1
|
Gao X, Gao G, Zheng W, Liu H, Pan W, Xia X, Zhang D, Lin W, Wang Z, Feng B. PARylation of 14-3-3 proteins controls the virulence of Magnaporthe oryzae. Nat Commun 2024; 15:8047. [PMID: 39277621 PMCID: PMC11401899 DOI: 10.1038/s41467-024-51955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
Magnaporthe oryzae is a devastating fungal pathogen that causes the rice blast disease worldwide. The post-translational modification of ADP-ribosylation holds significant importance in various fundamental biological processes. However, the specific function of this modification in M. oryzae remains unknown. This study revealed that Poly(ADP-ribosyl)ation (PARylation) executes a critical function in M. oryzae. M. oryzae Poly(ADP-ribose) polymerase 1 (PARP1) exhibits robust PARylation activity. Disruption of PARylation by PARP1 knock-out or chemical inhibition reveals its involvement in M. oryzae virulence, particularly in appressorium formation. Furthermore, we identified two M. oryzae 14-3-3 proteins, GRF1 and GRF2, as substrates of PARP1. Deletion of GRF1 or GRF2 results in delayed and dysfunctional appressorium, diminished plant penetration, and reduced virulence of the fungus. Biochemical and genetic evidence suggest that PARylation of 14-3-3s is essential for its function in M. oryzae virulence. Moreover, PARylation regulates 14-3-3 dimerization and is required for the activation of the mitogen-activated protein kinases (MAPKs), Pmk1 and Mps1. GRF1 interacts with both Mst7 and Pmk1, and bridges their interaction in a PARylation-dependent manner. This study unveils a distinctive mechanism that PARylation of 14-3-3 proteins controls appressorium formation through MAPK activation, and could facilitate the development of new strategies of rice blast disease control.
Collapse
Affiliation(s)
- Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gaigai Gao
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weifeng Zheng
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haibing Liu
- Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenbo Pan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xi Xia
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongmei Zhang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenwei Lin
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Baomin Feng
- Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Wang G, Zhang X, Du G, Wang W, Yao Y, Jin S, Cai H, Peng Y, Chen B. Oleic Acid and Linoleic Acid Enhances the Biocontrol Potential of Metarhizium rileyi. J Fungi (Basel) 2024; 10:521. [PMID: 39194847 DOI: 10.3390/jof10080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Metarhizium rileyi is a wide spread insect fungi with a good biocontrol potentiality to various pests, particularly noctuid insects. However, it is characterized by its slow growth, its sensitivity to abiotic stress, and the slow speed of kill to pests, which hinder its use compared with other entomopathogenic fungi. In this study, the responses of M. rileyi to eight types of lipids were observed; among the lipids, oleic acid and linoleic acid significantly promoted the growth and development of M. rileyi and enhanced its stress tolerances and virulence. An additional mechanistic study demonstrated that exogenous oleic acid and linoleic acid significantly improved the conidial germination, appressorium formation, cuticle degradation, and cuticle infection, which appear to be largely dependent on the up-regulation of gene expression in growth, development, protective, and cuticle-degrading enzymes. In conclusion, exogenous oleic acid and linoleic acid enhanced the stress tolerances and virulence of M. rileyi via protecting conidial germination and promoting cuticle infection. These results provide new insights for the biopesticide development of M. rileyi.
Collapse
Affiliation(s)
- Guang Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xu Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guangzu Du
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Wenqian Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yunhao Yao
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Sitong Jin
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Haosheng Cai
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
MoSnf5 Regulates Fungal Virulence, Growth, and Conidiation in Magnaporthe oryzae. J Fungi (Basel) 2022; 9:jof9010018. [PMID: 36675839 PMCID: PMC9861326 DOI: 10.3390/jof9010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Snf5 (sucrose nonfermenting) is a core component of the SWI/SNF complexes and regulates diverse cellular processes in model eukaryotes. In plant pathogenic fungi, its biological function and underlying mechanisms remain unexplored. In this study, we investigated the biological roles of MoSnf5 in plant infection and fungal development in the rice blast pathogen Magnaporthe oryzae. The gene deletion mutants of MoSNF5 exhibited slower vegetative hyphal growth, severe defects in conidiogenesis, and impaired virulence and galactose utilization capacities. Domain dissection assays showed that the Snf5 domain and the N- and C-termini of MoSnf5 were all required for its full functions. Co-immunoprecipitation and yeast two-hybrid assays showed that MoSnf5 physically interacts with four proteins, including a transcription initiation factor MoTaf14. Interestingly, the ∆MoTaf14 mutants showed similar phenotypes as the ∆Mosnf5 mutants on fungal virulence and development. Moreover, assays on GFP-MoAtg8 expression and localization showed that both the ∆Mosnf5 and ∆MoTaf14 mutants were defective in autophagy. Taken together, MoSnf5 regulates fungal virulence, growth, and conidiation, possibly through regulating galactose utilization and autophagy in M. oryzae.
Collapse
|
4
|
Krell V, Jakobs-Schoenwandt D, Vidal S, Patel AV. Cellulase enhances endophytism of encapsulated Metarhizium brunneum in potato plants. Fungal Biol 2018; 122:373-378. [DOI: 10.1016/j.funbio.2018.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 01/18/2023]
|
5
|
Alberts J, Lilly M, Rheeder J, Burger HM, Shephard G, Gelderblom W. Technological and community-based methods to reduce mycotoxin exposure. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.05.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Wang JB, St Leger RJ, Wang C. Advances in Genomics of Entomopathogenic Fungi. ADVANCES IN GENETICS 2016; 94:67-105. [PMID: 27131323 DOI: 10.1016/bs.adgen.2016.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors.
Collapse
Affiliation(s)
- J B Wang
- University of Maryland, College Park, MD, United States
| | - R J St Leger
- University of Maryland, College Park, MD, United States
| | - C Wang
- Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Ray S, Singh PK, Gupta DK, Mahato AK, Sarkar C, Rathour R, Singh NK, Sharma TR. Analysis of Magnaporthe oryzae Genome Reveals a Fungal Effector, Which Is Able to Induce Resistance Response in Transgenic Rice Line Containing Resistance Gene, Pi54. FRONTIERS IN PLANT SCIENCE 2016; 7:1140. [PMID: 27551285 PMCID: PMC4976503 DOI: 10.3389/fpls.2016.01140] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/18/2016] [Indexed: 05/04/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most important diseases of rice. Pi54, a rice gene that imparts resistance to M. oryzae isolates prevalent in India, was already cloned but its avirulent counterpart in the pathogen was not known. After decoding the whole genome of an avirulent isolate of M. oryzae, we predicted 11440 protein coding genes and then identified four candidate effector proteins which are exclusively expressed in the infectious structure, appresoria. In silico protein modeling followed by interaction analysis between Pi54 protein model and selected four candidate effector proteins models revealed that Mo-01947_9 protein model encoded by a gene located at chromosome 4 of M. oryzae, interacted best at the Leucine Rich Repeat domain of Pi54 protein model. Yeast-two-hybrid analysis showed that Mo-01947_9 protein physically interacts with Pi54 protein. Nicotiana benthamiana leaf infiltration assay confirmed induction of hypersensitive response in the presence of Pi54 gene in a heterologous system. Genetic complementation test also proved that Mo-01947_9 protein induces avirulence response in the pathogen in presence of Pi54 gene. Here, we report identification and cloning of a new fungal effector gene which interacts with blast resistance gene Pi54 in rice.
