PMC10100981 DOI: 10.1128/spectrum.04417-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Although molecular hydrogen (H2) has potential therapeutic effects in animals, whether or how this gas functions in plant disease resistance has not yet been elucidated. Here, after rice stripe virus (RSV) infection, H2 production was pronouncedly stimulated in Zhendao 88, a resistant rice variety, compared to that in a susceptible variety (Wuyujing No.3). External H2 supply remarkably reduced the disease symptoms and RSV coat protein (CP) levels, especially in Wuyujing No.3. The above responses were abolished by the pharmacological inhibition of H2 production. The transgenic Arabidopsis plants overexpressing a hydrogenase gene from Chlamydomonas reinhardtii also improved plant resistance. In the presence of H2, the transcription levels of salicylic acid (SA) synthetic genes were stimulated, and the activity of SA glucosyltransferases was suppressed, thus facilitating SA accumulation. Genetic evidence revealed that two SA synthetic mutants of Arabidopsis (sid2-2 and pad4) were more susceptible to RSV than the wild type (WT). The treatments with H2 failed to improve the resistance to RSV in two SA synthetic mutants. The above results indicated that H2 enhances rice resistance to RSV infection possibly through the SA-dependent pathway. This study might open a new window for applying the H2-based approach to improve plant disease resistance. IMPORTANCE Although molecular hydrogen has potential therapeutic effects in animals, whether or how this gas functions in plant disease resistance has not yet been elucidated. RSV was considered the most devastating plant virus in rice, since it could cause severe losses in field production. This disease was thus selected as a classical model to explore the interrelationship between molecular hydrogen and plant pathogen resistance. In this study, we discovered that both exogenous and endogenous H2 could enhance plant resistance against Rice stripe virus infection by regulating salicylic acid signaling. Compared with some frequently used agrochemicals, H2 is almost nontoxic. We hope that the findings presented here will serve as an opportunity for the scientific community to push hydrogen-based agriculture forward.
Collapse
Affiliation(s)
- Yudong Shao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Feng Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wang Lou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhaoyun Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Zhiyang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Dongyue Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wei Guo
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Ying Lan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Linlin Du
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Yijun Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Kil EJ, Kim D. The small brown planthopper (Laodelphax striatellus) as a vector of the rice stripe virus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21992. [PMID: 36575628 DOI: 10.1002/arch.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.
Collapse
Affiliation(s)
- Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Donghun Kim
- Department of Entomology, Kyungpook National University, Sangju, Republic of Korea
- Department of Vector Entomology, Kyungpook National University, Sangju, Republic of Korea
- Research Institute of Invertebrate Vector, Kyungpook National University, Sangju, Republic of Korea
| |
Collapse
|
24
|
Virus-Induced Plant Volatiles Promote Virus Acquisition and Transmission by Insect Vectors. Int J Mol Sci 2023; 24:ijms24021777. [PMID: 36675290 PMCID: PMC9860585 DOI: 10.3390/ijms24021777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Rice dwarf virus (RDV) is transmitted by insect vectors Nephotettix virescens and Nephotettix cincticeps (Hemiptera: Cicadellidae) that threatens rice yield and results in substantial economic losses. RDV induces two volatiles ((E)-β-caryophyllene (EBC) and 2-heptanol) to emit from RDV-infected rice plants. However, the effects of the two volatiles on the olfactory behavior of both non-viruliferous and viruliferous N. virescens are unknown, and whether the two volatiles could facilitate the spread and dispersal of RDV remains elusive. Combining the methods of insect behavior, chemical ecology, and molecular biology, we found that EBC and 2-heptanol influenced the olfactory behavior of non-viruliferous and viruliferous N. virescens, independently. EBC attracted non-viruliferous N. virescens towards RDV-infected rice plants, promoting virus acquisition by non-viruliferous vectors. The effect was confirmed by using oscas1 mutant rice plants (repressed EBC synthesis), but EBC had no effects on viruliferous N. virescens. 2-heptanol did not attract or repel non-viruliferous N. virescens. However, spraying experiments showed that 2-heptanol repelled viruliferous N. virescens to prefer RDV-free rice plants, which would be conducive to the transmission of the virus. These novel results reveal that rice plant volatiles modify the behavior of N. virescens vectors to promote RDV acquisition and transmission. They will provide new insights into virus-vector-plant interactions, and promote the development of new prevention and control strategies for disease management.
Collapse
|
25
|
Fan X, Zhang W. Genome-wide identification of FAR gene family and functional analysis of NlFAR10 during embryogenesis in the brown planthopper Nilaparvata lugens. Int J Biol Macromol 2022; 223:798-811. [PMID: 36375673 DOI: 10.1016/j.ijbiomac.2022.11.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022]
Abstract
Fatty acyl-CoA reductases (FARs) catalyze the synthesis of fatty alcohols from corresponding fatty acid precursors in organisms. However, the function of FARs in insect fecundity and embryogenesis remains largely unclear. Here, a total of 22 putative FAR proteins were identified in the brown planthopper Nilaparvata lugens, a hemipteran insect pest of rice, and most of them were highly expressed in embryonic stages. Among them, NlFAR10 was specifically and highly expressed in the later embryogenesis, but was promiscuously expressed in tissues of adults. The heterologously expressed NlFAR10 was able to produce the intermediate fatty acid alcohols from the corresponding acyl-CoA precursors. When NlFAR10 was silenced through RNAi in vivo, the embryogenesis was obviously inhibited, resulting in low hatching rates. Moreover, the metabolome analyses indicated that loss of NlFAR10 affected lipid metabolism and purine metabolism during embryogenesis. To the best of our knowledge, this is the first report of a FAR member affecting insect embryogenesis, thus providing a new target for future pest management.
