1
|
Senem I, Foss MP, Lavigne-Moreira C, Dos Santos AC, de França Nunes RF, França Júnior MC, Tomaselli PJ, Axelsson J, Wixner J, Marques W. Exploring cognitive functions and brain structure in Hereditary Transthyretin amyloidosis using brain MRI and neuropsychological assessment. Neurol Sci 2024:10.1007/s10072-024-07846-5. [PMID: 39499456 DOI: 10.1007/s10072-024-07846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND Central nervous system symptoms, such as cognitive dysfunction, have been reported in Hereditary Transthyretin Amyloidosis (ATTRv). However, there is a lack of neuroimaging studies investigating structural alterations in the brain related to cognition in ATTRv amyloidosis. This study aimed to investigate cognition and cortical morphology in a cohort of ATTRv patients. METHODS 29 ATTRv patients and 26 healthy controls completed neuropsychological assessment. 21 of these patients underwent 3T brain MRI, and 23 healthy subjects constituted the control group for MRI. Cortical measures of volume, thickness, fractional anisotropy (FA), and mean diffusivity (MD) were obtained for both groups. Correlation analyses between brain and cognitive measurements were performed. RESULTS Patients displayed worse performance than controls in executive functions, verbal and visual memory, visuospatial domains, and language tests. Our study indicated cortical thinning in ATTRv patients in the temporal, occipital, frontal, and parietal areas. The inferior temporal gyrus correlated with verbal memory. Insula and, pars opercularis correlated with both verbal memory and executive function. CONCLUSIONS Cortical thickness in the inferior temporal gyrus, pars opercularis, and insula were linked to memory and executive function. We observed no correlations between cortical volume measures and cognition. Further investigations are imperative to confirm these findings across different populations.
Collapse
Affiliation(s)
- Iara Senem
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Street 3900, Ribeirão Preto, São Paulo, Brazil
| | - Maria Paula Foss
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Street 3900, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Lavigne-Moreira
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Street 3900, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirao Preto, 14040-900, SP, Brazil
| | - Renan Flávio de França Nunes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Pedro Jose Tomaselli
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Street 3900, Ribeirão Preto, São Paulo, Brazil
| | - Jan Axelsson
- Department of Diagnostics and Interventions, Radiation Physics, Umeå University, Umeå, Sweden
| | - Jonas Wixner
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Wilson Marques
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Street 3900, Ribeirão Preto, São Paulo, Brazil.
- 7. National Institute of Sciences and Technology (INCT) -Translational Medicine , Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Fundo de Amparo à Pesquisa do Estado de São Paulo (FAPESP), , Ribeirao Preto, Brazil.
| |
Collapse
|
2
|
Cui AX, Kraeutner SN, Kepinska O, Motamed Yeganeh N, Hermiston N, Werker JF, Boyd LA. Musical Sophistication and Multilingualism: Effects on Arcuate Fasciculus Characteristics. Hum Brain Mapp 2024; 45:e70035. [PMID: 39360580 PMCID: PMC11447524 DOI: 10.1002/hbm.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The processing of auditory stimuli which are structured in time is thought to involve the arcuate fasciculus, the white matter tract which connects the temporal cortex and the inferior frontal gyrus. Research has indicated effects of both musical and language experience on the structural characteristics of the arcuate fasciculus. Here, we investigated in a sample of n = 84 young adults whether continuous conceptualizations of musical and multilingual experience related to structural characteristics of the arcuate fasciculus, measured using diffusion tensor imaging. Probabilistic tractography was used to identify the dorsal and ventral parts of the white matter tract. Linear regressions indicated that different aspects of musical sophistication related to the arcuate fasciculus' volume (emotional engagement with music), volumetric asymmetry (musical training and music perceptual abilities), and fractional anisotropy (music perceptual abilities). Our conceptualization of multilingual experience, accounting for participants' proficiency in reading, writing, understanding, and speaking different languages, was not related to the structural characteristics of the arcuate fasciculus. We discuss our results in the context of other research on hemispheric specializations and a dual-stream model of auditory processing.
Collapse
Affiliation(s)
- Anja-Xiaoxing Cui
- Department of Musicology, University of Vienna, Vienna, Austria
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Sarah N Kraeutner
- Department of Psychology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Olga Kepinska
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Negin Motamed Yeganeh
- Brain Behaviour Lab, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy Hermiston
- School of Music, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janet F Werker
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Brain Behaviour Lab, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Nematova S, Zinszer B, Morlet T, Morini G, Petitto LA, Jasińska KK. Impact of ASL Exposure on Spoken Phonemic Discrimination in Adult CI Users: A Functional Near-Infrared Spectroscopy Study. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:553-588. [PMID: 38939730 PMCID: PMC11210937 DOI: 10.1162/nol_a_00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/11/2024] [Indexed: 06/29/2024]
Abstract
We examined the impact of exposure to a signed language (American Sign Language, or ASL) at different ages on the neural systems that support spoken language phonemic discrimination in deaf individuals with cochlear implants (CIs). Deaf CI users (N = 18, age = 18-24 yrs) who were exposed to a signed language at different ages and hearing individuals (N = 18, age = 18-21 yrs) completed a phonemic discrimination task in a spoken native (English) and non-native (Hindi) language while undergoing functional near-infrared spectroscopy neuroimaging. Behaviorally, deaf CI users who received a CI early versus later in life showed better English phonemic discrimination, albeit phonemic discrimination was poor relative to hearing individuals. Importantly, the age of exposure to ASL was not related to phonemic discrimination. Neurally, early-life language exposure, irrespective of modality, was associated with greater neural activation of left-hemisphere language areas critically involved in phonological processing during the phonemic discrimination task in deaf CI users. In particular, early exposure to ASL was associated with increased activation in the left hemisphere's classic language regions for native versus non-native language phonemic contrasts for deaf CI users who received a CI later in life. For deaf CI users who received a CI early in life, the age of exposure to ASL was not related to neural activation during phonemic discrimination. Together, the findings suggest that early signed language exposure does not negatively impact spoken language processing in deaf CI users, but may instead potentially offset the negative effects of language deprivation that deaf children without any signed language exposure experience prior to implantation. This empirical evidence aligns with and lends support to recent perspectives regarding the impact of ASL exposure in the context of CI usage.
Collapse
Affiliation(s)
- Shakhlo Nematova
- Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE, USA
| | - Benjamin Zinszer
- Department of Psychology, Swarthmore College, Swarthmore, PA, USA
| | - Thierry Morlet
- Nemours Children’s Hospital, Delaware, Wilmington, DE, USA
| | - Giovanna Morini
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, USA
| | - Laura-Ann Petitto
- Brain and Language Center for Neuroimaging, Gallaudet University, Washington, DC, USA
| | - Kaja K. Jasińska
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Yu S, Gu C, Huang K, Li P. Predicting the next sentence (not word) in large language models: What model-brain alignment tells us about discourse comprehension. SCIENCE ADVANCES 2024; 10:eadn7744. [PMID: 38781343 PMCID: PMC11114233 DOI: 10.1126/sciadv.adn7744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Current large language models (LLMs) rely on word prediction as their backbone pretraining task. Although word prediction is an important mechanism underlying language processing, human language comprehension occurs at multiple levels, involving the integration of words and sentences to achieve a full understanding of discourse. This study models language comprehension by using the next sentence prediction (NSP) task to investigate mechanisms of discourse-level comprehension. We show that NSP pretraining enhanced a model's alignment with brain data especially in the right hemisphere and in the multiple demand network, highlighting the contributions of nonclassical language regions to high-level language understanding. Our results also suggest that NSP can enable the model to better capture human comprehension performance and to better encode contextual information. Our study demonstrates that the inclusion of diverse learning objectives in a model leads to more human-like representations, and investigating the neurocognitive plausibility of pretraining tasks in LLMs can shed light on outstanding questions in language neuroscience.
Collapse
Affiliation(s)
- Shaoyun Yu
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chanyuan Gu
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kexin Huang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ping Li
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Immersive Learning and Metaverse in Education, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
5
|
Khudeish N, Ramkiran S, Nießen D, Akkoc Altinok DC, Rajkumar R, Dammers J, Shah NJ, Veselinovic T, Neuner I. The interaction effect of high social support and resilience on functional connectivity using seed-based resting-state assessed by 7-Tesla ultra-high field MRI. Front Psychiatry 2024; 15:1293514. [PMID: 38832325 PMCID: PMC11145276 DOI: 10.3389/fpsyt.2024.1293514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/09/2024] [Indexed: 06/05/2024] Open
Abstract
Recent resilience research has increasingly emphasized the importance of focusing on investigating the protective factors in mentally healthy populations, complementing the traditional focus on psychopathology. Social support has emerged as a crucial element within the complex interplay of individual and socio-environmental factors that shape resilience. However, the neural underpinnings of the relationship between social support and resilience, particularly in healthy subjects, remain largely unexplored. With advances in neuroimaging techniques, such as ultra-high field MRI at 7T and beyond, researchers can more effectively investigate the neural mechanisms underlying these factors. Thus, our study employed ultra-high field rs-fMRI to explore how social support moderates the relationship between psychological resilience and functional connectivity in a healthy cohort. We hypothesized that enhanced social support would amplify resilience-associated connectivity within neural circuits essential for emotional regulation, cognitive processing, and adaptive problem-solving, signifying a synergistic interaction where strong social networks bolster the neural underpinnings of resilience. (n = 30). Through seed-based functional connectivity analyses and interaction analysis, we aimed to uncover the neural correlates at the interplay of social support and resilience. Our findings indicate that perceived social support significantly (p<0.001) alters functional connectivity in the right and left FP, PCC, and left hippocampus, affirming the pivotal roles of these regions in the brain's resilience network. Moreover, we identified significant moderation effects of social support across various brain regions, each showing unique connectivity patterns. Specifically, the right FP demonstrated a significant interaction effect where high social support levels were linked to increased connectivity with regions involved in socio-cognitive processing, while low social support showed opposite effects. Similar patterns by social support levels were observed in the left FP, with connectivity changes in clusters associated with emotional regulation and cognitive functions. The PCC's connectivity was distinctly influenced by support levels, elucidating its role in emotional and social cognition. Interestingly, the connectivity of the left hippocampus was not significantly impacted by social support levels, indicating a unique pattern within this region. These insights highlight the importance of high social support levels in enhancing the neural foundations of resilience and fostering adaptive neurological responses to environmental challenges.
Collapse
Affiliation(s)
- Nibal Khudeish
- Institute of Neuroscience and Medicine, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Shukti Ramkiran
- Institute of Neuroscience and Medicine, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Dominik Nießen
- Institute of Neuroscience and Medicine, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | | | - Ravichandran Rajkumar
- Institute of Neuroscience and Medicine, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance - Brain (JARA – BRAIN) – Translational Medicine, Aachen, Germany
| | - Jürgen Dammers
- Institute of Neuroscience and Medicine, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Aachen Research Alliance - Brain (JARA – BRAIN) – Translational Medicine, Aachen, Germany
- Institute of Neuroscience and Medicine, Institute of Neuroscience and Medicine (INM-11), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
| | - Tanja Veselinovic
- Institute of Neuroscience and Medicine, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance - Brain (JARA – BRAIN) – Translational Medicine, Aachen, Germany
| |
Collapse
|
6
|
Kim S, Nam K, Lee EH. The interplay of semantic and syntactic processing across hemispheres. Sci Rep 2024; 14:5262. [PMID: 38438403 PMCID: PMC10912646 DOI: 10.1038/s41598-024-51793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024] Open
Abstract
The current study investigated the hemispheric dynamics underlying semantic and syntactic priming in lexical decision tasks. Utilizing primed-lateralized paradigms, we observed a distinct pattern of semantic priming contingent on the priming hemisphere. The right hemisphere (RH) exhibited robust semantic priming irrespective of syntactic congruency between prime and target, underscoring its proclivity for semantic processing. Conversely, the left hemisphere (LH) demonstrated slower response times for semantically congruent yet syntactically incongruent word pairs, highlighting its syntactic processing specialization. Additionally, nonword data revealed a hemispheric divergence in syntactic processing, with the LH showing significant intrahemispheric syntactic priming. These findings illuminate the intrinsic hemispheric specializations for semantic and syntactic processing, offering empirical support for serial processing models. The study advances our understanding of the complex interplay between semantic and syntactic factors in hemispheric interactions.