Collapse
Affiliation(s)
- Soham Ray
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Pankaj K. Singh
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Deepak K. Gupta
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Ajay K. Mahato
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Chiranjib Sarkar
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Rajeev Rathour
- Chaudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Nagendra K. Singh
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Tilak R. Sharma
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
- *Correspondence: Tilak R. Sharma,
| |
Collapse
|
8
|
Chiapello H, Mallet L, Guérin C, Aguileta G, Amselem J, Kroj T, Ortega-Abboud E, Lebrun MH, Henrissat B, Gendrault A, Rodolphe F, Tharreau D, Fournier E. Deciphering Genome Content and Evolutionary Relationships of Isolates from the Fungus Magnaporthe oryzae Attacking Different Host Plants. Genome Biol Evol 2015; 7:2896-912. [PMID: 26454013 PMCID: PMC4684704 DOI: 10.1093/gbe/evv187] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Deciphering the genetic bases of pathogen adaptation to its host is a key question in ecology and evolution. To understand how the fungus Magnaporthe oryzae adapts to different plants, we sequenced eight M. oryzae isolates differing in host specificity (rice, foxtail millet, wheat, and goosegrass), and one Magnaporthe grisea isolate specific of crabgrass. Analysis of Magnaporthe genomes revealed small variation in genome sizes (39–43 Mb) and gene content (12,283–14,781 genes) between isolates. The whole set of Magnaporthe genes comprised 14,966 shared families, 63% of which included genes present in all the nine M. oryzae genomes. The evolutionary relationships among Magnaporthe isolates were inferred using 6,878 single-copy orthologs. The resulting genealogy was mostly bifurcating among the different host-specific lineages, but was reticulate inside the rice lineage. We detected traces of introgression from a nonrice genome in the rice reference 70-15 genome. Among M. oryzae isolates and host-specific lineages, the genome composition in terms of frequencies of genes putatively involved in pathogenicity (effectors, secondary metabolism, cazome) was conserved. However, 529 shared families were found only in nonrice lineages, whereas the rice lineage possessed 86 specific families absent from the nonrice genomes. Our results confirmed that the host specificity of M. oryzae isolates was associated with a divergence between lineages without major gene flow and that, despite the strong conservation of gene families between lineages, adaptation to different hosts, especially to rice, was associated with the presence of a small number of specific gene families. All information was gathered in a public database (http://genome.jouy.inra.fr/gemo).
Collapse
Affiliation(s)
- Hélène Chiapello
- INRA, UR 1404, Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement, Jouy-en-Josas, France INRA, UR 875, Unité Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | - Ludovic Mallet
- INRA, UR 1404, Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement, Jouy-en-Josas, France INRA, UR 875, Unité Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France INRA, UR 1164, Unité de Recherche Génomique Info, Versailles, France
| | - Cyprien Guérin
- INRA, UR 1404, Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement, Jouy-en-Josas, France
| | - Gabriela Aguileta
- CNRS, UMR 8079, Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay, France Center for Genomic Regulation, Barcelona, Spain
| | - Joëlle Amselem
- INRA, UR 1164, Unité de Recherche Génomique Info, Versailles, France
| | - Thomas Kroj
- INRA, UMR 385, Biologie et Génétique des Interactions Plantes-Pathogènes BGPI, INRA-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montpellier, France
| | - Enrique Ortega-Abboud
- CIRAD, UMR 385, Biologie et Génétique des Interactions Plantes-Pathogènes BGPI, INRA-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montpellier, France
| | - Marc-Henri Lebrun
- INRA-AgroParisTech, UMR 1190, Biologie et Gestion des Risques en Agriculture BIOGER-CPP, Campus AgroParisTech, Thiverval-Grignon, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Université d'Aix Marseille, France Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Annie Gendrault
- INRA, UR 1404, Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement, Jouy-en-Josas, France
| | - François Rodolphe
- INRA, UR 1404, Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement, Jouy-en-Josas, France
| | - Didier Tharreau
- CIRAD, UMR 385, Biologie et Génétique des Interactions Plantes-Pathogènes BGPI, INRA-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montpellier, France
| | - Elisabeth Fournier
- INRA, UMR 385, Biologie et Génétique des Interactions Plantes-Pathogènes BGPI, INRA-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montpellier, France
| |
Collapse
|
9
|
Panwar V, McCallum B, Bakkeren G. A functional genomics method for assaying gene function in phytopathogenic fungi through host-induced gene silencing mediated by agroinfiltration. Methods Mol Biol 2015; 1287:179-189. [PMID: 25740365 DOI: 10.1007/978-1-4939-2453-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
With the rapid growth of genomic information, there is an increasing demand for efficient analysis tools to study the function of predicted genes coded in genomes. Agroinfiltration, the delivery of gene constructs into plant cells by Agrobacterium tumefaciens infiltrated into leaves, is one such versatile, simple, and rapid technique that is increasingly used for transient gene expression assay in plants. In this chapter, we focus on the use of agroinfiltration as a functional genomics research tool in molecular plant pathology. Specifically, we describe in detail its use in expressing phytopathogenic fungal gene sequences in a host plant to induce RNA silencing of corresponding genes inside the pathogen, a method which has been termed host-induced gene silencing (HIGS). We target the fungal pathogen Puccinia triticina which causes leaf rust on its wheat host, but the method is applicable to a variety of pathosystems.
Collapse
Affiliation(s)
- Vinay Panwar
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, PO Box 5000, 4200 Hwy 97, Summerland, BC, Canada, V0H 1Z0
| | | | | |
Collapse
|
10
|
Identification of T-DNA Integration Sites: TAIL-PCR and Sequence Analysis. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10503-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Bidirectional-genetics platform, a dual-purpose mutagenesis strategy for filamentous fungi. EUKARYOTIC CELL 2013; 12:1547-53. [PMID: 24058171 DOI: 10.1128/ec.00234-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rapidly increasing fungal genome sequences call for efficient ways of generating mutants to translate quickly gene sequences into their functions. A reverse genetic strategy via targeted gene replacement (TGR) has been inefficient for many filamentous fungi due to dominant production of undesirable ectopic transformants. Although large-scale random insertional mutagenesis via transformation (i.e., forward genetics) facilitates high-throughput uncovering of novel genes of interest, generating a huge number of transformants, which is necessary to ensure the likelihood of mutagenizing most genes, is time-consuming. We propose a new strategy, entitled the Bidirectional-Genetics (BiG) platform, which combines both forward and reverse genetic strategies by recycling ectopic transformants derived from TGR as a source for random insertional mutants. The BiG platform was evaluated using the rice blast fungus Magnaporthe oryzae as a model. Over 10% of >1,000 M. oryzae ectopic transformants, generated during disruption of specific genes, displayed abnormality in vegetative growth, pigmentation, and/or asexual reproduction. In this pool of putative mutants, we isolated insertional mutants with mutations in three genes involved in histidine biosynthesis (MoHIS5), vegetative growth (MoVPS74), or conidiophore formation (MoFRQ) (where "Mo" indicates "M. oryzae"), supporting the utility of this platform for systematic gene function studies.
Collapse
|
12
|
Kong LA, Li GT, Liu Y, Liu MG, Zhang SJ, Yang J, Zhou XY, Peng YL, Xu JR. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Fungal Genet Biol 2013; 56:33-41. [PMID: 23591122 DOI: 10.1016/j.fgb.2013.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 12/13/2022]
Abstract
Melanized appressoria are highly specialized infection structures formed by germ tubes of the rice blast fungus Magnaporthe oryzae for plant infection. M. oryzae also forms appressorium-like structures on hyphal tips. Whereas appressorium formation by conidial germ tubes has been well characterized, formation of appressorium-like structures by hyphal tips is under-investigated. In a previous study, we found that the chs7 deletion mutant failed to form appressoria on germ tubes but were normal in the development of appressorium-like structures on artificial hydrophobic surfaces. In this study, we compared the differences between the formation of appressoria by germ tubes and appressorium-like structures by hyphal tips in M. oryzae. Structurally, both appressoria and appressorium-like structures had a melanin layer that was absent in the pore region. In general, the latters were 1.4-fold larger in size but had lower turgor pressure than appressoria, which is consistent with its lower efficiency in plant penetration. Treatments with cAMP, IBMX, or a cutin monomer efficiently induced appressorium formation but not the development of appressorium-like structures. In contrast, coating surfaces with waxes stimulated the formation of both infection structures. Studies with various signaling mutants indicate that Osm1 and Mps1 are dispensable but Pmk1 is essential for both appressorium formation and development of appressorium-like structures on hyphal tips. Interestingly, the cpkA mutant was reduced in the differentiation of appressorium-like structures but not appressorium formation. We also observed that the con7 mutant generated in our lab failed to form appressorium-like structures on hyphal tips but still produced appressoria by germ tubes on hydrophobic surfaces. Con7 is a transcription factor regulating the expression of CHS7. Overall, these results indicate that the development of appressorium-like structures by hyphal tips and formation of appressoria by germ tubes are not identical differentiation processes in M. oryzae and may involve different molecular mechanisms.
Collapse
Affiliation(s)
- Ling-An Kong
- NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sanju S, Thakur A, Siddappa S, Sreevathsa R, Srivastava N, Shukla P, Singh BP. Pathogen virulence of Phytophthora infestans: from gene to functional genomics. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:165-77. [PMID: 24431484 PMCID: PMC3656195 DOI: 10.1007/s12298-012-0157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The oomycete, Phytophthora infestans, is one of the most important plant pathogens worldwide. Much of the pathogenic success of P. infestans, the potato late blight agent, relies on its ability to generate large amounts of sporangia from mycelia, which release zoospores that encyst and form infection structures. Until recently, little was known about the molecular basis of oomycete pathogenicity by the avirulence molecules that are perceived by host defenses. To understand the molecular mechanisms interplay in the pathogen and host interactions, knowledge of the genome structure was most important, which is available now after genome sequencing. The mechanism of biotrophic interaction between potato and P. infestans could be determined by understanding the effector biology of the pathogen, which is until now poorly understood. The recent availability of oomycete genome will help in understanding of the signal transduction pathways followed by apoplastic and cytoplasmic effectors for translocation into host cell. Finally based on genomics, novel strategies could be developed for effective management of the crop losses due to the late blight disease.
