1
|
Aleksis R, Montrazi ET, Frydman L. Heteronuclear Polarization Transfer under Steady-State Conditions: The INEPT-SSFP Experiment. J Phys Chem Lett 2024; 15:10644-10650. [PMID: 39412220 PMCID: PMC11514021 DOI: 10.1021/acs.jpclett.4c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
NMR finds a wide range of applications, ranging from fundamental chemistry to medical imaging. The technique, however, has an inherently low signal-to-noise ratio (SNR)─particularly when dealing with nuclei having low natural abundances and/or low γs. In these cases, sensitivity is often enhanced by methods that, similar to INEPT, transfer polarization from neighboring 1Hs via J-couplings. In 1958, Carr proposed an alternative approach to increase NMR sensitivity, which involves generating and continuously detecting a steady-state transverse magnetization, by applying a train of pulses on an ensemble of noninteracting spins. This study broadens Carr's steady-state free precession (SSFP) framework to encompass the possibility of adding onto it coherent polarization transfers, allowing one to combine the SNR-enhancing benefits of both INEPT and SSFP into a single experiment. Herein, the derivation of the ensuing INEPT-SSFP (ISSFP) sequences is reported. Their use in 13C NMR and MRI experiments leads to ca. 300% improvements in SNR/ unit time over conventional J-driven polarization transfer experiments, and sensitivity gains of over 50% over 13C SSFP performed in combination with 1H decoupling and NOE. These enhancements match well with numerical simulations and analytical evaluations. The conditions needed to optimize these new methods in both spectroscopic and imaging studies are discussed; we also examine their limitations, and the valuable vistas that, in both analytical and molecular imaging NMR, could be opened by this development.
Collapse
Affiliation(s)
- Rihards Aleksis
- Department of Chemical and Biological
Physics, Weizmann Institute, 7610001 Rehovot, Israel
| | - Elton T. Montrazi
- Department of Chemical and Biological
Physics, Weizmann Institute, 7610001 Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological
Physics, Weizmann Institute, 7610001 Rehovot, Israel
| |
Collapse
|
2
|
Cullison K, Samimi K, Bell JB, Maziero D, Valderrama A, Breto AL, Jones K, De La Fuente MI, Kubicek G, Meshman J, Azzam GA, Ford JC, Stoyanova R, Mellon EA. Dynamics of Daily Glioblastoma Evolution During Chemoradiation Therapy on the 0.35T Magnetic Resonance Imaging-Linear Accelerator. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03399-6. [PMID: 39357789 DOI: 10.1016/j.ijrobp.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE Glioblastoma changes during chemoradiation therapy are inferred from magnetic resonance imaging (MRI) before and after treatment but are rarely investigated due to logistics of frequent MRI. Using a combination MRI-linear accelerator (MRI-linac), we evaluated changes during daily chemoradiation therapy. METHODS AND MATERIALS Patients with glioblastoma were prospectively imaged daily during chemoradiation therapy on 0.35T MRI-linac and at 3 timepoints with and without contrast on standalone high-field MRI. Tumor or edema (lesion) and resection cavity dynamics throughout treatment were analyzed and compared with standalone T1 postcontrast (T1+C) and T2 volumes. RESULTS Of 36 patients included in this analysis, 8 had cavity only, 12 had lesion only, and 16 had both cavity and lesion. Of these, 64% had lesion growth and 46% had cavity shrinkage during treatment on MRI-linac scans. The average MRI-linac migration distance was 1.3 cm (range, 0-4.1 cm) for lesion and 0.6 cm (range, 0.1-2.1 cm) for cavity. Standalone versus MRI-linac volumes correlated strongly with R2 values: 0.991 (T2 vs MRI-linac cavity), 0.972 (T1+C vs MRI-linac cavity), and 0.973 (T2 vs MRI-linac lesion). There was a moderate correlation between T1+C and MRI-linac lesion (R2 = 0.609), despite noncontrast MRI-linac inability to separate contrast enhancement from surrounding nonenhancing tumor and edema. From pretreatment to posttreatment in patients with all available scans (n = 35), T1+C and MRI-linac lesions changed together-shrank (n = 6), grew (n = 12), or unchanged (n = 8)-in 26 (74%) patients. Another 9 patients (26%) had growth on MRI-linac, although the T1+C component shrank. In no patient did T1+C lesion grow while MRI-linac lesion shrank. CONCLUSIONS Anatomic changes are seen in patients with glioblastoma imaged daily on MRI-linac throughout the chemoradiation therapy course. As surgical resection cavities shrink, margins may be reduced to save normal brain. Patients with unresected or growing lesions may require margin expansions to cover changes. Limited volume glioblastoma boost trials could consider triggered gadolinium contrast administration for evaluation of adaptive radiation therapy when lesion growth is seen on noncontrast MRI-linac.
Collapse
Affiliation(s)
- Kaylie Cullison
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Biomedical Engineering, University of Miami, Coral Gables, Florida; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Kayla Samimi
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jonathan B Bell
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Danilo Maziero
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Alessandro Valderrama
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Adrian L Breto
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Kolton Jones
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; West Physics, Atlanta, Georgia
| | - Macarena I De La Fuente
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Gregory Kubicek
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jessica Meshman
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Gregory A Azzam
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - John C Ford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
| | - Radka Stoyanova
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
| | - Eric A Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Biomedical Engineering, University of Miami, Coral Gables, Florida; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
3
|
Fan X, Ding C, Zhao G, Hou Y. Comparing the Double-Echo Steady-State with Water Excitation and Constructive Interference in Steady-State Sequence Techniques for Identifying Extracranial Facial Nerve and Tumor Positions in Patients with Parotid Tumors. AJNR Am J Neuroradiol 2024; 45:1355-1362. [PMID: 38637024 PMCID: PMC11392360 DOI: 10.3174/ajnr.a8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AND PURPOSE Reliable preoperative visualization of facial nerve morphology and understanding the spatial relationship between the facial nerve and tumors in the parotid gland can help clinicians perform safe and effective surgeries. Hence, this study aimed to compare the image quality of extracranial facial nerves obtained by using double-echo steady state with water excitation (DESS-WE) and CISS sequences and evaluate their diagnostic efficacy in the localization of parotid tumors. MATERIALS AND METHODS In total, 32 facial nerves of 16 healthy volunteers and 25 facial nerves of 25 patients with parotid tumors were included in this retrospective study. All participants underwent noncontrast-enhanced extracranial facial nerve MR imaging with DESS-WE and CISS with a 3T MR scanner equipped with a 64-channel head and neck coil. Image quality was subjectively evaluated by using a 5-point Likert scale by 2 radiologists. Inter- and intrarater agreements were assessed by using the Cohen κ coefficient. Receiver operating characteristic analysis was performed, and the diagnostic efficacies of DESS-WE and CISS images in localizing parotid tumors were calculated. RESULTS For healthy volunteers (11 men and 5 women; median age, 26 years), image quality scores for CISS were significantly higher than those for DESS-WE for the discrimination of the temporofacial and cervicofacial trunks (both, P < .001). In patients with parotid tumors (12 men and 13 women; median age, 58 years), CISS performed better than DESS-WE in terms of visualizing the spatial relationship of the facial nerve to the tumor and diagnostic confidence (both, P < .001). Regarding the localization of parotid tumors, CISS showed excellent performance, comparable to that of DESS-WE (area under the curve, 0.981 versus 0.942, P = .1489). CONCLUSIONS CISS achieved diagnostic performance comparable to DESS-WE in parotid tumor localization, with favorable image quality and more reliable morphologic visualization of the facial nerve.
Collapse
Affiliation(s)
- Xiaoxue Fan
- From the Department of Radiology (X.F., C.D., G.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Changwei Ding
- From the Department of Radiology (X.F., C.D., G.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Guyue Zhao
- From the Department of Radiology (X.F., C.D., G.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- From the Department of Radiology (X.F., C.D., G.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Gaeta M, Galletta K, Cavallaro M, Mormina E, Cannizzaro MT, Lanzafame LRM, D'Angelo T, Blandino A, Vinci SL, Granata F. T1 relaxation: Chemo-physical fundamentals of magnetic resonance imaging and clinical applications. Insights Imaging 2024; 15:200. [PMID: 39120775 PMCID: PMC11315875 DOI: 10.1186/s13244-024-01744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
A knowledge of the complex phenomena that regulate T1 signal on Magnetic Resonance Imaging is essential in clinical practice for a more effective characterization of pathological processes. The authors review the physical basis of T1 Relaxation Time and the fundamental aspects of physics and chemistry that can influence this parameter. The main substances (water, fat, macromolecules, methemoglobin, melanin, Gadolinium, calcium) that influence T1 and the different MRI acquisition techniques that can be applied to enhance their presence in diagnostic images are then evaluated. An extensive case illustration of the different phenomena and techniques in the areas of CNS, abdomino-pelvic, and osteoarticular pathology is also proposed. CRITICAL RELEVANCE STATEMENT: T1 relaxation time is strongly influenced by numerous factors related to tissue characteristics and the presence in the context of the lesions of some specific substances. An examination of these phenomena with extensive MRI exemplification is reported. KEY POINTS: The purpose of the paper is to illustrate the chemical-physical basis of T1 Relaxation Time. MRI methods in accordance with the various clinical indications are listed. Several examples of clinical application in abdominopelvic and CNS pathology are reported.
Collapse
Affiliation(s)
- Michele Gaeta
- Radiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Karol Galletta
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Marco Cavallaro
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Enricomaria Mormina
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | | | | | - Tommaso D'Angelo
- Radiology Unit - Biomorf Department, University of Messina, Messina, Italy.
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD, Rotterdam, The Netherlands.