Collapse
Affiliation(s)
- Xiaobin Fan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Institute of Zoology, Chinese Academy of Science, No. 1 Beichen WestRoad, Chaoyang District, Beijing, 100101, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
26
|
Hayashi K, Kawahara Y, Maeda H, Hayano-Saito Y. Comparative analyses of Stvb-allelic genes reveal japonica specificity of rice stripe resistance in Oryza sativa. BREEDING SCIENCE 2022; 72:333-342. [PMID: 36776443 PMCID: PMC9895804 DOI: 10.1270/jsbbs.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 06/18/2023]
Abstract
Rice stripe, a viral disease, causes widespread damage to japonica rice (Oryza sativa ssp. japonica). A rice stripe virus (RSV) bioassay revealed that many indica and japonica upland varieties exhibit resistance, whereas japonica paddy varieties are susceptible. However, the genetic background for this subspecies-dependent resistance is unclear. Herein, we focused on rice stripe resistance genes located at the Stvb locus. Three resistant alleles, Stvb-i (indica), Stvb (japonica upland), and Stvb-o (Oryza officinalis) were compared with the susceptible allele, stvb-j (japonica paddy). The expression of the resistance genes was higher than that of stvb-j. Sequence comparison revealed that the resistant and susceptible alleles had different 5'-end sequences and 61-bp element(s) in the fourth intron. The insertion of an LTR-retrotransposon modified the exon 1 sequence of stvb-j. We then developed four DNA markers based on gene structure information and genotyped resistant and susceptible varieties. The LTR-retrotransposon insertion was detected only in susceptible varieties. Resistant genotypes were primarily found in indica and upland japonica, whereas paddy japonica carried the susceptible genotype. Our results characterize the genetic differences associated with RSV resistance and susceptibility in O. sativa and provide insights on the application of DNA markers in rice stripe disease management.
Collapse
Affiliation(s)
- Keiko Hayashi
- Institute of Agrobiological Science, NARO, Tsukuba, Ibaraki 305-8604, Japan
| | | | - Hideo Maeda
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan
| | | |
Collapse
|
27
|
Yang X, Liu S, Lu W, Du M, Qiao Z, Liang Z, An Y, Gao J, Li X. Delta and jagged are candidate target genes of RNAi biopesticides for the control of Nilaparvata lugens. Front Bioeng Biotechnol 2022; 10:1023729. [PMID: 36466326 PMCID: PMC9715739 DOI: 10.3389/fbioe.2022.1023729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/10/2022] [Indexed: 11/07/2023] Open
Abstract
The brown planthopper (BPH; Nilaparvata lugens) is an important pest in rice cultivation, and chemical pesticide over-use and ineffectiveness of existing Bt transgenic rice against piercing-sucking insects make novel control methods necessary. RNA interference (RNAi) biopesticide is a new type of product with high efficiency and specificity and are simple to use. The Notch signaling pathway has extensive and important physiological functions and plays a key role in the development of insects. In this study, two key ligand genes of the Notch signaling pathway, delta (dl) and jagged (jag), were selected and their lethal effects and functional analysis were systematically evaluated using a stable short-winged population (Brachypterous strain) and a long-winged population (Macropterous strain) of BPHs. The full-length coding sequences of Nldl and Nljag comprised 1,863 and 3,837 base pairs, encoding 620 and 1,278 amino acids, respectively. The nucleic acid sequences of Nldl and Nljag were identical between the two strains. The expression levels of Nldl and Nljag were relatively high in the head of the nymphs, followed by those in the abdomen. Through RNAi treatment, we found that injection of BPH nymphs of both strains with dsNldl (10-50 ng/nymph) or dsNljag (100 ng/nymph) produced lethal or teratogenic effects. dsRNA treatment showed excellent inhibitory effects on the expression of target genes on days 1 and 5, suggesting that RNAi rapidly exhibits effects which persist for long periods of time in BPHs. Taken together, our results confirm the potential of Nldl and Nljag as target genes of RNAi biopesticides, and we propose optimized dosages for the control of BPHs.
Collapse
Affiliation(s)
- Xifa Yang
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaokai Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture/College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenhui Lu
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhuangzhuang Qiao
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhen Liang
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yiting An
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jing Gao
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiang Li
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
28
|
Wu K, Yang Y, Zhang W, Jiang X, Zhuang W, Gao F, Du Z. Bayesian Phylogeographic Inference Suggests Japan as the Center for the Origin and Dissemination of Rice Stripe Virus. Viruses 2022; 14:v14112547. [PMID: 36423156 PMCID: PMC9698939 DOI: 10.3390/v14112547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Rice stripe virus (RSV) is one of the most important viral pathogens of rice in East Asia. The origin and dispersal of RSV remain poorly understood, but an emerging hypothesis suggests that: (i) RSV originates from Yunnan, a southwest province of China; and (ii) some places of eastern China have acted as a center for the international dissemination of RSV. This hypothesis, however, has never been tested rigorously. Using a data set comprising more than 200 time-stamped coat protein gene sequences of RSV from Japan, China and South Korea, we reconstructed the phylogeographic history of RSV with Bayesian phylogeographic inference. Unexpectedly, the results did not support the abovementioned hypothesis. Instead, they suggested that RSV originates from Japan and Japan has been the major center for the dissemination of RSV in the past decades. Based on these data and the temporal dynamics of RSV reported recently by another group, we proposed a new hypothesis to explain the origin and dispersal of RSV. This new hypothesis may be valuable for further studies aiming to clarify the epidemiology of RSV. It may also be useful in designing management strategies against this devastating virus.
Collapse
Affiliation(s)
- Kangcheng Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunyue Yang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenwen Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaofeng Jiang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijian Zhuang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangluan Gao
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (F.G.); (Z.D.)