Collapse
Affiliation(s)
- Suman Sanju
- />Central potato Research Institute, Shimla, H.P India 171001
| | - Aditi Thakur
- />Central potato Research Institute, Shimla, H.P India 171001
| | | | - Rohini Sreevathsa
- />National Research Centre for Plant Biotechnology, IARI campus, Pusa, New Delhi—12, India
| | - Nidhi Srivastava
- />Department of Biosciences and Biotechnology, Banasthali University (Rajasthan), Tonk, India 304022
| | - Pradeep Shukla
- />Department of Biological Sciences, School of Basic Sciences, SHIATS, Naini, Allahabad, India 211007
| | - B. P. Singh
- />Central potato Research Institute, Shimla, H.P India 171001
| |
Collapse
|
14
|
Brunner PC, Torriani SFF, Croll D, Stukenbrock EH, McDonald BA. Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen. Mol Biol Evol 2013; 30:1337-47. [PMID: 23515261 PMCID: PMC3649673 DOI: 10.1093/molbev/mst041] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zymoseptoria tritici is an important fungal pathogen on wheat that originated in the Fertile Crescent. Its closely related sister species Z. pseudotritici and Z. ardabiliae infect wild grasses in the same region. This recently emerged host–pathogen system provides a rare opportunity to investigate the evolutionary processes shaping the genome of an emerging pathogen. Here, we investigate genetic signatures in plant cell wall degrading enzymes (PCWDEs) that are likely affected by or driving coevolution in plant-pathogen systems. We hypothesize four main evolutionary scenarios and combine comparative genomics, transcriptomics, and selection analyses to assign the majority of PCWDEs in Z. tritici to one of these scenarios. We found widespread differential transcription among different members of the same gene family, challenging the idea of functional redundancy and suggesting instead that specialized enzymatic activity occurs during different stages of the pathogen life cycle. We also find that natural selection has significantly affected at least 19 of the 48 identified PCWDEs. The majority of genes showed signatures of purifying selection, typical for the scenario of conserved substrate optimization. However, six genes showed diversifying selection that could be attributed to either host adaptation or host evasion. This study provides a powerful framework to better understand the roles played by different members of multigene families and to determine which genes are the most appropriate targets for wet laboratory experimentation, for example, to elucidate enzymatic function during relevant phases of a pathogen’s life cycle.
Collapse
Affiliation(s)
- Patrick C Brunner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
15
|
Ramos B, González-Melendi P, Sánchez-Vallet A, Sánchez-Rodríguez C, López G, Molina A. Functional genomics tools to decipher the pathogenicity mechanisms of the necrotrophic fungus Plectosphaerella cucumerina in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2013; 14:44-57. [PMID: 22937870 PMCID: PMC6638842 DOI: 10.1111/j.1364-3703.2012.00826.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The analysis of the interaction between Arabidopsis thaliana and adapted (PcBMM) and nonadapted (Pc2127) isolates of the necrotrophic fungus Plectosphaerella cucumerina has contributed to the identification of molecular mechanisms controlling plant resistance to necrotrophs. To characterize the pathogenicity bases of the virulence of necrotrophic fungi in Arabidopsis, we developed P. cucumerina functional genomics tools using Agrobacterium tumefaciens-mediated transformation. We generated PcBMM-GFP and Pc2127-GFP transformants constitutively expressing the green fluorescence protein (GFP), and a collection of random T-DNA insertional PcBMM transformants. Confocal microscopy analyses of the initial stages of PcBMM-GFP infection revealed that this pathogen, like other necrotrophic fungi, does not form an appressorium or penetrate into plant cells, but causes successive degradation of leaf cell layers. By comparing the colonization of Arabidopsis wild-type plants and hypersusceptible (agb1-1 and cyp79B2cyp79B3) and resistant (irx1-6) mutants by PcBMM-GFP or Pc2127-GFP, we found that the plant immune response was already mounted at 12-18 h post-inoculation, and that Arabidopsis resistance to these fungi correlated with the time course of spore germination and hyphal growth on the leaf surface. The virulence of a subset of the PcBMM T-DNA insertional transformants was determined in Arabidopsis wild-type plants and agb1-1 mutant, and several transformants were identified that showed altered virulence in these genotypes in comparison with that of untransformed PcBMM. The T-DNA flanking regions in these fungal mutants were successfully sequenced, further supporting the utility of these functional genomics tools in the molecular characterization of the pathogenicity of necrotrophic fungi.
Collapse
Affiliation(s)
- Brisa Ramos
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Du Y, Shi Y, Yang J, Chen X, Xue M, Zhou W, Peng YL. A serine/threonine-protein phosphatase PP2A catalytic subunit is essential for asexual development and plant infection in Magnaporthe oryzae. Curr Genet 2012; 59:33-41. [PMID: 23269362 DOI: 10.1007/s00294-012-0385-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/19/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
Protein phosphatase 2A is a subgroup of widely conserved serine/threonine phosphatases and plays diverse roles in transcription, translation, differentiation, cell cycle, and signal transduction in many organisms. However, its roles in biotrophic and hemi-biotrophic phytopathogenic fungi remain to be investigated. In this study, we isolated an insertional mutant of the rice blast fungus Magnaporthe oryzae that was defective in vegetative hyphal growth. In the mutant, the T-DNA fragment was found to be inserted in the promoter region of a putative serine/threonine protein phosphatase 2A catalytic subunit (PP2Ac) gene MoPPG1. Deletion of MoPPG1 leads to severe defects in vegetative hyphal growth and conidiation. Conidia of the ∆Moppg1 null mutants were misshaped, and most of them were two-celled. The deletion mutants of MoPPG1 did not penetrate into host plant cells and failed to cause any disease lesions on rice leaves. Interestingly, significant reduction was found in the ∆Moppg1 null mutants in expression levels of several Rho GTPase family genes including MgCDC42, MgRHO3, and MgRAC1, which were important for pathogenesis of M. oryzae. Taken together, our results indicated that PP2Ac plays vital roles in asexual development and plant infection by regulating Rho GTPases in the rice blast fungus and perhaps other plant pathogenic fungi.
Collapse
Affiliation(s)
- Yanxiu Du
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Oliver R. Genomic tillage and the harvest of fungal phytopathogens. THE NEW PHYTOLOGIST 2012; 196:1015-1023. [PMID: 22998436 DOI: 10.1111/j.1469-8137.2012.04330.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/06/2012] [Indexed: 06/01/2023]
Abstract
Genome sequencing has been carried out on a small selection of major fungal ascomycete pathogens. These studies show that simple models whereby pathogens evolved from phylogenetically related saprobes by the acquisition or modification of a small number of key genes cannot be sustained.The genomes show that pathogens cannot be divided into three clearly delineated classes (biotrophs, hemibiotrophs and necrotrophs) but rather into a complex matrix of categories each with subtly different properties. It is clear that the evolution of pathogenicity is ancient, rapid and ongoing. Fungal pathogens have undergone substantial genomic rearrangements that can be appropriately described as 'genomic tillage'. Genomic tillage underpins the evolution and expression of large families of genes - known as effectors - that manipulate and exploit metabolic and defence processes of plants so as to allow the proliferation of pathogens.
