1
|
Xu WT, Lu XY, Wang Y, Li MH, Hu K, Shen ZJ, Sun XQ, Zhang YM. A Lateral Flow-Recombinase Polymerase Amplification Method for Colletotrichum gloeosporioides Detection. J Fungi (Basel) 2024; 10:315. [PMID: 38786670 PMCID: PMC11121841 DOI: 10.3390/jof10050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The greater yam (Dioscorea alata), a widely cultivated and nutritious food crop, suffers from widespread yield reduction due to anthracnose caused by Colletotrichum gloeosporioides. Latent infection often occurs before anthracnose phenotypes can be detected, making early prevention difficult and causing significant harm to agricultural production. Through comparative genomic analysis of 60 genomes of 38 species from the Colletotrichum genus, this study identified 17 orthologous gene groups (orthogroups) that were shared by all investigated C. gloeosporioides strains but absent from all other Colletotrichum species. Four of the 17 C. gloeosporioides-specific orthogroups were used as molecular markers for PCR primer designation and C. gloeosporioides detection. All of them can specifically detect C. gloeosporioides out of microbes within and beyond the Colletotrichum genus with different sensitivities. To establish a rapid, portable, and operable anthracnose diagnostic method suitable for field use, specific recombinase polymerase amplification (RPA) primer probe combinations were designed, and a lateral flow (LF)-RPA detection kit for C. gloeosporioides was developed, with the sensitivity reaching the picogram (pg) level. In conclusion, this study identified C. gloeosporioides-specific molecular markers and developed an efficient method for C. gloeosporioides detection, which can be applied to the prevention and control of yam anthracnose as well as anthracnose caused by C. gloeosporioides in other crops. The strategy adopted by this study also serves as a reference for the identification of molecular markers and diagnosis of other plant pathogens.
Collapse
Affiliation(s)
- Wei-Teng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (W.-T.X.); (X.-Y.L.); (Y.W.); (M.-H.L.); (K.H.); (Z.-J.S.); (X.-Q.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing 210014, China
| | - Xin-Yu Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (W.-T.X.); (X.-Y.L.); (Y.W.); (M.-H.L.); (K.H.); (Z.-J.S.); (X.-Q.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing 210014, China
| | - Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (W.-T.X.); (X.-Y.L.); (Y.W.); (M.-H.L.); (K.H.); (Z.-J.S.); (X.-Q.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing 210014, China
| | - Ming-Han Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (W.-T.X.); (X.-Y.L.); (Y.W.); (M.-H.L.); (K.H.); (Z.-J.S.); (X.-Q.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing 210014, China
| | - Ke Hu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (W.-T.X.); (X.-Y.L.); (Y.W.); (M.-H.L.); (K.H.); (Z.-J.S.); (X.-Q.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing 210014, China
| | - Zi-Jie Shen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (W.-T.X.); (X.-Y.L.); (Y.W.); (M.-H.L.); (K.H.); (Z.-J.S.); (X.-Q.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing 210014, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (W.-T.X.); (X.-Y.L.); (Y.W.); (M.-H.L.); (K.H.); (Z.-J.S.); (X.-Q.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing 210014, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (W.-T.X.); (X.-Y.L.); (Y.W.); (M.-H.L.); (K.H.); (Z.-J.S.); (X.-Q.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing 210014, China
| |
Collapse
|
2
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
3
|
Jacob C, Student J, Bridges DF, Chu W, Porwollik S, McClelland M, Melotto M. Intraspecies competition among Salmonella enterica isolates in the lettuce leaf apoplast. FRONTIERS IN PLANT SCIENCE 2024; 15:1302047. [PMID: 38352648 PMCID: PMC10861783 DOI: 10.3389/fpls.2024.1302047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Multiple Salmonella enterica serovars and strains have been reported to be able to persist inside the foliar tissue of lettuce (Lactuca sativa L.), potentially resisting washing steps and reaching the consumer. Intraspecies variation of the bacterial pathogen and of the plant host can both significantly affect the outcome of foliar colonization. However, current understanding of the mechanisms underlying this phenomenon is still very limited. In this study, we evaluated the foliar fitness of 14 genetically barcoded S. enterica isolates from 10 different serovars, collected from plant and animal sources. The S. enterica isolates were vacuum-infiltrated individually or in pools into the leaves of three- to four-week-old lettuce plants. To estimate the survival capacity of individual isolates, we enumerated the bacterial populations at 0- and 10- days post-inoculation (DPI) and calculated their net growth. The competition of isolates in the lettuce apoplast was assessed through the determination of the relative abundance change of barcode counts of each isolate within pools during the 10 DPI experimental period. Isolates exhibiting varying apoplast fitness phenotypes were used to evaluate their capacity to grow in metabolites extracted from the lettuce apoplast and to elicit the reactive oxygen species burst immune response. Our study revealed that strains of S. enterica can substantially differ in their ability to survive and compete in a co-inhabited lettuce leaf apoplast. The differential foliar fitness observed among these S. enterica isolates might be explained, in part, by their ability to utilize nutrients available in the apoplast and to evade plant immune responses in this niche.
Collapse
Affiliation(s)
- Cristián Jacob
- Departamento de Ciencias Vegetales, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joseph Student
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Horticulture and Agronomy Graduate Program, University of California, Davis, Davis, CA, United States
| | - David F. Bridges
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Kizheva Y, Georgiev G, Donchev D, Dimitrova M, Pandova M, Rasheva I, Hristova P. Cross-Over Pathogenic Bacteria Detected in Infected Tomatoes ( Solanum lycopersicum L.) and Peppers ( Capsicum annuum L.) in Bulgaria. Pathogens 2022; 11:1507. [PMID: 36558841 PMCID: PMC9783152 DOI: 10.3390/pathogens11121507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The ability of certain human pathogens to adapt to plants without losing their virulence toward people is a major concern today. Thus, the aim of the present work was the investigation of the presence of cross-over pathogenic bacteria in infected tomato and pepper plants. The objects of the study were 21 samples from seven different parts of the plants and three from tomato rhizosphere. In total, 26 strains were isolated, identified by MALDI-TOF, and phenotypically characterized. The PCR amplification of the rpoB gene was applied as an approach for the rapid detection of cross-over pathogens in plant samples. A great bacterial diversity was revealed from tomato samples as nine species were identified (Leclercia adecarboxylata, Pseudesherichia vulneris, Enterobacter cancerogenus, Enterobacter cloacae, Enterobacter bugandensis, Acinetobacter calcoaceticus, Pantoea agglomerans, Pantoea ananatis, and Pectobacterium carotovorum). Polymicrobial contaminations were observed in samples T2 (tomato flower) and T10 (tomato fruit). Five species were identified from pepper samples (P. agglomerans, L. adecarboxylata, Pseudomonas sp., Pseudomonas putida, and Enterococcus sp.). Antibiotic resistance patterns were assigned in accordance with EFSA recommendations. All isolates showed varying resistance to the tested antibiotics. The genetic basis for the phenotypic antibiotic resistance was not revealed. No genes for the virulence factors were found among the population. To our knowledge, this is the first overall investigation of tomato and pepper cross-over pathogenic bacterial populations in Bulgaria.
Collapse
Affiliation(s)
- Yoana Kizheva
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University, 1504 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
5
|
Maddock D, Arnold D, Denman S, Brady C. Description of a novel species of Leclercia, Leclercia tamurae sp. nov. and proposal of a novel genus Silvania gen. nov. containing two novel species Silvania hatchlandensis sp. nov. and Silvania confinis sp. nov. isolated from the rhizosphere of oak. BMC Microbiol 2022; 22:289. [PMID: 36460957 PMCID: PMC9716735 DOI: 10.1186/s12866-022-02711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acute Oak Decline (AOD) is a decline disease first reported on native oaks in the UK, but in recent years reports from further afield such as Europe and the Middle East, indicate that the distribution and host range is increasing at an alarming rate. The stem weeping symptoms of the disease partially develop due to polymicrobial-host interaction, caused by several members of the order Enterobacterales. While investigating the rhizosphere soil of AOD-unaffected trees, termed 'healthy' trees, and diseased oaks suffering from Acute Oak Decline (AOD), an enrichment method designed for enhanced recovery of Enterobacterales led to the recovery of several isolates that could not be classified as any existing species. These isolates showed a close relationship to the genus Leclercia, of which both species are of clinical importance, but the type species Leclercia adecarboxylata also displays plant growth-promoting properties in the rhizosphere. RESULTS Partial sequencing of four housekeeping genes revealed similarity to the genus Leclercia with varying degrees of relatedness. As such a complete polyphasic approach was used to determine the true taxonomic position of these isolates. This involved whole genome sequencing, phylogenomic analysis, phylogenetic analysis of both the 16S rRNA and four housekeeping gene sequences, combined with phenotypic testing and fatty acid analysis. Both the phylogenomic and phylogenetic analyses separated the isolates into four clusters, two of which were contained in the Leclercia clade. The remaining two clusters formed a separate lineage far removed from any currently defined species. Further investigation into the role of the isolates as plant growth-promoting bacteria as well as plant pathogens was investigated computationally, revealing a number of plant growth-promoting traits as well as virulence genes related to motility, adhesion and immune modulation. CONCLUSION Based on the genotypic and phenotypic data presented here, these isolates could be differentiated from each other and their closest neighbours. As such we propose the description of Leclercia tamurae sp. nov. (type strain H6S3T = LMG 32609T = CCUG 76176T), Silvania gen. nov., Silvania hatchlandensis sp. nov. (type strain H19S6T = LMG 32608T = CCUG 76185T) and Silvania confinis sp. nov. (type strain H4N4T = LMG 32607T = CCUG 76175T). Due to their interesting protein annotations and alignments, these species warrant further investigation for their role in relation to plant health.