| | - Alfredo Blandino
- Radiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Francesca Granata
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Edelman RR, Leloudas N, Ankenbrandt WJ, Walker MT, Bobustuc GC, Bailes JE, Pruitt AA, Koktzoglou I. Dark Blood Contrast-Enhanced Brain MRI Using Echo-uT 1RESS. J Magn Reson Imaging 2024; 60:789-797. [PMID: 37950398 DOI: 10.1002/jmri.29124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The widely used magnetization-prepared rapid gradient-echo (MPRAGE) sequence makes enhancing lesions and blood vessels appear bright after gadolinium administration. However, dark blood imaging using T1-weighted Sampling Perfection with Application optimized Contrast using different flip angle Evolution (T1 SPACE) can be advantageous since it improves the conspicuity of small metastases and leptomeningeal disease. As a potential alternative to T1 SPACE, we evaluated a new dark blood sequence called echo-uT1RESS (unbalanced T1 Relaxation-Enhanced Steady-State). PURPOSE We compared the performance of echo-uT1RESS with Dixon fid-uT1RESS, MPRAGE, and T1 SPACE. STUDY TYPE Retrospective, IRB approved. SUBJECTS/PHANTOM Phantom to assess flow properties of echo-uT1RESS. Twenty-one patients (14 female, age range 35-82 years) with primary and secondary brain tumors. FIELD STRENGTH/SEQUENCES 3 Tesla/MPRAGE, T1 SPACE, Dixon fid-uT1RESS, echo-uT1RESS. ASSESSMENT Flow phantom signal vs. velocity as a function of flip angle and sequence. Qualitative image assessment on 4-point scale. Quantitative evaluation of tumor-to-brain contrast, apparent contrast-to-noise ratio (aCNR), and vessel-to-brain aCNR. STATISTICAL TESTS Friedman and Mann-Whitney U tests. A P value <0.05 was considered statistically significant. RESULTS In the phantom, echo-uT1RESS showed greater flow-dependent signal loss than fid-uT1RESS. In patients, blood vessels appeared bright with MPRAGE, gray with fid-uT1RESS, and dark with T1 SPACE and echo-uT1RESS. For MPRAGE, Dixon fid-uT1RESS, echo-uT1RESS, and T1 SPACE, respective tumor-to-brain contrast values were 0.6 ± 0.3, 1.3 ± 0.5, 1.0 ± 0.4, and 0.6 ± 0.4, while normalized aCNR values were 68.9 ± 50.9, 128.4 ± 59.2, 74.2 ± 42.1, and 99.4 ± 73.9. DATA CONCLUSION Volumetric dark blood contrast-enhanced brain MRI is feasible using echo-uT1RESS. The dark blood effect was improved vs. fid-uT1RESS, while both uT1RESS versions provided better tumor-to-brain contrast than MPRAGE. Whereas T1 SPACE provided better tumor aSNR, echo-uT1RESS provided better Weber contrast, lesion sharpness and a more consistent dark blood effect. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Robert R Edelman
- Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nondas Leloudas
- Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | | | - Matthew T Walker
- Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - George C Bobustuc
- Neurology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Julian E Bailes
- Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, USA
| | | | - Ioannis Koktzoglou
- Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Radiology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Lechuga LM, Cho MM, Vail DM, Captini CM, Fain SB, Begovatz P. Feasibility and optimization of 19F MRI on a clinical 3T with a large field-of-view torso coil. Phys Med Biol 2024; 69:125002. [PMID: 38759675 PMCID: PMC11149172 DOI: 10.1088/1361-6560/ad4d50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Objective.The objective of this work is to: (1) demonstrate fluorine-19 (19F) MRI on a 3T clinical system with a large field of view (FOV) multi-channel torso coil (2) demonstrate an example parameter selection optimization for a19F agent to maximize the signal-to-noise ratio (SNR)-efficiency for spoiled gradient echo (SPGR), balanced steady-state free precession (bSSFP), and phase-cycled bSSFP (bSSFP-C), and (3) validate detection feasibility inex vivotissues.Approach.Measurements were conducted on a 3.0T Discovery MR750w MRI (GE Healthcare, USA) with an 8-channel1H/19F torso coil (MRI Tools, Germany). Numerical simulations were conducted for perfluoropolyether to determine the theoretical parameters to maximize SNR-efficiency for the sequences. Theoretical parameters were experimentally verified, and the sensitivity of the sequences was compared with a 10 min acquisition time with a 3.125 × 3.125 × 3 mm3in-plane resolution. Feasibility of a bSSFP-C was also demonstrated in phantom andex vivotissues.Main Results. Flip angles (FAs) of 12 and 64° maximized the signal for SPGR and bSSFP, and validation of optimal FA and receiver bandwidth showed close agreement with numerical simulations. Sensitivities of 2.47, 5.81, and 4.44ms-0.5mM-1 and empirical detection limits of 20.3, 1.5, and 6.2 mM were achieved for SPGR, bSSFP, and bSSFP-C, respectively. bSSFP and bSSFP-C achieved 1.8-fold greater sensitivity over SPGR (p< 0.01).Significance.bSSFP-C was able to improve sensitivity relative to simple SPGR and reduce both bSSFP banding effects and imaging time. The sequence was used to demonstrate the feasibility of19F MRI at clinical FOVs and field strengths withinex-vivotissues.
Collapse
Affiliation(s)
- Lawrence M Lechuga
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Monica M Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - David M Vail
- Department of Medical Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States of America
| | - Christian M Captini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Carbone Cancer Center, University of Wisconsin, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin School of Engineering, Madison, WI, United States of America
| | - Sean B Fain
- Department of Radiology, University of Iowa, Iowa City, IA, United States of America
| | - Paul Begovatz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| |
Collapse
|
7
|
Pitman J, Lin Y, Tan ET, Sneag D. Magnetic Resonance Neurography of the Lumbosacral Plexus. Radiol Clin North Am 2024; 62:229-245. [PMID: 38272617 DOI: 10.1016/j.rcl.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Pain and weakness in the low back, pelvis, and lower extremities are diagnostically challenging, and imaging can be an important step in the workup and management of these patients. Technical advances in magnetic resonance neurography (MRN) have significantly improved its utility for imaging the lumbosacral plexus (LSP). In this article, the authors review LSP anatomy and selected pathology examples. In addition, the authors will discuss technical considerations for MRN with specific points for the branch nerves off the plexus.
Collapse
Affiliation(s)
- Jenifer Pitman
- Musculoskeletal Imaging, Department of Radiology, Johns Hopkins Hospital, 601 N Caroline Street, 3rd Floor, Baltimore, MD, USA.
| | - Yenpo Lin
- Radiology Department, Hospital For Special Surgery, 535 East 70th Street, 3rd Floor, New York, NY, USA; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ek Tsoon Tan
- Radiology Department, Hospital For Special Surgery, 535 East 70th Street, 3rd Floor, New York, NY, USA
| | - Darryl Sneag
- Radiology Department, Hospital For Special Surgery, 535 East 70th Street, 3rd Floor, New York, NY, USA
| |
Collapse
|
8
|
He T, Zur Y, Montrazi ET, Frydman L. Phase-Incremented Steady-State Free Precession as an Alternate Route to High-Resolution NMR. J Am Chem Soc 2024; 146:3615-3621. [PMID: 38291738 PMCID: PMC10870713 DOI: 10.1021/jacs.3c12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Pulsed Fourier transform nuclear magnetic resonance (FT-NMR) has reigned supreme in high-resolution, high-field spectroscopy─particularly when targeting complex liquid-state samples involving multiple sharp peaks spread over large spectral bandwidths. It is known, however, that if spectral resolution is not a must, the FT-based approach is not necessarily the optimal route for maximizing NMR sensitivity: if T2 ≈ T1, as often found in solutions, Carr's steady-state free-precession (SSFP) approach can in principle provide a superior signal-to-noise ratio per √(acquisition_time) (SNRt). A rapid train of pulses will then lead to a transverse component that reaches up to 50% of the thermal equilibrium magnetization, provided that pulses are applied at repetition times TR ≪ T2, T1, and that a single suitable offset is involved. It is generally assumed that having to deal with multiple chemical shifts deprives SSFP from its advantages. The present study revisits this assumption by introducing an approach whereby arbitrarily short SSFP-derived free induction decays (FIDs) can deliver high-resolution spectra, without suffering from peak broadenings or phase distortions. To achieve discrimination among nearby frequencies, signals arising from a series of regularly phase-increased excitation pulses are collected. Given SSFP's amplitude and phase sensitivity to the spins' offset, this enables the resolution of sites according to their chemical shift position. In addition, the extreme fold-over associated with SSFP acquisitions is dealt with by a customized discrete FT of the interpulse time-domain signal. Solution-state 13C NMR spectra which compare well with FT-NMR data in terms of sensitivity, bandwidth, and resolution can then be obtained.
Collapse
Affiliation(s)
- Tian He
- Department
of Chemical and Biological Physics, Weizmann
Institute, 7610001 Rehovot, Israel
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yuval Zur
- Insightec
Ltd, 3903203 Tirat Carmel, Israel
| | - Elton T. Montrazi
- Department
of Chemical and Biological Physics, Weizmann
Institute, 7610001 Rehovot, Israel
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute, 7610001 Rehovot, Israel
| |
Collapse
|
9
|
Serša I. Comparison of driven equilibrium and standard spin-echo sequence in MR microscopy: Analysis of signal dependence on RF pulse imperfection and diffusion. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 359:107624. [PMID: 38241847 DOI: 10.1016/j.jmr.2024.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Rapid MR imaging of slowly relaxing samples is often challenging. The most commonly used solutions are found in multi spin-echo (RARE) sequences or gradient-echo (GE) sequences, which allow faster imaging of such samples with multiple acquisitions of k-space lines per excitation or imaging with very short repetition times (TRs). Another solution is the use of a spin-echo (SE) sequence superimposed with a driven equilibrium Fourier transform (DEFT) method. Such a (DE-SE) imaging sequence has two refocusing RF pulses that produce two spin-echoes. In the first echo, the signal is acquired from the k-space line, and in the second echo, a 90° RF pulse is applied, typically 180° out of phase with respect to the excitation RF pulse. This last RF pulse allows almost complete magnetization reversal back to the longitudinal orientation with minimal magnetization loss. The DE-SE sequence and its RARE variant are widely used in clinical imaging, but its use in MR microscopy has some peculiarities related to the usually less perfect RF pulse flip angles and diffusion. In this study, their effects are first theoretically analyzed and later verified by experiments on test samples performed on a 9.4 T system for MR microscopy. Experiments on a water-filled tube for TE = 3.4 ms and TR = 25-200 ms showed that the DE-SE sequence produces about 10 times more signal than the SE sequence in this TR range. Finally, the performance of the DE-SE sequence compared to the SE sequence was demonstrated on a biological sample. The presented DE-SE sequence has been shown to be effective for rapid imaging of samples with long T1 relaxation times in MR microscopy and can also be considered as a suitable method for rapid proton density weighed imaging of materials.
Collapse
Affiliation(s)
- Igor Serša
- Jožef Stefan Institute, Ljubljana, Slovenia; Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Lobo CC, Wertheimer GS, Schmitt GS, Matos PC, Rezende TJ, Silva JM, Borba FC, Lima FD, Martinez AR, Barsottini OG, Pedroso JL, Marques W, França MC. Cranial Nerve Thinning Distinguishes RFC1-Related Disorder from Other Late-Onset Ataxias. Mov Disord Clin Pract 2024; 11:45-52. [PMID: 38291837 PMCID: PMC10828611 DOI: 10.1002/mdc3.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/11/2023] [Accepted: 11/04/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND RFC1-related disorder (RFC1/CANVAS) shares clinical features with other late-onset ataxias, such as spinocerebellar ataxias (SCA) and multiple system atrophy cerebellar type (MSA-C). Thinning of cranial nerves V (CNV) and VIII (CNVIII) has been reported in magnetic resonance imaging (MRI) scans of RFC1/CANVAS, but its specificity remains unclear. OBJECTIVES To assess the usefulness of CNV and CNVIII thinning to differentiate RFC1/CANVAS from SCA and MSA-C. METHODS Seventeen individuals with RFC1/CANVAS, 57 with SCA (types 2, 3 and 6), 11 with MSA-C and 15 healthy controls were enrolled. The Balanced Fast Field Echo sequence was used for assessment of cranial nerves. Images were reviewed by a neuroradiologist, who classified these nerves as atrophic or normal, and subsequently the CNV was segmented manually by an experienced neurologist. Both assessments were blinded to patient and clinical data. Non-parametric tests were used to assess between-group comparisons. RESULTS Atrophy of CNV and CNVIII, both alone and in combination, was significantly more frequent in the RFC1/CANVAS group than in healthy controls and all other ataxia groups. Atrophy of CNV had the highest sensitivity (82%) and combined CNV and CNVIII atrophy had the best specificity (92%) for diagnosing RFC1/CANVAS. In the quantitative analyses, CNV was significantly thinner in the RFC1/CANVAS group relative to all other groups. The cutoff CNV diameter that best identified RFC1/CANVAS was ≤2.2 mm (AUC = 0.91; sensitivity 88.2%, specificity 95.6%). CONCLUSION MRI evaluation of CNV and CNVIII using a dedicated sequence is an easy-to-use tool that helps to distinguish RFC1/CANVAS from SCA and MSA-C.