Collapse
Affiliation(s)
- Richard Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6845, Australia
| |
Collapse
|
18
|
Zhang XW, Jia LJ, Zhang Y, Jiang G, Li X, Zhang D, Tang WH. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. THE PLANT CELL 2012; 24:5159-76. [PMID: 23266949 PMCID: PMC3556981 DOI: 10.1105/tpc.112.105957] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/24/2012] [Accepted: 12/07/2012] [Indexed: 05/18/2023]
Abstract
The ascomycete Fusarium graminearum is a destructive fungal pathogen of wheat (Triticum aestivum). To better understand how this pathogen proliferates within the host plant, we tracked pathogen growth inside wheat coleoptiles and then examined pathogen gene expression inside wheat coleoptiles at 16, 40, and 64 h after inoculation (HAI) using laser capture microdissection and microarray analysis. We identified 344 genes that were preferentially expressed during invasive growth in planta. Gene expression profiles for 134 putative plant cell wall-degrading enzyme genes suggest that there was limited cell wall degradation at 16 HAI and extensive degradation at 64 HAI. Expression profiles for genes encoding reactive oxygen species (ROS)-related enzymes suggest that F. graminearum primarily scavenges extracellular ROS before a later burst of extracellular ROS is produced by F. graminearum enzymes. Expression patterns of genes involved in primary metabolic pathways suggest that F. graminearum relies on the glyoxylate cycle at an early stage of plant infection. A secondary metabolite biosynthesis gene cluster was specifically induced at 64 HAI and was required for virulence. Our results indicate that F. graminearum initiates infection of coleoptiles using covert penetration strategies and switches to overt cellular destruction of tissues at an advanced stage of infection.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Lei-Jie Jia
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Yan Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Gang Jiang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Address correspondence to
| |
Collapse
|
19
|
Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St Leger RJ, Zhao GP, Wang C, Feng MG. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2012; 2:483. [PMID: 22761991 PMCID: PMC3387728 DOI: 10.1038/srep00483] [Citation(s) in RCA: 436] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022] Open
Abstract
The ascomycete fungus Beauveria bassiana is a pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. We sequenced the genome of B. bassiana and a phylogenomic analysis confirmed that ascomycete entomopathogenicity is polyphyletic, but also revealed convergent evolution to insect pathogenicity. We also found many species-specific virulence genes and gene family expansions and contractions that correlate with host ranges and pathogenic strategies. These include B. bassiana having many more bacterial-like toxins (suggesting an unsuspected potential for oral toxicity) and effector-type proteins. The genome also revealed that B. bassiana resembles the closely related Cordyceps militaris in being heterothallic, although its sexual stage is rarely observed. A high throughput RNA-seq transcriptomic analysis revealed that B. bassiana could sense and adapt to different environmental niches by activating well-defined gene sets. The information from this study will facilitate further development of B. bassiana as a cost-effective mycoinsecticide.
Collapse
Affiliation(s)
- Guohua Xiao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cho WK, Yu J, Lee KM, Son M, Min K, Lee YW, Kim KH. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genomics 2012; 13:173. [PMID: 22559730 PMCID: PMC3478160 DOI: 10.1186/1471-2164-13-173] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fusarium graminearum virus 1 strain-DK21 (FgV1-DK21) is a mycovirus that confers hypovirulence to F. graminearum, which is the primary phytopathogenic fungus that causes Fusarium head blight (FHB) disease in many cereals. Understanding the interaction between mycoviruses and plant pathogenic fungi is necessary for preventing damage caused by F. graminearum. Therefore, we investigated important cellular regulatory processes in a host containing FgV1-DK21 as compared to an uninfected parent using a transcriptional approach. RESULTS Using a 3'-tiling microarray covering all known F. graminearum genes, we carried out genome-wide expression analyses of F. graminearum at two different time points. At the early point of growth of an infected strain as compared to an uninfected strain, genes associated with protein synthesis, including ribosome assembly, nucleolus, and ribosomal RNA processing, were significantly up-regulated. In addition, genes required for transcription and signal transduction, including fungal-specific transcription factors and cAMP signaling, respectively, were actively up-regulated. In contrast, genes involved in various metabolic pathways, particularly in producing carboxylic acids, aromatic amino acids, nitrogen compounds, and polyamines, showed dramatic down-regulation at the early time point. Moreover, genes associated with transport systems localizing to transmembranes were down-regulated at both time points. CONCLUSION This is the first report of global change in the prominent cellular pathways in the Fusarium host containing FgV1-DK21. The significant increase in transcripts for transcription and translation machinery in fungal host cells seems to be related to virus replication. In addition, significant down-regulation of genes required for metabolism and transporting systems in a fungal host containing the virus appears to be related to the host defense mechanism and fungal virulence. Taken together, our data aid in the understanding of how FgV1-DK21 regulates the transcriptional reprogramming of F. graminearum.
Collapse
Affiliation(s)
- Won Kyong Cho
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Yang J, Kong L, Chen X, Wang D, Qi L, Zhao W, Zhang Y, Liu X, Peng YL. A carnitine–acylcarnitine carrier protein, MoCrc1, is essential for pathogenicity in Magnaporthe oryzae. Curr Genet 2012; 58:139-48. [DOI: 10.1007/s00294-012-0372-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/26/2012] [Accepted: 03/12/2012] [Indexed: 11/29/2022]
|
22
|
Rampitsch C, Bykova NV. Proteomics and plant disease: Advances in combating a major threat to the global food supply. Proteomics 2012; 12:673-90. [DOI: 10.1002/pmic.201100359] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/23/2011] [Accepted: 10/11/2011] [Indexed: 12/25/2022]
|
23
|
The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS One 2012; 7:e29817. [PMID: 22238661 PMCID: PMC3251606 DOI: 10.1371/journal.pone.0029817] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/06/2011] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily.
Collapse
|
24
|
Tsavkelova E, Oeser B, Oren-Young L, Israeli M, Sasson Y, Tudzynski B, Sharon A. Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genet Biol 2011; 49:48-57. [PMID: 22079545 DOI: 10.1016/j.fgb.2011.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 01/07/2023]
Abstract
The plant hormone indole-3-acetic acid (IAA) can be synthesized from tryptophan via the intermediate indole-3-acetamide (IAM). The two genes, IaaM (encoding tryptophan monooxygenase) and IaaH (encoding indole-3-acetamide hydrolase) that constitute the IAM pathway have been described in plant-associated bacteria. We have identified putative homologs of the bacterial IaaM and IaaH genes in four Fusarium species -Fusarium proliferatum, Fusarium verticillioides, Fusarium fujikuroi, and Fusarium oxysporum. In all four species the two genes are organized next to each other in a head to head orientation and are separated by a short non-coding region. However, the pathway is fully functional only in the orchid endophytic strain F. proliferatum ET1, which produces significant amounts of IAM and IAA. Minor amounts of IAM are produced by the corn pathogen F. verticillioides strain 149, while in the two other species, the rice pathogen F. fujikuroi strain m567 and the tomato pathogen F. oxysporum f. sp. lycopersici strain 42-87 the IAM pathway is inactive. Deletion of the entire gene locus in F. proliferatum ET1 resulted in drastic reduction of IAA production. Conversely, transgenic strains of F. fujikuroi over-expressing the F. proliferatum IAM genes produced elevated levels of both IAM and IAA. Analysis of the intergenic promoter region in F. proliferatum showed that transcriptional activation in direction of the IaaH gene is about 3-fold stronger than in direction of the IaaM gene. The regulation of the IAM genes and the limiting factors of IAA production via the IAM pathway are discussed.
Collapse
Affiliation(s)
- Elena Tsavkelova
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Hintz W, Pinchback M, de la Bastide P, Burgess S, Jacobi V, Hamelin R, Breuil C, Bernier L. Functional categorization of unique expressed sequence tags obtained from the yeast-like growth phase of the elm pathogen Ophiostoma novo-ulmi. BMC Genomics 2011; 12:431. [PMID: 21864383 PMCID: PMC3176262 DOI: 10.1186/1471-2164-12-431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/24/2011] [Indexed: 11/13/2022] Open
Abstract
Background The highly aggressive pathogenic fungus Ophiostoma novo-ulmi continues to be a serious threat to the American elm (Ulmus americana) in North America. Extensive studies have been conducted in North America to understand the mechanisms of virulence of this introduced pathogen and its evolving population structure, with a view to identifying potential strategies for the control of Dutch elm disease. As part of a larger study to examine the genomes of economically important Ophiostoma spp. and the genetic basis of virulence, we have constructed an expressed sequence tag (EST) library using total RNA extracted from the yeast-like growth phase of O. novo-ulmi (isolate H327). Results A total of 4,386 readable EST sequences were annotated by determining their closest matches to known or theoretical sequences in public databases by BLASTX analysis. Searches matched 2,093 sequences to entries found in Genbank, including 1,761 matches with known proteins and 332 matches with unknown (hypothetical/predicted) proteins. Known proteins included a collection of 880 unique transcripts which were categorized to obtain a functional profile of the transcriptome and to evaluate physiological function. These assignments yielded 20 primary functional categories (FunCat), the largest including Metabolism (FunCat 01, 20.28% of total), Sub-cellular localization (70, 10.23%), Protein synthesis (12, 10.14%), Transcription (11, 8.27%), Biogenesis of cellular components (42, 8.15%), Cellular transport, facilitation and routes (20, 6.08%), Classification unresolved (98, 5.80%), Cell rescue, defence and virulence (32, 5.31%) and the unclassified category, or known sequences of unknown metabolic function (99, 7.5%). A list of specific transcripts of interest was compiled to initiate an evaluation of their impact upon strain virulence in subsequent studies. Conclusions This is the first large-scale study of the O. novo-ulmi transcriptome. The expression profile obtained from the yeast-like growth phase of this species will facilitate a multigenic approach to gene expression studies to assess their role in the determination of pathogenicity for this species. The identification and evaluation of gene targets in such studies will be a prerequisite to the development of biological control strategies for this pathogen.