Collapse
Affiliation(s)
- Sangyub Kim
- Department of Psychology, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61217, Republic of Korea
| | - Kichun Nam
- Department of Psychology, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Eun-Ha Lee
- Wisdom Science Center, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Maillard AM, Romascano D, Villalón-Reina JE, Moreau CA, Almeida Osório JM, Richetin S, Junod V, Yu P, Misic B, Thompson PM, Fornari E, Gygax MJ, Jacquemont S, Chabane N, Rodríguez-Herreros B. Pervasive alterations of intra-axonal volume and network organization in young children with a 16p11.2 deletion. Transl Psychiatry 2024; 14:95. [PMID: 38355713 PMCID: PMC10866898 DOI: 10.1038/s41398-024-02810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Reciprocal Copy Number Variants (CNVs) at the 16p11.2 locus confer high risk for autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs). Morphometric MRI studies have revealed large and pervasive volumetric alterations in carriers of a 16p11.2 deletion. However, the specific neuroanatomical mechanisms underlying such alterations, as well as their developmental trajectory, are still poorly understood. Here we explored differences in microstructural brain connectivity between 24 children carrying a 16p11.2 deletion and 66 typically developing (TD) children between 2 and 8 years of age. We found a large pervasive increase of intra-axonal volume widespread over a high number of white matter tracts. Such microstructural alterations in 16p11.2 deletion children were already present at an early age, and led to significant changes in the global efficiency and integration of brain networks mainly associated to language, motricity and socio-emotional behavior, although the widespread pattern made it unlikely to represent direct functional correlates. Our results shed light on the neuroanatomical basis of the previously reported increase of white matter volume, and align well with analogous evidence of altered axonal diameter and synaptic function in 16p11.2 mice models. We provide evidence of a prevalent mechanistic deviation from typical maturation of brain structural connectivity associated with a specific biological risk to develop ASD. Future work is warranted to determine how this deviation contributes to the emergence of symptoms observed in young children diagnosed with ASD and other NDDs.
Collapse
Affiliation(s)
- Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - David Romascano
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Julio E Villalón-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Marina del Rey, CA, USA
| | - Clara A Moreau
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Marina del Rey, CA, USA
| | - Joana M Almeida Osório
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sonia Richetin
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Vincent Junod
- Unité de Neurologie et neuroréhabilitation pédiatrique, Département femme-mère-enfant, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paola Yu
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Bratislav Misic
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
- McConnell Brain Imaging Center, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Marina del Rey, CA, USA
| | - Eleonora Fornari
- Biomedical Imaging Center (CIBM), Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Marine Jequier Gygax
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sébastien Jacquemont
- Sainte Justine Hospital Research Center, Montréal, QC, Canada
- Department of Pediatrics, University of Montréal, Montreal, QC, Canada
| | - Nadia Chabane
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Borja Rodríguez-Herreros
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
8
|
Wat EK, Jangraw DC, Finn ES, Bandettini PA, Preston JL, Landi N, Hoeft F, Frost SJ, Lau A, Chen G, Pugh KR, Molfese PJ. Will you read how I will read? Naturalistic fMRI predictors of emergent reading. Neuropsychologia 2024; 193:108763. [PMID: 38141965 PMCID: PMC11370251 DOI: 10.1016/j.neuropsychologia.2023.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/07/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Despite reading being an essential and almost universal skill in the developed world, reading proficiency varies substantially from person to person. To study why, the fMRI field is beginning to turn from single-word or nonword reading tasks to naturalistic stimuli like connected text and listening to stories. To study reading development in children just beginning to read, listening to stories is an appropriate paradigm because speech perception and phonological processing are important for, and are predictors of, reading proficiency. Our study examined the relationship between behavioral reading-related skills and the neural response to listening to stories in the fMRI environment. Functional MRI were gathered in a 3T TIM-Trio scanner. During the fMRI scan, children aged approximately 7 years listened to professionally narrated common short stories and answered comprehension questions following the narration. Analyses of the data used inter-subject correlation (ISC), and representational similarity analysis (RSA). Our primary finding is that ISC reveals areas of increased synchrony in both high- and low-performing emergent readers previously implicated in reading ability/disability. Of particular interest are that several previously identified brain regions (medial temporal gyrus (MTG), inferior frontal gyrus (IFG), inferior temporal gyrus (ITG)) were found to "synchronize" across higher reading ability participants, while lower reading ability participants had idiosyncratic activation patterns in these regions. Additionally, two regions (superior frontal gyrus (SFG) and another portion of ITG) were recruited by all participants, but their specific timecourse of activation depended on reading performance. These analyses support the idea that different brain regions involved in reading follow different developmental trajectories that correlate with reading proficiency on a spectrum rather than the usual dichotomy of poor readers versus strong readers.
Collapse
Affiliation(s)
| | - David C Jangraw
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, USA
| | - Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, USA; Center for Multimodal Neuroimaging, NIMH, Bethesda, MD, USA
| | - Jonathan L Preston
- Haskins Laboratories, New Haven, CT, USA; Syracuse University, Syracuse, NY, USA
| | - Nicole Landi
- Haskins Laboratories, New Haven, CT, USA; Department of Psychological Sciences, University of Connecticut, USA
| | - Fumiko Hoeft
- Haskins Laboratories, New Haven, CT, USA; Department of Psychological Sciences, University of Connecticut, USA
| | | | - Airey Lau
- Haskins Laboratories, New Haven, CT, USA
| | - Gang Chen
- Statistical Computing Core, NIMH, Bethesda, MD, USA
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, USA; Department of Psychological Sciences, University of Connecticut, USA; Department of Linguistics, Yale University School of Medicine, New Haven, CT, USA
| | - Peter J Molfese
- Center for Multimodal Neuroimaging, NIMH, Bethesda, MD, USA; Haskins Laboratories, New Haven, CT, USA.
| |
Collapse
|
9
|
Nakamura R, Nouchi R, Yagi A, Yamaya N, Ota M, Ishigooka M, Kawashima R. Neural representation of a one-week delay in remembering information after production and self-generated elaboration encoding strategy. Acta Psychol (Amst) 2023; 240:104051. [PMID: 37832494 DOI: 10.1016/j.actpsy.2023.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Many studies have confirmed the memory enhancement effect of production, generation and elaboration which can be effective after only one encoding. It is also known that greater memory enhancement effects can be obtained by combining multiple memory strategies during encoding. This study aimed to investigate whether the combination of production and self-generated elaboration enhances memory performance compared with production or generation alone. A total of 23 undergraduate and graduate students participated in this study. In the functional magnetic resonance imaging analysis, we explored the neural representation of remembering information after production and self-generated elaboration strategy. We set four encoding strategy conditions: (1) Read Silent (read without production), (2) Read Aloud (only production), (3) Add Silent (self-generated elaboration without production), (4) Add Aloud (production and self-generated elaboration). The retrieval performance and brain activity while retrieving the learned sentences after a one-week delay were examined. The behavioral results showed that the highest memory performance was for sentences encoded in Add Aloud. The interaction between production and self-generated elaboration was statistically significant. These results suggest that the memory enhancement effect of combining production and self-generated elaboration is not a simple addition nor synergistic facilitation effect. The imaging results showed that the following areas were related to the retrieval of the target encoded in the add aloud condition: the area related to integration of internal and external information (precuneus), area related to information rich stimuli (lateral occipital lobe), area related to self-involvement and inference of others' feelings (MPFC), area related to seen imagery (retrosplenial region) and area related to adjustment of movement (cerebellum). These results suggest that with an encoding strategy that combines production and self-generated elaboration, integrated auditory input of vocalizations and generated images, visual images of the scene, self-relevance, inference of other's feeling, movement by moving mouth are stored with the target and enhanced memory performance of AA.
Collapse
Affiliation(s)
- Ryo Nakamura
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1, Seiryocho, Aobaku, Sendai 980-8575, Japan; Graduate School of Medicine, Tohoku University, 2-1 Seiryocho, Aobaku, Sendai 980-8575, Japan; Railway Technical Research Institute (RTRI), 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan.
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1, Seiryocho, Aobaku, Sendai, 980-8575, Japan; Smart Aging Research Center (S.A.R.C.), Tohoku University, Seiryocho, Aobaku, 4-1, Sendai 980-8575, Japan; School of Psychological Sciences, University of Human Environments, 9-12, Dougohimata, Matsuyama-shi, Ehime 790-0825, Japan.
| | - Ayano Yagi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1, Seiryocho, Aobaku, Sendai, 980-8575, Japan; Smart Aging Research Center (S.A.R.C.), Tohoku University, Seiryocho, Aobaku, 4-1, Sendai 980-8575, Japan; Department of Psychology, Faculty of Health Sciences, Hiroshima Shudo University, 1-1-1, Ozuka-higashi, Asaminami-ku, Hiroshima 731-3195, Japan.
| | - Noriki Yamaya
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1, Seiryocho, Aobaku, Sendai 980-8575, Japan; Graduate School of Medicine, Tohoku University, 2-1 Seiryocho, Aobaku, Sendai 980-8575, Japan.
| | - Masaya Ota
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1, Seiryocho, Aobaku, Sendai 980-8575, Japan; Graduate School of Medicine, Tohoku University, 2-1 Seiryocho, Aobaku, Sendai 980-8575, Japan.
| | - Minami Ishigooka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1, Seiryocho, Aobaku, Sendai 980-8575, Japan; Graduate School of Medicine, Tohoku University, 2-1 Seiryocho, Aobaku, Sendai 980-8575, Japan.