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (F.G.); (Z.D.)
| |
Collapse
|
29
|
Introgression of tsv1 improves tungro disease resistance of a rice variety BRRI dhan71. Sci Rep 2022; 12:18820. [PMID: 36335190 PMCID: PMC9637097 DOI: 10.1038/s41598-022-23413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Rice Tungro disease poses a threat to rice production in Asia. Marker assisted backcross breeding is the most feasible approach to address the tungro disease. We targeted to introgress tungro resistance locus tsv1 from Matatag 1 into a popular but tungro susceptible rice variety of Bangladesh, BRRI dhan71. The tsv1 locus was traced using two tightly linked markers RM336 and RM21801, and background genotyping was carried out using 7 K SNPs. A series of three back crosses followed by selfing resulted in identification of plants similar to BRRI dhan71. The background recovery varied at 91-95% with most of the lines having 95%. The disease screening of the lines showed moderate to high level of tungro resistance with a disease index score of ≤ 5. Introgression Lines (ILs) had medium slender grain type, and head rice recovery (59.2%), amylose content (20.1%), gel consistency (40.1 mm) and gelatinization temperature were within the acceptable range. AMMI and Kang's stability analysis based on multi-location data revealed that multiple selected ILs outperformed BRRI dhan71 across the locations. IR144480-2-2-5, IR144483-1-2-4, IR144484-1-2-2 and IR144484-1-2-5 are the most promising lines. These lines will be further evaluated and nominated for varietal testing in Bangladesh.
Collapse
|
30
|
Comprehensive Analysis of Ubiquitome Changes in Nicotiana benthamiana after Rice Stripe Virus Infection. Viruses 2022; 14:v14112349. [PMID: 36366447 PMCID: PMC9694600 DOI: 10.3390/v14112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rice stripe virus (RSV) is one of the most devastating viruses affecting rice production. During virus infection, ubiquitination plays an important role in the dynamic regulation of host defenses. We combined the ubiquitomics approach with the label-free quantitation proteomics approach to investigate potential ubiquitination status changes of Nicotiana benthamiana infected with RSV. Bioinformatics analyses were performed to elucidate potential associations between proteins with differentially ubiquitinated sites (DUSs) and various cellular components/pathways during virus infection. In total, 399 DUSs in 313 proteins were identified and quantified, among them 244 ubiquitinated lysine (Kub) sites in 186 proteins were up-regulated and 155 Kub sites in 127 proteins were down-regulated at 10 days after RSV infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that proteins with up-regulated Kub sites were significantly enriched in the ribosome. Silencing of 3-isopropylmalate dehydratase large subunit through virus-induced gene silencing delayed RSV infection, while silencing of mRNA-decapping enzyme-like protein promoted RSV symptom in the late stage of infection. Moreover, ubiquitination was observed in all seven RSV-encoded proteins. Our study supplied the comprehensive analysis of the ubiquitination changes in N. benthamiana after RSV infection, which is helpful for understanding RSV pathogenesis and RSV-host interactions.
Collapse
|
31
|
Investigation of the Association between the Energy Metabolism of the Insect Vector Laodelphax striatellus and Rice Stripe Virus (RSV). Viruses 2022; 14:v14102298. [PMID: 36298853 PMCID: PMC9607531 DOI: 10.3390/v14102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
Viruses, as intracellular parasites, rely on the host organism to complete their life cycle. Although over 70% of plant viruses are transmitted by insect vectors, the role of vector energy metabolism on the infection process of insect-borne plant viruses is unclear. In this study, full-length cDNAs of three energy metabolism-related genes (LsATPase, LsMIT13 and LsNADP-ME) were obtained from the small brown planthopper (SBPH, Laodelphax striatellus), which transmits the Rice stripe virus (RSV). Expression levels of LsATPase, LsMIT13 and LsNADP-ME increased by 105%, 1120% and 259%, respectively, due to RSV infection. The repression of LsATPase, LsMIT13 or LsNADP-ME by RNAi had no effect on RSV nucleocapsid protein (NP) transcripts or protein levels. The repression of LsATPase caused a significant increase in LsMIT13 and LsNADP-ME transcript levels by 230% and 217%, respectively, and the repression of LsMIT13 caused a significant increase in LsNADP-ME mRNA levels. These results suggested that the silencing of LsATPase induced compensatory upregulation of LsMIT13 and LsNADP-ME, and silencing LsMIT13 induced compensatory upregulation of LsNADP-ME. Further study indicated that the co-silencing of LsATPase, LsMIT13 and LsNADP-ME in viruliferous SBPHs increased ATP production and RSV loads by 182% and 117%, respectively, as compared with nonviruliferous SBPHs. These findings indicate that SBPH energy metabolism is involved in RSV infection and provide insight into the association between plant viruses and energy metabolism in the insect vector.
Collapse
|
32
|
Wang P, Liu J, Lyu Y, Huang Z, Zhang X, Sun B, Li P, Jing X, Li H, Zhang C. A Review of Vector-Borne Rice Viruses. Viruses 2022; 14:v14102258. [PMID: 36298813 PMCID: PMC9609659 DOI: 10.3390/v14102258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases. Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas worldwide and cause varying degrees of damage on the rice production. Among them, southern rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice viral diseases.
Collapse
Affiliation(s)
- Pengyue Wang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianjian Liu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agronomy, Yangtze University, Jingzhou 434025, China
| | - Yajing Lyu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Ziting Huang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoli Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjian Sun
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbai Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Jing
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Honglian Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
33
|
Liao Z, Wang L, Li C, Cao M, Wang J, Yao Z, Zhou S, Zhou G, Zhang D, Lou Y. The lipoxygenase gene OsRCI-1 is involved in the biosynthesis of herbivore-induced JAs and regulates plant defense and growth in rice. PLANT, CELL & ENVIRONMENT 2022; 45:2827-2840. [PMID: 35538611 DOI: 10.1111/pce.14341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The pathway mediated by jasmonic acid (JA), biosynthesized via 13-lipoxygenases (LOX), plays a central role in both plant development and defense. In rice, there are at least fourteen 13-LOXs. Yet, only two 13-LOXs have been known to be involved in the biosynthesis of JA and plant defenses in rice. Here we cloned a chloroplast-localized 13-LOX gene from rice, OsRCI-1, whose transcripts were upregulated following infestation by brown planthopper (BPH, Nilaparvata lugens), one of the most important pests in rice. Overexpression of OsRCI-1 (oeRCI lines) increased levels of BPH-induced JA, jasmonate-isoleucine, trypsin protease inhibitors and three volatile compounds, 2-heptanone, 2-heptanol and α-thujene. BPHs showed a decreased colonization, fecundity and mass, and developed slowly on oeRCI plants compared with wild-type (WT) plants. Moreover, BPH-infested oeRCI plants were more attractive to the egg parasitoid of BPH, Anagrus nilaparvatae than equally treated WT plants. The decreased attractiveness to BPH and enhanced attractiveness to the parasitoid of oeRCI plants correlated with higher levels of BPH-induced 2-heptanone and 2-heptanol, and 2-heptanone, respectively. Compared with oeRCI plants, WT plants had higher plant height and 1000-grain weight. These results indicate that OsRCI-1 is involved in herbivore-induced JA bursts and plays a role in plant defense and growth.