Collapse
Affiliation(s)
- William Hintz
- Biology Department, University of Victoria, BC, V8W 3N5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:467-79. [PMID: 21251109 DOI: 10.1111/j.1365-313x.2011.04502.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Oryza sativa (rice) resistance gene Pia confers resistance to the blast fungus Magnaporthe oryzae carrying the AVR-Pia avirulence gene. To clone Pia, we employed a multifaceted genomics approach. First, we selected 12 R-gene analog (RGA) genes encoding nucleotide binding site-leucine rich repeats (NBS-LRRs) proteins from a region on chromosome 11 that shows linkage to Pia. By using seven rice accessions, we examined the association between Pia phenotypes and DNA polymorphisms in the 10 genes, which revealed three genes (Os11gRGA3-Os11gRGA5) exhibiting a perfect association with the Pia phenotypes. We also screened ethyl methane sulfonate (EMS)-treated mutant lines of the rice cultivar 'Sasanishiki' harboring Pia, and isolated two mutants that lost the Pia phenotype. DNA sequencing of Os11gRGA3-Os11gRGA5 from the two mutant lines identified independent mutations of major effects in Os11gRGA4. The wild-type 'Sasanishiki' allele of Os11gRGA4 (SasRGA4) complemented Pia function in both mutants, suggesting that SasRGA4 is necessary for Pia function. However, when the rice cultivar 'Himenomochi' lacking Pia was transfected with SasRGA4, the Pia phenotype was not recovered. An additional complementation study revealed that the two NBS-LRR-type R genes, SasRGA4 and SasRGA5, that are located next to each other and oriented in the opposite direction are necessary for Pia function. A population genetics analysis of SasRGA4 and SasRGA5 suggests that the two genes are under long-term balancing selection.
Collapse
Affiliation(s)
- Yudai Okuyama
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Andrie RM, Ciuffetti LM. Pyrenophora bromi, causal agent of brownspot of bromegrass, expresses a gene encoding a protein with homology and similar activity to Ptr ToxB, a host-selective toxin of wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:359-67. [PMID: 21091157 DOI: 10.1094/mpmi-06-10-0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ptr ToxB, encoded by ToxB, is one of multiple host-selective toxins (HST) produced by the wheat pathogen Pyrenophora tritici-repentis. Homologs of ToxB are found in several ascomycetes, including sister species Pyrenophora bromi, causal agent of brownspot of bromegrass. Due to the close evolutionary relatedness of P. tritici-repentis and P. bromi and that of their grass hosts, we hypothesized that homologs of ToxB in P. bromi may act as HST in the disease interaction between P. bromi and bromegrass. A representative set of transcriptionally active P. bromi ToxB genes were heterologously expressed in Pichia pastoris and the resultant proteins tested for their ability to act as HST on bromegrass. The tested Pyrenophora bromi ToxB (Pb ToxB) proteins were not toxic to bromegrass; thus, Pb ToxB does not appear to function as an HST in the P. bromi-bromegrass interaction. Instead, we revealed that the Pb ToxB proteins can be toxic to Ptr ToxB-sensitive wheat, at levels similar to Ptr ToxB, and the corresponding P. bromi ToxB genes are expressed in P. bromi-inoculated wheat. Our data suggest that P. bromi possesses the potential to become a wheat pathogen and highlights the importance of investigating the interaction between P. bromi and wheat.
Collapse
Affiliation(s)
- Rachael M Andrie
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, USA
| | | |
Collapse
|
28
|
Abstract
In nearly every living organism, metabolites derived from lipid peroxidation, the so-called oxylipins, are involved in regulating developmental processes as well as environmental responses. Among these bioactive lipids, the mammalian and plant oxylipins are the best characterized, and much information about their physiological role and biosynthetic pathways has accumulated during recent years. Although the occurrence of oxylipins and enzymes involved in their biosynthesis has been studied for nearly three decades, knowledge about fungal oxylipins is still scarce as compared with the situation in plants and mammals. However, the research performed so far has shown that the structural diversity of oxylipins produced by fungi is high and, furthermore, that the enzymes involved in oxylipin metabolism are diverse and often exhibit unusual catalytic activities. The aim of this review is to present a synopsis of the oxylipins identified so far in fungi and the enzymes involved in their biosynthesis.
Collapse
Affiliation(s)
- Florian Brodhun
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
29
|
Zhou X, Liu W, Wang C, Xu Q, Wang Y, Ding S, Xu JR. A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae. Mol Microbiol 2011; 80:33-53. [PMID: 21276092 DOI: 10.1111/j.1365-2958.2011.07556.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Appressorium formation is a key step in the infection cycle of Magnaporthe oryzae. Mst12 is a transcription factor essential for appressorium penetration and invasive growth. In this study we used the affinity purification approach to identify proteins that physically associate with Mst12. One of the Mst12-interacting genes identified was MoMCM1, which encodes a MADS-box protein orthologous to yeast Mcm1. MoMcm1 interacted with both Mst12 and Mata-1 in yeast two-hybrid assays. Deletion of MoMCM1 resulted in the loss of male fertility and microconidium production. The Momcm1 mutant was defective in appressorium penetration and formed narrower invasive hyphae, which may be responsible for its reduced virulence. In transformants expressing MoMCM1-eGFP fusion, GFP signals were observed in the nucleus. We also generated the Momcm1 mst12 double mutant, which was defective in penetration and non-pathogenic. On hydrophilic surfaces, germ tubes produced by the double mutant were severely curved, and 20% of them formed appressoria. In contrast, the Momcm1 or mst12 mutant did not form appressoria on hydrophilic surfaces. These results suggest that MoMCM1 and MST12 have overlapping functions to suppress appressorium formation under non-conducive conditions. MoMcm1 may interact with Mst12 and MatA-1 to regulate germ tube identity and male fertility respectively.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Purdue-NWAFU Joint Research Center, Department Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
The molecular pathogenicity of Fusarium keratitis: a fungal transcriptional regulator promotes hyphal penetration of the cornea. Cornea 2011; 29:1440-4. [PMID: 20856109 DOI: 10.1097/ico.0b013e3181d8383a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE The pathogenic mechanisms of fungal infection during human keratomycosis were investigated in an ex vivo corneal model that used strains of Fusarium oxysporum differing in the production of a fungal transcription factor. METHODS A pacC loss-of-function mutant and a pacC dominant-activating mutant were constructed from a wild-type isolate of F. oxysporum, and the 3 strains were characterized by in vitro growth kinetics. Twenty-seven human donor corneas maintained in tissue culture were superficially scarified and topically inoculated with the wild-type, the pacC loss-of-function mutant, or the pacC dominant-activating strains. Relative hyphal invasion into the stroma was compared histopathologically in corneal sections. RESULTS F. oxysporum strains demonstrated comparable exponential growth rates in vitro. Wild-type F. oxysporum invaded into the corneal tissue within 1 day and penetrated through the anterior stroma during the next 4 days. The pacC loss-of-function mutant invaded explanted corneas significantly less than the wild-type strain on day 1 (P < 0.0001) and on day 3 (P = 0.0003). The pacC dominant-activating strain adhered and penetrated explanted corneas similar to the wild-type strain. CONCLUSIONS The PacC pathway regulating the transcription of fungal genes allows fungal adaptation to the ocular surface and enables invasion of the injured cornea by F. oxysporum.