Collapse
Affiliation(s)
- Camila C. Lobo
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | | | - Gabriel S. Schmitt
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Paula C.A.A.P. Matos
- Department of Neurology and Neurosurgery, School of MedicineFederal University of São Paulo (UNIFESP)São PauloBrazil
| | - Thiago J.R. Rezende
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Joyce M. Silva
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Fabrício C. Borba
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Fabrício D. Lima
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Alberto R.M. Martinez
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Orlando G.P. Barsottini
- Department of Neurology and Neurosurgery, School of MedicineFederal University of São Paulo (UNIFESP)São PauloBrazil
| | - José Luiz Pedroso
- Department of Neurology and Neurosurgery, School of MedicineFederal University of São Paulo (UNIFESP)São PauloBrazil
| | - Wilson Marques
- Department of Neurosciences, School of MedicineUniversity of São Paulo at Ribeirão Preto (USP‐RP)Ribeirão PretoBrazil
| | - Marcondes C. França
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| |
Collapse
|
11
|
Al-Haj Husain A, Oechslin DA, Stadlinger B, Winklhofer S, Özcan M, Schönegg D, Al-Haj Husain N, Sommer S, Piccirelli M, Valdec S. Preoperative imaging in third molar surgery - A prospective comparison of X-ray-based and radiation-free magnetic resonance orthopantomography. J Craniomaxillofac Surg 2024; 52:117-126. [PMID: 37891089 DOI: 10.1016/j.jcms.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to compare preoperative data relevant to third molar surgery based on radiographic orthopantomography (OPG) and orthopantomogram-like MR images (MR-OPG), using five different MR protocols. X-ray-based OPG and OPG-like MRI reconstructions from DESS, SPACE-STIR, SPACE-SPAIR, T1-VIBE-Dixon, and UTE sequences were acquired in 11 patients undergoing third molar surgery, using a 15-channel mandibular coil. Qualitative (image quality, susceptibility to artifacts, positional relationship, contact/non-contact of the inferior alveolar nerve (IAN), relationship to maxillary sinus, IAN continuity, root morphology) and quantitative (tooth length, retromolar distance, distance to the IAN, and distance to the mandible margin) parameters of the maxillary and mandibular third molars were assessed regarding inter-reader agreement and quantitative discrepancies by three calibrated readers. Radiation-free MR-OPGs generated within clinically tolerable acquisition times, which exhibited high image quality and low susceptibility to artifacts, showed no significant differences compared with X-ray-based OPGs regarding the assessment of quantitative parameters. UTE MR-OPGs provided radiographic-like images and were best suited for assessing qualitative preoperative data (positional relationship, nerve contact/non-contact, and dental root morphology) relevant to third molar surgery. For continuous and focal nerve imaging, DESS MR-OPG was superior. MR-OPGs could represent a shift towards indication-specific and modality-oriented perioperative imaging in high-risk oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Adib Al-Haj Husain
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland; Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominik A Oechslin
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Sebastian Winklhofer
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mutlu Özcan
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland; Clinic of Masticatory Disorders, Orofacial Pain Unit, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Daphne Schönegg
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nadin Al-Haj Husain
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland; Clinic of Masticatory Disorders, Orofacial Pain Unit, Center of Dental Medicine, University of Zurich, Zurich, Switzerland; Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Stefan Sommer
- Siemens Healthineers International AG, Zurich, Switzerland; Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland; Advanced Clinical Imaging Technology (ACIT), Siemens Healthcare AG, Lausanne, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio Valdec
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Hickey S, Reichert A, Ptacek W, Bielak L, Reiss S, Fischer J, Gunashekar DD, Bortfeld T, Bock M. Simultaneous T 2 -weighted real-time MRI of two orthogonal slices. Magn Reson Med 2023; 90:2388-2399. [PMID: 37427459 DOI: 10.1002/mrm.29795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE MR guidance is used during therapy to detect and compensate for lesion motion. T2 -weighted MRI often has a superior lesion contrast in comparison to T1 -weighted real-time imaging. The purpose of this work was to design a fast T2 -weighted sequence capable of simultaneously acquiring two orthogonal slices, enabling real-time tracking of lesions. METHODS To generate a T2 contrast in two orthogonal slices simultaneously, a sequence (Ortho-SFFP-Echo) was designed that samples the T2 -weighted spin echo (S- ) signal in a TR-interleaved acquisition of two slices. Slice selection and phase-encoding directions are swapped between the slices, leading to a unique set of spin-echo signal conditions. To minimize motion-related signal dephasing, additional flow-compensation strategies are implemented. In both the abdominal breathing phantom and in vivo experiments, a time series was acquired using Ortho-SSFP-Echo. The centroid of the target was tracked in postprocessing steps. RESULTS In the phantom, the lesion could be identified and delineated in the dynamic images. In the volunteer experiments, the kidney was visualized with a T2 contrast at a temporal resolution of 0.45 s under free-breathing conditions. A respiratory belt demonstrated a strong correlation with the time course of the kidney centroid in the head-foot direction. A hypointense saturation band at the slice overlap did not inhibit lesion tracking in the semi-automatic postprocessing steps. CONCLUSION The Ortho-SFFP-Echo sequence delivers real-time images with a T2 -weighted contrast in two orthogonal slices. The sequence allows for simultaneous acquisition, which could be beneficial for real-time motion tracking in radiotherapy or interventional MRI.
Collapse
Affiliation(s)
- Samantha Hickey
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Reichert
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Lars Bielak
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Simon Reiss
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Fischer
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Deepa Darshini Gunashekar
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Jung JY, Lin Y, Carrino JA. An Updated Review of Magnetic Resonance Neurography for Plexus Imaging. Korean J Radiol 2023; 24:1114-1130. [PMID: 37899521 PMCID: PMC10613850 DOI: 10.3348/kjr.2023.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 10/31/2023] Open
Abstract
Magnetic resonance neurography (MRN) is increasingly used to visualize peripheral nerves in vivo. However, the implementation and interpretation of MRN in the brachial and lumbosacral plexi are challenging because of the anatomical complexity and technical limitations. The purpose of this article was to review the clinical context of MRN, describe advanced magnetic resonance (MR) techniques for plexus imaging, and list the general categories of utility of MRN with pertinent imaging examples. The selection and optimization of MR sequences are centered on the homogeneous suppression of fat and blood vessels while enhancing the visibility of the plexus and its branches. Standard 2D fast spin-echo sequences are essential to assess morphology and signal intensity of nerves. Moreover, nerve-selective 3D isotropic images allow improved visualization of nerves and multiplanar reconstruction along their course. Diffusion-weighted and diffusion-tensor images offer microscopic and functional insights into peripheral nerves. The interpretation of MRN in the brachial and lumbosacral plexi should be based on a thorough understanding of their anatomy and pathophysiology. Anatomical landmarks assist in identifying brachial and lumbosacral plexus components of interest. Thus, understanding the varying patterns of nerve abnormalities facilitates the interpretation of aberrant findings.
Collapse
Affiliation(s)
- Joon-Yong Jung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yenpo Lin
- Department of Radiology and Imaging, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - John A Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Breto AL, Cullison K, Zacharaki EI, Wallaengen V, Maziero D, Jones K, Valderrama A, de la Fuente MI, Meshman J, Azzam GA, Ford JC, Stoyanova R, Mellon EA. A Deep Learning Approach for Automatic Segmentation during Daily MRI-Linac Radiotherapy of Glioblastoma. Cancers (Basel) 2023; 15:5241. [PMID: 37958415 PMCID: PMC10647471 DOI: 10.3390/cancers15215241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma changes during chemoradiotherapy are inferred from high-field MRI before and after treatment but are rarely investigated during radiotherapy. The purpose of this study was to develop a deep learning network to automatically segment glioblastoma tumors on daily treatment set-up scans from the first glioblastoma patients treated on MRI-linac. Glioblastoma patients were prospectively imaged daily during chemoradiotherapy on 0.35T MRI-linac. Tumor and edema (tumor lesion) and resection cavity kinetics throughout the treatment were manually segmented on these daily MRI. Utilizing a convolutional neural network, an automatic segmentation deep learning network was built. A nine-fold cross-validation schema was used to train the network using 80:10:10 for training, validation, and testing. Thirty-six glioblastoma patients were imaged pre-treatment and 30 times during radiotherapy (n = 31 volumes, total of 930 MRIs). The average tumor lesion and resection cavity volumes were 94.56 ± 64.68 cc and 72.44 ± 35.08 cc, respectively. The average Dice similarity coefficient between manual and auto-segmentation for tumor lesion and resection cavity across all patients was 0.67 and 0.84, respectively. This is the first brain lesion segmentation network developed for MRI-linac. The network performed comparably to the only other published network for auto-segmentation of post-operative glioblastoma lesions. Segmented volumes can be utilized for adaptive radiotherapy and propagated across multiple MRI contrasts to create a prognostic model for glioblastoma based on multiparametric MRI.
Collapse
Affiliation(s)
- Adrian L. Breto
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
| | - Kaylie Cullison
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
| | - Evangelia I. Zacharaki
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
| | - Veronica Wallaengen
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
| | - Danilo Maziero
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
- Department of Radiation Medicine & Applied Sciences, UC San Diego Health, La Jolla, CA 92093, USA
| | - Kolton Jones
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
- West Physics, Atlanta, GA 30339, USA
| | - Alessandro Valderrama
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
| | - Macarena I. de la Fuente
- Department of Neurology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jessica Meshman
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
| | - Gregory A. Azzam
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
| | - John C. Ford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
| | - Radka Stoyanova
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
| | - Eric A. Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.L.B.); (K.C.); (R.S.)
| |
Collapse
|
15
|
Tönnes C, Licht C, Schad LR, Zöllner FG. VirtMRI: A Tool for Teaching MRI. J Med Syst 2023; 47:110. [PMID: 37878060 PMCID: PMC10600316 DOI: 10.1007/s10916-023-02004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Magnetic resonance image formation is not trivial and remains a difficult subject for teaching. Therefore, we saw an urgent need to facilitate teaching by developing a practical and easily accessible MR image generator. Due to the increasing interest in X-nuclei MRI, sodium image generation is also offered. The tool is implemented as a web application that is compatible with all standard desktop browsers and is open source. The user interface focuses on the parameters needed for the creation and display of the resulting images. Available MR sequences range from the standard Spin Echo and Inversion Recovery over steady-state to conventional sodium and more advanced single and triple quantum sequences. Additionally, the user interface has parameters to alter the resolution, the noise, and the k-space sampling. Our software is free to use and specifically suited for teaching purposes.