Collapse
Affiliation(s)
- Daniel Maddock
- grid.6518.a0000 0001 2034 5266Centre for Research in Bioscience, School of Applied Sciences, University of the West of England, Bristol, BS16 1QY UK
| | - Dawn Arnold
- grid.417899.a0000 0001 2167 3798Harper Adams University, Shropshire, Newport, UK
| | - Sandra Denman
- grid.479676.d0000 0001 1271 4412Centre for Ecosystems, Society and Biosecurity, Forest Research, Farnham, UK
| | - Carrie Brady
- grid.6518.a0000 0001 2034 5266Centre for Research in Bioscience, School of Applied Sciences, University of the West of England, Bristol, BS16 1QY UK
| |
Collapse
|
6
|
Brady C, Kaur S, Crampton B, Maddock D, Arnold D, Denman S. Transfer of Erwinia toletana and Erwinia iniecta to a novel genus Winslowiella gen. nov. as Winslowiella toletana comb. nov. and Winslowiella iniecta comb. nov. and description of Winslowiella arboricola sp. nov., isolated from bleeding cankers on broadleaf hosts. Front Microbiol 2022; 13:1063107. [DOI: 10.3389/fmicb.2022.1063107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Following a screening campaign of bleeding cankers of broadleaf hosts in Great Britain, numerous bacterial strains were isolated, identified by 16S rRNA and protein-coding gene sequencing and ultimately classified. During the course of the study, several Gram-negative, facultatively anaerobic strains were isolated from bleeding Platanus x acerifolia (London plane) and Tilia x europaea (common lime) cankers that could not be assigned to an existing species. Partial 16S rRNA gene sequencing placed these strains in the genus Erwinia, as a close phylogenetic relative of Erwinia toletana. In an effort to determine the taxonomic position of the strains, a polyphasic approach was followed including genotypic, genomic, phenotypic, and chemotaxonomic assays. Multilocus sequence analysis based on four protein-coding genes (gyrB, rpoB, infB, and atpD) confirmed the phylogenetic position of the strains as a novel taxon of subgroup 3 of the genus Erwinia, along with E. toletana and E. iniecta, and furthermore, provided support for their reclassification in a novel genus. Whole genome comparisons allowed the delimitation of the novel species and also supported the proposed transfer of subgroup 3 species to a novel genus in the Erwiniaeae. Phenotypically the novel species could be differentiated from E. toletana and E. iniecta, and the novel genus could be differentiated from the closely related genera Erwinia and Mixta. Therefore, we propose (1) the reclassification of E. toletana and E. iniecta in a novel genus, Winslowiella gen. nov., as Winslowiella toletana comb. nov. and Winslowiella iniecta comb. nov., with W. toletana comb. nov. as the type species (type strain A37T = CFBP 6631T = ATCC 700880T = CECT 5263T), and (2) classification of the novel strains as Winslowiella arboricola sp. nov. (type strain BAC 15a-03bT = LMG 32576T = NCPPB 4696T).
Collapse
|
7
|
Khayi S, Chan KG, Faure D. Patterns of Genomic Variations in the Plant Pathogen Dickeya solani. Microorganisms 2022; 10:2254. [PMID: 36422324 PMCID: PMC9699125 DOI: 10.3390/microorganisms10112254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 01/14/2024] Open
Abstract
The plant pathogen Dickeya solani causes soft rot and blackleg diseases in several crops including Solanum tuberosum. Unveiling the patterns of its diversity contributes to understanding the emergence and virulence of this pathogen in potato agro-systems. In this study, we analyzed the genome of several D. solani strains exhibiting an atypically high number of genetic variations. Variant calling and phylogenomics support the evidence that the strains RNS10-105-1A, A623S-20A-17 and RNS05.1.2A belong to a divergent sub-group of D. solani for which we proposed RNS05.1.2A as a reference strain. In addition, we showed that the variations (1253 to 1278 snp/indels) in strains RNS13-30-1A, RNS13-31-1A and RNS13-48-1A were caused by a horizontal gene transfer event from a donor belonging to the D. solani RNS05.1.2A subgroup. The overall results highlight the patterns driving the diversification in D. solani species. This work contributes to understanding patterns and causes of diversity in the emerging pathogen D. solani.
Collapse
Affiliation(s)
- Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212100, China
| | - Denis Faure
- University of Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Thomas GH. Microbial Musings - Autumn 2022. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748692 DOI: 10.1099/mic.0.001291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gavin H Thomas
- Department of Biology, University of York, Heslington, UK
| |
Collapse
|
9
|
Loc M, Milošević D, Ivanović Ž, Ignjatov M, Budakov D, Grahovac J, Grahovac M. Genetic Diversity of Pectobacterium spp. on Potato in Serbia. Microorganisms 2022; 10:microorganisms10091840. [PMID: 36144442 PMCID: PMC9503840 DOI: 10.3390/microorganisms10091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Pectobacterium is a diverse genus which comprises of multiple destructive bacterial species which cause soft rot/blackleg/wilt disease complex in a wide variety of crops by employing high levels of virulence factors. During the 2018, 2019 and 2020 potato growing seasons, numerous outbreaks of bacterial wilt, stem blackleg and tuber soft rot were recorded, and symptomatic plant samples from ten localities in the Province of Vojvodina (Serbia) were collected and analysed. Bacterial soft-rot pathogens were detected in 63 samples using genus and species-specific primers. Through 16S rRNA Sanger sequencing of 19 representative isolates, the identity of P. brasiliense (73.7%), P. punjabense (15.8%), and P. carotovorum (10.5%) species were revealed. To further validate the identification, genotypic profiling of Pectobacterium strains using rep-PCR (ERIC, BOX, REP) was conducted for 25 selected isolates and the phylogenetic assessment based on four selected housekeeping genes (gyrA, recA, rpoA, and rpoS). Physiological and biochemical properties were analysed using basic microbiological tests and VITEK® 2 GN card, and pathogenicity was confirmed on cv. VR808 and cv. Desiree potato tubers and plants. This study confirmed the distinctiveness of the newly described P. punjabense in Serbia as well as the high diversity of Pectobacterium brasiliense and Pectobacterium carotovorum species in Serbia.
Collapse
Affiliation(s)
- Marta Loc
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Dragana Milošević
- Laboratory for Seed Testing, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21101 Novi Sad, Serbia
| | - Žarko Ivanović
- Department of Plant Diseases, Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade, Serbia
| | - Maja Ignjatov
- Laboratory for Seed Testing, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21101 Novi Sad, Serbia
| | - Dragana Budakov
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | - Mila Grahovac
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
10
|
Toth IK. Microbe Profile: Pectobacterium atrosepticum: an enemy at the door. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35917166 DOI: 10.1099/mic.0.001221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pectobacterium atrosepticum is part of a larger family of soft rot bacteria (Pectobacteriaceae) that cause disease on a wide range of crops worldwide. They are closely related to members of the Enterobacteriaceae and, as the plant pathogens and plant associated members of the group, form part of a continuum towards opportunistic and more devastating animal and human pathogens. Many of the horizontally acquired islands present in the genome of P. atrosepticum are directly responsible for life on plants. These include genes for a plethora of plant cell wall degrading enzymes, plant toxins, siderophores etc., which are exported by multiple secretion systems under a highly coordinated regulation system.
Collapse
Affiliation(s)
- Ian K Toth
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
11
|
Zhang Y, Chu H, Yu L, He F, Gao Y, Tang L. Analysis of the Taxonomy, Synteny, and Virulence Factors for Soft Rot Pathogen Pectobacterium aroidearum in Amorphophallus konjac Using Comparative Genomics. Front Microbiol 2022; 13:868709. [PMID: 35910650 PMCID: PMC9326479 DOI: 10.3389/fmicb.2022.868709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Bacterial soft rot is a devastating disease for a wide range of crops, vegetables, and ornamental plants including konjac (Amorphophallus konjac). However, the pangenome and genomic plasticity of the konjac soft rot pathogens is little explored. In this study, we reported the complete genome sequences of 11 bacterial isolates that can cause typical soft rot symptoms in konjac by in vitro and in vivo pathogenicity tests. Based on in silico DNA-DNA hybridization, average nucleotide identity and phylogenomic analysis, all 11 isolates were determined to be Pectobacterium aroidearum. In addition, synteny analysis of these genomes revealed considerable chromosomal inversions, one of which is triggered by homologous recombination of ribose operon. Pangenome analysis and COG enrichment analysis showed that the pangenome of P. aroidearum is open and that accessory genes are enriched in replication, recombination, and repair. Variations in type IV secretion system and type VI secretion system were found, while plant cell wall degrading enzymes were conserved. Furthermore, sequence analyses also provided evidence for the presence of a type V secretion system in Pectobacterium. These findings advance our understanding of the pathogenicity determinants, genomic plasticity, and evolution of P. aroidearum.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
| | - Honglong Chu
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
| | - Liqiong Yu
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
| | - Fei He
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Yong Gao
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
| | - Lizhou Tang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
12
|
Ge T, Jiang H, Tan EH, Johnson SB, Larkin RP, Charkowski AO, Secor G, Hao J. Pangenomic Analysis of Dickeya dianthicola Strains Related to the Outbreak of Blackleg and Soft Rot of Potato in the United States. PLANT DISEASE 2021; 105:3946-3955. [PMID: 34213964 DOI: 10.1094/pdis-03-21-0587-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dickeya dianthicola has caused an outbreak of blackleg and soft rot of potato in the eastern half of the United States since 2015. To investigate genetic diversity of the pathogen, a comparative analysis was conducted on genomes of D. dianthicola strains. Whole genomes of 16 strains from the United States outbreak were assembled and compared with 16 previously sequenced genomes of D. dianthicola isolated from potato or carnation. Among the 32 strains, eight distinct clades were distinguished based on phylogenomic analysis. The outbreak strains were grouped into three clades, with the majority of the strains in clade I. Clade I strains were unique and homogeneous, suggesting a recent incursion of this strain into potato production from alternative hosts or environmental sources. The pangenome of the 32 strains contained 6,693 genes, 3,377 of which were core genes. By screening primary protein subunits associated with virulence from all U.S. strains, we found that many virulence-related gene clusters, such as plant cell wall degrading enzyme genes, flagellar and chemotaxis related genes, two-component regulatory genes, and type I/II/III secretion system genes, were highly conserved but that type IV and type VI secretion system genes varied. The clade I strains encoded two clusters of type IV secretion systems, whereas the clade II and III strains encoded only one cluster. Clade I and II strains encoded one more VgrG/PAAR spike protein than did clade III. Thus, we predicted that the presence of additional virulence-related genes may have enabled the unique clade I strain to become predominant in the U.S. outbreak.