Collapse
|
31
|
Liu W, Zhou X, Li G, Li L, Kong L, Wang C, Zhang H, Xu JR. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 2011; 7:e1001261. [PMID: 21283781 PMCID: PMC3024261 DOI: 10.1371/journal.ppat.1001261] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/15/2010] [Indexed: 01/02/2023] Open
Abstract
Surface recognition and penetration are among the most critical plant infection processes in foliar pathogens. In Magnaporthe oryzae, the Pmk1 MAP kinase regulates appressorium formation and penetration. Its orthologs also are known to be required for various plant infection processes in other phytopathogenic fungi. Although a number of upstream components of this important pathway have been characterized, the upstream sensors for surface signals have not been well characterized. Pmk1 is orthologous to Kss1 in yeast that functions downstream from Msb2 and Sho1 for filamentous growth. Because of the conserved nature of the Pmk1 and Kss1 pathways and reduced expression of MoMSB2 in the pmk1 mutant, in this study we functionally characterized the MoMSB2 and MoSHO1 genes. Whereas the Momsb2 mutant was significantly reduced in appressorium formation and virulence, the Mosho1 mutant was only slightly reduced. The Mosho1 Momsb2 double mutant rarely formed appressoria on artificial hydrophobic surfaces, had a reduced Pmk1 phosphorylation level, and was nonresponsive to cutin monomers. However, it still formed appressoria and caused rare, restricted lesions on rice leaves. On artificial hydrophilic surfaces, leaf surface waxes and primary alcohols-but not paraffin waxes and alkanes- stimulated appressorium formation in the Mosho1 Momsb2 mutant, but more efficiently in the Momsb2 mutant. Furthermore, expression of a dominant active MST7 allele partially suppressed the defects of the Momsb2 mutant. These results indicate that, besides surface hydrophobicity and cutin monomers, primary alcohols, a major component of epicuticular leaf waxes in grasses, are recognized by M. oryzae as signals for appressorium formation. Our data also suggest that MoMsb2 and MoSho1 may have overlapping functions in recognizing various surface signals for Pmk1 activation and appressorium formation. While MoMsb2 is critical for sensing surface hydrophobicity and cutin monomers, MoSho1 may play a more important role in recognizing rice leaf waxes. The rice blast fungus is a major pathogen of rice and a model for studying fungal-plant interactions. Like many other fungal pathogens, it can recognize physical and chemical signals present on the rice leaf surface and form a highly specialized infection structure known as appressorium. A well conserved signal transduction pathway involving the protein kinase gene PMK1 is known to regulate appressorium formation and plant penetration in this pathogen. However, it is not clear about the sensor genes that are involved in recognizing various plant surface signals. In this study we functionally characterize two putative sensor genes called MoMSB2 and MoSHO1. Genetic and biochemical analyses indicated that these two genes have overlapping functions in recognizing different physical and chemical signals present on the rice leaf surface for the activation of the Pmk1 pathway and appressorium formation. We found that primary alcohols, a major component of leaf waxes in grasses, can be recognized by the rice blast fungus as chemical cues. While MoMSB2 is critical for sensing hydrophobicity and precursors of cutin molecules of rice leaves, MoSHO1 appears to be more important than MoMSB2 for recognizing wax components.
Collapse
Affiliation(s)
- Wende Liu
- Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Guotian Li
- Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Lei Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Lingan Kong
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chenfang Wang
- Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Haifeng Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Zhou X, Li G, Xu JR. Efficient approaches for generating GFP fusion and epitope-tagging constructs in filamentous fungi. Methods Mol Biol 2011; 722:199-212. [PMID: 21590423 DOI: 10.1007/978-1-61779-040-9_15] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For functional characterization of predicted genes encoding hypothetical proteins in fungal genomes, it is complementary to genetic studies to determine their expression and subcellular localization patterns in different developmental or infection stages. It is also important to identify and characterize other proteins that are physically associated with or functionally related to these genes in vivo by co-immunoprecipitation or affinity purification analyses. In this chapter, we described a set of yeast shuttle vectors and protocols to generate fusion constructs by the yeast gap repair approach. Because of the simplicity and efficiency of yeast gap repair, these vectors and the general methods described in this chapter are suitable for functional genomics studies in filamentous fungi.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
33
|
Large-scale insertional mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-mediated transformation. Methods Mol Biol 2011; 722:213-24. [PMID: 21590424 DOI: 10.1007/978-1-61779-040-9_16] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With genome sequences of more and more fungi become available, high-throughput systematic -mutagenesis is desirable for functional genomics studies. While a number of random insertional mutagenesis and targeted gene disruption approaches have been used in filamentous fungi, Agrobacterium tumefaciens-mediated Transformation (ATMT) remains one of the most effective methods for identifying genes required for specific fungal developmental or infection processes. Because of its simplicity, ATMT is suitable for large-scale insertion mutagenesis in fungi. Magnaporthe oryzae, the rice blast fungus is a model for studying host-pathogen interactions. Here, we describe protocols for generating a M. oryzae mutant library consisting of over 70,000 ATMT transformants and for identifying genes -disrupted by T-DNA in the mutants by TAIL-PCR.
Collapse
|
34
|
Ushimaru T, Terada H, Tsuboi K, Kogou Y, Sakaguchi A, Tsuji G, Kubo Y. Development of an efficient gene targeting system in Colletotrichum higginsianum using a non-homologous end-joining mutant and Agrobacterium tumefaciens-mediated gene transfer. Mol Genet Genomics 2010; 284:357-71. [PMID: 20853009 DOI: 10.1007/s00438-010-0572-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/24/2010] [Indexed: 11/28/2022]
Abstract
The hemibiotrophic ascomycete Colletotrichum higginsianum is the casual agent of anthracnose disease of cruciferous plants. High efficiency transformation by Agrobacterium tumefaciens-mediated gene transfer has been established for this fungus. However, targeted gene mutagenesis through homologous recombination rarely occurs in C. higginsianum. We have identified and disrupted the C. higginsianum homologue of the human Ku70 gene, ChKU70, which encodes a protein that plays a role in non-homologous end-joining for repair of DNA breaks. chku70 mutants showed a dramatic increase in the frequency of integration of introduced exogenous DNA fragments by homologous recombination without any detectable phenotypic defects. This result demonstrates that the chku70 mutant is an efficient recipient for targeted gene mutagenesis in C. higginsianum. We have also developed a novel approach [named direct repeat recombination-mediated gene targeting (DRGT)] for targeted gene disruption through Agrobacterium tumefaciens-mediated gene transfer. DRGT utilizes homologous recombination between repeated sequences on the T-DNA flanking a partial fragment of the target gene. Our results suggest that DRGT in the chku70 mutant background could be a useful tool for rapid isolation of targeted gene disruptants in C. higginsianum.
Collapse
Affiliation(s)
- Takuma Ushimaru
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Dhillon B, Cavaletto JR, Wood KV, Goodwin SB. Accidental amplification and inactivation of a methyltransferase gene eliminates cytosine methylation in Mycosphaerella graminicola. Genetics 2010; 186:67-77. [PMID: 20610411 PMCID: PMC2940312 DOI: 10.1534/genetics.110.117408] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A de novo search for repetitive elements in the genome sequence of the wheat pathogen Mycosphaerella graminicola identified a family of repeats containing a DNA cytosine methyltransferase sequence (MgDNMT). All 23 MgDNMT sequences identified carried signatures of repeat induced point mutation (RIP). All copies were subtelomeric in location except for one on chromosome 6. Synteny with M. fijiensis implied that the nontelomeric copy on chromosome 6 served as a template for subsequent amplifications. Southern analysis revealed that the MgDNMT sequence also was amplified in 15 additional M. graminicola isolates from various geographical regions. However, this amplification event was specific to M. graminicola; a search for MgDNMT homologs identified only a single, unmutated copy in the genomes of 11 other ascomycetes. A genome-wide methylation assay revealed that M. graminicola lacks cytosine methylation, as expected if its MgDNMT gene is inactivated. Methylation was present in several other species tested, including the closest known relatives of M. graminicola, species S1 and S2. Therefore, the observed changes most likely occurred within the past 10,500 years since the divergence between M. graminicola and S1. Our data indicate that the recent amplification of a single-copy MgDNMT gene made it susceptible to RIP, resulting in complete loss of cytosine methylation in M. graminicola.
Collapse
Affiliation(s)
- Braham Dhillon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
36
|
Kosti I, Mandel-Gutfreund Y, Glaser F, Horwitz BA. Comparative analysis of fungal protein kinases and associated domains. BMC Genomics 2010; 11:133. [PMID: 20178650 PMCID: PMC2838846 DOI: 10.1186/1471-2164-11-133] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 02/24/2010] [Indexed: 11/27/2022] Open
Abstract
Background Protein phosphorylation is responsible for a large portion of the regulatory functions of eukaryotic cells. Although the list of sequenced genomes of filamentous fungi has grown rapidly, the kinomes of recently sequenced species have not yet been studied in detail. The objective of this study is to apply a comparative analysis of the kinase distribution in different fungal phyla, and to explore its relevance to understanding the evolution of fungi and their taxonomic classification. We have analyzed in detail 12 subgroups of kinases and their distribution over 30 species, as well as their potential use as a classifier for members of the fungal kingdom. Results Our findings show that despite the similarity of the kinase distribution in all fungi, their domain distributions and kinome density can potentially be used to classify them and give insight into their evolutionary origin. In general, we found that the overall representation of kinase groups is similar across fungal genomes, the only exception being a large number of tyrosine kinase-like (TKL) kinases predicted in Laccaria bicolor. This unexpected finding underscores the need to continue to sequence fungal genomes, since many species or lineage-specific properties may remain to be discovered. Furthermore, we found that the domain organization significantly varies between the fungal species. Our results suggest that protein kinases and their functional domains strongly reflect fungal taxonomy. Conclusions Comparison of the predicted kinomes of sequenced fungi suggests essential signaling functions common to all species, but also specific adaptations of the signal transduction networks to particular species.