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1, Seiryocho, Aobaku, Sendai 980-8575, Japan; Smart Aging Research Center (S.A.R.C.), Tohoku University, Seiryocho, Aobaku, 4-1, Sendai 980-8575, Japan.
| |
Collapse
|
10
|
Herrera C, Whittle N, Leek MR, Brodbeck C, Lee G, Barcenas C, Barnes S, Holshouser B, Yi A, Venezia JH. Cortical networks for recognition of speech with simultaneous talkers. Hear Res 2023; 437:108856. [PMID: 37531847 DOI: 10.1016/j.heares.2023.108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
The relative contributions of superior temporal vs. inferior frontal and parietal networks to recognition of speech in a background of competing speech remain unclear, although the contributions themselves are well established. Here, we use fMRI with spectrotemporal modulation transfer function (ST-MTF) modeling to examine the speech information represented in temporal vs. frontoparietal networks for two speech recognition tasks with and without a competing talker. Specifically, 31 listeners completed two versions of a three-alternative forced choice competing speech task: "Unison" and "Competing", in which a female (target) and a male (competing) talker uttered identical or different phrases, respectively. Spectrotemporal modulation filtering (i.e., acoustic distortion) was applied to the two-talker mixtures and ST-MTF models were generated to predict brain activation from differences in spectrotemporal-modulation distortion on each trial. Three cortical networks were identified based on differential patterns of ST-MTF predictions and the resultant ST-MTF weights across conditions (Unison, Competing): a bilateral superior temporal (S-T) network, a frontoparietal (F-P) network, and a network distributed across cortical midline regions and the angular gyrus (M-AG). The S-T network and the M-AG network responded primarily to spectrotemporal cues associated with speech intelligibility, regardless of condition, but the S-T network responded to a greater range of temporal modulations suggesting a more acoustically driven response. The F-P network responded to the absence of intelligibility-related cues in both conditions, but also to the absence (presence) of target-talker (competing-talker) vocal pitch in the Competing condition, suggesting a generalized response to signal degradation. Task performance was best predicted by activation in the S-T and F-P networks, but in opposite directions (S-T: more activation = better performance; F-P: vice versa). Moreover, S-T network predictions were entirely ST-MTF mediated while F-P network predictions were ST-MTF mediated only in the Unison condition, suggesting an influence from non-acoustic sources (e.g., informational masking) in the Competing condition. Activation in the M-AG network was weakly positively correlated with performance and this relation was entirely superseded by those in the S-T and F-P networks. Regarding contributions to speech recognition, we conclude: (a) superior temporal regions play a bottom-up, perceptual role that is not qualitatively dependent on the presence of competing speech; (b) frontoparietal regions play a top-down role that is modulated by competing speech and scales with listening effort; and (c) performance ultimately relies on dynamic interactions between these networks, with ancillary contributions from networks not involved in speech processing per se (e.g., the M-AG network).
Collapse
Affiliation(s)
| | - Nicole Whittle
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Marjorie R Leek
- VA Loma Linda Healthcare System, Loma Linda, CA, United States; Loma Linda University, Loma Linda, CA, United States
| | | | - Grace Lee
- Loma Linda University, Loma Linda, CA, United States
| | | | - Samuel Barnes
- Loma Linda University, Loma Linda, CA, United States
| | | | - Alex Yi
- VA Loma Linda Healthcare System, Loma Linda, CA, United States; Loma Linda University, Loma Linda, CA, United States
| | - Jonathan H Venezia
- VA Loma Linda Healthcare System, Loma Linda, CA, United States; Loma Linda University, Loma Linda, CA, United States.
| |
Collapse
|
11
|
Lu D, Wang X, Wei Y, Cui Y, Wang Y. Neural pathways of attitudes toward foreign languages predict academic performance. Front Psychol 2023; 14:1181989. [PMID: 37564316 PMCID: PMC10410274 DOI: 10.3389/fpsyg.2023.1181989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Learning attitude is thought to impact students' academic achievement and success, but the underlying neurocognitive mechanisms of learning attitudes remain unclear. The purpose of the present study was to investigate the neural markers linked to attitudes toward foreign languages and how they contribute to foreign-language performance. Forty-one Chinese speakers who hold differentiated foreign language (English) attitudes were asked to complete an English semantic judgment task during a functional magnetic resonance imaging (fMRI) experiment. Multimethod brain imaging analyses showed that, compared with the positive attitude group (PAG), the negative attitude group (NAG) showed increased brain activation in the left STG and functional connectivity between the left STG and the right precentral gyrus (PCG), as well as changed functional segregation and integration of brain networks under the English reading task, after controlling for English reading scores. Mediation analysis further revealed that left STG activity and STG-PCG connectivity mediated the relationships between English attitudes and English reading performance. Taken together, these findings suggest that objective neural markers related to subjective foreign language attitudes (FLAs) exist and that attitude-related neural pathways play important roles in determining students' academic performance. Our findings provide new insights into the neurobiological mechanisms by which attitudes regulate academic performance.
Collapse
Affiliation(s)
- Di Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Xin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yaozhen Wei
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yue Cui
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yapeng Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Vasileiadi M, Schuler AL, Woletz M, Linhardt D, Windischberger C, Tik M. Functional connectivity explains how neuronavigated TMS of posterior temporal subregions differentially affect language processing. Brain Stimul 2023; 16:1062-1071. [PMID: 37390891 DOI: 10.1016/j.brs.2023.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND "Wernicke's area" is most often used to describe the posterior superior temporal gyrus (STG) and refers to a region traditionally thought to support language comprehension. However, the posterior STG additionally plays a critical role in language production. The purpose of the current study was to determine to what extent regions within the posterior STG are selectively recruited during language production. METHODS 23 healthy right-handed participants completed an auditory fMRI localizer task, resting-state fMRI and underwent neuronavigated TMS language mapping. We applied repetitive TMS bursts during a picture naming paradigm to probe speech disruptions of different categories (anomia, speech arrest, semantic paraphasia and phonological paraphasia). We combined an in-house built high precision stimulation software suite with E-field modeling to map the naming errors to cortical regions and revealed a dissociation of language functions within the temporal gyrus. Resting state fMRI was used to explain how E-field peaks of different categories differentially affected language production. RESULTS Peaks for phonological and semantic errors were found in the STG while those for anomia and speech arrest were located in the MTG. Seed-based connectivity analysis revealed a local connectivity pattern for phonological and semantic errors, while anomia and speech arrest seeds resulted in a larger network between IFG and posterior MTG. CONCLUSIONS Our study provides important insights into the functional neuroanatomy of language production and might help to increase the current understanding of specific language production difficulties on a causal level.
Collapse
Affiliation(s)
- Maria Vasileiadi
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | - Anna-Lisa Schuler
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | - Michael Woletz
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | - David Linhardt
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | | | - Martin Tik
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria; Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Schmitz-Koep B, Menegaux A, Gaser C, Brandes E, Schinz D, Thalhammer M, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Altered Gray Matter Cortical and Subcortical T1-Weighted/T2-Weighted Ratio in Premature-Born Adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:495-504. [PMID: 35276405 DOI: 10.1016/j.bpsc.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microscopic studies in newborns and animal models indicate impaired myelination after premature birth, particularly for cortical myelination; however, it remains unclear whether such myelination impairments last into adulthood and, if so, are relevant for impaired cognitive performance. It has been suggested that the ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging signal intensity (T1w/T2w ratio) is a proxy for myelin content. We hypothesized altered gray matter (GM) T1w/T2w ratio in premature-born adults, which is associated with lower cognitive performance after premature birth. METHODS We analyzed GM T1w/T2w ratio in 101 adults born very premature (VP) and/or at very low birth weight (VLBW) (<32 weeks of gestation and/or birth weight <1500 g) and 109 full-term control subjects at 26 years of age, controlled for voxelwise volume alterations. Cognitive performance was assessed by verbal, performance, and full scale IQ using the Wechsler Adult Intelligence Scale. RESULTS Significantly higher T1w/T2w ratio in VP/VLBW subjects was found bilaterally in widespread cortical areas, particularly in frontal, parietal, and temporal cortices, and in putamen and pallidum. In these areas, T1w/T2w ratio was not related to birth variables, such as gestational age, or IQ scores. In contrast, significantly lower T1w/T2w ratio in VP/VLBW subjects was found in bilateral clusters in superior temporal gyrus, which was associated with birth weight in the VP/VLBW group. Furthermore, lower T1w/T2w ratio in left superior temporal gyrus was associated with lower full scale and verbal IQ. CONCLUSIONS Results demonstrate GM T1w/T2w ratio alterations in premature-born adults and suggest altered GM myelination development after premature birth with lasting and functionally relevant effects into early adulthood.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Gaser
- Departments of Psychiatry, University Hospital Jena, Jena, Germany; Departments of Neurology, University Hospital Jena, Jena, Germany
| | - Elin Brandes
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin and Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Berlin, Germany; UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom; Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Sander K, Chai X, Barbeau EB, Kousaie S, Petrides M, Baum S, Klein D. Interhemispheric functional brain connectivity predicts new language learning success in adults. Cereb Cortex 2023; 33:1217-1229. [PMID: 35348627 DOI: 10.1093/cercor/bhac131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Investigating interhemispheric interactions between homologous cortical regions during language processing is of interest. Despite prevalent left hemisphere lateralization of language, the right hemisphere also plays an important role and interhemispheric connectivity is influenced by language experience and is implicated in second language (L2) acquisition. Regions involved in language processing have differential connectivity to other cortical regions and to each other, and play specific roles in language. We examined the interhemispheric interactions of subregions of the inferior frontal gyrus (areas 44 and 45), the adjacent area 9/46v in the middle frontal gyrus, the superior temporal gyrus (STG), and the posterior inferior parietal lobule (pIPL) in relation to distinct and specific aspects of L2 learning success. The results indicated that the connectivity between left and right areas 44 and 9/46v predicted improvement in sentence repetition, connectivity between left and right area 45 and mid-STG predicted improvement in auditory comprehension, and connectivity between left and right pIPL predicted improvement in reading speed. We show interhemispheric interactions in the specific context of facilitating performance in adult L2 acquisition that follow an anterior to posterior gradient in the brain, and are consistent with the respective roles of these regions in language processing.