Collapse
Affiliation(s)
- Christian Tönnes
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.
| | - Christian Licht
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| |
Collapse
|
16
|
Basamh M, Sinning N, Ajabnoor W, Illies T, Kehler U. Preoperative assessment of the individual anatomy of the superior petrosal vein complex using balanced fast field echo magnetic resonance imaging. Surg Radiol Anat 2023; 45:1273-1285. [PMID: 37548655 DOI: 10.1007/s00276-023-03220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Here, we sought to examine the validity and reproducibility of balanced fast field echo (bFFE) for assessing superior petrosal vein (SPV) complex (SPVC) anatomy. METHODS Preoperative bFFE or equivalent scans and operative videos were studied and directly compared with regard to the individual anatomical features of SPVCs and their relation to the operative field. The anatomical details of the bFFE findings of the non-operated side (group 2) of all 50 patients were then reviewed, including the presence of petrosal-galenic anastomosis, and finally compared to the operated SPVCs (group 1). RESULTS A complete correlation between bFFE and intraoperative findings was observed in 62% of cases and had a significant correlation with 3 Tesla magnet strength and higher pixel bandwidth (rbis = - 0.47; p = 0.005). The sensitivity and specificity of bFFE magnetic resonance imaging were 93.7 and 95.2%, respectively, for detecting an SPV disturbing the operative field, and 97.3% and 95% for a disturbing tributary, respectively. Each group had 50 SPVCs, with a total of 70 and 64 SPVs, 10 and 11 general SPVC configurations, as well as 29 and 28 different individual anatomical variations in groups 1 and 2, respectively. Both groups had 1-3 SPVs with a similar distribution of frequencies [Chi-square (4) = 27.56; p = 0.0145 (Fisher's exact test)]. The similarity of the general configurations was not statistically significant. The same four predominant configurations constituted 80% of the SPVCs in each group. The vein of the cerebellopontine fissure was most frequently found in 86% and 88% of cases, and a petrosal-galenic anastomosis was seen in 38% and 40% of groups 1 and 2, respectively. CONCLUSIONS Individual SPVC variations are extensive. Good quality bFFE or equivalents are feasible for preoperative SPVC assessments. However, methods improving vascular visualization are recommended.
Collapse
Affiliation(s)
- Mohammed Basamh
- Division of Neurosurgery, King Abdul-Aziz University Hospital, P. O. Box 80125, 21589, Jeddah, Saudi Arabia.
| | - Nico Sinning
- Department of Neurosurgery, Asklepios Klinik Altona, Hamburg, Germany
| | - Waleed Ajabnoor
- Department of Radiology, King Abdul-Aziz University Hospital, Jeddah, Saudi Arabia
| | - Till Illies
- Department of Neuroradiology, Asklepios Klinik Altona, Hamburg, Germany
| | - Uwe Kehler
- Department of Neurosurgery, Asklepios Klinik Altona, Hamburg, Germany
| |
Collapse
|
17
|
Edelman RR, Walker M, Ankenbrandt WJ, Leloudas N, Pang J, Bailes J, Bobustuc G, Koktzoglou I. Improved Brain Tumor Conspicuity at 3 T Using Dark Blood, Fat-Suppressed, Dixon Unbalanced T1 Relaxation-Enhanced Steady-State MRI. Invest Radiol 2023; 58:641-648. [PMID: 36822675 PMCID: PMC10403379 DOI: 10.1097/rli.0000000000000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
OBJECTIVES Contrast-enhanced magnetic resonance imaging (MRI) is the cornerstone for brain tumor diagnosis and treatment planning. We have developed a novel dual-echo volumetric dark blood pulse sequence called Dixon unbalanced T1 relaxation-enhanced steady-state (uT 1 RESS) that improves the visibility of contrast-enhancing lesions while suppressing the tissue signals from blood vessels and fat. The purpose of this study was to test the hypothesis that Dixon uT 1 RESS would significantly improve the conspicuity of brain tumors compared with magnetization-prepared rapid gradient echo (MPRAGE), as well as to determine potential limitations of the technique. MATERIALS AND METHODS This retrospective study was approved by the hospital institutional review board. Forty-seven adult patients undergoing an MRI scan for a brain tumor indication were included. Contrast-enhanced MRI of the brain was performed at 3 T using both MPRAGE and Dixon uT 1 RESS. To control for any impact of contrast agent washout during the scan procedure, Dixon uT 1 RESS was acquired in approximately half the subjects immediately after MPRAGE, and in the other half immediately before MPRAGE. Image quality, artifacts, and lesion detection were scored by 3 readers, whereas lesion apparent signal-to-noise ratio and lesion-to-background Weber contrast were calculated from region-of-interest measurements. RESULTS Image quality was not rated significantly different between MPRAGE and Dixon uT 1 RESS, whereas motion artifacts were slightly worse with Dixon uT 1 RESS. Comparing Dixon uT 1 RESS with MPRAGE, the respective values for mean lesion apparent signal-to-noise ratio were not significantly different (199.31 ± 99.05 vs 203.81 ± 110.23). Compared with MPRAGE, Dixon uT 1 RESS significantly increased the tumor-to-brain contrast (1.60 ± 1.18 vs 0.61 ± 0.47 when Dixon uT1RESS was acquired before MPRAGE and 1.94 ± 0.97 vs 0.82 ± 0.55 when Dixon uT 1 RESS was acquired after MPRAGE). In patients with metastatic disease, Dixon uT 1 RESS detected at least 1 enhancing brain lesion that was missed by MPRAGE on average in 24.7% of patients, whereas Dixon uT 1 RESS did not miss any lesions that were demonstrated by MPRAGE. Dixon uT 1 RESS better detected vascular and dural invasion in a small number of patients. CONCLUSIONS In conclusion, brain tumors were significantly more conspicuous at 3 T using Dixon uT 1 RESS compared with MPRAGE, with an approximately 2.5-fold improvement in lesion-to-background contrast irrespective of sequence order. It outperformed MPRAGE for the detection of brain metastases, dural or vascular involvement. These results suggest that Dixon uT 1 RESS could prove to be a useful adjunct or alternative to existing neuroimaging techniques for the postcontrast evaluation of intracranial tumors.
Collapse
Affiliation(s)
- Robert R Edelman
- Radiology, NorthShore University HealthSystem, Evanston,
Illinois, USA
- Radiology, Feinberg School of Medicine, Northwestern
University, Chicago, Illinois, USA
| | - Matthew Walker
- Radiology, NorthShore University HealthSystem, Evanston,
Illinois, USA
- Radiology, Pritzker School of Medicine, University of
Chicago, Chicago, Illinois, USA
| | - William J. Ankenbrandt
- Radiology, NorthShore University HealthSystem, Evanston,
Illinois, USA
- Radiology, Pritzker School of Medicine, University of
Chicago, Chicago, Illinois, USA
| | - Nondas Leloudas
- Radiology, NorthShore University HealthSystem, Evanston,
Illinois, USA
| | | | - Julian Bailes
- Neurosurgery, NorthShore University HealthSystem,
Evanston, Illinois, USA
| | - George Bobustuc
- Neurology, NorthShore University HealthSystem, Evanston,
Illinois, USA
| | - Ioannis Koktzoglou
- Radiology, NorthShore University HealthSystem, Evanston,
Illinois, USA
- Radiology, Pritzker School of Medicine, University of
Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Haefliger L, Jreige M, Du Pasquier C, Ledoux JB, Wagner D, Mantziari S, Shäfer M, Vietti Violi N, Dromain C. Esophageal cancer T-staging on MRI: A preliminary study using cine and static MR sequences. Eur J Radiol 2023; 166:111001. [PMID: 37516096 DOI: 10.1016/j.ejrad.2023.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVES To evaluate the added value of cine MR in addition to static MRI for T-Staging assessment of esophageal cancer (EC). MATERIALS AND METHODS This prospective monocentric study included 54 patients (mean age 66.3 ± 9.4 years, 46 men) with histologically proven EC. They underwent MRI on a 3 T-scanner in addition to the standard workup. Acquisitions included static and cine sequences (steady-state-free-precession and real-time True-FISP during water ingestion). Three radiologists independently assessed T-staging and diagnosis confidence by reviewing (1) static sequences (S-MRI) and (2) adding cine sequences (SC-MRI). Inter-reader agreement was performed. MRI T-staging was correlated to reference standard T-staging (histopathology or consensus on endoscopic ultrasonography and imaging findings) and to clinical outcome by log-rank test. RESULTS Both S-MRI and SC-MRI T-staging showed a significant correlation with reference T-staging (rs = 0.667, P < 0.001). SC-MRI showed a slightly better performance in distinguishing T1-T3 from T4 with a sensitivity, specificity and AUC of 76.5% (95% CI: 50.1-93.2), 83.8% (68-93.8) and 0.801 (0.681-0.921) vs 70.6% (44-89.7), 83% (68-93.8) and 0.772 (0.645-0.899) for S-MRI. Compared to S-MRI, SC-MRI increased inter-reader agreement for T4a and T4b (κ = 0.403 and 0.498) and T-staging confidence. CONCLUSION MRI is accurate for T-staging of EC. The addition of cine sequences allows better differentiation between T1-T3 and T4 tumors with increased diagnostic confidence and inter-reader agreement.
Collapse
Affiliation(s)
- Laura Haefliger
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Mario Jreige
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Céline Du Pasquier
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Jean-Baptiste Ledoux
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Dorothea Wagner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Styliani Mantziari
- Department of Surgery, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Markus Shäfer
- Department of Surgery, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Naïk Vietti Violi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
19
|
Battal B, Zamora C. Imaging of Skull Base Tumors. Tomography 2023; 9:1196-1235. [PMID: 37489465 PMCID: PMC10366931 DOI: 10.3390/tomography9040097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
The skull base provides a platform for supporting the brain while serving as a conduit for major neurovascular structures. In addition to malignant lesions originating in the skull base, there are many benign entities and developmental variants that may simulate disease. Therefore, a basic understanding of the relevant embryology is essential. Lesions centered in the skull base can extend to the adjacent intracranial and extracranial compartments; conversely, the skull base can be secondarily involved by primary extracranial and intracranial disease. CT and MRI are the mainstay imaging methods and are complementary in the evaluation of skull base lesions. Advances in cross-sectional imaging have been crucial in the management of patients with skull base pathology, as this represents a complex anatomical area that is hidden from direct clinical exam. Furthermore, the clinician must rely on imaging studies for therapy planning and to monitor treatment response. It is crucial to have a thorough understanding of skull base anatomy and its various pathologies, as well as to recognize the appearance of treatment-related changes. In this review, we aim to describe skull base tumors and tumor-like lesions in an anatomical compartmental approach and present imaging methods that aid in diagnosis, management, and follow-up.
Collapse
Affiliation(s)
- Bilal Battal
- Division of Neuroradiology, Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Carlos Zamora
- Division of Neuroradiology, Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Al-Haj Husain A, Schmidt V, Valdec S, Stadlinger B, Winklhofer S, Schönegg D, Sommer S, Özcan M, Al-Haj Husain N, Piccirelli M. MR-orthopantomography in operative dentistry and oral and maxillofacial surgery: a proof of concept study. Sci Rep 2023; 13:6228. [PMID: 37069287 PMCID: PMC10110573 DOI: 10.1038/s41598-023-33483-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023] Open
Abstract
This prospective study aimed to present, compare, and evaluate the suitability of five different magnetic resonance imaging (MRI) protocols (3D double-echo steady-state (DESS), 3D fast spin echo short-tau inversion recovery (SPACE-STIR), 3D fast spin echo spectral attenuated inversion recovery (SPACE-SPAIR), volumetric interpolated breath-hold examination (T1-VIBE-Dixon), and ultrashort echo time (UTE)) and for orthopantomogram (OPG)-like MRI reconstructions using a novel mandibular coil. Three readers assessed MR-OPGs of 21 volunteers regarding technical image quality (4, excellent; 0, severely reduced), susceptibility to artifacts (3, absence; 0, massive), and visualization of anatomical structures in the oral cavity and surrounding skeletal structures (4, fine details visible; 0, no structures visible). Average image quality was good (3.29 ± 0.83) for all MRI protocols, with UTE providing the best image quality (3.52 ± 0.62) and no to minor artifacts (2.56 ± 0.6). Full diagnostic interpretability of the osseous structures is best in VIBE-Dixon and UTE MR-OPGs. DESS provided excellent visualization of the finest details of the nervous tissue (3.95 ± 0.22). Intra-reader and inter-reader agreement between the readers was good to excellent for all protocols (ICCs 0.812-0.957). MR-OPGs provide indication-specific accurate imaging of the oral cavity and could contribute to the early detection of pathologies, staging, and radiological follow-up of oral and maxillofacial diseases.