Collapse
Affiliation(s)
- Zhihong Liao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Lu Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Chengzhe Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Mengjiao Cao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
- The Promotion Station of Plant Protection, Fertilizer Utilization and Rural Energy Technology of Jiaxing, Jiaxing, Zhejiang, China
| | - Jiani Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Zhangliang Yao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Senya Zhou
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Guoxin Zhou
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Dayu Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Shi XX, Zhang H, Quais MK, Chen M, Wang N, Zhang C, Mao C, Zhu ZR. Knockdown of sphingomyelinase (NlSMase) causes ovarian malformation of brown planthopper, Nilaparvata lugens (Stål). INSECT MOLECULAR BIOLOGY 2022; 31:391-402. [PMID: 35156743 DOI: 10.1111/imb.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Sphingomyelinases (SMases) are a group of enzymes that catalyse the hydrolysis of sphingomyelins into ceramides and phosphorylcholine. They have been intensively investigated for their pathophysiological roles in mammals whereas much remains unclear about their counterparts in insects. Herein we report the cloning and functional characterization of four SMase homologue genes, designated NlSMase1-4, from brown planthopper (BPH). The phylogenetic analysis revealed that NlSMase1 and NlSMase2 were clustered into acid SMase family, and NlSMase3 and NlSMase4 with neutral SMase family. NlSMase1, NlSMase3 and NlSMase4 were highly expressed in BPH females, and NlSMaes2 in the 5th instar nymph. All four NlSMases had the lowest transcription in BPH males. NlSMase1 and NlSMase4 were highly expressed in BPH ovaries, while NlSMase2 and NlSMase3 in midgut and wings, respectively. Knocking-down of each NlSMase individual by RNA interference (RNAi) caused the ovarian malformation in BPH. The transcriptomic analysis revealed that NlSMase4 knockdown could strongly affect diacylglycerol (DAG)-related metabolisms and their downstream pathways. Further, qRT-PCR analysis of vitellogenin (Vg) genes indicates that the DAG metabolism disorder could interrupt the essential Vg accumulation for BPH oogenesis. Our study demonstrates the vital role of NlSMases in BPH reproductive development and provides new insights into the mediated mechanism of how SMases function.
Collapse
Affiliation(s)
- Xiao-Xiao Shi
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejian, China
| | - He Zhang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Md Khairul Quais
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Senior Scientific Officer, Rice Farming Systems Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Ming Chen
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ni Wang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Zhang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cungui Mao
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Research Institute, Zhejiang University, Sanya, Hainan, China
| |
Collapse
|
35
|
Chen L, Chen P, Li S, Jiang M, Zhang H, Chen L, Huang X, Chen Y, Sun L, Dong P, Lin P, Wu Y. Crystal Structure of the Disease-Specific Protein of Rice Stripe Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8469-8480. [PMID: 35771952 DOI: 10.1021/acs.jafc.2c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rice stripe virus (RSV) is responsible for devastating effects in East Asian rice-producing areas. The disease-specific protein (SP) level in rice plants determines the severity of RSV symptoms. Isothermal titration calorimetry (ITC) and bimolecular fluorescence complementation (BiFC) assays confirmed the interaction between an R3H domain-containing host factor, OsR3H3, and RSV SP in vitro and in vivo. This study determined the crystal structure of SP at 1.71 Å. It is a monomer with a clear shallow groove to accommodate host factors. Docking OsR3H3 into the groove generates an SP/OsR3H3 complex, which provides insights into the protein-binding mechanism of SP. Furthermore, SP's protein-binding properties and model-defined recognition residues were assessed using mutagenesis, ITC, and BiFC assays. This study revealed the structure and preliminary protein interaction mechanisms of RSV SP, shedding light on the molecular mechanism underlying the development of RSV infection symptoms.
Collapse
Affiliation(s)
- Lifei Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Pu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiqin Jiang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Hong Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Leiqing Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Xiaojing Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Yayu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Lifang Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Panpan Dong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Pingdong Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| |
Collapse
|
36
|
Identification and Characterization of Two Novel Noda-like Viruses from Rice Plants Showing the Dwarfing Symptom. Viruses 2022; 14:v14061159. [PMID: 35746632 PMCID: PMC9231309 DOI: 10.3390/v14061159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Nodaviruses are small bipartite RNA viruses and are considered animal viruses. Here, we identified two novel noda-like viruses (referred to as rice-associated noda-like virus 1 (RNLV1) and rice-associated noda-like virus 2 (RNLV2)) in field-collected rice plants showing a dwarfing phenotype through RNA-seq. RNLV1 genome consists of 3335 nt RNA1 and 1769 nt RNA2, and RNLV2 genome consists of 3279 nt RNA1 and 1525 nt RNA2. Three conserved ORFs were identified in each genome of the two novel viruses, encoding an RNA-dependent RNA polymerase, an RNA silencing suppressor, and a capsid protein, respectively. The results of sequence alignment, protein domain prediction, and evolutionary analysis indicate that these two novel viruses are clearly different from the known nodaviruses, especially the CPs. We have also determined that the B2 protein encoded by the two new noda-like viruses can suppress RNA silencing in plants. Two reverse genetic systems were constructed and used to show that RNLV1 RNA1 can replicate in plant cells and RNLV1 can replicate in insect Sf9 cells. We have also found two unusual peptidase family A21 domains in the RNLV1 CP, and RNLV1 CP can self-cleave in acidic environments. These findings provide new knowledge of novel nodaviruses.