Collapse
Affiliation(s)
- Tongling Ge
- School of Food and Agriculture, University of Maine, Orono, ME 04469
| | - He Jiang
- School of Food and Agriculture, University of Maine, Orono, ME 04469
| | - Ek Han Tan
- School of Biology and Ecology, University of Maine, Orono, ME 04469
| | | | - Robert P Larkin
- USDA-ARS, New England Plant, Soil, and Water Laboratory, University of Maine, Orono, ME 04469
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Gary Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND58108
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469
| |
Collapse
|
13
|
Petrova O, Parfirova O, Gogolev Y, Gorshkov V. Stringent Response in Bacteria and Plants with Infection. PHYTOPATHOLOGY 2021; 111:1811-1817. [PMID: 34296953 DOI: 10.1094/phyto-11-20-0510-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stringent response (SR), a primary stress reaction in bacteria and plant chloroplasts, is a molecular switch that provides operational stress-induced reprogramming of transcription under conditions of abiotic and biotic stress. Because the infection is a stressful situation for both partners (the host plant and the pathogen), we analyzed the expression of bacterial and plastid SR-related genes during plant-microbial interaction. In the phytopathogenic bacterium Pectobacterium atrosepticum, SpoT-dependent SR was induced after contact with potato or tobacco plants. In plants, two different scenarios of molecular events developed under bacterial infection. Plastid SR was not induced in the host plant potato Solanum tuberosum, which co-evolved with the pathogen for a long time. In this case, the salicylic acid defense pathway was activated and plants were more resistant to bacterial infection. SR was activated in the tobacco Nicotiana tabacum (experimental host) along with activation of jasmonic acid-related genes, resulting in plant death. These results are important to more fully understand the evolutionary interactions between plants and symbionts/pathogens.
Collapse
Affiliation(s)
- Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| |
Collapse
|
14
|
Schellenberger R, Crouzet J, Nickzad A, Shu LJ, Kutschera A, Gerster T, Borie N, Dawid C, Cloutier M, Villaume S, Dhondt-Cordelier S, Hubert J, Cordelier S, Mazeyrat-Gourbeyre F, Schmid C, Ongena M, Renault JH, Haudrechy A, Hofmann T, Baillieul F, Clément C, Zipfel C, Gauthier C, Déziel E, Ranf S, Dorey S. Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate Arabidopsis innate immunity through two independent mechanisms. Proc Natl Acad Sci U S A 2021; 118:e2101366118. [PMID: 34561304 PMCID: PMC8488661 DOI: 10.1073/pnas.2101366118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
Plant innate immunity is activated upon perception of invasion pattern molecules by plant cell-surface immune receptors. Several bacteria of the genera Pseudomonas and Burkholderia produce rhamnolipids (RLs) from l-rhamnose and (R)-3-hydroxyalkanoate precursors (HAAs). RL and HAA secretion is required to modulate bacterial surface motility, biofilm development, and thus successful colonization of hosts. Here, we show that the lipidic secretome from the opportunistic pathogen Pseudomonas aeruginosa, mainly comprising RLs and HAAs, stimulates Arabidopsis immunity. We demonstrate that HAAs are sensed by the bulb-type lectin receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION/S-DOMAIN-1-29 (LORE/SD1-29), which also mediates medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) perception, in the plant Arabidopsis thaliana HAA sensing induces canonical immune signaling and local resistance to plant pathogenic Pseudomonas infection. By contrast, RLs trigger an atypical immune response and resistance to Pseudomonas infection independent of LORE. Thus, the glycosyl moieties of RLs, although abolishing sensing by LORE, do not impair their ability to trigger plant defense. Moreover, our results show that the immune response triggered by RLs is affected by the sphingolipid composition of the plasma membrane. In conclusion, RLs and their precursors released by bacteria can both be perceived by plants but through distinct mechanisms.
Collapse
Affiliation(s)
- Romain Schellenberger
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Arvin Nickzad
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Lin-Jie Shu
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Alexander Kutschera
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Tim Gerster
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Nicolas Borie
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Maude Cloutier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Sandra Villaume
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Jane Hubert
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Sylvain Cordelier
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Florence Mazeyrat-Gourbeyre
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Christian Schmid
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Jean-Hugues Renault
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Arnaud Haudrechy
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Thomas Hofmann
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Fabienne Baillieul
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Christophe Clément
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada;
| | - Stefanie Ranf
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany;
| | - Stéphan Dorey
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France;
| |
Collapse
|
15
|
Esteban-Cuesta I, Labrador M, Hunt K, Reese S, Fischer J, Schwaiger K, Gareis M. Phenotypic and Genetic Comparison of a Plant-Internalized and an Animal-Isolated Salmonella Choleraesuis Strain. Microorganisms 2021; 9:microorganisms9081554. [PMID: 34442630 PMCID: PMC8398053 DOI: 10.3390/microorganisms9081554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Contamination of fresh produce with human pathogens poses an important risk for consumers, especially after raw consumption. Moreover, if microorganisms are internalized, no removal by means of further hygienic measures would be possible. Human pathogenic bacteria identified in these food items are mostly of human or animal origin and an adaptation to this new niche and particularly for internalization would be presumed. This study compares a plant-internalized and an animal-borne Salmonella enterica subsp. enterica serovar Choleraesuis aiming at the identification of adaptation of the plant-internalized strain to its original environment. For this purpose, a phenotypical characterization by means of growth curves under conditions resembling the indigenous environment from the plant-internalized strain and further analyses using Pulsed-field gel electrophoresis and Matrix-assisted laser desorption ionization time of flight spectrometry were assessed. Furthermore, comparative genomic analyses by means of single nucleotide polymorphisms and identification of present/absent genes were performed. Although some phenotypical and genetic differences could be found, no signs of a specific adaptation for colonization and internalization in plants could be clearly identified. This could suggest that any Salmonella strain could directly settle in this niche without any evolutionary process being necessary. Further comparative analysis including internalized strains would be necessary to assess this question. However, these kinds of strains are not easily available.
Collapse
Affiliation(s)
- Irene Esteban-Cuesta
- Chair of Food Safety, Veterinary Faculty, LMU Munich, 85764 Oberschleissheim, Germany; (K.H.); (K.S.); (M.G.)
- Correspondence:
| | - Mirian Labrador
- Departamento de Producción Animal y Ciencia de los Alimentos, Veterinary Faculty, Instituto Agroalimentario de Aragon-IA2, University of Zaragoza-CITA, 50013 Zaragoza, Spain;
| | - Katharina Hunt
- Chair of Food Safety, Veterinary Faculty, LMU Munich, 85764 Oberschleissheim, Germany; (K.H.); (K.S.); (M.G.)
| | - Sven Reese
- Chair of Anatomy, Histology and Embryology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Jennie Fischer
- National Salmonella Reference Laboratory, Unit Food Microbiology, Host-Pathogen-Interactions, Department of Biological Safety, German Federal Institute for Risk Assessment (Bundesinstitut für Risikobewertung—BfR), 12277 Berlin, Germany;
| | - Karin Schwaiger
- Chair of Food Safety, Veterinary Faculty, LMU Munich, 85764 Oberschleissheim, Germany; (K.H.); (K.S.); (M.G.)