Collapse
Affiliation(s)
- Adib Al-Haj Husain
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032, Zurich, Switzerland.
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Valérie Schmidt
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032, Zurich, Switzerland
| | - Silvio Valdec
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032, Zurich, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032, Zurich, Switzerland
| | - Sebastian Winklhofer
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daphne Schönegg
- Departement of Cranio-Maxillo-Facial and Oral Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Sommer
- Siemens Healthineers International AG, Zurich, Switzerland
- Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland
- Advanced Clinical Imaging Technology (ACIT), Siemens Healthcare AG, Lausanne, Switzerland
| | - Mutlu Özcan
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Nadin Al-Haj Husain
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Departement of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Faruk Topaloğlu Ö, Koplay M, Kılınçer A, Örgül G, Sedat Durmaz M. Quantitative measurements and morphological evaluation of fetal cardiovascular structures with fetal cardiac MRI. Eur J Radiol 2023; 163:110828. [PMID: 37059007 DOI: 10.1016/j.ejrad.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE Fetal cardiac magnetic resonance imaging (FCMR) can be used as an imaging modality in fetal cardiovascular evaluation as studied in recent years. We aimed to evaluate cardiovascular morphology using FCMR and to observe the development of cardiovascular structures according to gestational age (GA) in pregnant women. METHOD In our prospective study, 120 pregnant women between 19 and 37 weeks of gestation in whom absence of cardiac anomaly could not be excluded by ultrasonography (US) or, who were referred to us for magnetic resonance imaging (MRI) for suspected non-cardiovascular system pathology, were included. According to the axis of the fetal heart, axial, coronal, and sagittal multiplanar steady-state free precession (SSFP) and 'real time' untriggered SSFP sequence, respectively, were obtained. The morphology of the cardiovascular structures and their relationships with each other were evaluated, and their sizes were measured. RESULTS Seven cases (6.3%) contained motion artefacts that did not allow the assessment and measurement of cardiovascular morphology, and three (2.9%) cases with cardiac pathology in the analysed images were excluded from the study. The study included a total of 100 cases. Cardiac chamber diameter, heart diameter, heart length, heart area, thoracic diameter, and thoracic area were measured in all fetuses. The diameters of the aorta ascendens (Aa), aortic isthmus (Ai), aorta descendens (Ad), main pulmonary artery (MPA), ductus arteriosus (DA, superior vena cava (SVC), and inferior vena cava (IVC) were measured in all fetuses. The left pulmonary artery (LPA) was visualised in 89 patients (89%). The right PA (RPA) was visualised in 99 (99%) cases. Four pulmonary veins (PVs) were seen in 49 (49%) cases, three in 33 (33%), and two in 18 (18%). High correlation values were found for all diameter measurements performed with GW. CONCLUSION In cases where US cannot achieve adequate image quality, FCMR can contribute to diagnosis. The very short acquisition time and parallel imaging technique with the SSFP sequence allow for adequate image quality without maternal or fetal sedation.
Collapse
Affiliation(s)
| | - Mustafa Koplay
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Abidin Kılınçer
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Gökçen Örgül
- Department of Obstetrics and Gynecology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Mehmet Sedat Durmaz
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| |
Collapse
|
22
|
Li B, Lee NG, Cui SX, Nayak KS. Lung parenchyma transverse relaxation rates at 0.55 T. Magn Reson Med 2023; 89:1522-1530. [PMID: 36404674 PMCID: PMC10100111 DOI: 10.1002/mrm.29541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To determine R2 and R 2 ' $$ {R}_2^{\prime } $$ transverse relaxation rates in healthy lung parenchyma at 0.55 T. This is important in that it informs the design and optimization of new imaging methods for 0.55T lung MRI. METHODS Experiments were performed in 3 healthy adult volunteers on a prototype whole-body 0.55T MRI, using a custom free-breathing electrocardiogram-triggered, single-slice echo-shifted multi-echo spin echo (ES-MCSE) pulse sequence with respiratory navigation. Transverse relaxation rates R2 and R 2 ' $$ {R}_2^{\prime } $$ and off-resonance ∆f were jointly estimated using nonlinear least-squares estimation. These measurements were compared against R2 estimates from T2 -prepared balanced SSFP (T2 -Prep bSSFP) and R 2 * $$ {R}_2^{\ast } $$ estimates from multi-echo gradient echo, which are used widely but prone to error due to different subvoxel weighting. RESULTS The mean R2 and R 2 ' $$ {R}_2^{\prime } $$ values of lung parenchyma obtained from ES-MCSE were 17.3 ± 0.7 Hz and 127.5 ± 16.4 Hz (T2 = 61.6 ± 1.7 ms; T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ = 9.5 ms ± 1.6 ms), respectively. The off-resonance estimates ranged from -60 to 30 Hz. The R2 from T2 -Prep bSSFP was 15.7 ± 1.7 Hz (T2 = 68.6 ± 8.6 ms) and R 2 * $$ {R}_2^{\ast } $$ from multi-echo gradient echo was 131.2 ± 30.4 Hz ( T 2 * $$ {\mathrm{T}}_2^{\ast } $$ = 8.0 ± 2.5 ms). Paired t-test indicated that there is a significant difference between the proposed and reference methods (p < 0.05). The mean R2 estimate from T2 -Prep bSSFP was slightly smaller than that from ES-MCSE, whereas the mean R 2 ' $$ {R}_2^{\prime } $$ and R 2 * $$ {R}_2^{\ast } $$ estimates from ES-MCSE and multi-echo gradient echo were similar to each other across all subjects. CONCLUSIONS Joint estimation of transverse relaxation rates and off-resonance is feasible at 0.55 T with a free-breathing electrocardiogram-gated and navigator-gated ES-MCSE sequence. At 0.55 T, the mean R2 of 17.3 Hz is similar to the reported mean R2 of 16.7 Hz at 1.5 T, but the mean R 2 ' $$ {R}_2^{\prime } $$ of 127.5 Hz is about 5-10 times smaller than that reported at 1.5 T.
Collapse
Affiliation(s)
- Bochao Li
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA
| | - Nam G Lee
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA
| | - Sophia X Cui
- Siemens Medical Solutions USA, Los Angeles, California, USA
| | - Krishna S Nayak
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA.,Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA
| |
Collapse
|
23
|
Topriceanu CC, Fornasiero M, Seo H, Webber M, Keenan KE, Stupic KF, Bruehl R, Ittermann B, Price K, McGrath L, Pang W, Hughes AD, Nezafat R, Kellman P, Pierce I, Moon JC, Captur G. Developing a medical device-grade T 2 phantom optimized for myocardial T 2 mapping by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2023; 25:19. [PMID: 36935515 PMCID: PMC10026458 DOI: 10.1186/s12968-023-00926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/26/2023] [Indexed: 03/21/2023] Open
Abstract
INTRODUCTION A long T2 relaxation time can reflect oedema, and myocardial inflammation when combined with increased plasma troponin levels. Cardiovascular magnetic resonance (CMR) T2 mapping therefore has potential to provide a key diagnostic and prognostic biomarkers. However, T2 varies by scanner, software, and sequence, highlighting the need for standardization and for a quality assurance system for T2 mapping in CMR. AIM To fabricate and assess a phantom dedicated to the quality assurance of T2 mapping in CMR. METHOD A T2 mapping phantom was manufactured to contain 9 T1 and T2 (T1|T2) tubes to mimic clinically relevant native and post-contrast T2 in myocardium across the health to inflammation spectrum (i.e., 43-74 ms) and across both field strengths (1.5 and 3 T). We evaluated the phantom's structural integrity, B0 and B1 uniformity using field maps, and temperature dependence. Baseline reference T1|T2 were measured using inversion recovery gradient echo and single-echo spin echo (SE) sequences respectively, both with long repetition times (10 s). Long-term reproducibility of T1|T2 was determined by repeated T1|T2 mapping of the phantom at baseline and at 12 months. RESULTS The phantom embodies 9 internal agarose-containing T1|T2 tubes doped with nickel di-chloride (NiCl2) as the paramagnetic relaxation modifier to cover the clinically relevant spectrum of myocardial T2. The tubes are surrounded by an agarose-gel matrix which is doped with NiCl2 and packed with high-density polyethylene (HDPE) beads. All tubes at both field strengths, showed measurement errors up to ≤ 7.2 ms [< 14.7%] for estimated T2 by balanced steady-state free precession T2 mapping compared to reference SE T2 with the exception of the post-contrast tube of ultra-low T1 where the deviance was up to 16 ms [40.0%]. At 12 months, the phantom remained free of air bubbles, susceptibility, and off-resonance artifacts. The inclusion of HDPE beads effectively flattened the B0 and B1 magnetic fields in the imaged slice. Independent temperature dependency experiments over the 13-38 °C range confirmed the greater stability of shorter vs longer T1|T2 tubes. Excellent long-term (12-month) reproducibility of measured T1|T2 was demonstrated across both field strengths (all coefficients of variation < 1.38%). CONCLUSION The T2 mapping phantom demonstrates excellent structural integrity, B0 and B1 uniformity, and reproducibility of its internal tube T1|T2 out to 1 year. This device may now be mass-produced to support the quality assurance of T2 mapping in CMR.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- Barts Heart Center, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, 1-19 Torrington Place, London, WC1E 7HB, UK
| | | | - Han Seo
- Department of Cardiology, Center for Inherited Heart Muscle Conditions, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Matthew Webber
- Barts Heart Center, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
- Department of Cardiology, Center for Inherited Heart Muscle Conditions, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Kathryn E Keenan
- National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, CO, 80305, USA
| | - Karl F Stupic
- National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, CO, 80305, USA
| | - Rüdiger Bruehl
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587, Berlin, Germany
| | - Kirsty Price
- UCL Bloomsbury Center for Clinical Phenotyping, London, WC1E 6HX, UK
| | - Louise McGrath
- UCL Bloomsbury Center for Clinical Phenotyping, London, WC1E 6HX, UK
| | - Wenjie Pang
- Resonance Health (RH), 141 Burswood Road, Burswood, WA, 6100, Australia
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Peter Kellman
- National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Rockville Pike, Bethesda, MD, 20892, USA
| | - Iain Pierce
- Barts Heart Center, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
| | - James C Moon
- Barts Heart Center, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
| | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK.
- Department of Cardiology, Center for Inherited Heart Muscle Conditions, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK.
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, 1-19 Torrington Place, London, WC1E 7HB, UK.