Collapse
|
37
|
The Entomopathogenic Fungus Metarhizium anisopliae Affects Feeding Preference of Sogatella furcifera and Its Potential Targets’ Identification. J Fungi (Basel) 2022; 8:jof8050506. [PMID: 35628761 PMCID: PMC9147605 DOI: 10.3390/jof8050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
The rice planthopper Sogatella furcifera is a unique vector of the southern rice black-streaked dwarf virus (SRBSDV). The feeding behavior of S. furcifera should directly affect the diffusion of this virus. In this study, we noted that the infection of Metarhizium anisopliae CQMa421 on S. furcifera disturbed the feeding behavior of this pest to SRBSDV-infected rice, from preference to non-preference. Then, we further investigated the potential targets of M. anisopliae CQMa421 on the feeding behavior of S. furcifera after 0 h, 24 h and 48 h of infection by transcriptomic analysis via Illumina deep sequencing. A total of 93.27 GB of data was collected after sequencing, from which 91,125 unigenes were annotated, including 75 newly annotated genes. There were 1380 vs. 2187 and 137 vs. 106 upregulated and downregulated differentially expressed genes (DEGs) detected at 24 h and 48 h, respectively. The biological functions and associated metabolic processes of these genes were determined with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The results suggested that major of DEGs are involved in energy metabolism, biosynthesis, immune response, the FoxO signaling pathway, the MAPK signaling pathway and apoptosis in response to the fungal infection. Noteworthily, several olfactory-related genes, including odorant receptors and odorant binding proteins, were screened from these differentially expressed genes, which played critical roles in regulating the olfactory behavior of insects. Taken together, these results provide new insights for understanding the molecular mechanisms underlying fungus and host insect interaction, especially for olfactory behavior regulated by fungus.
Collapse
|
38
|
Guan W, Shan J, Gao M, Guo J, Wu D, Zhang Q, Wang J, Chen R, Du B, Zhu L, He G. Bulked Segregant RNA Sequencing Revealed Difference Between Virulent and Avirulent Brown Planthoppers. FRONTIERS IN PLANT SCIENCE 2022; 13:843227. [PMID: 35498688 PMCID: PMC9047503 DOI: 10.3389/fpls.2022.843227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most devastating insect pests of rice (Oryza sativa L.), but BPH populations have varying degrees of virulence to rice varieties carrying different resistance genes. To help efforts to characterize these variations we applied bulked segregant RNA sequencing (BSR-seq) to identify differentially expressed genes (DEGs) and genetic loci associated with BPH virulence to YHY15 rice plants carrying the resistance gene Bph15. BPHs that are highly virulent or avirulent to these plants were selected from an F2 population to form two contrasting bulks, and BSR-seq identified 751 DEGs between the bulks. Genes associated with carbohydrate, amino acid and nucleotide metabolism, the endocrine system, and signal transduction were upregulated in the avirulent insects when they fed on these plants. The results also indicated that shifts in lipid metabolism and digestive system pathways were crucial for the virulent BPHs' adaptation to the resistant rice. We identified 24 single-nucleotide polymorphisms (SNPs) in 21 genes linked with BPH virulence. Possible roles of genes apparently linked to BPH virulence are discussed. Our results provide potentially valuable information for further studies of BPH virulence mechanisms and development of robust control strategies.
Collapse
|
39
|
Guo W, Li C, Zeng B, Li J, Wang Z, Ma S, Du L, Lan Y, Sun F, Lu C, Li S, Zhou Y, Wang Y, Zhou T. Analyses on the Infection Process of Rice Virus and the Spatiotemporal Expression Pattern of Host Defense Genes Based on a Determined-Part Inoculation Approach. Pathogens 2022; 11:pathogens11020144. [PMID: 35215088 PMCID: PMC8880328 DOI: 10.3390/pathogens11020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Rice viral diseases adversely affect crop yield and quality. Most rice viruses are transmitted through insect vectors. However, the traditional whole-plant inoculation method cannot control the initial inoculation site in rice plants because the insect feeding sites in plants are random. To solve this problem, we established a determined-part inoculation approach in this study that restricted the insect feeding sites to specific parts of the rice plant. Rice stripe virus (RSV) was used as the model virus and was inoculated at the bottom of the stem using our method. Quantitative real-time PCR and Western blot analyses detected RSV only present at the bottom of the Nipponbare (NPB) stem at 1 day post-inoculation (dpi), indicating that our method successfully controlled the inoculation site. With time, RSV gradually moved from the bottom of the stem to the leaf in NPB rice plants, indicating that systemic viral spread can also be monitored using this method. In addition, a cultivar resistant to RSV, Zhendao 88 (ZD88), was inoculated using this method. We found that RSV accumulation in ZD88 was significantly lower than in NPB. Additionally, the expression level of the resistant gene STV11 in ZD88 was highly induced at the initial invasion stage of RSV (1 dpi) at the inoculation site, whereas it remained relatively stable at non-inoculated sites. This finding indicated that STV11 directly responded to RSV invasion to inhibit virus accumulation at the invasion site. We also proved that this approach is suitable for other rice viruses, such as Rice black-streaked dwarf virus (RBSDV). Interestingly, we determined that systemic infection with RSV was faster than that with RBSDV in NPB, which was consistent with findings in field trails. In summary, this approach is suitable for characterizing the viral infection process in rice plants, comparing the local viral accumulation and spread among different cultivars, analyzing the spatiotemporal expression pattern of resistance-associated genes, and monitoring the infection rate for different viruses.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.G.); (C.L.)
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
| | - Chenyang Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
| | - Bo Zeng
- National Agricultural Technology Extension and Service Center, Beijing 100125, China;
| | - Jie Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
| | - Zhaoyun Wang
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
| | - Shuhui Ma
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Du
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
| | - Ying Lan
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
| | - Feng Sun
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
| | - Chengye Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.G.); (C.L.)