Collapse
Affiliation(s)
- Idit Kosti
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
37
|
Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed (2009 update). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1431] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
38
|
Soderlund C. Computational techniques for elucidating plant-pathogen interactions from large-scale experiments on fungi and oomycetes. Brief Bioinform 2009; 10:654-63. [PMID: 19933211 DOI: 10.1093/bib/bbp053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic plant pathogens are responsible for the destruction of billions of dollars worth of crops each year. With large-scale genomics of both pathogens and hosts and the corresponding computational analysis, biologists are now able to gain knowledge about many pathogenic and defense genes concurrently. To study the interactions between these two organism groups, it is necessary to design experiments to elucidate the genes being expressed during the invasion of the pathogen into the host. For the most part, this does not require new software development, though it does require the use of existing software in novel ways. This article provides a broad overview of several key and illustrative experiments and the corresponding computational analyses, outlining the knowledge gained in each. It goes on to describe databases for plant-pathogen data and important initiatives such as Plant-Associated Microbe Gene Ontology. It discusses how various emerging approaches will increase the power of computers in host-pathogen interaction studies.
Collapse
Affiliation(s)
- Carol Soderlund
- BIO5 Institute, 1657 Helen Street, University of Arizona, Tucson AZ 85721, USA.
| |
Collapse
|
39
|
Pariaud B, Ravigné V, Halkett F, Goyeau H, Carlier J, Lannou C. Aggressiveness and its role in the adaptation of plant pathogens. PLANT PATHOLOGY 2009; 58:409-424. [PMID: 0 DOI: 10.1111/j.1365-3059.2009.02039.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
40
|
Cho Y, Kim KH, La Rota M, Scott D, Santopietro G, Callihan M, Mitchell TK, Lawrence CB. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol Microbiol 2009; 72:1316-33. [PMID: 19460100 DOI: 10.1111/j.1365-2958.2009.06689.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alternaria brassicicola is an important, necrotrophic fungal pathogen that causes black spot disease on Brassicas. In order to study pathogenicity mechanisms, gene deletion mutants were generated for 21 putative regulatory genes including kinases and transcription factors subjectively selected from the annotated A. brassicicola genome. Except for Ste12, the deletion of the SNF1 kinase, XlnR, and CreA homologues that control cell wall-degrading enzyme production did not significantly affect virulence in contrast to other pathogenic fungi. Only deletion of XlnR but not CreA, Ste12 or SNF1 impaired the fungus' ability to utilize sole carbon sources suggesting Alternaria regulates expression of cell wall-degrading enzymes in a novel manner. In addition, two novel virulence factors encoding a transcription factor (AbPro1) and a two-component histidine kinase gene (AbNIK1) were discovered. Deletion of AbPro1 resulted in a 70% reduction in virulence and a 25% reduction in vegetative growth rates in vitro. Deletion of AbNIK1 resulted in a near complete loss of virulence, increased sensitivity to osmotic stress, and no changes in vegetative growth rates in vitro. Interestingly, addition of long polypeptides to spores of both Deltaabste12 and Deltaabnik1 during inoculations resulted in a complete restoration of pathogenicity through a yet to be defined mechanism.
Collapse
Affiliation(s)
- Yangrae Cho
- Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Eusebio-Cope A, Suzuki N, Sadeghi-Garmaroodi H, Taga M. Cytological and electrophoretic karyotyping of the chestnut blight fungus Cryphonectria parasitica. Fungal Genet Biol 2009; 46:342-51. [PMID: 19570503 DOI: 10.1016/j.fgb.2009.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
The karyotypes of nine strains including three transformants of the chestnut blight fungus Cryphonectria parasitica were analyzed by pulsed-field gel electrophoresis (PFGE) and cytology using a fluorescence microscope. Cytology of the mitotic metaphase showed n=9 for both standard strain EP155 and field strain GH2 infected by Cryphonectria hypovirus 3. Chromosomes were morphologically characterized by size, heterochromatic segment, and constriction. PFGE resolved 5 or 6 chromosomal DNA bands ranging from 3.3Mbp to 9.7Mbp, but accurate determination of the chromosome number was hampered by clumping of some bands. Banding profiles in PFGE were similar among the strains except for GH2, in which a chromosome translocation was detected by Southern blot analysis. By integrating the data from cytology and PFGE, the genome size of C. parasitica was estimated to be ca. 50Mbp. This is the first report of a cytological karyotype in the order Diaporthales.
Collapse
Affiliation(s)
- Ana Eusebio-Cope
- Agrivirology Laboratory, Research Institute for Bioresources, Okayama University, Kurashiki, Japan
| | | | | | | |
Collapse
|
42
|
He F, Zhang Y, Chen H, Zhang Z, Peng YL. The prediction of protein-protein interaction networks in rice blast fungus. BMC Genomics 2008; 9:519. [PMID: 18976500 PMCID: PMC2601049 DOI: 10.1186/1471-2164-9-519] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 11/02/2008] [Indexed: 01/09/2023] Open
Abstract
Background Protein-protein interaction (PPI) maps are useful tools for investigating the cellular functions of genes. Thus far, large-scale PPI mapping projects have not been implemented for the rice blast fungus Magnaporthe grisea, which is responsible for the most severe rice disease. Inspired by recent advances in PPI prediction, we constructed a PPI map of this important fungus. Results Using a well-recognized interolog approach, we have predicted 11,674 interactions among 3,017 M. grisea proteins. Although the scale of the constructed map covers approximately only one-fourth of the M. grisea's proteome, it is the first PPI map for this crucial organism and will therefore provide new insights into the functional genomics of the rice blast fungus. Focusing on the network topology of proteins encoded by known pathogenicity genes, we have found that pathogenicity proteins tend to interact with higher numbers of proteins. The pathogenicity proteins and their interacting partners in the entire network were then used to construct a subnet called a pathogenicity network. These data may provide further clues for the study of these pathogenicity proteins. Finally, it has been established that secreted proteins in M. grisea interact with fewer proteins. These secreted proteins and their interacting partners were also compiled into a network of secreted proteins, which may be helpful in constructing an interactome between the rice blast fungus and rice. Conclusion We predicted the PPIs of M. grisea and compiled them into a database server called MPID. It is hoped that MPID will provide new hints as to the functional genomics of this fungus. MPID is available at .
Collapse
Affiliation(s)
- Fei He
- State Key Laboratory for ArgoBiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | | | | | | | | |
Collapse
|
43
|
Taylor RD, Saparno A, Blackwell B, Anoop V, Gleddie S, Tinker NA, Harris LJ. Proteomic analyses of Fusarium graminearum grown under mycotoxin-inducing conditions. Proteomics 2008; 8:2256-65. [PMID: 18452225 DOI: 10.1002/pmic.200700610] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Non-gel-based quantitative proteomics technology was used to profile protein expression differences when Fusarium graminearum was induced to produce trichothecenes in vitro. As F. graminearum synthesizes and secretes trichothecenes early in the cereal host invasion process, we hypothesized that proteins contributing to infection would also be induced under conditions favouring mycotoxin synthesis. Protein samples were extracted from three biological replicates of a time course study and subjected to iTRAQ (isobaric tags for relative and absolute quantification) analysis. Statistical analysis of a filtered dataset of 435 proteins revealed 130 F. graminearum proteins that exhibited significant changes in expression, of which 72 were upregulated relative to their level at the initial phase of the time course. There was good agreement between upregulated proteins identified by 2-D PAGE/MS/MS and iTRAQ. RT-PCR and northern hybridization confirmed that genes encoding proteins which were upregulated based on iTRAQ were also transcriptionally active under mycotoxin producing conditions. Numerous candidate pathogenicity proteins were identified using this technique. These will provide leads in the search for mechanisms and markers of host invasion and novel antifungal targets.