Collapse
Affiliation(s)
- Kaija Sander
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language, and Music (CRBLM), Montréal, QC H3G 2A8, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language, and Music (CRBLM), Montréal, QC H3G 2A8, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montréal, QC H3A 2B4, Canada
| | - Elise B Barbeau
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language, and Music (CRBLM), Montréal, QC H3G 2A8, Canada
| | - Shanna Kousaie
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada.,School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language, and Music (CRBLM), Montréal, QC H3G 2A8, Canada.,Department of Psychology, McGill University, Montréal, QC H3A 1G1, Canada
| | - Shari Baum
- Centre for Research on Brain, Language, and Music (CRBLM), Montréal, QC H3G 2A8, Canada.,School of Communication Sciences and Disorders, McGill University, Montréal, QC H3A 1G1, Canada
| | - Denise Klein
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language, and Music (CRBLM), Montréal, QC H3G 2A8, Canada
| |
Collapse
|
15
|
Zhang X, Xie H, Wang X, Li Z, Song R, Shan Y, Li C, Chen J, Hong J, Li X, Wan G, Zhang Y, An D, Dou Z, Wen H. Modulating swallowing-related functional connectivity and behavior via modified pharyngeal electrical stimulation: A functional near-infrared spectroscopy evidence. Front Neurol 2022; 13:1006013. [PMID: 36299270 PMCID: PMC9589107 DOI: 10.3389/fneur.2022.1006013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/21/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Modified pharyngeal electrical stimulation (mPES) is a novel therapeutic modality for patients with neurogenic dysphagia. However, the underlying neural mechanism remains poorly understood. This study aimed to use functional near-infrared spectroscopy (fNIRS) to explore the influence of mPES on swallowing-related frequency-specific neural networks and ethology. Methods Twenty-two healthy right-handed volunteers participated in the study. Each participant was randomly assigned to either the sham or the mPES group and provided a 10-min intervention program every day for 5 days. Oxyhemoglobin and deoxyhemoglobin concentration changes verified by fNIRS were recorded on days 1, 3, and 5. Five characteristic frequency signals (0.0095-2 Hz) were identified using the wavelet transform method. To calculate frequency-specific functional connectivity, wavelet phase coherence (WPCO) was adopted. Furthermore, behavioral performance was assessed pre- and post-mPES using a 150 ml-water swallowing stress test. Results Compared with sham stimulation on day 1, the significantly decreased WPCO values were mainly associated with the dorsolateral prefrontal lobe, Broca's area, and middle temporal lobe. Compared with the sham mPES on day 1, the mPES showed a noticeable effect on the total swallow duration. Compared with the baseline, the WPCO values on days 3 and 5 showed a stepwise decrease in connectivity with the application of mPES. Furthermore, the decreased WPCO was associated with a shortened time per swallow after mPES. Conclusions The mPES could modulate swallowing-related frequency-specific neural networks and evoke swallowing cortical processing more efficiently. This was associated with improved performance in a water swallowing stress test in healthy participants.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Xie
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China,Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaolu Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering of Sun Yat-sen University, Guangzhou, China
| | - Zengyong Li
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering of Sun Yat-sen University, Guangzhou, China
| | - Yilong Shan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guifang Wan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaowen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Delian An
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Zulin Dou
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,*Correspondence: Hongmei Wen
| |
Collapse
|
16
|
Ott LR, Schantell M, Willett MP, Johnson HJ, Eastman JA, Okelberry HJ, Wilson TW, Taylor BK, May PE. Construct validity of the NIH toolbox cognitive domains: A comparison with conventional neuropsychological assessments. Neuropsychology 2022; 36:468-481. [PMID: 35482626 PMCID: PMC10468104 DOI: 10.1037/neu0000813] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Previous studies have assessed the construct validity of individual subtests in the National Institutes of Health (NIH) Toolbox Cognition Battery (NIHTB-CB), though none have examined the construct validity of the cognitive domains. Importantly, the original NIHTB-CB validation studies were administered on a desktop computer, though the NIHTB-CB is now solely administered via an iPad. We examined the construct validity of each cognitive domain assessed in the NIHTB-CB, including a motor dexterity domain using the iPad application compared to a neuropsychological battery in a sample of healthy adults. METHOD Eighty-three adults aged 20-66 years (M = 44.35 ± 13.41 years) completed the NIHTB-CB and a comprehensive neuropsychological assessment. Domain scores for each of six cognitive domains (attention and executive function, episodic memory, working memory, processing speed, language, and motor dexterity) and the fluid composite were computed for both batteries. We then assessed the construct validity using Pearson correlations and intraclass correlation coefficients (ICCs) for both demographically corrected and uncorrected domains. RESULTS We found the attention and executive function, episodic memory, and processing speed domains had poor-to-adequate construct validity (ICCConsistency = -0.029 to 0.517), the working memory and motor dexterity domains and the fluid composite had poor-to-good construct validity (ICCConsistency = 0.215-0.801), and the language domain had adequate-to-good construct validity (ICCConsistency = 0.408-0.829). CONCLUSION The NIHTB-CB cognitive domains have poor-to-good construct validity, thus researchers should be aware that some tests representing cognitive constructs may not fully reflect the cognitive domain of interest. Future investigation of the construct validity and reliability of the NIHTB-CB administered using the iPad is recommended. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE USA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE USA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE USA
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE USA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE USA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE USA
| | - Pamela E. May
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE USA
- Department of Neurological Sciences, UNMC, Omaha, NE USA
| |
Collapse
|
17
|
Yeung MK. Frontal cortical activation during emotional and non-emotional verbal fluency tests. Sci Rep 2022; 12:8497. [PMID: 35589939 PMCID: PMC9120192 DOI: 10.1038/s41598-022-12559-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 01/19/2023] Open
Abstract
There has been growing recognition of the utility of combining the verbal fluency test and functional near-infrared spectroscopy (fNIRS) to assess brain functioning and to screen for psychiatric disorders. Recently, an emotional analogue of the semantic fluency test (SFT) has been developed that taps partly different processes from conventional verbal fluency tests. Nevertheless, neural processing during the emotional SFT remains elusive. Here, fNIRS was used to compare frontal cortical activation during emotional and non-emotional SFTs. The goal was to determine whether the emotional SFT activated overlapping yet distinct frontal cortical regions compared with the conventional, non-emotional SFT. Forty-three healthy young adults performed the emotional and non-emotional SFTs while hemodynamic changes in the bilateral frontopolar, dorsomedial, dorsolateral, ventrolateral, and posterolateral frontal cortices were measured by fNIRS. There were significant increases in oxyhemoglobin concentration and significant decreases in deoxyhemoglobin concentration (i.e., activation) in frontopolar, dorsolateral, and ventrolateral frontal regions during both the non-emotional and emotional SFTs. Also, complementary analyses conducted on changes in the two chromophores using classical and Bayesian hypothesis testing suggested that comparable frontal cortical regions were activated while performing the two tests. This similarity in activation occurred in a context where non-emotional and emotional SFT performances exhibited differential relationships with the overall level of negative mood symptoms. In conclusion, frontal cortical activation during the emotional SFT is similar to that during the conventional, non-emotional SFT. Given that there is evidence for discriminant validity for the emotional SFT, the neural mechanisms underlying the uniqueness of this test warrant further investigation.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China. .,University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
18
|
Guha S, Jung R, Dunson D. Predicting phenotypes from brain connection structure. J R Stat Soc Ser C Appl Stat 2022. [DOI: 10.1111/rssc.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Subharup Guha
- Department of BiostatisticsUniversity of Florida GainesvilleFloridaUSA
| | - Rex Jung
- Department of NeurologyUniversity of New Mexico Health Sciences Center AlbuquerqueNew MexicoUSA
| | - David Dunson
- Department of Statistical ScienceDuke University DurhamNorth CarolinaUSA
| |
Collapse
|
19
|
Baksa D, Szabo E, Kocsel N, Galambos A, Edes AE, Pap D, Zsombok T, Magyar M, Gecse K, Dobos D, Kozak LR, Bagdy G, Kokonyei G, Juhasz G. Circadian Variation of Migraine Attack Onset Affects fMRI Brain Response to Fearful Faces. Front Hum Neurosci 2022; 16:842426. [PMID: 35355585 PMCID: PMC8959375 DOI: 10.3389/fnhum.2022.842426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Previous studies suggested a circadian variation of migraine attack onset, although, with contradictory results – possibly because of the existence of migraine subgroups with different circadian attack onset peaks. Migraine is primarily a brain disorder, and if the diversity in daily distribution of migraine attack onset reflects an important aspect of migraine, it may also associate with interictal brain activity. Our goal was to assess brain activity differences in episodic migraine subgroups who were classified according to their typical circadian peak of attack onset. Methods Two fMRI studies were conducted with migraine without aura patients (n = 31 in Study 1, n = 48 in Study 2). Among them, three subgroups emerged with typical Morning, Evening, and Varying start of attack onset. Whole brain activity was compared between the groups in an implicit emotional processing fMRI task, comparing fearful, sad, and happy facial stimuli to neutral ones. Results In both studies, significantly increased neural activation was detected to fearful (but not sad or happy) faces. In Study 1, the Evening start group showed increased activation compared to the Morning start group in regions involved in emotional, self-referential (left posterior cingulate gyrus, right precuneus), pain (including left middle cingulate, left postcentral, left supramarginal gyri, right Rolandic operculum) and sensory (including bilateral superior temporal gyrus, right Heschl’s gyrus) processing. While in Study 2, the Morning start group showed increased activation compared to the Varying start group at a nominally significant level in regions with pain (right precentral gyrus, right supplementary motor area) and sensory processing (bilateral paracentral lobule) functions. Conclusion Our fMRI studies suggest that different circadian attack onset peaks are associated with interictal brain activity differences indicating heterogeneity within migraine patients and alterations in sensitivity to threatening fearful stimuli. Circadian variation of migraine attack onset may be an important characteristic to address in future studies and migraine prophylaxis.
Collapse
Affiliation(s)
- Daniel Baksa
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University, Budapest, Hungary
| | - Edina Szabo
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Center for Pain and the Brain (PAIN Research Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Natalia Kocsel
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Galambos
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea Edit Edes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dorottya Pap
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Terezia Zsombok
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Mate Magyar
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dora Dobos
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Lajos Rudolf Kozak
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gyongyi Kokonyei
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Gabriella Juhasz,
| |
Collapse
|
20
|
Geary DC, Xu KM. Evolution of Self-Awareness and the Cultural Emergence of Academic and Non-academic Self-Concepts. EDUCATIONAL PSYCHOLOGY REVIEW 2022; 34:2323-2349. [PMID: 35340928 PMCID: PMC8934684 DOI: 10.1007/s10648-022-09669-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/30/2022]
Abstract
Schooling is ubiquitous in the modern world and academic development is now a critical aspect of preparation for adulthood. A step back in time to pre-modern societies and an examination of life in remaining traditional societies today reveals that universal formal schooling is an historically recent phenomenon. This evolutionary and historical recency has profound implications for understanding academic development, including how instructional practices modify evolved or biological primary abilities (e.g., spoken language) to create evolutionarily novel or biologically secondary academic competencies (e.g., reading). We propose the development of secondary abilities promotes the emergence of academic self-concepts that in turn are supported by evolved systems for self-awareness and self-knowledge. Unlike some forms of self-knowledge (e.g., relative physical abilities) that appear to be universal and central to many people's overall self-concept, the relative importance of academic self-concepts are expected to be dependent on explicit social and cultural supports for their valuation. These culturally contingent self-concepts are contrasted with universal social and physical self-concepts, with implications for understanding variation students' relative valuation of academic competencies and their motivations to engage in academic learning.
Collapse
Affiliation(s)
- David C. Geary
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211-2500 USA
| | - Kate M. Xu
- Faculty of Educational Sciences, Open University of the Netherlands, Heerlen, the Netherlands
| |
Collapse
|
21
|
Datta S, Boulgouris NV. Recognition of grammatical class of imagined words from EEG signals using convolutional neural network. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Shojaeilangari S, Radman N, Taghizadeh ME, Soltanian-Zadeh H. rsfMRI based evidence for functional connectivity alterations in adults with developmental stuttering. Heliyon 2021; 7:e07855. [PMID: 34504967 PMCID: PMC8414185 DOI: 10.1016/j.heliyon.2021.e07855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Persistent developmental stuttering (PDS) is defined as a speech disorder mainly characterized by intermittent involuntary disruption in normal fluency, time patterning, and rhythm of speech. Although extensive functional neuroimaging studies have explored brain activation alterations in stuttering, the main affected brain regions/networks in PDS still remain unclear. Here, using functional magnetic resonance imaging (fMRI), we investigated resting-state whole-brain functional connectivity of 15 adults who stutter (PDS group) and 15 age-matched control individuals to reveal the connectivity abnormalities associated with stuttering. We were also interested in exploring how the severity of stuttering varies across individuals to understand the compensatory mechanism of connectivity pattern in patients showing less symptoms. Our results revealed decreased connectivity of left frontal pole and left middle frontal gyrus (MidFG) with right precentral/postcentral gyrus in stuttering individuals compared with control participants, while less symptomatic PDS individuals showed greater functional connectivity between left MidFG and left caudate. Additionally, our finding indicated reduced connectivity in the PDS group between the left superior temporal gyrus (STG) and several brain regions including the right limbic lobe, right fusiform, and right cerebellum, as well as the left middle temporal gyrus (MTG). We also observed that PDS individuals with less severe symptoms had stronger connectivity between right MTG and several left hemispheric regions including inferior frontal gyrus (IFG) and STG. The connectivity between right fronto-orbital and right MTG was also negatively correlated with stuttering severity. These findings may suggest the involvement of right MTG and left MidFG in successful compensatory mechanisms in more fluent stutterers.