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, 1220 Vienna, Austria
| | - Manfred Gareis
- Chair of Food Safety, Veterinary Faculty, LMU Munich, 85764 Oberschleissheim, Germany; (K.H.); (K.S.); (M.G.)
| |
Collapse
|
16
|
Wang H, Wang Y, Humphris S, Nie W, Zhang P, Wright F, Campbell E, Hu B, Fan J, Toth I. Pectobacterium atrosepticum KDPG aldolase, Eda, participates in the Entner-Doudoroff pathway and independently inhibits expression of virulence determinants. MOLECULAR PLANT PATHOLOGY 2021; 22:271-283. [PMID: 33301200 PMCID: PMC7814964 DOI: 10.1111/mpp.13025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 05/22/2023]
Abstract
Pectobacterium carotovorum has an incomplete Entner-Doudoroff (ED) pathway, including enzyme 2-keto-3-deoxy-6-phosphogluconate aldolase (Eda) but lacking phosphogluconate dehydratase (Edd), while P. atrosepticum (Pba) has a complete pathway. To understand the role of the ED pathway in Pectobacterium infection, mutants of these two key enzymes, Δeda and Δedd, were constructed in Pba SCRI1039. Δeda exhibited significant decreased virulence on potato tubers and colonization in planta and was greatly attenuated in pectinase activity and the ability to use pectin breakdown products, including polygalacturonic acid (PGA) and galacturonic acid. These reduced phenotypes were restored following complementation with an external vector expressing eda. Quantitative reverse transcription PCR analysis revealed that expression of the pectinase genes pelA, pelC, pehN, pelW, and pmeB in Δeda cultured in pyruvate, with or without PGA, was significantly reduced compared to the wild type, while genes for virulence regulators (kdgR, hexR, hexA, and rsmA) remained unchanged. However, Δedd showed similar phenotypes to the wild type. To our knowledge, this is the first demonstration that disruption of eda has a feedback effect on inhibiting pectin degradation and that Eda is involved in building the arsenal of pectinases needed during infection by Pectobacterium.
Collapse
Affiliation(s)
- Huan Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
- Institute of Agricultural Science of Taihu Lake DistrictSuzhouChina
| | - Yujie Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Sonia Humphris
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| | - Weihua Nie
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Pengfei Zhang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Frank Wright
- Bioinformatics and StatisticsJames Hutton InstituteDundeeUK
| | - Emma Campbell
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| | - Baishi Hu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jiaqin Fan
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Ian Toth
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| |
Collapse
|
17
|
Oulghazi S, Sarfraz S, Zaczek-Moczydłowska MA, Khayi S, Ed-Dra A, Lekbach Y, Campbell K, Novungayo Moleleki L, O’Hanlon R, Faure D. Pectobacterium brasiliense: Genomics, Host Range and Disease Management. Microorganisms 2021; 9:E106. [PMID: 33466309 PMCID: PMC7824751 DOI: 10.3390/microorganisms9010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Pectobacterium brasiliense (Pbr) is considered as one of the most virulent species among the Pectobacteriaceae. This species has a broad host range within horticulture crops and is well distributed elsewhere. It has been found to be pathogenic not only in the field causing blackleg and soft rot of potato, but it is also transmitted via storage causing soft rot of other vegetables. Genomic analysis and other cost-effective molecular detection methods such as a quantitative polymerase chain reaction (qPCR) are essential to investigate the ecology and pathogenesis of the Pbr. The lack of fast, field deployable point-of-care testing (POCT) methods, specific control strategies and current limited genomic knowledge make management of this species difficult. Thus far, no comprehensive review exists about Pbr, however there is an intense need to research the biology, detection, pathogenicity and management of Pbr, not only because of its fast distribution across Europe and other countries but also due to its increased survival to various climatic conditions. This review outlines the information available in peer-reviewed literature regarding host range, detection methods, genomics, geographical distribution, nomenclature and taxonomical evolution along with some of the possible management and control strategies. In summary, the conclusions and a further directions highlight the management of this species.
Collapse
Affiliation(s)
- Said Oulghazi
- Department of Biology, Faculty of Sciences, Moulay Ismaïl University, BP.11201, Zitoune Meknes 50000, Morocco; (S.O.); (A.E.-D.)
- Institute for Integrative Biology of the Cell (I2BC), CEA CNRS University Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Sohaib Sarfraz
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Maja A. Zaczek-Moczydłowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; (M.A.Z.-M.); (K.C.)
| | - Slimane Khayi
- Biotechnology Research Unit, CRRA-Rabat, National Institute for Agricultural Research (INRA), Rabat 10101, Morocco;
| | - Abdelaziz Ed-Dra
- Department of Biology, Faculty of Sciences, Moulay Ismaïl University, BP.11201, Zitoune Meknes 50000, Morocco; (S.O.); (A.E.-D.)
| | - Yassir Lekbach
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China;
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; (M.A.Z.-M.); (K.C.)
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Richard O’Hanlon
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, UK;
- Department of Agriculture, Food and the Marine, D02 WK12 Dublin 2, Ireland
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CEA CNRS University Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
18
|
Bakhshi Ganje M, Mackay J, Nicolaisen M, Shams-Bakhsh M. Comparative Genomics, Pangenome, and Phylogenomic Analyses of Brenneria spp., and Delineation of Brenneria izadpanahii sp. nov. PHYTOPATHOLOGY 2021; 111:78-95. [PMID: 32407252 DOI: 10.1094/phyto-04-20-0129-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brenneria species are bacterial plant pathogens mainly affecting woody plants. Association of all members with devastating disorders (e.g., acute oak decline in Iran and United Kingdom) are due to adaptation and pathogenic behavior in response to host and environmental factors. Some species, including B. goodwinii, B. salicis, and B. nigrifluens, also show endophytic residence. Here we show that all species including novel Brenneria sp. are closely related. Gene-based and genome/pangenome-based phylogeny divide the genus into two distinct lineages, Brenneria clades A and B. The two clades were functionally distinct and were consistent with their common and special potential activities as determined via annotation of functional domains. Pangenome analysis demonstrated that the core pathogenicity factors were highly conserved, an hrp gene cluster encoding a type III secretion system was found in all species except B. corticis. An extensive repertoire of candidate virulence factors was identified. Comparative genomics indicated a repertoire of plant cell wall degrading enzymes, metabolites/antibiotics, and numerous prophages providing new insights into Brenneria-host interactions and appropriate targets for further characterization. This work not only documented the genetic differentiation of Brenneria species but also delineates a more functionally driven understanding of Brenneria by comparison with relevant Pectobacteriaceae thereby substantially enriching the extent of information available for functional genomic investigations.
Collapse
Affiliation(s)
- Meysam Bakhshi Ganje
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - John Mackay
- Department of Plant Sciences, University of Oxford, Oxford, U.K
| | - Mogens Nicolaisen
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Pothakos V, De Vuyst L, Zhang SJ, De Bruyn F, Verce M, Torres J, Callanan M, Moccand C, Weckx S. Temporal shotgun metagenomics of an Ecuadorian coffee fermentation process highlights the predominance of lactic acid bacteria. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Zhang H, Zhang Q, Chen S, Zhang Z, Song J, Long Z, Yu Y, Fang H. Enterobacteriaceae predominate in the endophytic microbiome and contribute to the resistome of strawberry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138708. [PMID: 32334231 DOI: 10.1016/j.scitotenv.2020.138708] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance genes (ARGs) harbored by plant microbiomes have been implicated as a potential risk to public health via food chain, especially directly edible fruits and vegetables. Here, we investigated the microbiome and antibiotic resistome in soil-strawberry ecosystem using shotgun metagenomic sequencing. The results showed that the enterobacterial population dominated the endophytes of strawberry fruits. Moreover, 85 subtypes of ARGs, including several clinically important ARGs, were detected in the strawberry fruit metagenomes. Additionally, host tracking analysis in combination with antibiotic-resistant bacterial isolate screening suggested that fruit-borne ARGs were mainly carried by members of the Enterobacteriaceae family. Unexpectedly, most of fruit-borne isolates were found to be resistant to several clinically important antimicrobials, e.g., erythromycin and cephalexin. Our findings provide broad insights into endophytic antibiotic resistomes of direct edible strawberry fruits and their potential hosts, and highlight the potential exposure risks of plant microbiomes to the human food chain.
Collapse
Affiliation(s)
- Houpu Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qianke Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Chen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zihan Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Song
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengnan Long
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Key laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Key laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Fan J, Ma L, Zhao C, Yan J, Che S, Zhou Z, Wang H, Yang L, Hu B. Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. MOLECULAR PLANT PATHOLOGY 2020; 21:871-891. [PMID: 32267092 PMCID: PMC7214478 DOI: 10.1111/mpp.12936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome-wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA-Seq analyses revealed that the differentially expressed genes (log2 -fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log2 -fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis-related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work.