Collapse
Affiliation(s)
- Rebecca D Taylor
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 2008; 3:e2300. [PMID: 18523684 PMCID: PMC2409186 DOI: 10.1371/journal.pone.0002300] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/15/2008] [Indexed: 12/30/2022] Open
Abstract
Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis.
Collapse
Affiliation(s)
- Darren M. Soanes
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Intikhab Alam
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Mike Cornell
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Han Min Wong
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Cornelia Hedeler
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Norman W. Paton
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Magnus Rattray
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Simon J. Hubbard
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
45
|
Sacristán S, García-Arenal F. The evolution of virulence and pathogenicity in plant pathogen populations. MOLECULAR PLANT PATHOLOGY 2008; 9:369-84. [PMID: 18705877 PMCID: PMC6640236 DOI: 10.1111/j.1364-3703.2007.00460.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The term virulence has a conflicting history among plant pathologists. Here we define virulence as the degree of damage caused to a host by parasite infection, assumed to be negatively correlated with host fitness, and pathogenicity the qualitative capacity of a parasite to infect and cause disease on a host. Selection may act on both virulence and pathogenicity, and their change in parasite populations can drive parasite evolution and host-parasite co-evolution. Extensive theoretical analyses of the factors that shape the evolution of pathogenicity and virulence have been reported in last three decades. Experimental work has not followed the path of theoretical analyses. Plant pathologists have shown greater interest in pathogenicity than in virulence, and our understanding of the molecular basis of pathogenicity has increased enormously. However, little is known regarding the molecular basis of virulence. It has been proposed that the mechanisms of recognition of parasites by hosts will have consequences for the evolution of pathogenicity, but much experimental work is still needed to test these hypotheses. Much theoretical work has been based on evidence from cellular plant pathogens. We review here the current experimental and observational evidence on which to test theoretical hypotheses or conjectures. We compare evidence from viruses and cellular pathogens, mostly fungi and oomycetes, which differ widely in genomic complexity and in parasitism. Data on the evolution of pathogenicity and virulence from viruses and fungi show important differences, and their comparison is necessary to establish the generality of hypotheses on pathogenicity and virulence evolution.
Collapse
Affiliation(s)
- Soledad Sacristán
- Depto. de Biotecnología, E.T.S.I. Agrónomos and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
46
|
Bolton MD, van Esse HP, Vossen JH, de Jonge R, Stergiopoulos I, Stulemeijer IJE, van den Berg GCM, Borrás-Hidalgo O, Dekker HL, de Koster CG, de Wit PJGM, Joosten MHAJ, Thomma BPHJ. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol Microbiol 2008; 69:119-36. [PMID: 18452583 DOI: 10.1111/j.1365-2958.2008.06270.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During tomato leaf colonization, the biotrophic fungus Cladosporium fulvum secretes several effector proteins into the apoplast. Eight effectors have previously been characterized and show no significant homology to each other or to other fungal genes. To discover novel C. fulvum effectors that might play a role in virulence, we utilized two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) to visualize proteins secreted during C. fulvum-tomato interactions. Three novel C. fulvum proteins were identified: CfPhiA, Ecp6 and Ecp7. CfPhiA shows homology to proteins found on fungal sporogenous cells called phialides. Ecp6 contains lysin motifs (LysM domains) that are recognized as carbohydrate-binding modules. Ecp7 encodes a small, cysteine-rich protein with no homology to known proteins. Heterologous expression of Ecp6 significantly increased the virulence of the vascular pathogen Fusarium oxysporum on tomato. Furthermore, by RNA interference (RNAi)-mediated gene silencing we demonstrate that Ecp6 is instrumental for C. fulvum virulence on tomato. Hardly any allelic variation was observed in the Ecp6 coding region of a worldwide collection of C. fulvum strains. Although none of the C. fulvum effectors identified so far have obvious orthologues in other organisms, conserved Ecp6 orthologues were identified in various fungal species. Homology-based modelling suggests that the LysM domains of C. fulvum Ecp6 may be involved in chitin binding.
Collapse
Affiliation(s)
- Melvin D Bolton
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genomics 2008; 9:147. [PMID: 18373860 PMCID: PMC2330156 DOI: 10.1186/1471-2164-9-147] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 03/28/2008] [Indexed: 11/21/2022] Open
Abstract
Background Duplication, followed by fixation or random loss of novel genes, contributes to genome evolution. Particular outcomes of duplication events are possibly associated with pathogenic life histories in fungi. To date, differential gene gain and loss have not been studied at genomic scales in fungal pathogens, despite this phenomenon's known importance in virulence in bacteria and viruses. Results To determine if patterns of gene duplication differed between pathogens and non-pathogens, we identified gene families across nine euascomycete and two basidiomycete species. Gene family size distributions were fit to power laws to compare gene duplication trends in pathogens versus non-pathogens. Fungal phytopathogens showed globally altered patterns of gene duplication, as indicated by differences in gene family size distribution. We also identified sixteen examples of gene family expansion and five instances of gene family contraction in pathogenic lineages. Expanded gene families included those predicted to be important in melanin biosynthesis, host cell wall degradation and transport functions. Contracted families included those encoding genes involved in toxin production, genes with oxidoreductase activity, as well as subunits of the vacuolar ATPase complex. Surveys of the functional distribution of gene duplicates indicated that pathogens show enrichment for gene duplicates associated with receptor and hydrolase activities, while euascomycete pathogens appeared to have not only these differences, but also significantly more duplicates associated with regulatory and carbohydrate binding functions. Conclusion Differences in the overall levels of gene duplication in phytopathogenic species versus non-pathogenic relatives implicate gene inventory flux as an important virulence-associated process in fungi. We hypothesize that the observed patterns of gene duplicate enrichment, gene family expansion and contraction reflect adaptation within pathogenic life histories. These adaptations were likely shaped by ancient, as well as contemporary, intimate associations with monocot hosts.
Collapse
|
48
|
Parker D, Beckmann M, Enot DP, Overy DP, Rios ZC, Gilbert M, Talbot N, Draper J. Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nat Protoc 2008; 3:435-45. [PMID: 18323815 DOI: 10.1038/nprot.2007.499] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between plants and compatible fungal pathogens are spatially and temporally dynamic, posing a major challenge for sampling and data analysis. A protocol is described for the infection of the model grass species Brachypodium distachyon with Magnaporthe grisea (rice blast), together with modifications to extend the use to rice and barley. We outline a method for the preparation of long-term stocks of virulent fungal pathogens and for the generation of fungal inoculants for challenge of host plants. Host plant growth, pathogen inoculation and plant sampling protocols are presented together with methods for assessing the efficiency of both infection and sampling procedures. Included in the anticipated results is a description of the use of metabolite fingerprinting and multivariate data analysis to assess disease synchrony and validate system reproducibility between experiments. The design concepts will have value in any studies using biological systems that contain dynamic variance associated with large compositional changes in sample matrix over time.
Collapse
Affiliation(s)
- David Parker
- Institute of Biological Sciences, University of Wales Aberystwyth, Penglais Campus, Aberystwyth SY23 3DA, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
The fungus Ustilago maydis and humans share disease-related proteins that are not found in Saccharomyces cerevisiae. BMC Genomics 2007; 8:473. [PMID: 18096044 PMCID: PMC2262911 DOI: 10.1186/1471-2164-8-473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/20/2007] [Indexed: 12/23/2022] Open
Abstract
Background The corn smut fungus Ustilago maydis is a well-established model system for molecular phytopathology. In addition, it recently became evident that U. maydis and humans share proteins and cellular processes that are not found in the standard fungal model Saccharomyces cerevisiae. This prompted us to do a comparative analysis of the predicted proteome of U. maydis, S. cerevisiae and humans. Results At a cut off at 20% identity over protein length, all three organisms share 1738 proteins, whereas both fungi share only 541 conserved proteins. Despite the evolutionary distance between U. maydis and humans, 777 proteins were shared. When applying a more stringent criterion (≥ 20% identity with a homologue in one organism over at least 50 amino acids and ≥ 10% less in the other organism), we found 681 proteins for the comparison of U. maydis and humans, whereas the both fungi share only 622 fungal specific proteins. Finally, we found that S. cerevisiae and humans shared 312 proteins. In the U. maydis to H. sapiens homology set 454 proteins are functionally classified and 42 proteins are related to serious human diseases. However, a large portion of 222 proteins are of unknown function. Conclusion The fungus U. maydis has a long history of being a model system for understanding DNA recombination and repair, as well as molecular plant pathology. The identification of functionally un-characterized genes that are conserved in humans and U. maydis opens the door for experimental work, which promises new insight in the cell biology of the mammalian cell.
Collapse
|