Collapse
Affiliation(s)
- Seyedehsamaneh Shojaeilangari
- School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran
| | - Narges Radman
- School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran
- Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Soltanian-Zadeh
- School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, Tehran University, Tehran, Iran
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
23
|
Schäfer A, Peirlinck M, Linka K, Kuhl E. Bayesian Physics-Based Modeling of Tau Propagation in Alzheimer's Disease. Front Physiol 2021; 12:702975. [PMID: 34335308 PMCID: PMC8322942 DOI: 10.3389/fphys.2021.702975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging techniques can now visualize the distribution of tau in the brain in vivo, allowing for new insights to the dynamics of this biomarker. Here we personalize a network diffusion model with global spreading and local production terms to longitudinal tau positron emission tomography data of 76 subjects from the Alzheimer's Disease Neuroimaging Initiative. We use Bayesian inference with a hierarchical prior structure to infer means and credible intervals for our model parameters on group and subject levels. Our results show that the group average protein production rate for amyloid positive subjects is significantly higher with 0.019±0.27/yr, than that for amyloid negative subjects with -0.143±0.21/yr (p = 0.0075). These results support the hypothesis that amyloid pathology drives tau pathology. The calibrated model could serve as a valuable clinical tool to identify optimal time points for follow-up scans and predict the timeline of disease progression.
Collapse
Affiliation(s)
- Amelie Schäfer
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Mathias Peirlinck
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Kevin Linka
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | | |
Collapse
|
24
|
Kourtidou E, Kasselimis D, Angelopoulou G, Karavasilis E, Velonakis G, Kelekis N, Zalonis I, Evdokimidis I, Potagas C, Petrides M. The Role of the Right Hemisphere White Matter Tracts in Chronic Aphasic Patients After Damage of the Language Tracts in the Left Hemisphere. Front Hum Neurosci 2021; 15:635750. [PMID: 34239424 PMCID: PMC8258417 DOI: 10.3389/fnhum.2021.635750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
The involvement of the right hemisphere (RH) in language, and especially after aphasia resulting from left hemisphere (LH) lesions, has been recently highlighted. The present study investigates white matter structure in the right hemisphere of 25 chronic post-stroke aphasic patients after LH lesions in comparison with 24 healthy controls, focusing on the four cortico-cortical tracts that link posterior parietal and temporal language-related areas with Broca’s region in the inferior frontal gyrus of the LH: the Superior Longitudinal Fasciculi II and III (SLF II and SLF III), the Arcuate Fasciculus (AF), and the Temporo-Frontal extreme capsule Fasciculus (TFexcF). Additionally, the relationship of these RH white matter tracts to language performance was examined. The patients with post-stroke aphasia in the chronic phase and the healthy control participants underwent diffusion tensor imaging (DTI) examination. The aphasic patients were assessed with standard aphasia tests. The results demonstrated increased axial diffusivity in the RH tracts of the aphasic patients. Patients were then divided according to the extent of the left hemisphere white matter loss. Correlations of language performance with radial diffusivity (RD) in the right hemisphere homologs of the tracts examined were demonstrated for the TFexcF, SLF III, and AF in the subgroup with limited damage to the LH language networks and only with the TFexcF in the subgroup with extensive damage. The results argue in favor of compensatory roles of the right hemisphere tracts in language functions when the LH networks are disrupted.
Collapse
Affiliation(s)
- Evie Kourtidou
- Neuropsychology and Language Disorders Unit, Eginition Hospital, First Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kasselimis
- Neuropsychology and Language Disorders Unit, Eginition Hospital, First Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Angelopoulou
- Neuropsychology and Language Disorders Unit, Eginition Hospital, First Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, National and Kapodistrian University of Athens, General University Hospital "Attikon", Haidari, Greece
| | - Georgios Velonakis
- Second Department of Radiology, National and Kapodistrian University of Athens, General University Hospital "Attikon", Haidari, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, National and Kapodistrian University of Athens, General University Hospital "Attikon", Haidari, Greece
| | - Ioannis Zalonis
- Eginition Hospital, Neuropsychological Laboratory, First Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- Neuropsychology and Language Disorders Unit, Eginition Hospital, First Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantin Potagas
- Neuropsychology and Language Disorders Unit, Eginition Hospital, First Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Petrides
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Gonzalez-Burgos L, Pereira JB, Mohanty R, Barroso J, Westman E, Ferreira D. Cortical Networks Underpinning Compensation of Verbal Fluency in Normal Aging. Cereb Cortex 2021; 31:3832-3845. [PMID: 33866353 PMCID: PMC8258442 DOI: 10.1093/cercor/bhab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Elucidating compensatory mechanisms underpinning phonemic fluency (PF) may help to minimize its decline due to normal aging or neurodegenerative diseases. We investigated cortical brain networks potentially underpinning compensation of age-related differences in PF. Using graph theory, we constructed networks from measures of thickness for PF, semantic, and executive–visuospatial cortical networks. A total of 267 cognitively healthy individuals were divided into younger age (YA, 38–58 years) and older age (OA, 59–79 years) groups with low performance (LP) and high performance (HP) in PF: YA-LP, YA-HP, OA-LP, OA-HP. We found that the same pattern of reduced efficiency and increased transitivity was associated with both HP (compensation) and OA (aberrant network organization) in the PF and semantic cortical networks. When compared with the OA-LP group, the higher PF performance in the OA-HP group was associated with more segregated PF and semantic cortical networks, greater participation of frontal nodes, and stronger correlations within the PF cortical network. We conclude that more segregated cortical networks with strong involvement of frontal nodes seemed to allow older adults to maintain their high PF performance. Nodal analyses and measures of strength were helpful to disentangle compensation from the aberrant network organization associated with OA.
Collapse
Affiliation(s)
- Lissett Gonzalez-Burgos
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Health Science, Section of Psychology and Speech Therapy, University of La Laguna, La Laguna, Tenerife 38 200, Spain.,Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm 141 83, Sweden
| | - Joana B Pereira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm 141 83, Sweden
| | - Rosaleena Mohanty
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm 141 83, Sweden
| | - José Barroso
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Health Science, Section of Psychology and Speech Therapy, University of La Laguna, La Laguna, Tenerife 38 200, Spain
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm 141 83, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
| | - Daniel Ferreira
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Health Science, Section of Psychology and Speech Therapy, University of La Laguna, La Laguna, Tenerife 38 200, Spain.,Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm 141 83, Sweden
| |
Collapse
|
26
|
Pozeg P, Jöhr J, Pincherle A, Marie G, Ryvlin P, Meuli R, Hagmann P, Diserens K, Dunet V. Discriminating cognitive motor dissociation from disorders of consciousness using structural MRI. Neuroimage Clin 2021; 30:102651. [PMID: 33836454 PMCID: PMC8056460 DOI: 10.1016/j.nicl.2021.102651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022]
Abstract
An accurate evaluation and detection of awareness after a severe brain injury is crucial to a patient's diagnosis, therapy, and end-of-life decisions. Misdiagnosis is frequent as behavior-based assessments often overlook subtle signs of consciousness. This study aimed to identify brain MRI characteristics of patients with residual consciousness after a severe brain injury and to develop a simple MRI-based scoring system according to the findings. We retrieved data from 128 patients and split them into a development or validation set. Structural brain MRIs were qualitatively assessed for lesions in 18 brain regions. We used logistic regression and support vector machine algorithms to first identify the most relevant brain regions predicting a patient's outcome in the development set. We next built a diagnostic MRI-based score and estimated its optimal diagnostic cut-off point. The classifiers were then tested on the validation set and their performance compared using the receiver operating characteristic curve. Relevant brain regions predicting negative outcome highly overlapped between both classifiers and included the left mesencephalon, right basal ganglia, right thalamus, right parietal cortex, and left frontal cortex. The support vector machine classifier showed higher accuracy (0.93, 95% CI: 0.81-0.96) and specificity (0.97, 95% CI: 0.85-1) than logistic regression (accuracy: 0.87, 95% CI: 0.73 - 0.95; specificity: 0.90, 95% CI: 0.75-0.97), but equal sensitivity (0.67, 95% CI: 0.24-0.94 and 0.22-0.96, respectively) for distinguishing patients with and without residual consciousness. The novel MRI-based score assessing brain lesions in patients with disorders of consciousness accurately detects patients with residual consciousness. It could complement valuably behavioral evaluation as it is time-efficient and requires only conventional MRI.
Collapse
Affiliation(s)
- Polona Pozeg
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jane Jöhr
- Neurology and Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alessandro Pincherle
- Neurology and Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Neurology Unit, Department of Medicine, Hopitaux Robert Schuman, Luxembourg, Luxembourg
| | - Guillaume Marie
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Ryvlin
- Neurology and Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Reto Meuli
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Karin Diserens
- Neurology and Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Vincent Dunet
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
27
|
Chen J, Wei Z, Liang C, Liu B, Guo J, Kong X, Huang M, Peng Z, Wan G. Dysfunction of the Auditory Brainstem as a Neurophysiology Subtype of Autism Spectrum Disorder. Front Neurosci 2021; 15:637079. [PMID: 33815042 PMCID: PMC8010248 DOI: 10.3389/fnins.2021.637079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is very heterogeneous, particularly in language. Studies have suggested that language impairment is linked to auditory-brainstem dysfunction in ASD. However, not all ASD children have these deficits, which suggests potential subtypes of ASD. We classified ASD children into two subtypes according to their speech-evoked auditory brainstem response (speech-ABR) and explored the neural substrates for possible subtypes. Twenty-nine children with ASD and 25 typically developing (TD) peers were enrolled to undergo speech-ABR testing and structural magnetic resonance imaging (sMRI). There were significant differences between the ASD group and TD group in surface area, cortical volume and cortical thickness. According to speech-ABR results, ASD participants were divided into the ASD-typical (ASD-T) group and ASD-atypical (ASD-A) group. Compared with the ASD-T group, the ASD-A group had a lower score in language of the Gesell Developmental Diagnosis Scale (GDDS), increased left rostral middle frontal gyrus (lRMFG) area and decreased local gyrification index of the right superior temporal gyrus. GDDS-language and surface area of lRMFG were correlated to the wave-A amplitude in ASD. Surface area of lRMFG had an indirect effect on language performance via alteration of the wave-V amplitude. Thus, cortical deficits may impair language ability in children with ASD by causing subcortical dysfunction at preschool age. These evidences support dysfunction of the auditory brainstem as a potential subtype of ASD. Besides, this subtype-based method may be useful for various clinical applications.