Collapse
Affiliation(s)
- Jiaqin Fan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Lin Ma
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Chendi Zhao
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jingyuan Yan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Shu Che
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Zhaowei Zhou
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Huan Wang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Liuke Yang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Baishi Hu
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
22
|
Genome-Wide Analyses Revealed Remarkable Heterogeneity in Pathogenicity Determinants, Antimicrobial Compounds, and CRISPR-Cas Systems of Complex Phytopathogenic Genus Pectobacterium. Pathogens 2019; 8:pathogens8040247. [PMID: 31756888 PMCID: PMC6963963 DOI: 10.3390/pathogens8040247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Pectobacterium genus comprises pectolytic enterobacteria defined as the causal agents of soft rot, blackleg, and aerial stem rot diseases of potato and economically important crops. In this study, we undertook extensive genome-wide comparative analyses of twelve species that conform the Pectobacterium genus. Bioinformatics approaches outlined a low nucleotide identity of P. parmentieri and P. wasabiae with other species, while P. carotovorum subsp. odoriferum was shown to harbor numerous pseudogenes, which suggests low coding capacity and genomic degradation. The genome atlases allowed for distinguishing distinct DNA structures and highlighted suspicious high transcription zones. The analyses unveiled a noteworthy heterogeneity in the pathogenicity determinants. Specifically, phytotoxins, polysaccharides, iron uptake systems, and the type secretion systems III-V were observed in just some species. Likewise, a comparison of gene clusters encoding antimicrobial compounds put in evidence for high conservation of carotovoricin, whereas a few species possessed the phenazine, carbapenem, and carocins. Moreover, three clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems: I-E, I-F, and III-A were identified. Surrounding some CRISPR-Cas regions, different toxin and antitoxin systems were found, which suggests bacterial suicide in the case of an immune system failure. Multiple whole-genome alignments shed light on to the presence of a novel cellobiose phosphotransferase system (PTS) exclusive to P. parmenteri, and an unreported T5SS conserved in almost all species. Several regions that were associated with virulence, microbe antagonism, and adaptive immune systems were predicted within genomic islands, which underscored the essential role that horizontal gene transfer has imparted in the dynamic evolution and speciation of Pectobacterium species. Overall, the results decipher the different strategies that each species has developed to infect their hosts, outcompete for food resources, and defend against bacteriophages. Our investigation provides novel genetic insights that will assist in understanding the pathogenic lifestyle of Pectobacterium, a genus that jeopardizes the agriculture sustainability of important crops worldwide.
Collapse
|
23
|
Hao L, Wang Y, Chen X, Zheng X, Chen S, Li S, Zhang Y, Xu Y. Exploring the Potential of Natural Products From Mangrove Rhizosphere Bacteria as Biopesticides Against Plant Diseases. PLANT DISEASE 2019; 103:2925-2932. [PMID: 31449436 DOI: 10.1094/pdis-11-18-1958-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With increasing concerns of the environmental problems associated with current fungicide application, investigation of alternative, environmentally compatible biopesticides for plant disease management is needed. A total of 113 strains associated with Acanthus ilicifolius Linn in the Maipo Reserve, Hong Kong, were isolated and identified. In vitro assay with crude extracts of bacterial fermentation cultures identified ∼26% of the isolates producing antimicrobial compounds against a variety of agriculturally important phytopathogens. Selected crude extracts with inhibition to Colletotrichum fructicola and Magnaporthe oryzae growth significantly suppressed anthracnose and rice blast development in pear fruits and rice plants, respectively, when applied at 50 μg ml-1. Furthermore, 10 of 14 selected crude extracts with good antimicrobial activities had no significant differences in toxicity to the genus Chlorella compared with the control when used at 25 μg ml-1, whereas Amistar Top and Mancozeb completely killed the alga under the same concentration. These data illustrate the potential of natural products from mangrove rhizosphere bacteria in future agricultural application.
Collapse
Affiliation(s)
- Lingyun Hao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yu Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xinqi Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoli Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Si Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Ying Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
24
|
Doonan J, Denman S, Pachebat JA, McDonald JE. Genomic analysis of bacteria in the Acute Oak Decline pathobiome. Microb Genom 2019; 5. [PMID: 30625111 PMCID: PMC6412055 DOI: 10.1099/mgen.0.000240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UK’s native oak is under serious threat from Acute Oak Decline (AOD). Stem tissue necrosis is a primary symptom of AOD and several bacteria are associated with necrotic lesions. Two members of the lesion pathobiome, Brenneria goodwinii and Gibbsiella quercinecans, have been identified as causative agents of tissue necrosis. However, additional bacteria including Lonsdalea britannica and Rahnella species have been detected in the lesion microbiome, but their role in tissue degradation is unclear. Consequently, information on potential genome-encoded mechanisms for tissue necrosis is critical to understand the role and mechanisms used by bacterial members of the lesion pathobiome in the aetiology of AOD. Here, the whole genomes of bacteria isolated from AOD-affected trees were sequenced, annotated and compared against canonical bacterial phytopathogens and non-pathogenic symbionts. Using orthologous gene inference methods, shared virulence genes that retain the same function were identified. Furthermore, functional annotation of phytopathogenic virulence genes demonstrated that all studied members of the AOD lesion microbiota possessed genes associated with phytopathogens. However, the genome of B. goodwinii was the most characteristic of a necrogenic phytopathogen, corroborating previous pathological and metatranscriptomic studies that implicate it as the key causal agent of AOD lesions. Furthermore, we investigated the genome sequences of other AOD lesion microbiota to understand the potential ability of microbes to cause disease or contribute to pathogenic potential of organisms isolated from this complex pathobiome. The role of these members remains uncertain but some such as G. quercinecans may contribute to tissue necrosis through the release of necrotizing enzymes and may help more dangerous pathogens activate and realize their pathogenic potential or they may contribute as secondary/opportunistic pathogens with the potential to act as accessory species for B. goodwinii. We demonstrate that in combination with ecological data, whole genome sequencing provides key insights into the pathogenic potential of bacterial species whether they be phytopathogens, part-contributors or stimulators of the pathobiome.
Collapse
Affiliation(s)
- James Doonan
- 1School of Biological Sciences, Bangor University, Bangor, UK
| | - Sandra Denman
- 2Forest Research, Centre for Forestry and Climate Change, Farnham, UK
| | - Justin A Pachebat
- 3Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | |
Collapse
|
25
|
Natural Farming Improves Soil Quality and Alters Microbial Diversity in a Cabbage Field in Japan. SUSTAINABILITY 2019. [DOI: 10.3390/su11113131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Natural farming (NF), an environmentally friendly agricultural practice similar to organic farming, was developed in Japan. Unlike conventional farming, little is known about the influence of NF on soil microbial communities, especially the surface soil. We therefore compared the effect of seven years’ conventional practice (CP), conventional practice without chemicals (CF), and NF on soil properties and microbial community structure at two soil depths (0–10, 10–20 cm) in an experimental cabbage field. Both soil depth and agricultural practice significantly influenced edaphic measures and microbial community structure. NF improved bulk density, pH, electrical conductivity, urease activity, and nitrate reductase activity in topsoil; similar trends were observed in deeper soil. Pyrosequencing demonstrated that the use of pesticides in conventional farming (CP) led to lower microbial abundance and diversity in topsoil than CF. Similarly, NF increased microbial abundance compared to CP. However, distinct taxa were present in the topsoil, but not deeper soil, in each treatment. CP-enriched microbial genera may be related to plant pathogens (e.g., Erwinia and Brenneria) and xenobiotic degraders (e.g., Sphingobacterium and Comamonas). The microbial community structure of NF was distinct to CP/CF, with enrichment of Pedomicrobium and Solirubrobacter, which may prefer stable soil conditions. Network analysis of dominant genera confirmed the more stable, complex microbial network structure of the 0–10 cm than 10–20 cm layer. Flavisolibacter/Candidatus Solibacter and Candidatus Nitrososphaera/Leuconostoc are potentially fundamental taxa in the 0–10 cm and 10–20 cm layer networks, respectively. Overall, we show that NF positively affects soil quality and microbial community composition within sustainable farming systems.
Collapse
|
26
|
Kominek J, Doering DT, Opulente DA, Shen XX, Zhou X, DeVirgilio J, Hulfachor AB, Groenewald M, Mcgee MA, Karlen SD, Kurtzman CP, Rokas A, Hittinger CT. Eukaryotic Acquisition of a Bacterial Operon. Cell 2019; 176:1356-1366.e10. [PMID: 30799038 DOI: 10.1016/j.cell.2019.01.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 01/01/2023]
Abstract
Operons are a hallmark of bacterial genomes, where they allow concerted expression of functionally related genes as single polycistronic transcripts. They are rare in eukaryotes, where each gene usually drives expression of its own independent messenger RNAs. Here, we report the horizontal operon transfer of a siderophore biosynthesis pathway from relatives of Escherichia coli into a group of budding yeast taxa. We further show that the co-linearly arranged secondary metabolism genes are expressed, exhibit eukaryotic transcriptional features, and enable the sequestration and uptake of iron. After transfer, several genetic changes occurred during subsequent evolution, including the gain of new transcription start sites that were sometimes within protein-coding sequences, acquisition of polyadenylation sites, structural rearrangements, and integration of eukaryotic genes into the cluster. We conclude that the genes were likely acquired as a unit, modified for eukaryotic gene expression, and maintained by selection to adapt to the highly competitive, iron-limited environment.
Collapse
Affiliation(s)
- Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Drew T Doering
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dana A Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Jeremy DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda B Hulfachor
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Mcsean A Mcgee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Steven D Karlen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL 61604, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Li X, Ma Y, Liang S, Tian Y, Yin S, Xie S, Xie H. Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a pathogenic lifestyle. BMC Genomics 2018; 19:889. [PMID: 30526490 PMCID: PMC6286560 DOI: 10.1186/s12864-018-5269-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pectobacterium spp. are necrotrophic bacterial plant pathogens of the family Pectobacteriaceae, responsible for a wide spectrum of diseases of important crops and ornamental plants including soft rot, blackleg, and stem wilt. P. carotovorum is a genetically heterogeneous species consisting of three valid subspecies, P. carotovorum subsp. brasiliense (Pcb), P. carotovorum subsp. carotovorum (Pcc), and P. carotovorum subsp. odoriferum (Pco). RESULTS Thirty-two P. carotovorum strains had their whole genomes sequenced, including the first complete genome of Pco and another circular genome of Pcb, as well as the high-coverage genome sequences for 30 additional strains covering Pcc, Pcb, and Pco. In combination with 52 other publicly available genome sequences, the comparative genomics study of P. carotovorum and other four closely related species P. polaris, P. parmentieri, P. atrosepticum, and Candidatus P. maceratum was conducted focusing on CRISPR-Cas defense systems and pathogenicity determinants. Our analysis identified two CRISPR-Cas types (I-F and I-E) in Pectobacterium, as well as another I-C type in Dickeya that is not found in Pectobacterium. The core pathogenicity factors (e.g., plant cell wall-degrading enzymes) were highly conserved, whereas some factors (e.g., flagellin, siderophores, polysaccharides, protein secretion systems, and regulatory factors) were varied among these species and/or subspecies. Notably, a novel type of T6SS as well as the sorbitol metabolizing srl operon was identified to be specific to Pco in Pectobacterium. CONCLUSIONS This study not only advances the available knowledge about the genetic differentiation of individual subspecies of P. carotovorum, but also delineates the general genetic features of P. carotovorum by comparison with its four closely related species, thereby substantially enriching the extent of information now available for functional genomic investigations about Pectobacterium.