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
| | - Shuo Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
| | - Yijun Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
| | - Yunyue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.G.); (C.L.)
- Correspondence: (Y.W.); (T.Z.)
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (C.L.); (J.L.); (Z.W.); (S.M.); (L.D.); (Y.L.); (F.S.); (S.L.); (Y.Z.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Academy of Agricultural Sciences Joint Laboratory, International Rice Research Institute, Nanjing 210014, China
- Correspondence: (Y.W.); (T.Z.)
| |
Collapse
|
40
|
Chen H, Wu W, Wei T. Establishment of White-Backed Planthopper Cell Lines. Methods Mol Biol 2022; 2400:197-205. [PMID: 34905203 DOI: 10.1007/978-1-0716-1835-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The first continuous cell line of leafhopper was established over 50 years ago. Since then, leafhopper cell monolayers have been used extensively to assay the infectivity of plant viruses that multiply in their insect vectors and to elucidate the viral determinants for virus transmission via insects. We have established continuous insect cell lines of three rice planthoppers, which have been used to study the mechanisms for replication and spread of rice viruses. The notable advantage of the vector cell monolayer system is that it can reach a uniform infection rate of 100% of the cells in the culture inoculated with diluted viruses, and thus allows for synchronous virus multiplication. The self-propagative nature of leafhopper and planthopper cell lines under favorable conditions ensures the system both dynamic and stable for viral infection. The vector cell monolayer systems and molecular probes, along with reliable traditional methods, certainly facilitate studies on interactions between plant viruses and insect vectors at molecular and cellular levels.
Collapse
Affiliation(s)
- Hongyan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Wei Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
41
|
Metatranscriptomic Sequencing Suggests the Presence of Novel RNA Viruses in Rice Transmitted by Brown Planthopper. Viruses 2021; 13:v13122464. [PMID: 34960733 PMCID: PMC8708968 DOI: 10.3390/v13122464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Viral pathogens are a major threat to stable crop production. Using a backcross strategy, we find that integrating a dominant brown planthopper (BPH) resistance gene Bph3 into a high-yield and BPH-susceptible indica rice variety significantly enhances BPH resistance. However, when Bph3-carrying backcross lines are infested with BPH, these BPH-resistant lines exhibit sterile characteristics, displaying panicle enclosure and failure of seed production at their mature stage. As we suspected, BPH-mediated viral infections could cause the observed sterile symptoms, and we characterized rice-infecting viruses using deep metatranscriptomic sequencing. Our analyses revealed eight novel virus species and five known viruses, including a highly divergent virus clustered within a currently unclassified family. Additionally, we characterized rice plant antiviral responses using small RNA sequencing. The results revealed abundant virus-derived small interfering RNAs in sterile rice plants, providing evidence for Dicer-like and Argonaute-mediated immune responses in rice plants. Together, our results provide insights into the diversity of viruses in rice plants, and our findings suggest that multiple virus infections occur in rice plants.
Collapse
|
42
|
Qin Y, Xu P, Jin R, Li Z, Ma K, Wan H, Li J. Resistance of Nilaparvata lugens (Hemiptera: Delphacidae) to triflumezopyrim: inheritance and fitness costs. PEST MANAGEMENT SCIENCE 2021; 77:5566-5575. [PMID: 34390298 DOI: 10.1002/ps.6598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Triflumezopyrim, a novel commercialized mesoionic chemical insecticide, has been confirmed as a promising insecticide for efficiently controlling the brown planthopper, Nilaparvata lugens (Stål). Here, a laboratory triflumezopyrim-resistant (TR) strain and an isogenic susceptible (TS) strain were established to characterize the inheritance and fitness costs of triflumezopyrim resistance in N. lugens. RESULTS After 29 generations of successive selection with triflumezopyrim, the TR strain developed a 155.23-fold higher resistance level than the TS strain. The median lethal concentration (LC50 ) values from progenies (F1 RS and F1 SR) of reciprocal crosses between TR and TS strains suggested that triflumezopyrim resistance in N. lugens was autosomal and codominant. Chi-square analyses of self-bred and backcrossed progenies suggested that the resistance results from a polygenic effect. Compared to the TS strain, the TR strain showed a lower relative fitness (0.62) with a significantly decreased female adult period, longevity, total fecundity, egg hatchability, intrinsic rate of increase (r), finite rate of increase (λ), net reproductive rate (R0 ), and prolonged pre-adult period and total preoviposition period (TPOP). CONCLUSION The inheritance mode of triflumezopyrim resistance in N. lugens was characterized as autosomal, codominant and polygenic. The resistance had a fitness cost, which may be an important factor limiting the evolution of resistance. These findings provide valuable information for optimizing resistance management strategies to delay triflumezopyrim resistance development and maintain sustainable control of N. lugens. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yao Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Pengfei Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zhao Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
43
|
Li Y, Zhang Y, Xiang Y, Chen D, Hu J, Liu F. Comparative Transcriptome Analysis of Chemoreception Organs of Laodelphax striatellus in Response to Rice Stripe Virus Infection. Int J Mol Sci 2021; 22:ijms221910299. [PMID: 34638638 PMCID: PMC8532003 DOI: 10.3390/ijms221910299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Many vector-borne viruses possess the ability to manipulate vector behaviors to facilitate their transmission. There is evidence that the mechanism of this phenomenon has been described in part as direct manipulation through regulating vector chemosensation. Rice stripe virus (RSV) is transmitted by the small brown planthopper, Laodelphax striatellus (Fallen), in a persistent, circulative-propagative manner. The effect of RSV infection on the olfactory system of L. striatellus has not been fully elucidated. Here, we employed transcriptomic sequencing to analyze gene expression profiles in antennae, legs and heads (without antennae) from L. striatellus females and males with/without RSV infection. Comparisons of the differentially expressed genes (DEGs) among antennae, legs and heads indicated that tissue-specific changes in the gene expression profile were greater than sex-specific changes. A total of 17 olfactory related genes were differentially expressed in viruliferous antennae as compared to nonviruliferous antennae, including LstrOBP4/9, LstrCSP1/2/5, LstrGR28a/43a/43a-1, LstrIR1/2/NMDA1, LstrOR67/85e/56a/94 and LstrSNMP2/2-2. There are 23 olfactory related DEGs between viruliferous and nonviruliferous legs, including LstrOBP2/3/4/12/13, LstrCSP13/5/10, LstrIR1/2/Delta2/Delta2-1/kainate2/NMDA2, LstrOR12/21/31/68 and LstrORco. A low number of olfactory related DEGs were found between viruliferous and nonviruliferous heads, including LstrCSP1, LstrOBP2, LstrOR67 and LstrSNMP2-2. Among these DEGs, the expression patterns of LstrOBP2, LstrOBP3 and LstrOBP9 in three tissues was validated by quantitative real-time PCR. The demonstration of overall changes in the genes in L. striatellus' chemoreception organs in response to RSV infection would not only improve our understanding of the effect of RSV on the olfactory related genes of insect vectors but also provide insights into developing approaches to control the plant virus transmission and spread as well as pest management in the future.