Collapse
Affiliation(s)
- Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Chun Liang
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Binguang Liu
- Department of Radiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jimin Guo
- Department of Radiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xuejun Kong
- Martinos Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Minshi Huang
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Ziwen Peng
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Guobin Wan
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
28
|
Distinct neural substrates of individual differences in components of reading comprehension in adults with or without dyslexia. Neuroimage 2020; 226:117570. [PMID: 33221445 DOI: 10.1016/j.neuroimage.2020.117570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/26/2022] Open
Abstract
Reading comprehension is a complex task that depends on multiple cognitive and linguistic processes. According to the updated Simple View of Reading framework, in adults, individual variation in reading comprehension can be largely explained by combined variance in three component abilities: (1) decoding accuracy, (2) fluency, and (3) language comprehension. Here we asked whether the neural correlates of the three components are different in adults with dyslexia as compared to typically-reading adults and whether the relative contribution of these correlates to reading comprehension is similar in the two groups. We employed a novel naturalistic fMRI reading task to identify the neural correlates of individual differences in the three components using whole-brain and literature-driven regions-of-interest approaches. Across all participants, as predicted by the Simple View framework, we found distinct patterns of associations with linguistic and domain-general regions for the three components, and that the left-hemispheric neural correlates of language comprehension in the angular and posterior temporal gyri made the largest contributions to explaining out-of-scanner reading comprehension performance. These patterns differed between the two groups. In typical adult readers, better fluency was associated with greater activation of left occipitotemporal regions, better comprehension with lesser activation in prefrontal and posterior parietal regions, and there were no significant associations with decoding. In adults with dyslexia, better fluency was associated with greater activation of bilateral inferior parietal regions, better comprehension was associated with greater activation in some prefrontal clusters and lower in others, and better decoding skills were associated with lesser activation of bilateral prefrontal and posterior parietal regions. Extending the behavioral findings of skill-level differences in the relative contribution of the three components to reading comprehension, the relative contributions of the neural correlates to reading comprehension differed based on dyslexia status. These findings reveal some of the neural correlates of individual differences in the three components and the underlying mechanisms of reading comprehension deficits in adults with dyslexia.
Collapse
|
29
|
Gonzalez-Burgos L, Barroso J, Ferreira D. Cognitive reserve and network efficiency as compensatory mechanisms of the effect of aging on phonemic fluency. Aging (Albany NY) 2020; 12:23351-23378. [PMID: 33203801 PMCID: PMC7746387 DOI: 10.18632/aging.202177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 10/12/2020] [Indexed: 04/21/2023]
Abstract
Compensation in cognitive aging is a topic of recent interest. However, factors contributing to cognitive compensation in functions such as phonemic fluency (PF) are not completely understood. Using cross-sectional data, we investigated cognitive reserve (CR) and network efficiency in young (32-58 years) versus old (59-84 years) individuals with high versus low performance in PF. ANCOVA was used to investigate the interaction between CR, age, and performance in PF. Random forest and graph theory analyses were conducted to study the contribution of cognition to PF and efficiency measures, respectively. Higher CR increased performance in PF and reduced age-related differences in PF. A slightly higher number of cognitive functions contributed to performance in high CR groups. The networks were more integrated in high CR individuals, both in the older age and high-performance groups. The strength and segregation of the networks were decreased in high-performance groups with high CR. We conclude that PF decreases less with age in individuals with higher CR, possibly due to a greater capacity to recruit non-linguistic cognitive networks, and efficient use of language networks, thereby integrating information in a rapid way across less fragmented networks. High CR and network efficiency seem to be important factors for cognitive compensation.
Collapse
Affiliation(s)
- Lissett Gonzalez-Burgos
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Health Science, Section of Psychology and Speech Therapy, University of La Laguna, La Laguna, Tenerife, Spain
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - José Barroso
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Health Science, Section of Psychology and Speech Therapy, University of La Laguna, La Laguna, Tenerife, Spain
| | - Daniel Ferreira
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Health Science, Section of Psychology and Speech Therapy, University of La Laguna, La Laguna, Tenerife, Spain
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Morandini HA, Silk TJ, Griffiths K, Rao P, Hood SD, Zepf FD. Meta-analysis of the neural correlates of vigilant attention in children and adolescents. Cortex 2020; 132:374-385. [DOI: 10.1016/j.cortex.2020.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/10/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
|
31
|
Blank IA, Fedorenko E. No evidence for differences among language regions in their temporal receptive windows. Neuroimage 2020; 219:116925. [PMID: 32407994 PMCID: PMC9392830 DOI: 10.1016/j.neuroimage.2020.116925] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/20/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022] Open
Abstract
The "core language network" consists of left frontal and temporal regions that are selectively engaged in linguistic processing. Whereas functional differences among these regions have long been debated, many accounts propose distinctions in terms of representational grain-size-e.g., words vs. phrases/sentences-or processing time-scale, i.e., operating on local linguistic features vs. larger spans of input. Indeed, the topography of language regions appears to overlap with a cortical hierarchy reported by Lerner et al. (2011) wherein mid-posterior temporal regions are sensitive to low-level features of speech, surrounding areas-to word-level information, and inferior frontal areas-to sentence-level information and beyond. However, the correspondence between the language network and this hierarchy of "temporal receptive windows" (TRWs) is difficult to establish because the precise anatomical locations of language regions vary across individuals. To directly test this correspondence, we first identified language regions in each participant with a well-validated task-based localizer, which confers high functional resolution to the study of TRWs (traditionally based on stereotactic coordinates); then, we characterized regional TRWs with the naturalistic story listening paradigm of Lerner et al. (2011), which augments task-based characterizations of the language network by more closely resembling comprehension "in the wild". We find no region-by-TRW interactions across temporal and inferior frontal regions, which are all sensitive to both word-level and sentence-level information. Therefore, the language network as a whole constitutes a unique stage of information integration within a broader cortical hierarchy.
Collapse
Affiliation(s)
- Idan A Blank
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
32
|
Kuiper JJ, Lin YH, Young IM, Bai MY, Briggs RG, Tanglay O, Fonseka RD, Hormovas J, Dhanaraj V, Conner AK, O'Neal CM, Sughrue ME. A parcellation-based model of the auditory network. Hear Res 2020; 396:108078. [PMID: 32961519 DOI: 10.1016/j.heares.2020.108078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The auditory network plays an important role in interaction with the environment. Multiple cortical areas, such as the inferior frontal gyrus, superior temporal gyrus and adjacent insula have been implicated in this processing. However, understanding of this network's connectivity has been devoid of tractography specificity. METHODS Using attention task-based functional magnetic resonance imaging (MRI) studies, an activation likelihood estimation (ALE) of the auditory network was generated. Regions of interest corresponding to the cortical parcellation scheme previously published under the Human Connectome Project were co-registered onto the ALE in the Montreal Neurological Institute coordinate space, and visually assessed for inclusion in the network. Diffusion spectrum MRI-based fiber tractography was performed to determine the structural connections between cortical parcellations comprising the network. RESULTS Fifteen cortical regions were found to be part of the auditory network: areas 44 and 8C, auditory area 1, 4, and 5, frontal operculum area 4, the lateral belt, medial belt and parabelt, parietal area F centromedian, perisylvian language area, retroinsular cortex, supplementary and cingulate eye field and the temporoparietal junction area 1. These regions showed consistent interconnections between adjacent parcellations. The frontal aslant tract was found to connect areas within the frontal lobe, while the arcuate fasciculus was found to connect the frontal and temporal lobe, and subcortical U-fibers were found to connect parcellations within the temporal area. Further studies may refine this model with the ultimate goal of clinical application.
Collapse
Affiliation(s)
- Joseph J Kuiper
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | | | - Michael Y Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - R Dineth Fonseka
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia.
| |
Collapse
|
33
|
Dicataldo R, Roch M. Are the Effects of Variation in Quantity of Daily Bilingual Exposure and Socioeconomic Status on Language and Cognitive Abilities Independent in Preschool Children? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4570. [PMID: 32630383 PMCID: PMC7344960 DOI: 10.3390/ijerph17124570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/05/2023]
Abstract
Bilingual exposure (BE) and socioeconomic status (SES) are associated with children's development, but their specific and unique effects are still unclear. This study analyzed the influence of these environmental factors on a set of cognitive and linguistic abilities in preschoolers to disentangle their effects. One hundred-eleven Italian-speaking preschool children (mean age = 61 months; SD = 6.8) growing in a monolingual or multilingual context completed an assessment of cognitive (theory of mind, inhibition, attention shifting and working memory) and linguistic abilities (vocabulary, grammar, narrative comprehension, lexical access). The results of hierarchical regressions with predictors variation in BE (both Length and Daily exposure) and SES on each ability, shown a specific contribution of variation in SES, after controlling for BE, in vocabulary, grammar, and working memory (WM), and a specific contribution of variation in BE, over and above effect of SES, in vocabulary, narrative comprehension and WM. In addition, we found an interaction between these factors in predicting the performance of the theory of mind task (ToM). To conclude, variations in BE and SES are related independently to individual differences in linguistic and cognitive skills of children in preschool.
Collapse
Affiliation(s)
- Raffaele Dicataldo
- Department of Development and Socialization Psychology, University of Padova, 35131 Padova, Italy;
| | | |
Collapse
|
34
|
Interhemispheric compensation: A hypothesis of TMS-induced effects on language-related areas. Eur Psychiatry 2020; 23:281-8. [DOI: 10.1016/j.eurpsy.2007.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 11/22/2022] Open
Abstract
AbstractRepetitive transcranial magnetic stimulation (rTMS) applied over brain regions responsible for language processing is used to curtail potentially auditory hallucinations in schizophrenia patients and to investigate the functional organisation of language-related areas. Variability of effects is, however, marked across studies and between subjects. Furthermore, the mechanisms of action of rTMS are poorly understood.Here, we reviewed different factors related to the structural and functional organisation of the brain that might influence rTMS-induced effects. Then, by analogy with aphasia studies, and the plastic-adaptive changes in both the left and right hemispheres following aphasia recovery, a hypothesis is proposed about rTMS mechanisms over language-related areas (e.g. Wernicke, Broca). We proposed that the local interference induced by rTMS in language-related areas might be analogous to aphasic stroke and might lead to a functional reorganisation in areas connected to the virtual lesion for language recovery.
Collapse
|
35
|
Matsuzaki J, Ku M, Dipiero M, Chiang T, Saby J, Blaskey L, Kuschner ES, Kim M, Berman JI, Bloy L, Chen YH, Dell J, Liu S, Brodkin ES, Embick D, Roberts TPL. Delayed Auditory Evoked Responses in Autism Spectrum Disorder across the Life Span. Dev Neurosci 2020; 41:223-233. [PMID: 32007990 DOI: 10.1159/000504960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/20/2019] [Indexed: 11/19/2022] Open
Abstract
The M50 and M100 auditory evoked responses reflect early auditory processes in the primary/secondary auditory cortex. Although previous M50 and M100 studies have been conducted on individuals with autism spectrum disorder (ASD) and indicate disruption of encoding simple sensory information, analogous investigations of the neural correlates of auditory processing through development from children into adults are very limited. Magnetoencephalography was used to record signals arising from the left and right superior temporal gyrus during auditory presentation of tones to children/adolescents and adults with ASD as well as typically developing (TD) controls. One hundred and thirty-two participants (aged 6-42 years) were included into the final analyses (children/adolescents: TD, n = 36, 9.21 ± 1.6 years; ASD, n = 58, 10.07 ± 2.38 years; adults: TD, n = 19, 26.97 ± 1.29 years; ASD, n = 19, 23.80 ± 6.26 years). There were main effects of group on M50 and M100 latency (p < 0.001) over hemisphere and frequency. Delayed M50 and M100 latencies were found in participants with ASD compared to the TD group, and earlier M50 and M100 latencies were associated with increased age. Furthermore, there was a statistically significant association between language ability and both M50 and M100 latencies. Importantly, differences in M50 and M100 latencies between TD and ASD cohorts, often reported in children, persisted into adulthood, with no evidence supporting latency convergence.