Collapse
Affiliation(s)
- Xiaoying Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Yali Ma
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Shuqing Liang
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Yu Tian
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Sanjun Yin
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Sisi Xie
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| |
Collapse
|
28
|
Koskella B, Taylor TB. Multifaceted Impacts of Bacteriophages in the Plant Microbiome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:361-380. [PMID: 29958076 DOI: 10.1146/annurev-phyto-080417-045858] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant-associated bacteria face multiple selection pressures within their environments and have evolved countless adaptations that both depend on and shape bacterial phenotype and their interaction with plant hosts. Explaining bacterial adaptation and evolution therefore requires considering each of these forces independently as well as their interactions. In this review, we examine how bacteriophage viruses (phages) can alter the ecology and evolution of plant-associated bacterial populations and communities. This includes influencing a bacterial population's response to both abiotic and biotic selection pressures and altering ecological interactions within the microbiome and between the bacteria and host plant. We outline specific ways in which phages can alter bacterial phenotype and discuss when and how this might impact plant-microbe interactions, including for plant pathogens. Finally, we highlight key open questions in phage-bacteria-plant research and offer suggestions for future study.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California 94720, USA;
| | - Tiffany B Taylor
- The Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| |
Collapse
|
29
|
Theoharaki C, Chronopoulou E, Vlachakis D, Ataya FS, Giannopoulos P, Maurikou S, Skopelitou K, Papageorgiou AC, Labrou NE. Delineation of the functional and structural properties of the glutathione transferase family from the plant pathogen Erwinia carotovora. Funct Integr Genomics 2018; 19:1-12. [PMID: 29938342 DOI: 10.1007/s10142-018-0618-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/09/2023]
Abstract
Erwinia carotovora, a widespread plant pathogen that causes soft rot disease in many plants, is considered a major threat in agriculture. Bacterial glutathione transferases (GSTs) play important roles in a variety of metabolic pathways and processes, such as the biodegradation of xenobiotics, protection against abiotic stress, and resistance against antimicrobial drugs. The GST family of canonical soluble enzymes from Erwinia carotovora subsp. atroseptica strain SCRI1043 (EcaGSTs) was investigated. Genome analysis showed the presence of six putative canonical cytoplasmic EcaGSTs, which were revealed by phylogenetic analysis to belong to the well-characterized GST classes beta, nu, phi, and zeta. The analysis also revealed the presence of two isoenzymes that were phylogenetically close to the omega class of GSTs, but formed a distinct class. The EcaGSTs were cloned and expressed in Escherichia coli, and their catalytic activity toward different electrophilic substrates was elucidated. The EcaGSTs catalyzed different types of reactions, although all enzymes were particularly active in reactions involving electrophile substitution. Gene and protein expression profiling conducted under normal culture conditions as well as in the presence of the herbicide alachlor and the xenobiotic 1-chloro-2,4-dinitrobenzene (CDNB) showed that the isoenzyme EcaGST1, belonging to the omega-like class, was specifically induced at both the protein and mRNA levels. EcaGST1 presumably participates in counteracting the xenobiotic toxicity and/or abiotic stress conditions, and may therefore represent a novel molecular target in the development of new chemical treatments to control soft rot diseases.
Collapse
Affiliation(s)
- Christina Theoharaki
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Evangelia Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Molecular Biology Department, Genetic Engineering Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Panagiotis Giannopoulos
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Sofia Maurikou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Katholiki Skopelitou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Anastassios C Papageorgiou
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20521, Turku, Finland
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece.
| |
Collapse
|
30
|
Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66260-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Jiang H, Jiang M, Yang L, Yao P, Ma L, Wang C, Wang H, Qian G, Hu B, Fan J. The Ribosomal Protein RplY Is Required for Pectobacterium carotovorum Virulence and Is Induced by Zantedeschia elliotiana Extract. PHYTOPATHOLOGY 2017; 107:1322-1330. [PMID: 28853642 DOI: 10.1094/phyto-04-17-0161-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pectobacterium carotovorum subsp. carotovorum strain PccS1, a bacterial pathogen causing soft rot disease of Zantedeschia elliotiana (colored calla), was investigated for virulence genes induced by the host plant. Using a promoter-trap transposon (mariner), we obtained 500 transposon mutants showing kanamycin resistance dependent on extract of Z. elliotiana. One of these mutants, PM86, exhibited attenuated virulence on both Z. elliotiana and Brassica rapa subsp. pekinensis. The growth of PM86 was also reduced in minimal medium (MM), and the reduction was restored by adding plant extract to the MM. The gene containing the insertion site was identified as rplY. The deletion mutant ΔrplY, exhibited reduced virulence, motility and plant cell wall-degrading enzyme production but not biofilm formation. Analysis of gene expression and reporter fusions revealed that the rplY gene in PccS1 is up-regulated at both the transcriptional and the translational levels in the presence of plant extract. Our results suggest that rplY is induced by Z. elliotiana extract and is crucial for virulence in P. carotovorum subsp. carotovorum.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengyi Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liuke Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiyan Yao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunting Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gouliang Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baishi Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqin Fan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
32
|
Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline. ISME JOURNAL 2017; 12:386-399. [PMID: 29028005 PMCID: PMC5776452 DOI: 10.1038/ismej.2017.170] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
Abstract
Decline-diseases are complex and becoming increasingly problematic to tree health globally. Acute Oak Decline (AOD) is characterized by necrotic stem lesions and galleries of the bark-boring beetle, Agrilus biguttatus, and represents a serious threat to oak. Although multiple novel bacterial species and Agrilus galleries are associated with AOD lesions, the causative agent(s) are unknown. The AOD pathosystem therefore provides an ideal model for a systems-based research approach to address our hypothesis that AOD lesions are caused by a polymicrobial complex. Here we show that three bacterial species, Brenneria goodwinii, Gibbsiella quercinecans and Rahnella victoriana, are consistently abundant in the lesion microbiome and possess virulence genes used by canonical phytopathogens that are expressed in AOD lesions. Individual and polyspecies inoculations on oak logs and trees demonstrated that B. goodwinii and G. quercinecans cause tissue necrosis and, in combination with A. biguttatus, produce the diagnostic symptoms of AOD. We have proved a polybacterial cause of AOD lesions, providing new insights into polymicrobial interactions and tree disease. This work presents a novel conceptual and methodological template for adapting Koch’s postulates to address the role of microbial communities in disease.
Collapse
|
33
|
Alnajar S, Gupta RS. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. INFECTION GENETICS AND EVOLUTION 2017; 54:108-127. [DOI: 10.1016/j.meegid.2017.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 01/02/2023]
|
34
|
Rodionova IA, Zhang Z, Mehla J, Goodacre N, Babu M, Emili A, Uetz P, Saier MH. The phosphocarrier protein HPr of the bacterial phosphotransferase system globally regulates energy metabolism by directly interacting with multiple enzymes in Escherichia coli. J Biol Chem 2017. [PMID: 28634232 DOI: 10.1074/jbc.m117.795294] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The histidine-phosphorylatable phosphocarrier protein (HPr) is an essential component of the sugar-transporting phosphotransferase system (PTS) in many bacteria. Recent interactome findings suggested that HPr interacts with several carbohydrate-metabolizing enzymes, but whether HPr plays a regulatory role was unclear. Here, we provide evidence that HPr interacts with a large number of proteins in Escherichia coli We demonstrate HPr-dependent allosteric regulation of the activities of pyruvate kinase (PykF, but not PykA), phosphofructokinase (PfkB, but not PfkA), glucosamine-6-phosphate deaminase (NagB), and adenylate kinase (Adk). HPr is either phosphorylated on a histidyl residue (HPr-P) or non-phosphorylated (HPr). PykF is activated only by non-phosphorylated HPr, which decreases the PykF Khalf for phosphoenolpyruvate by 10-fold (from 3.5 to 0.36 mm), thus influencing glycolysis. PfkB activation by HPr, but not by HPr-P, resulted from a decrease in the Khalf for fructose-6-P, which likely influences both gluconeogenesis and glycolysis. Moreover, NagB activation by HPr was important for the utilization of amino sugars, and allosteric inhibition of Adk activity by HPr-P, but not by HPr, allows HPr to regulate the cellular energy charge coordinately with glycolysis. These observations suggest that HPr serves as a directly interacting global regulator of carbon and energy metabolism and probably of other physiological processes in enteric bacteria.