- Institute of Cardiovascular Science, Consultant Cardiologist in Inherited Heart Muscle Conditions, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
24
|
Garetier M, Rousset J, Makki K, Brochard S, Rousseau F, Salem DB, Borotikar B. Assessment and comparison of image quality between two real-time sequences for dynamic MRI of distal joints at 3.0 Tesla. Acta Radiol 2023; 64:1093-1102. [PMID: 35616984 DOI: 10.1177/02841851221101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Real-time sequences allow functional evaluation of various joint structures during a continuous motion and help understand the pathomechanics of underlying musculoskeletal diseases. PURPOSE To assess and compare the image quality of the two most frequently used real-time sequences for joint dynamic magnetic resonance imaging (MRI), acquired during finger and ankle joint motion. MATERIAL AND METHODS A real-time dynamic acquisition protocol, including radiofrequency (RF)-spoiled and balanced steady-state free precession (bSSFP) sequences, optimized for temporal resolution with similar spatial resolution, was performed using a 3.0-T MRI scanner on 10 fingers and 12 ankles from healthy individuals during active motion. Image quality criteria were evaluated on each time frame and compared between these two sequences. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were determined and compared from regions of interest placed on cortical bone, tendon, fat, and muscle. Visualization of anatomical structures and overall image quality appreciation were rated by two radiologists using a 0-10 grading scale. RESULTS Mean CNR was significantly higher with bSSFP sequence compared to RF-spoiled sequence. The grading score was in the range of 5-9.3 and was significantly higher with RF-spoiled sequence for bone and joint evaluation and overall image appreciation on the two joints. The standard deviation for SNR, CNR, and grading score during motion was smaller with RF-spoiled sequence for both the joints. The inter-reader reliability was excellent (>0.75) for evaluating anatomical structures in both sequences. CONCLUSION A RF-spoiled real-time sequence is recommended for the in vivo clinical evaluation of distal joints on a 3.0-T MRI scanner.
Collapse
Affiliation(s)
- Marc Garetier
- Department of Radiology, Military Teaching Hospital Clermont-Tonnerre, Brest, France
- Department of Radiology, University Hospital Morvan, Brest, France
- Laboratory of Medical Information Processing (LATIM), INSERM-UMR 1101, Brest, France
| | - Jean Rousset
- Department of Radiology, Military Teaching Hospital Clermont-Tonnerre, Brest, France
| | - Karim Makki
- INRIA Fluminance, Rennes, France
- 56498IFPEN, Rueil-Malmaison, France
| | - Sylvain Brochard
- Laboratory of Medical Information Processing (LATIM), INSERM-UMR 1101, Brest, France
- Department of Physical and Medical Rehabilitation, University Hospital Morvan, Brest, France
- Department of Paediatric Physical and Medical Rehabilitation, Fondation Ildys, Brest, France
- University of Western Brittany (UBO), Brest, France
| | - François Rousseau
- Laboratory of Medical Information Processing (LATIM), INSERM-UMR 1101, Brest, France
- 52826IMT Atlantique, UBL, Brest, France
| | - Douraïed Ben Salem
- Laboratory of Medical Information Processing (LATIM), INSERM-UMR 1101, Brest, France
- University of Western Brittany (UBO), Brest, France
- Department of Radiology, University Hospital La Cavale Blanche, Brest, France
| | - Bhushan Borotikar
- Laboratory of Medical Information Processing (LATIM), INSERM-UMR 1101, Brest, France
- Symbiosis Centre for Medical Image Analysis, 29630Symbiosis International University, Pune, India
| |
Collapse
|
25
|
Internal Auditory Canal (IAC) and Cerebellopontine Angle (CPA): Comparison between T2-weighted SPACE and 3D-CISS sequences at 1.5T. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Three-Dimensional Constructive Interference in Steady State (3D CISS) Imaging and Clinical Applications in Brain Pathology. Biomedicines 2022; 10:biomedicines10112997. [PMID: 36428564 PMCID: PMC9687637 DOI: 10.3390/biomedicines10112997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional constructive interference in steady state (3D CISS) is a steady-state gradient-echo sequence in magnetic resonance imaging (MRI) that has been used in an increasing number of applications in the study of brain disease in recent years. Owing to the very high spatial resolution, the strong hyperintensity of the cerebrospinal fluid signal and the high contrast-to-noise ratio, 3D CISS can be employed in a wide range of scenarios, ranging from the traditional study of cranial nerves, the ventricular system, the subarachnoid cisterns and related pathology to more recently discussed applications, such as the fundamental role it can assume in the setting of acute ischemic stroke, vascular malformations, infections and several brain tumors. In this review, after briefly summarizing its fundamental physical principles, we examine in detail the various applications of 3D CISS in brain imaging, providing numerous representative cases, so as to help radiologists improve its use in imaging protocols in daily clinical practice.
Collapse
|
27
|
Kim SG, Jung JY. Role of MR Neurography for Evaluation of the Lumbosacral Plexus: A Scoping Review. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:1273-1285. [PMID: 36545407 PMCID: PMC9748467 DOI: 10.3348/jksr.2022.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Purpose MR neurography (MRN) is an imaging technique optimized to visualize the peripheral nerves. This review aimed to discover an optimized protocol for MRN of the lumbosacral plexus (LSP) and identify evidence for the clinical benefit of lumbosacral plexopathies. Materials and Methods We performed a systematic search of the two medical databases until September 2021. 'Magnetic resonance imaging', 'lumbosacral plexus', 'neurologic disease', or equivalent terms were used to search the literature. We extracted information on indications, MRN protocols for LSP, and clinical efficacy from 55 studies among those searched. Results MRN of the LSP is useful for displaying the distribution of peripheral nerve disease, guiding perineural injections, and assessing extraspinal causes of sciatica. Three-dimensional short-tau inversion recovery turbo spin-echo combined with vascular suppression is the mainstay of MRN. Conclusion Future work on the MRN of LSP should be directed to technical maturation and clinical validation of efficacy.
Collapse
|
28
|
Hoff MN, Xiang QS, Cross NM, Hippe D, Andre JB. Motion resilience of the balanced steady-state free precession geometric solution. Magn Reson Med 2022; 89:192-204. [PMID: 36093906 DOI: 10.1002/mrm.29438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Many MRI sequences are sensitive to motion and its associated artifacts. The linearized geometric solution (LGS), a balanced steady-state free precession (bSSFP) off-resonance signal demodulation technique, is evaluated with respect to motion artifact resilience. THEORY AND METHODS The mechanism and extent of LGS motion artifact resilience is examined in simulated, flow phantom, and in vivo clinical imaging. Motion artifact correction capabilities are decoupled from susceptibility artifact correction when feasible to permit controlled analysis of motion artifact correction when comparing the LGS with standard and phase-cycle-averaged (complex sum) bSSFP imaging. RESULTS Simulations reveal that the LGS demonstrates motion artifact reduction capabilities similar to standard clinical bSSFP imaging techniques, with slightly greater resilience in high SNR regions and for shorter-duration motion. Flow phantom experiments assert that the LGS reduces shorter-duration motion artifact error by ∼24%-65% relative to the complex sum, whereas reconstructions exhibit similar error reduction for constant motion. In vivo analysis demonstrates that in the internal auditory canal/orbits, the LGS was deemed to have less artifact in 24%/49% and similar artifact in 76%/51% of radiological assessments relative to the complex sum, and the LGS had less artifact in 97%/81% and similar artifact in 3%/16% of assessments relative to standard bSSFP. Only 2 of 63 assessments deemed the LGS inferior to either complex sum or standard bSSFP in terms of artifact reduction. CONCLUSION The LGS provides sufficient bSSFP motion artifact resilience to permit robust elimination of susceptibility artifacts, inspiring its use in a wide variety of applications.
Collapse
Affiliation(s)
- Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Qing-San Xiang
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathan M Cross
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Daniel Hippe
- Clinical Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jalal B Andre
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Bharadwaj UU, Coy A, Motamedi D, Sun D, Joseph GB, Krug R, Link TM. CT-like MRI: a qualitative assessment of ZTE sequences for knee osseous abnormalities. Skeletal Radiol 2022; 51:1585-1594. [PMID: 35088162 PMCID: PMC9198000 DOI: 10.1007/s00256-021-03987-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To qualitatively evaluate the utility of zero echo-time (ZTE) MRI sequences in identifying osseous findings and to compare ZTE with optimized spoiled gradient echo (SPGR) sequences in detecting knee osseous abnormalities. MATERIALS AND METHODS ZTE and standard knee MRI sequences were acquired at 3T in 100 consecutive patients. Three radiologists rated confidence in evaluating osseous abnormalities and image quality on a 5-grade Likert scale in ZTE compared to standard sequences. In a subset of knees (n = 57) SPGR sequences were also obtained, and diagnostic confidence in identifying osseous structures was assessed, comparing ZTE and SPGR sequences. Statistical significance of using ZTE over SPGR was characterized with a paired t-test. RESULTS Image quality of the ZTE sequences was rated high by all reviewers with 278 out of 299 (100 studies, 3 radiologists) scores ≥ 4 on the Likert scale. Diagnostic confidence in using ZTE sequences was rated "very high confidence" in 97%, 85%, 71%, and 73% of the cases for osteophytosis, subchondral cysts, fractures, and soft tissue calcifications/ossifications, respectively. In 74% of cases with osseous findings, reviewer scores indicated confidence levels (score ≥ 3) that ZTE sequences improved diagnostic certainty over standard sequences. The diagnostic confidence in using ZTE over SPGR sequences for osseous structures as well as abnormalities was favorable and statistically significant (p < 0.01). CONCLUSION Incorporating ZTE sequences in the standard knee MRI protocol was technically feasible and improved diagnostic confidence for osseous findings in relation to standard MR sequences. In comparison to SPGR sequences, ZTE improved assessment of osseous abnormalities.
Collapse
Affiliation(s)
- Upasana Upadhyay Bharadwaj
- Musculoskeletal Imaging, Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA.
| | - Adam Coy
- Musculoskeletal Imaging, Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA
- Musculoskeletal Radiology, Vision Radiology, Dallas, TX, USA
| | - Daria Motamedi
- Musculoskeletal Imaging, Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA
| | - Dong Sun
- Musculoskeletal Imaging, Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gabby B Joseph
- Musculoskeletal Imaging, Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA
| | - Roland Krug
- Musculoskeletal Imaging, Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA
| | - Thomas M Link
- Musculoskeletal Imaging, Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA
| |
Collapse
|
30
|
Topriceanu CC, Pierce I, Moon JC, Captur G. T 2 and T 2⁎ mapping and weighted imaging in cardiac MRI. Magn Reson Imaging 2022; 93:15-32. [PMID: 35914654 DOI: 10.1016/j.mri.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Cardiac imaging is progressing from simple imaging of heart structure and function to techniques visualizing and measuring underlying tissue biological changes that can potentially define disease and therapeutic options. These techniques exploit underlying tissue magnetic relaxation times: T1, T2 and T2*. Initial weighting methods showed myocardial heterogeneity, detecting regional disease. Current methods are now fully quantitative generating intuitive color maps that do not only expose regionality, but also diffuse changes - meaning that between-scan comparisons can be made to define disease (compared to normal) and to monitor interval change (compared to old scans). T1 is now familiar and used clinically in multiple scenarios, yet some technical challenges remain. T2 is elevated with increased tissue water - oedema. Should there also be blood troponin elevation, this oedema likely reflects inflammation, a key biological process. T2* falls in the presence of magnetic/paramagnetic materials - practically, this means it measures tissue iron, either after myocardial hemorrhage or in myocardial iron overload. This review discusses how T2 and T2⁎ imaging work (underlying physics, innovations, dependencies, performance), current and emerging use cases, quality assurance processes for global delivery and future research directions.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK; UCL Institute of Cardiovascular Science, University College London, London, UK; UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Iain Pierce
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK; UCL Institute of Cardiovascular Science, University College London, London, UK
| | - James C Moon
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK; UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Gabriella Captur
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK; UCL Institute of Cardiovascular Science, University College London, London, UK; UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK; The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Pond Street, Hampstead, London, UK.