Collapse
Affiliation(s)
- Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou 225000, China
| | - Yunye Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
| | - Yin Xiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
| | - Danyu Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
| | - Jia Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225000, China
- Correspondence: ; Tel.: +86-138-1580-2333
| |
Collapse
|
44
|
Tian S, Wu N, Zhang L, Wang X. RNA N 6 -methyladenosine modification suppresses replication of rice black streaked dwarf virus and is associated with virus persistence in its insect vector. MOLECULAR PLANT PATHOLOGY 2021; 22:1070-1081. [PMID: 34251749 PMCID: PMC8359003 DOI: 10.1111/mpp.13097] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 05/02/2023]
Abstract
N6 methylation of adenosine (m6 A) was recently discovered to play a role in regulating the life cycle of various viruses by modifying viral and host RNAs. However, different studies on m6 A effects on the same or different viruses have revealed contradictory roles for m6 A in the viral life cycle. In this study, we sought to define the role of m6 A on infection by rice black streaked dwarf virus (RBSDV), a double-stranded RNA virus, of its vector small brown planthopper (SBPH). Infection by RBSDV decreased the level of m6 A in midgut cells of SBPHs. We then cloned two genes (LsMETTL3 and LsMETTL14) that encode m6 A RNA methyltransferase in SBPHs. After interference with expression of the two genes, the titre of RBSDV in the midgut cells of SBPHs increased significantly, suggesting that m6 A levels were negatively correlated with virus replication. More importantly, our results revealed that m6 A modification might be the epigenetic mechanism that regulates RBSDV replication in its insect vector and maintains a certain virus threshold required for persistent transmission.
Collapse
Affiliation(s)
- Shuping Tian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
45
|
Xu Y, Fu S, Tao X, Zhou X. Rice stripe virus: Exploring Molecular Weapons in the Arsenal of a Negative-Sense RNA Virus. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:351-371. [PMID: 34077238 DOI: 10.1146/annurev-phyto-020620-113020] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rice stripe disease caused by Rice stripe virus (RSV) is one of the most devastating plant viruses of rice and causes enormous losses in production. RSV is transmitted from plant to plant by the small brown planthopper (Laodelphax striatellus) in a circulative-propagative manner. The recent reemergence of this pathogen in East Asia since 2000 has made RSV one of the most studied plant viruses over the past two decades. Extensive studies of RSV have resulted in substantial advances regarding fundamental aspects of the virus infection. Here, we compile and analyze recent information on RSV with a special emphasis on the strategies that RSV has adopted to establish infections. These advances include RSV replication and movement in host plants and the small brown planthopper vector, innate immunity defenses against RSV infection, epidemiology, and recent advances in the management of rice stripe disease. Understanding these issues will facilitate the design of novel antiviral therapies for management and contribute to a more detailed understanding of negative-sense virus-host interactions at the molecular level.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
46
|
Chang X, Wang F, Fang Q, Chen F, Yao H, Gatehouse AMR, Ye G. Virus-induced plant volatiles mediate the olfactory behaviour of its insect vectors. PLANT, CELL & ENVIRONMENT 2021; 44:2700-2715. [PMID: 33866575 DOI: 10.1111/pce.14069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 05/19/2023]
Abstract
Plant viruses can manipulate their hosts to release odours that are attractive or repellent to their insect vectors. However, the volatile organic compounds (VOCs), either individually or as mixtures, which play a key role in the olfactory behaviour of insect vectors remains largely unknown. Our study focused on green rice leafhoppers (GRLHs) vectoring rice dwarf virus (RDV) revealed that RDV infection significantly induced the emission of (E)-β-caryophyllene and 2-heptanol by rice plants, which influenced the olfactory behaviour of both non-viruliferous and viruliferous GRLHs. (E)-β-caryophyllene attracted non-viruliferous GRLHs to settle on RDV-infected plants, but neither attracted nor repelled viruliferous GRLHs. In contrast, 2-heptanol repelled viruliferous GRLHs to settle on RDV-infected plants, but neither repelled nor attracted non-viruliferous GRLHs. Suppression of (E)-β-caryophyllene synthase OsCAS via CRISPR-Cas9 to generate oscas-1 plants enabled us to confirm the important role played by (E)-β-caryophyllene in modulating the virus-vector-host plant interaction. These novel results reveal the role of these virus-induced VOCs in modulating the behaviour of its GRLH insect vector and may facilitate the design of new strategies for disease control through manipulation of plant volatile emissions.