Collapse
Affiliation(s)
- Irina A Rodionova
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116
| | - Zhongge Zhang
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116
| | - Jitender Mehla
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Norman Goodacre
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Andrew Emili
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Milton H Saier
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116,.
| |
Collapse
|
35
|
Davidsson P, Broberg M, Kariola T, Sipari N, Pirhonen M, Palva ET. Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana. BMC PLANT BIOLOGY 2017; 17:19. [PMID: 28103793 PMCID: PMC5248502 DOI: 10.1186/s12870-016-0959-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/20/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Oligogalacturonides (OGs) are important components of damage-associated molecular pattern (DAMP) signaling and influence growth regulation in plants. Recent studies have focused on the impact of long OGs (degree of polymerization (DP) from 10-15), demonstrating the induction of plant defense signaling resulting in enhanced defenses to necrotrophic pathogens. To clarify the role of trimers (trimeric OGs, DP3) in DAMP signaling and their impact on plant growth regulation, we performed a transcriptomic analysis through the RNA sequencing of Arabidopsis thaliana exposed to trimers. RESULTS The transcriptomic data from trimer-treated Arabidopsis seedlings indicate a clear activation of genes involved in defense signaling, phytohormone signaling and a down-regulation of genes involved in processes related to growth regulation and development. This is further accompanied with improved defenses against necrotrophic pathogens triggered by the trimer treatment, indicating that short OGs have a clear impact on plant responses, similar to those described for long OGs. CONCLUSIONS Our results demonstrate that trimers are indeed active elicitors of plant defenses. This is clearly indicated by the up-regulation of genes associated with plant defense signaling, accompanied with improved defenses against necrotrophic pathogens. Moreover, trimers simultaneously trigger a clear down-regulation of genes and gene sets associated with growth and development, leading to stunted seedling growth in Arabidopsis.
Collapse
Affiliation(s)
- Pär Davidsson
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Martin Broberg
- School of Biological Sciences, Bangor University, Bangor, Wales, UK
| | - Tarja Kariola
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - E Tapio Palva
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
36
|
|
37
|
A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol 2016; 39:252-259. [DOI: 10.1016/j.syapm.2016.04.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/07/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022]
|
38
|
Llop P. Genetic islands in pome fruit pathogenic and non-pathogenic Erwinia species and related plasmids. Front Microbiol 2015; 6:874. [PMID: 26379649 PMCID: PMC4551865 DOI: 10.3389/fmicb.2015.00874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 08/10/2015] [Indexed: 12/23/2022] Open
Abstract
New pathogenic bacteria belonging to the genus Erwinia associated with pome fruit trees (Erwinia, E. piriflorinigrans, E. uzenensis) have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc.) show a high intraspecies homogeneity (i.e., among E. amylovora strains) and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes) from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with non-pathogenic species present in the same niche, and the role of the genes that are conserved in all of them.
Collapse
Affiliation(s)
- Pablo Llop
- Department of Evolutionary Genetics, Cavanilles Institute, University of Valencia , Paterna, Valencia, Spain
| |
Collapse
|
39
|
Genomic overview of the phytopathogen Pectobacterium wasabiae strain RNS 08.42.1A suggests horizontal acquisition of quorum-sensing genes. Genetica 2014; 143:241-52. [PMID: 25297844 DOI: 10.1007/s10709-014-9793-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
Abstract
The blackleg and soft-rot diseases caused by pectinolytic enterobacteria such as Pectobacterium and Dickeya are major causes of losses affecting potato crop in the field and upon storage. In this work, we report the isolation, characterization and genome analysis of the Pectobacterium wasabiae (formerly identified as Pectobacterium carotovorum subsp. carotovorum) strain RNS 08.42.1A, that has been isolated from a Solanum tuberosum host plant in France. Comparative genomics with 3 other P. wasabiae strains isolated from potato plants in different areas in North America and Europe, highlighted both a strong similarity at the whole genome level (ANI > 99 %) and a conserved synteny of the virulence genes. In addition, our analyses evidenced a robust separation between these four P. wasabiae strains and the type strain P. wasabiae CFBP 3304(T), isolated from horseradish in Japan. In P. wasabiae RNS 08.42.1A, the expI and expR nucleotidic sequences are more related to those of some Pectobacterium atrosepticum and P. carotovorum strains (90 % of identity) than to those of the other potato P. wasabiae strains (70 to 74 % of identity). This could suggest a recruitment of these genes in the P. wasabiae strain RNS 08.42.1A by an horizontal transfer between pathogens infecting the same potato host plant.
Collapse
|
40
|
Draft Genome Sequence of Pectobacterium wasabiae Strain CFIA1002. GENOME ANNOUNCEMENTS 2014; 2:genomeA.00214-14. [PMID: 24831134 PMCID: PMC4022798 DOI: 10.1128/genomea.00214-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pectobacterium wasabiae, originally causing soft rot disease in horseradish in Japan, was recently found to cause blackleg-like symptoms on potato in the United States, Canada, and Europe. A draft genome sequence of a Canadian potato isolate of P. wasabiae CFIA1002 will enhance the characterization of its pathogenicity and host specificity features.
Collapse
|
41
|
Zaitseva YV, Popova AA, Khmel IA. Quorum sensing regulation in bacteria of the family enterobacteriaceae. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414030120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
van Overbeek LS, van Doorn J, Wichers JH, van Amerongen A, van Roermund HJW, Willemsen PTJ. The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 2014; 5:104. [PMID: 24688484 PMCID: PMC3960585 DOI: 10.3389/fmicb.2014.00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/27/2014] [Indexed: 01/10/2023] Open
Abstract
Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh) vegetables, sprouts, and occasionally fruits made clear that these pathogens are not only transmitted to humans via the "classical" routes of meat, eggs, and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure), water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Plant Research International, Wageningen University and Research Centre Wageningen, Netherlands
| | - Joop van Doorn
- Applied Plant Research, Wageningen University and Research Centre Lisse, Netherlands
| | - Jan H Wichers
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Aart van Amerongen
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Herman J W van Roermund
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| | - Peter T J Willemsen
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| |
Collapse
|
43
|
The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193. Appl Environ Microbiol 2014; 80:1972-84. [PMID: 24441162 DOI: 10.1128/aem.03829-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ExpA (GacA) is a global response regulator that controls the expression of major virulence genes, such as those encoding plant cell wall-degrading enzymes (PCWDEs) in the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. Several studies with pectobacteria as well as related phytopathogenic gammaproteobacteria, such as Dickeya and Pseudomonas, suggest that the control of virulence by ExpA and its homologues is executed partly by modulating the activity of RsmA, an RNA-binding posttranscriptional regulator. To elucidate the extent of the overlap between the ExpA and RsmA regulons in P. wasabiae, we characterized both regulons by microarray analysis. To do this, we compared the transcriptomes of the wild-type strain, an expA mutant, an rsmA mutant, and an expA rsmA double mutant. The microarray data for selected virulence-related genes were confirmed through quantitative reverse transcription (qRT-PCR). Subsequently, assays were performed to link the observed transcriptome differences to changes in bacterial phenotypes such as growth, motility, PCWDE production, and virulence in planta. An extensive overlap between the ExpA and RsmA regulons was observed, suggesting that a substantial portion of ExpA regulation appears to be mediated through RsmA. However, a number of genes involved in the electron transport chain and oligogalacturonide metabolism, among other processes, were identified as being regulated by ExpA independently of RsmA. These results suggest that ExpA may only partially impact fitness and virulence via RsmA.
Collapse
|
44
|
Bowden SD, Eyres A, Chung JCS, Monson RE, Thompson A, Salmond GPC, Spring DR, Welch M. Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp. Mol Microbiol 2013; 90:457-71. [PMID: 23957692 DOI: 10.1111/mmi.12369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
Abstract
Pectobacterium atrosepticum (Pca) is a Gram-negative phytopathogen which causes disease by secreting plant cell wall degrading exoenzymes (PCWDEs). Previous studies have shown that PCWDE production is regulated by (i) the intercellular quorum sensing (QS) signal molecule, 3-oxo-hexanoyl-l-homoserine lactone (OHHL), and (ii) the intracellular 'alarmone', (p)ppGpp, which reports on nutrient limitation. Here we show that these two signals form an integrated coincidence circuit which ensures that metabolically costly PCWDE synthesis does not occur unless the population is simultaneously quorate and nutrient limited. A (p)ppGpp null ΔrelAΔspoT mutant was defective in both OHHL and PCWDE production, and nutritional supplementation of wild type cultures (which suppresses (p)ppGpp production) also suppressed OHHL and PCWDE production. There was a substantial overlap in the transcriptome of a (p)ppGpp deficient relA mutant and of a QS defective expI (OHHL synthase) mutant, especially with regards to virulence-associated genes. Random transposon mutagenesis revealed that disruption of rsmA was sufficient to restore PCWDE production in the (p)ppGpp null strain. We found that the ratio of RsmA protein to its RNA antagonist, rsmB, was modulated independently by (p)ppGpp and QS. While QS predominantly controlled virulence by modulating RsmA levels, (p)ppGpp exerted regulation through the modulation of the RsmA antagonist, rsmB.