| |
Collapse
|
31
|
Magnetic Resonance Imaging and Magnetic Resonance Imaging Cholangiopancreatography of the Pancreas in Small Animals. Vet Sci 2022; 9:vetsci9080378. [PMID: 35893771 PMCID: PMC9332374 DOI: 10.3390/vetsci9080378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In human medicine Magnetic resonance imaging (MRI) and MR cholangiopancreatography (MRCP) play a consistent role in the investigation of pancreatic and pancreatic duct disorders. In veterinary medicine the number of studies focused on MR and MRCP for pancreatic disease is scant, and the protocols are not yet standardized. This review will focus on the MRI and MRCP technical aspects of the protocols used for the investigation of pancreatic disease in veterinary medicine. The aim of this review is to elucidate the value and the potential of each MR and MRCP sequence listed in the different protocols, either in canine or feline patients, with the intention to build a valid and solid tool for further innovative studies. Abstract Magnetic resonance imaging (MRI) and MR cholangiopancreatography (MRCP) have emerged as non-invasive diagnostic techniques for the diagnosis of pancreatic and pancreatic duct disorders in humans. The number of studies focused on MR and MRCP for pancreatic disease in small animals is very limited. MR has been described for the evaluation of insulinoma in dogs and to investigate pancreatitis in cats. The studies were based on a standard protocol with T2 weighted (w) fast recovery fast spin-echo (FRFSE) with and without fat suppression, T1w FSE pre-contrast and T1w FSE post-contrast with and without fat suppression. MRCP after secretin stimulation has been described in cats to assess the pancreatic ductal system, taking advantage of pulse sequences heavily T2w as rapid acquisition with rapid enhancement (RARE), fast-recovery fast spin-echo (FRFSE) sequences and single-shot fast spin-echo (SSFSE) sequences. In addition to the standard protocol, fast spoiled gradient recalled echo pulse sequences (fSPGR) and volume interpolated 3D gradient-echo T1w pulse sequences pre and post-contrast have also been used in cats, reaching the goal of assessing the biliary tree and the pancreatic duct with the same sequence and in multiple planes. Despite the small amount of data, the results show potential, and the most recent technical innovations, in particular, focused on diffusion MRI and fast acquisition, further support the need for continued evaluation of MRI as an effective instrument for the investigation of pancreatic disease.
Collapse
|
32
|
Cummins DD, Caton MT, Shah V, Meisel K, Glastonbury C, Amans MR. MRI and MR angiography evaluation of pulsatile tinnitus: A focused, physiology-based protocol. J Neuroimaging 2022; 32:253-263. [PMID: 34910345 PMCID: PMC8917066 DOI: 10.1111/jon.12955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Pulsatile tinnitus (PT) is the subjective sensation of a pulse-synchronous sound, most often due to a cerebrovascular etiology. PT can severely impact quality of life and may indicate a life-threatening process, yet a timely and accurate diagnosis can often lead to effective treatment. Clinical assessment with a history and physical examination can often suggest a diagnosis for PT, but is rarely definitive. Therefore, PT should be evaluated with a comprehensive and targeted radiographic imaging protocol. MR imaging provides a safe and effective means to evaluate PT. Specific MR sequences may be used to highlight different elements of cerebrovascular anatomy and physiology. However, routine MR evaluation of PT must comply with economic and practical constraints, while effectively capturing both common and rarer, life-threatening etiologies of PT. METHODS In this state-of-the-art review, we describe our institutional MR protocol for evaluating PT. RESULTS This protocol includes the following dedicated sequences: time-of-flight magnetic resonance angiography; arterial spin labeling; spoiled gradient recalled acquisition in the steady state; time-resolved imaging of contrast kinetics; diffusion weighted imaging, and 3-dimensional fluid-attenuated inversion recovery. CONCLUSIONS We describe the physiologic and clinical rationale for including each MR sequence in a comprehensive PT imaging protocol, and detail the role of MR within the broader evaluation of PT, from clinical presentation to treatment.
Collapse
Affiliation(s)
- Daniel D. Cummins
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael T. Caton
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Vinil Shah
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Karl Meisel
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Christine Glastonbury
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew R. Amans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA,Corresponding author: Matthew R. Amans, Address: 505 Parnassus Ave, Room L349, San Francisco, CA 94143, Telephone: 415-353-1863, Fax: 415-353-8606,
| |
Collapse
|
33
|
Zhu D, Qin Q. A revisit of the k-space filtering effects of magnetization-prepared 3D FLASH and balanced SSFP acquisitions: Analytical characterization of the point spread functions. Magn Reson Imaging 2022; 88:76-88. [PMID: 35121068 PMCID: PMC8935658 DOI: 10.1016/j.mri.2022.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE 3D FLASH and balanced SSFP (bSSFP) are increasingly used in quantitative MRI after contrast preparation. The acquired k-space data are modulated by T1 relaxation (or additional T2 for bSSFP). Three separate sequence parameters including the number of phase-encoding steps per shot (N), flip angle (FA), and TR have made the transient state of rapid gradient echo (GRE) imaging difficult for analysis and optimization. Here we aim to analytically characterize the k-space filtering effect of magnetization-prepared FLASH and bSSFP with the point spread functions (PSF). METHODS The amplitude effect is characterized with the peak magnitude of the PSF, i.e. PSF(0), which, due to their approaching from transient state to steady-state for the GRE acquisitions, obeys a linear (with a slope and an intercept, not proportional) relationship with the prepared longitudinal magnetization (Mprep). The blurring effect is characterized by the FWHM of the PSF. The magnetization-prepared acquisition-dependent image contrast efficiency is characterized with the relative contrast-to-noise ratio (CNR) per unit time (ruCNR). RESULTS The slope of PSF(0) characterizes the relative contrast between different Mprep levels. The intercept of PSF(0) could lead to quantification bias for magnetization-prepared imaging. FLASH and bSSFP experience very little blurring effect, which is to the contrary of conventional fast spin echo (FSE). Analytical selections of N, FA, and TR are provided to optimize ruCNR for different scenarios. CONCLUSIONS PSFs of the FLASH and bSSFP acquisitions are analytically derived and numerically validated, and compared with the FSE acquisition, thus providing a useful tool for optimizing magnetization-prepared GRE acquisitions.
Collapse
|
34
|
Elter A, Rippke C, Johnen W, Mann P, Hellwich E, Schwahofer A, Dorsch S, Buchele C, Klüter S, Karger CP. End-to-end test for fractionated online adaptive MR-guided radiotherapy using a deformable anthropomorphic pelvis phantom. Phys Med Biol 2021; 66. [PMID: 34845991 DOI: 10.1088/1361-6560/ac3e0c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
Objective.In MR-guided radiotherapy (MRgRT) for prostate cancer treatments inter-fractional anatomy changes such as bladder and rectum fillings may be corrected by an online adaption of the treatment plan. To clinically implement such complex treatment procedures, however, specific end-to-end tests are required that are able to validate the overall accuracy of all treatment steps from pre-treatment imaging to dose delivery.Approach.In this study, an end-to-end test of a fractionated and online adapted MRgRT prostate irradiation was performed using the so-called ADAM-PETer phantom. The phantom was adapted to perform 3D polymer gel (PG) dosimetry in the prostate and rectum. Furthermore, thermoluminescence detectors (TLDs) were placed at the center and on the surface of the prostate for additional dose measurements as well as for an external dose renormalization of the PG. For the end-to-end test, a total of five online adapted irradiations were applied in sequence with different bladder and rectum fillings, respectively.Main results.A good agreement of measured and planned dose was found represented by highγ-index passing rates (3%/3mmcriterion) of the PG evaluation of98.9%in the prostate and93.7%in the rectum. TLDs used for PG renormalization at the center of the prostate showed a deviation of-2.3%.Significance.The presented end-to-end test, which allows for 3D dose verification in the prostate and rectum, demonstrates the feasibility and accuracy of fractionated and online-adapted prostate irradiations in presence of inter-fractional anatomy changes. Such tests are of high clinical importance for the commissioning of new image-guided treatment procedures such as online adaptive MRgRT.
Collapse
Affiliation(s)
- A Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - C Rippke
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - W Johnen
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - P Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - E Hellwich
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - A Schwahofer
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - S Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - C Buchele
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - S Klüter
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - C P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
35
|
Ali OJ, Ehrle A, Comerford EJ, Canty-Laird EG, Mead A, Clegg PD, Maddox TW. Intrafascicular chondroid-like bodies in the ageing equine superficial digital flexor tendon comprise glycosaminoglycans and type II collagen. J Orthop Res 2021; 39:2755-2766. [PMID: 33580534 DOI: 10.1002/jor.25002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 02/04/2023]
Abstract
The superficial digital flexor tendon (SDFT) is considered functionally equivalent to the human Achilles tendon. Circular chondroid depositions scattered amongst the fascicles of the equine SDFT are rarely reported. The purpose of this study was the detailed characterization of intrafascicular chondroid-like bodies (ICBs) in the equine SDFT, and the assessment of the effect of ageing on the presence and distribution of these structures. Ultrahigh field magnetic resonance imaging (9.4T) series of SDFT samples of young (1-9 years) and aged (17-25 years) horses were obtained, and three-dimensional reconstruction of ICBs was performed. Morphological evaluation of the ICBs included histology, immunohistochemistry and transmission electron microscopy. The number, size, and position of ICBs was determined and compared between age groups. There was a significant difference (p = .008) in the ICB count between young and old horses with ICBs present in varying number (13-467; median = 47, mean = 132.6), size and distribution in the SDFT of aged horses only. There were significantly more ICBs in the tendon periphery when compared with the tendon core region (p = .010). Histological characterization identified distinctive cells associated with increased glycosaminoglycan and type II collagen extracellular matrix content. Ageing and repetitive strain frequently cause tendon micro-damage before the development of clinical tendinopathy. Documentation of the presence and distribution of ICBs is a first step towards improving our understanding of the impact of these structures on the viscoelastic properties, and ultimately their effect on the risk of age-related tendinopathy in energy-storing tendons.
Collapse
Affiliation(s)
- Othman J Ali
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Sulaymaniyah, Iraq.,Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| | - Anna Ehrle
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Eithne J Comerford
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK.,The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Ashleigh Mead
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Peter D Clegg
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK.,The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Thomas W Maddox
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| |
Collapse
|
36
|
Coronado R, Cruz G, Castillo-Passi C, Tejos C, Uribe S, Prieto C, Irarrazaval P. A Spatial Off-Resonance Correction in Spirals for Magnetic Resonance Fingerprinting. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3832-3842. [PMID: 34310296 DOI: 10.1109/tmi.2021.3100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In MR Fingerprinting (MRF), balanced Steady-State Free Precession (bSSFP) has advantages over unbalanced SSFP because it retains the spin history achieving a higher signal-to-noise ratio (SNR) and scan efficiency. However, bSSFP-MRF is not frequently used because it is sensitive to off-resonance, producing artifacts and blurring, and affecting the parametric map quality. Here we propose a novel Spatial Off-resonance Correction (SOC) approach for reducing these artifacts in bSSFP-MRF with spiral trajectories. SOC-MRF uses each pixel's Point Spread Function to create system matrices that encode both off-resonance and gridding effects. We iteratively compute the inverse of these matrices to reduce the artifacts. We evaluated the proposed method using brain simulations and actual MRF acquisitions of a standardized T1/T2 phantom and five healthy subjects. The results show that the off-resonance distortions in T1/T2 maps were considerably reduced using SOC-MRF. For T2, the Normalized Root Mean Square Error (NRMSE) was reduced from 17.3 to 8.3% (simulations) and from 35.1 to 14.9% (phantom). For T1, the NRMS was reduced from 14.7 to 7.7% (simulations) and from 17.7 to 6.7% (phantom). For in-vivo, the mean and standard deviation in different ROI in white and gray matter were significantly improved. For example, SOC-MRF estimated an average T2 for white matter of 77ms (the ground truth was 74ms) versus 50 ms of MRF. For the same example the standard deviation was reduced from 18 ms to 6ms. The corrections achieved with the proposed SOC-MRF may expand the potential applications of bSSFP-MRF, taking advantage of its better SNR property.