Collapse
Affiliation(s)
- Junko Matsuzaki
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew Ku
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marissa Dipiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Taylor Chiang
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joni Saby
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yu-Han Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John Dell
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Embick
- Department of Linguistics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA, .,Department of Linguistics, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
| |
Collapse
|
36
|
Abstract
Reading is a complex, multifactorial, and dynamic skill. Most of what we currently know about neural correlates underlying reading comes from studies carried out with adults. However, considering that adults are skilled readers, findings from these studies cannot be generalized to children who are still learning to read. The advancement of neuroimaging techniques allowed researchers to investigate the developmental fingerprints and neurocircuitry involved in reading in children. To highlight the contribution of neuroimaging in understanding reading development, we look at both reading components, namely, word identification and reading comprehension. This chapter covers the three literacy periods-emergent, early, and conventional literacy-to better understand how reading acquisition affects neural networks. Further, we discuss our findings in light of different cognitive reading models. Although it is important to consider both spatial and temporal measurements to provide a holistic account of reading-related brain activity, the current chapter focuses on the functional activation and connectivity of reading-related areas in typically developing children.
Collapse
|
37
|
Nordio S, Burgio F, D'Imperio D, De Biagi F, Cosentino E, Meneghello F. Communicative and swallowing disorders in anoxic patients: A retrospective study on clinical outcomes and performance measures. NeuroRehabilitation 2019; 45:453-461. [PMID: 31868687 DOI: 10.3233/nre-192884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Anoxic brain injury (ABI) is a neurological condition associated to a severe deterioration of brain functioning, whose symptomatology and clinical outcomes may be heterogeneous: cognitive deficits, language disorders like dysarthria and swallowing impairments. Nevertheless, there is still a lack of information on the rehabilitation outcomes. OBJECTIVE To confirm the occurrence of communication and swallowing deficits in 37 ABI patients and to examine whether intensive rehabilitation may contribute to any improvements and its relation to ABI severity and functional autonomy. METHODS 37 patients, hospitalized at IRCCS San Camillo Hospital from 2011 to 2018 were analyzed retrospectively. All patients completed a functional evaluation and a language and swallowing assessment, within one week from hospital admission (T0). The assessment was repeated after an intensive rehabilitation treatment (T1). RESULTS Results show that dysphagia is a frequent and severe outcome in anoxic patients, whereas communication disorders (aphasia and dysarthria) are less severe. Moreover, ABI patients seem to be positively sensitive to an intensive rehabilitation program. CONCLUSIONS An early multidisciplinary management of communicative-linguistic and swallowing functions is crucial in order to prevent adverse events and to plan a tailored rehabilitation pathway.
Collapse
|
38
|
Grandchamp R, Rapin L, Perrone-Bertolotti M, Pichat C, Haldin C, Cousin E, Lachaux JP, Dohen M, Perrier P, Garnier M, Baciu M, Lœvenbruck H. The ConDialInt Model: Condensation, Dialogality, and Intentionality Dimensions of Inner Speech Within a Hierarchical Predictive Control Framework. Front Psychol 2019; 10:2019. [PMID: 31620039 PMCID: PMC6759632 DOI: 10.3389/fpsyg.2019.02019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/19/2019] [Indexed: 11/19/2022] Open
Abstract
Inner speech has been shown to vary in form along several dimensions. Along condensation, condensed inner speech forms have been described, that are supposed to be deprived of acoustic, phonological and even syntactic qualities. Expanded forms, on the other extreme, display articulatory and auditory properties. Along dialogality, inner speech can be monologal, when we engage in internal soliloquy, or dialogal, when we recall past conversations or imagine future dialogs involving our own voice as well as that of others addressing us. Along intentionality, it can be intentional (when we deliberately rehearse material in short-term memory) or it can arise unintentionally (during mind wandering). We introduce the ConDialInt model, a neurocognitive predictive control model of inner speech that accounts for its varieties along these three dimensions. ConDialInt spells out the condensation dimension by including inhibitory control at the conceptualization, formulation or articulatory planning stage. It accounts for dialogality, by assuming internal model adaptations and by speculating on neural processes underlying perspective switching. It explains the differences between intentional and spontaneous varieties in terms of monitoring. We present an fMRI study in which we probed varieties of inner speech along dialogality and intentionality, to examine the validity of the neuroanatomical correlates posited in ConDialInt. Condensation was also informally tackled. Our data support the hypothesis that expanded inner speech recruits speech production processes down to articulatory planning, resulting in a predicted signal, the inner voice, with auditory qualities. Along dialogality, covertly using an avatar's voice resulted in the activation of right hemisphere homologs of the regions involved in internal own-voice soliloquy and in reduced cerebellar activation, consistent with internal model adaptation. Switching from first-person to third-person perspective resulted in activations in precuneus and parietal lobules. Along intentionality, compared with intentional inner speech, mind wandering with inner speech episodes was associated with greater bilateral inferior frontal activation and decreased activation in left temporal regions. This is consistent with the reported subjective evanescence and presumably reflects condensation processes. Our results provide neuroanatomical evidence compatible with predictive control and in favor of the assumptions made in the ConDialInt model.
Collapse
Affiliation(s)
- Romain Grandchamp
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Lucile Rapin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | | | - Cédric Pichat
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Célise Haldin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Emilie Cousin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Jean-Philippe Lachaux
- INSERM U1028, CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neurosciences Research Center, Bron, France
| | - Marion Dohen
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
| | - Pascal Perrier
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
| | - Maëva Garnier
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
| | - Monica Baciu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Hélène Lœvenbruck
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| |
Collapse
|
39
|
Roberts TPL, Matsuzaki J, Blaskey L, Bloy L, Edgar JC, Kim M, Ku M, Kuschner ES, Embick D. Delayed M50/M100 evoked response component latency in minimally verbal/nonverbal children who have autism spectrum disorder. Mol Autism 2019; 10:34. [PMID: 31428297 PMCID: PMC6694560 DOI: 10.1186/s13229-019-0283-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/23/2019] [Indexed: 11/10/2022] Open
Abstract
Abnormal auditory neuromagnetic M50 and M100 responses, reflecting primary/secondary auditory cortex processing, have been reported in children who have autism spectrum disorder (ASD). Some studies have reported an association between delays in these responses and language impairment. However, as most prior research has focused on verbal individuals with ASD without cognitive impairment, rather little is known about neural activity during auditory processing in minimally verbal or nonverbal children who have ASD (ASD-MVNV)-children with little or no speech and often significant cognitive impairment. To understand the neurophysiological mechanisms underlying auditory processing in ASD-MVNV children, magnetoencephalography (MEG) measured M50 and M100 responses arising from left and right superior temporal gyri during tone stimuli in three cohorts: (1) MVNV children who have ASD (ASD-MVNV), (2) verbal children who have ASD and no intellectual disability (ASD-V), and (3) typically developing (TD) children. One hundred and five participants (8-12 years) were included in the final analyses (ASD-MVNV: n = 16, 9.85 ± 1.32 years; ASD-V: n = 55, 10.64 ± 1.31 years; TD: n = 34, 10.18 ± 1.36 years). ASD-MVNV children showed significantly delayed M50 and M100 latencies compared to TD. These delays tended to be greater than the corresponding delays in verbal children with ASD. Across cohorts, delayed latencies were associated with language and communication skills, assessed by the Vineland Adaptive Behavior Scale Communication Domain. Findings suggest that auditory cortex neural activity measures could be dimensional objective indices of language impairment in ASD for either diagnostic (e.g., via threshold or cutoff) or prognostic (considering the continuous variable) use.
Collapse
Affiliation(s)
- Timothy P L Roberts
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Junko Matsuzaki
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Lisa Blaskey
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA.,2Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Luke Bloy
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - J Christopher Edgar
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Mina Kim
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA.,2Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Matthew Ku
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Emily S Kuschner
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA.,2Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - David Embick
- 3Department of Linguistics, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
40
|
Rampinini AC, Handjaras G, Leo A, Cecchetti L, Betta M, Marotta G, Ricciardi E, Pietrini P. Formant Space Reconstruction From Brain Activity in Frontal and Temporal Regions Coding for Heard Vowels. Front Hum Neurosci 2019; 13:32. [PMID: 30837851 PMCID: PMC6383050 DOI: 10.3389/fnhum.2019.00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/21/2019] [Indexed: 11/29/2022] Open
Abstract
Classical studies have isolated a distributed network of temporal and frontal areas engaged in the neural representation of speech perception and production. With modern literature arguing against unique roles for these cortical regions, different theories have favored either neural code-sharing or cortical space-sharing, thus trying to explain the intertwined spatial and functional organization of motor and acoustic components across the fronto-temporal cortical network. In this context, the focus of attention has recently shifted toward specific model fitting, aimed at motor and/or acoustic space reconstruction in brain activity within the language network. Here, we tested a model based on acoustic properties (formants), and one based on motor properties (articulation parameters), where model-free decoding of evoked fMRI activity during perception, imagery, and production of vowels had been successful. Results revealed that phonological information organizes around formant structure during the perception of vowels; interestingly, such a model was reconstructed in a broad temporal region, outside of the primary auditory cortex, but also in the pars triangularis of the left inferior frontal gyrus. Conversely, articulatory features were not associated with brain activity in these regions. Overall, our results call for a degree of interdependence based on acoustic information, between the frontal and temporal ends of the language network.
Collapse
Affiliation(s)
| | | | - Andrea Leo
- IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Monica Betta
- IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giovanna Marotta
- Department of Philology, Literature and Linguistics, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
41
|
Severino L, Tecce DeCarlo MJ, Sondergeld T, Izzetoglu M, Ammar A. A Validation Study of a Middle Grades Reading Comprehension Assessment. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/19404476.2018.1528200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lori Severino
- School of Education, Drexel University, Philadelphia, PA, USA
| | | | - Toni Sondergeld
- School of Education, Drexel University, Philadelphia, PA, USA
| | | | - Alia Ammar
- Drexel University, Philadelphia, PA, USA
| |
Collapse
|
42
|
Tracking the neurodynamics of insight: A meta-analysis of neuroimaging studies. Biol Psychol 2018; 138:189-198. [DOI: 10.1016/j.biopsycho.2018.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
|
43
|
Wang B, Li T, Zhou M, Zhao S, Niu Y, Wang X, Yan T, Cao R, Xiang J, Li D. The Abnormality of Topological Asymmetry in Hemispheric Brain Anatomical Networks in Bipolar Disorder. Front Neurosci 2018; 12:618. [PMID: 30233301 PMCID: PMC6129594 DOI: 10.3389/fnins.2018.00618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022] Open
Abstract
Convergent evidences have demonstrated a variety of regional abnormalities of asymmetry in bipolar disorder (BD). However, little is known about the alterations in hemispheric topological asymmetries. In this study, we used diffusion tensor imaging to construct the hemispheric brain anatomical network of 49 patients with BD and 61 matched normal controls. Graph theory was then applied to quantify topological properties of the hemispheric networks. Although small-world properties were preserved in the hemispheric networks of BD, the degrees of the asymmetry in global efficiency, characteristic path length, and small-world property were significantly decreased. More changes in topological properties of the right hemisphere than those of left hemisphere were found in patients compared with normal controls. Consistent with such changes, the nodal efficiency in patients with BD also showed less rightward asymmetry mainly in the frontal, occipital, parietal, and temporal lobes. In contrast to leftward asymmetry, significant rightward asymmetry was found in supplementary motor area of BD, and attributed to more deficits in nodal efficiency of the left hemisphere. Finally, these asymmetry score of nodal efficiency in the inferior parietal lobule and rolandic operculum were significantly associated with symptom severity of BD. Our results suggested that abnormal hemispheric asymmetries in brain anatomical networks were associated with aberrant neurodevelopment, and providing insights into the potential neural biomarkers of BD by measuring the topological asymmetry in hemispheric brain anatomical networks.