Collapse
Affiliation(s)
- Steven D Bowden
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge, CB2 1QW, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kettani-Halabi M, Terta M, Amdan M, El Fahime EM, Bouteau F, Ennaji MM. An easy, simple inexpensive test for the specific detection of Pectobacterium carotovorum subsp. carotovorum based on sequence analysis of the pmrA gene. BMC Microbiol 2013; 13:176. [PMID: 23890050 PMCID: PMC3765535 DOI: 10.1186/1471-2180-13-176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
Background The species Pectobacterium carotovorum includes a diverse subspecies of bacteria that cause disease on a wide variety of plants. In Morocco, approximately 95% of the P. carotovorum isolates from potato plants with tuber soft rot are P. carotovorum subsp. carotovorum. However, identification of this pathogen is not always related to visual disease symptoms. This is especially true when different pathogen cause similar diseases on potato, citing as an example, P. carotovorum, P. atrosepticum and P. wasabiae. Numerous conventional methods were used to characterize Pectobacterium spp., including biochemical assays, specific PCR-based tests, and construction of phylogenetic trees by using gene sequences. In this study, an alternative method is presented using a gene linked to pathogenicity, in order to allow accuracy at subspecies level. The pmrA gene (response regulator) has been used for identification and analysis of the relationships among twenty nine Pectobacterium carotovorum subsp. carotovorum and other Pectobacterium subspecies. Results Phylogenetic analyses of pmrA sequences compared to ERIC-PCR and 16S rDNA sequencing, demonstrated that there is considerable genetic diversity in P. carotovorum subsp. carotovorum strains, which can be divided into two distinct groups within the same clade. Conclusions pmrA sequence analysis is likely to be a reliable tool to identify the subspecies Pectobacterium carotovorum subsp. carotovorum and estimate their genetic diversity.
Collapse
Affiliation(s)
- Mohamed Kettani-Halabi
- Laboratoire de Virologie, Microbiologie et Qualité /Eco Toxicologie et Biodiversité, Université Hassan II Mohammedia-Casablanca, Faculté des Sciences et Techniques-Mohammedia-FSTM, BP 146, Mohammedia 20650, Maroc.
| | | | | | | | | | | |
Collapse
|
46
|
Genome Sequence of the Pectobacterium atrosepticum Strain CFBP6276, Causing Blackleg and Soft Rot Diseases on Potato Plants and Tubers. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00374-13. [PMID: 23788545 PMCID: PMC3707594 DOI: 10.1128/genomea.00374-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pectobacterium atrosepticum strain CFBP6276 is a pectinolytic enterobacterium causing blackleg and soft rot of the stem and tuber of Solanum tuberosum. Its virulence is under the control of quorum sensing, with N-acylhomoserine lactones as communication signals. Here, we report the genome sequence of P. atrosepticum strain CFBP6276.
Collapse
|
47
|
Davidsson PR, Kariola T, Niemi O, Palva ET. Pathogenicity of and plant immunity to soft rot pectobacteria. FRONTIERS IN PLANT SCIENCE 2013; 4:191. [PMID: 23781227 PMCID: PMC3678301 DOI: 10.3389/fpls.2013.00191] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 05/20/2023]
Abstract
Soft rot pectobacteria are broad host range enterobacterial pathogens that cause disease on a variety of plant species including the major crop potato. Pectobacteria are aggressive necrotrophs that harbor a large arsenal of plant cell wall-degrading enzymes as their primary virulence determinants. These enzymes together with additional virulence factors are employed to macerate the host tissue and promote host cell death to provide nutrients for the pathogens. In contrast to (hemi)biotrophs such as Pseudomonas, type III secretion systems (T3SS) and T3 effectors do not appear central to pathogenesis of pectobacteria. Indeed, recent genomic analysis of several Pectobacterium species including the emerging pathogen Pectobacterium wasabiae has shown that many strains lack the entire T3SS as well as the T3 effectors. Instead, this analysis has indicated the presence of novel virulence determinants. Resistance to broad host range pectobacteria is complex and does not appear to involve single resistance genes. Instead, activation of plant innate immunity systems including both SA (salicylic acid) and JA (jasmonic acid)/ET (ethylene)-mediated defenses appears to play a central role in attenuation of Pectobacterium virulence. These defenses are triggered by detection of pathogen-associated molecular patterns (PAMPs) or recognition of modified-self such as damage-associated molecular patterns (DAMPs) and result in enhancement of basal immunity (PAMP/DAMP-triggered immunity or pattern-triggered immunity, PTI). In particular plant cell wall fragments released by the action of the degradative enzymes secreted by pectobacteria are major players in enhanced immunity toward these pathogens. Most notably bacterial pectin-degrading enzymes release oligogalacturonide (OG) fragments recognized as DAMPs activating innate immune responses. Recent progress in understanding OG recognition and signaling allows novel genetic screens for OG-insensitive mutants and will provide new insights into plant defense strategies against necrotrophs such as pectobacteria.
Collapse
Affiliation(s)
| | - Tarja Kariola
- Division of Genetics, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Outi Niemi
- Division of Genetics, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - E. T. Palva
- Division of Genetics, Department of Biosciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
48
|
Varani AM, Monteiro-Vitorello CB, Nakaya HI, Van Sluys MA. The role of prophage in plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:429-451. [PMID: 23725471 DOI: 10.1146/annurev-phyto-081211-173010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A diverse set of phage lineages is associated with the bacterial plant-pathogen genomes sequenced to date. Analysis of 37 genomes revealed 5,169 potential genes (approximately 4.3 Mbp) of phage origin, and at least 50% had no function assigned or are nonessential to phage biology. Some phytopathogens have transcriptionally active prophage genes under conditions that mimic plant infection, suggesting an association between plant disease and prophage transcriptional modulation. The role of prophages within genomes for cell biology varies. For pathogens such as Pectobacterium, Pseudomonas, Ralstonia, and Streptomyces, involvement of prophage in disease symptoms has been demonstrated. In Xylella and Xanthomonas, prophage activity is associated with genome rearrangements and strain differentiation. For other pathogens, prophage roles are yet to be established. This review integrates available information in a unique interface ( http://propnav.esalq.usp.br ) that may be assessed to improve research in prophage biology and its association with genome evolution and pathogenicity.
Collapse
Affiliation(s)
- Alessandro M Varani
- Departamento de Genética (LGN), Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900 Piracicaba/SP, Brazil
| | | | | | | |
Collapse
|
49
|
Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, Holden NJ. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. PHYTOPATHOLOGY 2013; 103:333-40. [PMID: 23506361 DOI: 10.1094/phyto-08-12-0209-fi] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The foodborne pathogen Escherichia coli O157:H7 is increasingly associated with fresh produce (fruit and vegetables). Bacterial colonization of fresh produce plants can occur to high levels on the external tissue but bacteria have also been detected within plant tissue. However, questions remain about the extent of internalization, its molecular basis, and internal location of the bacteria. We have determined the extent of internalization of E. coli O157:H7 in live spinach and lettuce plants and used high-resolution microscopy to examine colony formation in roots and pathways to internalization. E. coli O157:H7 was found within internal tissue of both produce species. Colonization occurred within the apoplast between plant cells. Furthermore, colonies were detected inside the cell wall of epidermal and cortical cells of spinach and Nicotiana benthamiana roots. Internal colonization of epidermal cells resembled that of the phytopathogen Pectobacterium atrosepticum on potato. In contrast, only sporadic cells of the laboratory strain of E. coli K-12 were found on spinach, with no internal bacteria evident. The data extend previous findings that internal colonization of plants appears to be limited to a specific group of plant-interacting bacteria, including E. coli O157:H7, and demonstrates its ability to invade the cells of living plants.
Collapse
|
50
|
Iriarte A, Baraibar JD, Romero H, Castro-Sowinski S, Musto H. Evolution of optimal codon choices in the family Enterobacteriaceae. MICROBIOLOGY-SGM 2013; 159:555-564. [PMID: 23288542 DOI: 10.1099/mic.0.061952-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Enterobacteriaceae are a large family of Proteobacteria that include many well-known prokaryotic genera, such as Escherichia, Yersinia and Salmonella. The main ideas of synonymous codon usage (CU) evolution and translational selection have been deeply influenced by studies with these bacterial groups. In this work we report the analysis of the CU pattern of completely sequenced bacterial genomes that belong to the Enterobacteriaceae. The effect of selection in translation acting at the levels of speed and accuracy, and phylogenetic trends within this group are described. Preferred (optimal) codons were identified. The evolutionary dynamics of these codons were studied and following a Bayesian approach these preferences were traced back to the common ancestor of the family. We found that there is some level of variation in selection among the analysed micro-organisms that is probably associated with lineage-specific trends. The codon bias was largely conserved across the evolutionary time of the family in highly expressed genes and protein conserved regions, suggesting a major role of negative selection. In this sense, the results support the idea that the extant CU bias is finely tuned over the ancestral well-conserved pool of tRNAs.
Collapse
Affiliation(s)
- Andrés Iriarte
- Área Genética, Depto. de Genética y Mejora Animal, Facultad de Veterinaria (UDELAR), Av. A. Lasplaces 1550, CP 11600, Montevideo, Uruguay.,Laboratorio de Evolución, Facultad de Ciencias (UDELAR), Iguá 4225, 11400 Montevideo, Uruguay.,Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias (UDELAR), Iguá 4225, 11400 Montevideo, Uruguay
| | - Juan Diego Baraibar
- Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias (UDELAR), Iguá 4225, 11400 Montevideo, Uruguay
| | - Héctor Romero
- Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias (UDELAR), Iguá 4225, 11400 Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias (UDELAR), Iguá 4225, 11400 Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias (UDELAR), Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|