Collapse
Affiliation(s)
- Xuefei Chang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Zhou S, Zhao Y, Liang Z, Wu R, Chen B, Zhang T, Yang X, Zhou G. Resistance Evaluation of Dominant Varieties against Southern Rice Black-Streaked Dwarf Virus in Southern China. Viruses 2021; 13:v13081501. [PMID: 34452366 PMCID: PMC8402741 DOI: 10.3390/v13081501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/10/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV), a Fijivirus in the Reoviridae family, is transmitted by the white-backed planthopper (Sogatella furcifera, WBPH), a long-distance migratory insect, and presents a serious threat to rice production in Asia. It was first discovered in China’s Guangdong Province in 2001 and has been endemic in the south of China and north of Vietnam for two decades, with serious outbreaks in 2009, 2010, and 2017. In this study, we evaluated the resistance of 10 dominant rice varieties from southern China, where the virus overwinters and accumulates as a source of early spring reinfection, against this virus by artificial inoculation. The results showed that in all tested varieties there was no immune resistance, but there were differences in the infection rate, with incidence rates from 21% to 90.7%, and in symptom severity, with plant weight loss from 66.71% to 91.20% and height loss from 34.1% to 65.06%. Additionally, and valuably, the virus titer and the insect vector virus acquisition potency from diseased plants were significantly different among the varieties: an over sixfold difference was determined between resistant and susceptible varieties, and there was a positive correlation between virus accumulation and insect vector virus acquisition. The results can provide a basis for the selection of rice varieties in southern China to reduce the damage of SRBSDV in this area and to minimize the reinfection source and epidemics of the virus in other rice-growing areas.
Collapse
|
48
|
Stenger DC, Krugner R. Insect-to-insect horizontal transmission of a phytoreovirus in the absence of an infected plant host. Virology 2021; 562:87-91. [PMID: 34280809 DOI: 10.1016/j.virol.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Vertical transmission of Homalodisca vitripennis reovirus (HoVRV) from glassy-winged sharpshooter (GWSS, Homalodisca vitripennis (Germar)) females to progeny occurred in laboratory assays at frequencies too low (2.6%-15.4%) to account for HoVRV incidence (90-100%) in field populations resident in citrus. Because citrus is immune to HoVRV and no plant host is known, horizontal transmission of HoVRV from insect-to-insect was evaluated. Exposure of colony-reared, virus-free test nymphs to HoVRV-infected source adults held in the same cage for 10 days on virus-immune cowpea resulted in HoVRV transmission (13.3%-30.7%) to test nymphs. HoVRV was not transmitted when exposure was indirect and required passive movement of virions through the xylem of immune citrus seedlings. Collectively, these results demonstrate direct insect-to-insect horizontal transmission of HoVRV, providing a plausible explanation for high incidence of HoVRV in GWSS field populations in the absence of efficient vertical transmission or a plant host.
Collapse
Affiliation(s)
- Drake C Stenger
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA, 93648, USA.
| | - Rodrigo Krugner
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA, 93648, USA
| |
Collapse
|
49
|
Zhang K, Zhuang X, Dong Z, Xu K, Chen X, Liu F, He Z. The dynamics of N 6-methyladenine RNA modification in interactions between rice and plant viruses. Genome Biol 2021; 22:189. [PMID: 34167554 PMCID: PMC8229379 DOI: 10.1186/s13059-021-02410-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most common RNA modification in eukaryotes and has been implicated as a novel epigenetic marker that is involved in various biological processes. The pattern and functional dissection of m6A in the regulation of several major human viral diseases have already been reported. However, the patterns and functions of m6A distribution in plant disease bursting remain largely unknown. RESULTS We analyse the high-quality m6A methylomes in rice plants infected with two devastating viruses. We find that the m6A methylation is mainly associated with genes that are not actively expressed in virus-infected rice plants. We also detect different m6A peak distributions on the same gene, which may contribute to different antiviral modes between rice stripe virus or rice black-stripe dwarf virus infection. Interestingly, we observe increased levels of m6A methylation in rice plant response to virus infection. Several antiviral pathway-related genes, such as RNA silencing-, resistance-, and fundamental antiviral phytohormone metabolic-related genes, are also m6A methylated. The level of m6A methylation is tightly associated with its relative expression levels. CONCLUSIONS We revealed the dynamics of m6A modification during the interaction between rice and viruses, which may act as a main regulatory strategy in gene expression. Our investigations highlight the significance of m6A modifications in interactions between plant and viruses, especially in regulating the expression of genes involved in key pathways.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Xinjian Zhuang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Zhuozhuo Dong
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xijun Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Fang Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| | - Zhen He
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
50
|
Moya Fernández MB, Liu W, Zhang L, Hajano JUD, Wang X. Interplay of Rice Stripe Virus and Rice Black Streaked Dwarf Virus during Their Acquisition and Accumulation in Insect Vector. Viruses 2021; 13:v13061121. [PMID: 34200968 PMCID: PMC8230606 DOI: 10.3390/v13061121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Plant viruses transmitted by hemipteran vectors commonly cause losses to crop production. Rice stripe virus (RSV) and rice black streaked dwarf virus (RBSDV) are transmitted to rice plants by the same vector, the small brown planthopper (SBPH), Laodelphax striatellus Fallén, in a persistent propagative manner. However, rarely do the respective diseases they cause occur simultaneously in a field. Here, we determined the acquisition efficiency of RSV and RBSDV when acquired in succession or simultaneously by SBPH. When RBSDV was acquired first, RSV acquisition efficiency was significantly lower than when only acquiring RSV. However, RBSDV acquisition efficiency from insects that acquired RSV first was not significantly different between the insects only acquiring RBSDV. Immunofluorescence assays showed that the acquisition of RBSDV first might inhibit RSV entry into midgut epithelial cells, but RSV did not affect RBSDV entry. SBPHs were more likely to acquire RBSDV when they were feeding on plants coinfected with the two viruses. When RBSDV was acquired before RSV, RBSDV titer was significantly higher and RSV titer first declined, then increased compared to when only acquiring RBSDV or RSV. Only 5% of the SBPHs acquired both viruses when feeding on plants coinfected with RSV and RBSDV. These results provide a better understanding of the interaction between two persistent viruses when present in the same vector insect and explain why RSV and RBSDV occur in intermittent epidemics.
Collapse
Affiliation(s)
- Marcia Beatriz Moya Fernández
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
- Correspondence: author:
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
| | - Jamal-U-Ddin Hajano
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan;
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
| |
Collapse
|