Collapse
Affiliation(s)
- Bin Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Ting Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Mengni Zhou
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Shuo Zhao
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yan Niu
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Xin Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Rui Cao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Dandan Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
44
|
Network Controllability in the Inferior Frontal Gyrus Relates to Controlled Language Variability and Susceptibility to TMS. J Neurosci 2018; 38:6399-6410. [PMID: 29884739 DOI: 10.1523/jneurosci.0092-17.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/03/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022] Open
Abstract
In language production, humans are confronted with considerable word selection demands. Often, we must select a word from among similar, acceptable, and competing alternative words to construct a sentence that conveys an intended meaning. In recent years, the left inferior frontal gyrus (LIFG) has been identified as being critical to this ability. Despite a recent emphasis on network approaches to understanding language, how the LIFG interacts with the brain's complex networks to facilitate controlled language performance remains unknown. Here, we take a novel approach to understanding word selection as a network control process in the brain. Using an anatomical brain network derived from high-resolution diffusion spectrum imaging, we computed network controllability underlying the site of transcranial magnetic stimulation (TMS) in the LIFG between administrations of language tasks that vary in response (cognitive control) demands: open-response tasks (word generation) versus closed response tasks (number naming). We found that a statistic that quantifies the LIFG's theoretically predicted control of communication across modules in the human connectome explains TMS-induced changes in open-response language task performance only. Moreover, we found that a statistic that quantifies the LIFG's theoretically predicted control of difficult-to-reach states explains vulnerability to TMS in the closed-ended (but not open-ended) response task. These findings establish a link among network controllability, cognitive function, and TMS effects.SIGNIFICANCE STATEMENT This work illustrates that network control statistics applied to anatomical connectivity data demonstrate relationships with cognitive variability during controlled language tasks and TMS effects.
Collapse
|
45
|
Geary DC. Evolutionary perspective on sex differences in the expression of neurological diseases. Prog Neurobiol 2018; 176:33-53. [PMID: 29890214 DOI: 10.1016/j.pneurobio.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 04/25/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
Sex-specific brain and cognitive deficits emerge with malnutrition, some infectious and neurodegenerative diseases, and often with prenatal or postnatal toxin exposure. These deficits are described in disparate literatures and are generally not linked to one another. Sexual selection may provide a unifying framework that integrates our understanding of these deficits and provides direction for future studies of sex-specific vulnerabilities. Sexually selected traits are those that have evolved to facilitate competition for reproductive resources or that influence mate choices, and are often larger and more complex than other traits. Critically, malnutrition, disease, chronic social stress, and exposure to man-made toxins compromise the development and expression of sexually selected traits more strongly than that of other traits. The fundamental mechanism underlying vulnerability might be the efficiency of mitochondrial energy capture and control of oxidative stress that in turn links these traits to current advances in neuroenergetics, stress endocrinology, and toxicology. The key idea is that the elaboration of these cognitive abilities, with more underlying gray matter or more extensive inter-modular white matter connections, makes them particularly sensitive to disruptions in mitochondrial functioning and oxidative stress. A framework of human sexually selected cognitive abilities and underlying brain systems is proposed and used to organize what is currently known about sex-specific vulnerabilities.
Collapse
Affiliation(s)
- David C Geary
- Department of Psychological Sciences, Interdisciplinary Neuroscience, University of Missouri, MO, 65211-2500, Columbia, United States.
| |
Collapse
|
46
|
Li J, Poon CS, Kress J, Rohrbach DJ, Sunar U. Resting-state functional connectivity measured by diffuse correlation spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28708329 DOI: 10.1002/jbio.201700165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 05/17/2023]
Abstract
Near-infrared diffuse correlation spectroscopy (DCS) is used to record spontaneous cerebral blood flow fluctuations in the frontal cortex. Nine adult subjects participated in the experiments, in which 8-minute spontaneous fluctuations were simultaneously recorded from the left and right dorsolateral and inferior frontal regions. Resting-state functional connectivity (RSFC) was measured by the temporal correlation of the low frequency fluctuations. Our data shows the RSFC within the dorsolateral region is significantly stronger than that between the inferior and dorsolateral regions, in line with previous observations with functional near-infrared spectroscopy. This indicates that DCS is capable of investigating brain functional connectivity in terms of cerebral blood flow.
Collapse
Affiliation(s)
- Jun Li
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio
| | - Chien-Sing Poon
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio
| | - Jeremy Kress
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio
| | - Daniel J Rohrbach
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio
| | - Ulas Sunar
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio
| |
Collapse
|
47
|
Klumpp H, Hosseini B, Phan KL. Self-Reported Sleep Quality Modulates Amygdala Resting-State Functional Connectivity in Anxiety and Depression. Front Psychiatry 2018; 9:220. [PMID: 29896128 PMCID: PMC5987592 DOI: 10.3389/fpsyt.2018.00220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/07/2018] [Indexed: 01/22/2023] Open
Abstract
Sufficient sleep plays an important role in neurocognitive function, yet, problematic sleep is ubiquitous in the general population. It is also frequently predictive of, and concurrent with, internalizing psychopathologies (IPs) such as anxiety and depression suggesting sleep quality is dimensional and transdiagnostic. Along with problematic sleep, IPs are characterized by negative affectivity, therefore, prominent neurobiological models of internalizing conditions involve the amygdala, a region central to emotion. In resting-state studies (independent of sleep considerations), abnormalities in amygdala-frontal functional connectivity are commonly observed suggesting emotion dysregulation may contribute to clinically-relevant phenotypes. In a separate line of research, studies of sleep deprivation, and insomnia disorder suggest sleep loss may alter amygdala-frontal connectivity. Taken together, findings point to shared neurobiology between sleep and emotion systems, however, the impact of sleep quality on the amygdala circuit in anxiety or depression is unclear. Therefore, we evaluated variance in naturalistic sleep quality on amygdala-based circuity in individuals with and without psychiatric illness. Resting-state fMRI data was collected in 87 un-medicated, treatment-seeking adults diagnosed with a primary anxiety disorder (n = 68) or primary depressive disorder (n = 19) in addition to healthy individuals (n = 40). Regression analysis was conducted with bilateral anatomical amygdala as seed regions and self-reported sleep quality was indexed with a validated self-report measure, the Pittsburgh Sleep Quality Index (PSQI). Post-hoc analysis was performed to evaluate whether diagnostic status (primary anxiety, primary depression, healthy) significantly explained functional connectivity results. Whole-brain regression analysis, controlling for anxiety and depression symptoms, revealed worse sleep quality (i.e., higher PSQI total scores) predicted increased left amygdala-subgenual anterior cingulate functional connectivity and reduced connectivity with posterior cerebellar lobe and superior temporal gyrus. For right amygdala, increased coupling with postcentral gyrus corresponded with worse sleep. Post-hoc analysis did not detect a significant relationship between diagnostic status and whole-brain findings. Results expand on previous studies and indicate variance in sleep quality tracks brain pathways involved in cognitive-emotion functions implicated in the neurobiology of IPs that may extend to individuals at risk for clinical anxiety or depression. Altogether, the clinical relevance of identifying phenotypes to improve our understanding of psychopathology may be improved by incorporating sleep quality.
Collapse
Affiliation(s)
- Heide Klumpp
- Mood and Anxiety Disorders Research Program, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.,Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Bobak Hosseini
- Mood and Anxiety Disorders Research Program, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - K Luan Phan
- Mood and Anxiety Disorders Research Program, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.,Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States.,Mental Health Service, Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
48
|
Geary DC. Evolution of Human Sex-Specific Cognitive Vulnerabilities. QUARTERLY REVIEW OF BIOLOGY 2017. [DOI: 10.1086/694934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Chaudhary K, Ramanujam B, Kumaran SS, Chandra PS, Wadhawan AN, Garg A, Tripathi M. Does education play a role in language reorganization after surgery in drug refractory temporal lobe epilepsy: An fMRI based study? Epilepsy Res 2017; 136:88-96. [PMID: 28802988 DOI: 10.1016/j.eplepsyres.2017.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Patients with drug refractory epilepsy (DRE) and a high level of education may differ in their language recovery after surgery. Our aim was to determine whether there were differences in the extent of improvement and pattern of reorganization of language functions on functional magnetic resonance imaging (fMRI) after surgery to treat refractory temporal lobe epilepsy (TLE) between patients with more than 12 years of formal education versus those with a shorter period of regular schooling. METHODS After approval by an institutional ethics committee, 60 right-handed, adult patients of left TLE and 20 right-handed, healthy controls were recruited to the study. Multiple aspects of language (Repetition, Naming, Word fluency, Visual word and Comprehension reading) were tested using the Indian Aphasia Battery (IAB) in the Hindi language; fMRI was performed using a standardized Hindi language paradigm (lexical, semantic, syntactic and comprehension components) in both cases and controls, before and after an anterior temporal lobectomy (in cases) with a 1.5T MR Scanner. An array of performance tests of intelligence and the verbal adult intelligence scale (VAIS) were used to measure the Intelligence Quotient (IQ) in Left TLE (LTLE) patients before and after surgery. Language laterality was estimated using the laterality index (LI-toolbox-spm8). Cohen's d test was performed to determine the effect sizes of the differences in the IAB scores, and Pearson's correlation was applied between regional (IFG and STG) activation in controls and TLE patients with more than 12 years of schooling [higher educational status (HES subgroup)] and those with less than 12 years of schooling [lower educational status (LES subgroup)]. RESULTS At the baseline, clinical testing with IAB showed better scores in controls than in cases. Better scores were observed in subjects with higher levels of education than in those with lower levels of education. An improvement was observed in IQ scores in both the HES and LES groups after ATLR; significant worsening in the abstract ability subtest was noted in the LES group, whereas in the HES group there was an improvement. Blood-oxygen-level dependent (BOLD) activation during language tasks was observed in both cerebral hemispheres in the TLE cases, while it was observed in the traditional left hemispheric language areas in controls. Postoperatively, greater BOLD activation was observed in the left inferior frontal gyri (IFG, r=0.65*; p<0.05), middle frontal gyrus (MFG, r=0.77**; p<0.01) superior temporal gyri (STG, r=0.88* p<0.02) and angular gyrus (AG, r=0.73*; p<0.04) in HES compared to LES subjects. Similarly, LI showed left lateralization of the frontal (LIw=0.77 & 0.71) and temporal (LIw=0.74 & 0.5) regions in controls and the TLE group (post-surgery) compared to the pre-surgery group during language tasks. CONCLUSIONS Greater improvement in language skills and BOLD activation in the left hemisphere in TLE-patients (after epilepsy surgery) with a high level of education was similar to that of healthy controls, implying that education has an effect on the functional reorganization/recovery of language areas.
Collapse
Affiliation(s)
- Kapil Chaudhary
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Bhargavi Ramanujam
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - S Senthil Kumaran
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashima Nehra Wadhawan
- Department of Clinical Neuropsychology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
50
|
|