Collapse
|
37
|
Yang JX, Aygun N, Nadgir RN. Imaging of the Postoperative Skull Base and Cerebellopontine Angle. Neuroimaging Clin N Am 2021; 32:159-174. [PMID: 34809836 DOI: 10.1016/j.nic.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
For pathologic conditions affecting the skull base and cerebellopontine angle, imaging techniques have advanced to assess for residual disease, disease progression, and postoperative complications. Knowledge regarding various surgical approaches of skull base tumor resection, expected postoperative appearance, and common postsurgical complications guides radiologic interpretation. Complexity of skull base anatomy, small size of the relevant structures, lack of familiarity with surgical techniques, and postsurgical changes confound radiologic evaluation. This article discusses the imaging techniques, surgical approaches, expected postoperative changes, and complications after surgery of the skull base, with emphasis on the cerebellopontine angle, anterior cranial fossa, and central skull base regions.
Collapse
Affiliation(s)
- Jeffrey Xi Yang
- Division of Neuroradiology, Department of Radiology and Radiological Science, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Nafi Aygun
- Division of Neuroradiology, Department of Radiology and Radiological Science, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Rohini Narahari Nadgir
- Division of Neuroradiology, Department of Radiology and Radiological Science, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
38
|
Wang B, Chen Y, Mo J, Gai S, Wang S, Ou C, Xing R, Chen Z, Xu D. Preoperative evaluation of neurovascular relationships for microvascular decompression: Visualization using Brainvis in patients with idiopathic trigeminal neuralgia. Clin Neurol Neurosurg 2021; 210:106957. [PMID: 34583277 DOI: 10.1016/j.clineuro.2021.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE A precise and accurate evaluation of neurovascular relationships in patients with idiopathic trigeminal neuralgia (ITN) scheduled for microvascular decompression is necessary. Thus, we constructed and evaluated a fusion imaging technique combining multi-source heterogeneous imaging data from three-dimensional magnetic resonance (MR) and computerized tomography venoangiography (CTV), which enabled use of virtual reality to preoperatively assess the neurovascular relationships, in patients with ITN scheduled for microvascular decompression. METHODS A single-center observational study. In total, eight patients with ITN scheduled for microvascular decompression were included. Patients underwent three-dimensional MR imaging with time-of-flight (TOF) and fast imaging employing steady state acquisition (FIESTA) sequences and CTV before microvascular decompression. A fusion imaging technique, combining MR-TOF, MR-FIESTA, and CTV images, was used to construct a three-dimensional model with information regarding the facial and auditory nerves, brain tissue, skull, arteries and veins. The positions of the trigeminal nerve and the responsible vessels were observed. The agreement between intraoperative neurovascular compression findings and preoperative evaluation results, and the duration required to determine the neurovascular relationships, were evaluated. RESULTS The neurovascular relationships as determined with the fusion imaging technique were consistent with intraoperative neurovascular compression findings in all patients. Moreover, the assessment duration was significantly shorter with the fusion imaging technique than with the three-dimensional MR (P<0.05). The rate of an accurate assessment was significantly higher with the fusion imaging technique than with three-dimensional MR (P<0.05). CONCLUSIONS The fusion imaging technique is a useful tool for the diagnosis and decision-making process based on neurovascular relationships in patients with ITN scheduled for microvascular decompression.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| | - Yili Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China.
| | - Jun Mo
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| | - Shiying Gai
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| | - Shenghu Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| | - Changjiang Ou
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| | - Ruxin Xing
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| | - Zhenghao Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| | - Dan Xu
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| |
Collapse
|
39
|
Karamitros A, Kalamatianos T, Stranjalis G, Anagnostou E. Vestibular paroxysmia: Clinical features and imaging findings; a literature review. J Neuroradiol 2021; 49:225-233. [PMID: 34364914 DOI: 10.1016/j.neurad.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022]
Abstract
According to the definition of neurovascular compression syndromes (NVCS), a vascular structure in direct contact with a cranial nerve is causing mechanical irritation of the neural tissue producing correlating symptoms. Vestibular paroxysmia is an example of a neurovascular compression which is caused by neurovascular contact between the eighth cranial nerve and a vessel. It is crucial to understand the unique anatomy of the vestibulocochlear nerve in order to study the syndrome which is the result of its compression. More specifically, the long transitional zone between central and peripheral myelin plays a central role in clinical significance, as the transitional zone is the structure most prone to mechanical injury. Imaging techniques of the eighth cranial nerve and the surrounding structures are substantial for the demonstration of clinically significant cases and potential surgical decompression. The goal of the current review is to present and study the existing literature on vestibular paroxysmia and to search for the most appropriate imaging technique for the syndrome. An extensive literature search of PubMed database was performed, and the studies were ranked based on evidence-based criteria, followed by descriptive statistics of the data. The present analysis indicates that 3D CISS MRI sequence is superior to any other sequence, in the most studies reviewed, regarding the imaging of neurovascular compression of the eighth cranial nerve.
Collapse
Affiliation(s)
- Andreas Karamitros
- Neurosurgery, Atkinson Morley Wing, St George's University Hospitals NHS Trust, Blackshaw Rd, Tooting, London SW17 0QT.
| | - Theodosis Kalamatianos
- Department of Neurosurgery, University of Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Stranjalis
- Department of Neurosurgery, University of Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
40
|
Shoghi KI, Badea CT, Blocker SJ, Chenevert TL, Laforest R, Lewis MT, Luker GD, Manning HC, Marcus DS, Mowery YM, Pickup S, Richmond A, Ross BD, Vilgelm AE, Yankeelov TE, Zhou R. Co-Clinical Imaging Resource Program (CIRP): Bridging the Translational Divide to Advance Precision Medicine. ACTA ACUST UNITED AC 2021; 6:273-287. [PMID: 32879897 PMCID: PMC7442091 DOI: 10.18383/j.tom.2020.00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The National Institutes of Health’s (National Cancer Institute) precision medicine initiative emphasizes the biological and molecular bases for cancer prevention and treatment. Importantly, it addresses the need for consistency in preclinical and clinical research. To overcome the translational gap in cancer treatment and prevention, the cancer research community has been transitioning toward using animal models that more fatefully recapitulate human tumor biology. There is a growing need to develop best practices in translational research, including imaging research, to better inform therapeutic choices and decision-making. Therefore, the National Cancer Institute has recently launched the Co-Clinical Imaging Research Resource Program (CIRP). Its overarching mission is to advance the practice of precision medicine by establishing consensus-based best practices for co-clinical imaging research by developing optimized state-of-the-art translational quantitative imaging methodologies to enable disease detection, risk stratification, and assessment/prediction of response to therapy. In this communication, we discuss our involvement in the CIRP, detailing key considerations including animal model selection, co-clinical study design, need for standardization of co-clinical instruments, and harmonization of preclinical and clinical quantitative imaging pipelines. An underlying emphasis in the program is to develop best practices toward reproducible, repeatable, and precise quantitative imaging biomarkers for use in translational cancer imaging and therapy. We will conclude with our thoughts on informatics needs to enable collaborative and open science research to advance precision medicine.
Collapse
Affiliation(s)
- Kooresh I Shoghi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | - Stephanie J Blocker
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | | | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Michael T Lewis
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - H Charles Manning
- Vanderbilt Center for Molecular Probes-Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, Durham, NC
| | - Stephen Pickup
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN
| | - Brian D Ross
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Thomas E Yankeelov
- Departments of Biomedical Engineering, Diagnostic Medicine, and Oncology, Oden Institute for Computational Engineering and Sciences, Austin, TX; and.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Rong Zhou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
41
|
Elter A, Dorsch S, Thomas S, Hentschke CM, Floca RO, Runz A, Karger CP, Mann P. PAGAT gel dosimetry for everyone: gel production, measurement and evaluation. Biomed Phys Eng Express 2021; 7. [PMID: 34237712 DOI: 10.1088/2057-1976/ac12a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022]
Abstract
Polymer gel (PG) dosimetry is a valuable tool to measure complex dose distributions in 3D with a high spatial resolution. However, due to complex protocols that need to be followed for in-house produced PGs and the high costs of commercially available gels, PG gels are only rarely applied in quality assurance procedures worldwide. In this work, we provide an introduction to perform highly standardized dosimetric PG experiments using PAGAT (PolyAcrylamide Gelatine gel fabricated at ATmospheric conditions) dosimetry gel. PAGAT gel can be produced at atmospheric conditions, at low costs and is evaluated using magnetic resonance imaging (MRI). The conduction of PG experiments is described in great detail including the gel production, treatment planning, irradiation, MRI evaluation and post-processing procedure. Furthermore, a plugin in an open source image processing tool for post-processing is provided free of charge that allows a standardized and reproducible analysis of PG experiments.
Collapse
Affiliation(s)
- A Elter
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - S Dorsch
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - S Thomas
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C M Hentschke
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R O Floca
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Runz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - C P Karger
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - P Mann
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
42
|
Tan E, Zhou JC, Mahmood O, Ong CL, Ng CH. MRI signs of intrauterine fetal demise. Abdom Radiol (NY) 2021; 46:3365-3377. [PMID: 33715028 DOI: 10.1007/s00261-021-03031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/26/2022]
Abstract
Intrauterine fetal demise (IUFD) is an uncommon but serious event that may occasionally be encountered on fetal MRI. Compared to the more florid signs of fetal demise which has occurred some time ago, recent IUFD is associated with more subtle findings that may be missed or misinterpreted. The two main MRI sequences used in imaging the fetus are T2-like two-dimensional balanced steady-state free-precession (SSFP), a white blood sequence, or T2-weighted single-shot fast spin-echo (SSFSE), a black blood sequence. The most reliable and specific signs of a recent IUFD are a constricted heart with poorly delineated cardiac chambers and signal abnormality in the heart and aorta, which will have different features depending on the MRI sequence used. Secondary signs of IUFD include global brain ischemia, abnormal globes, effusions, body wall edema and umbilical cord thrombosis. Unlike fetal ultrasound examinations where cardiac activity is routinely assessed, fetal MRI requires careful scrutiny of the fetal heart for assessment of fetal life.
Collapse
Affiliation(s)
- Eelin Tan
- Department of Diagnostic and Interventional Imaging, KK Womens' and Childrens' Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Joel Cheng'en Zhou
- Department of Diagnostic and Interventional Imaging, KK Womens' and Childrens' Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Omar Mahmood
- Department of Diagnostic and Interventional Imaging, KK Womens' and Childrens' Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Chiou Li Ong
- Department of Diagnostic and Interventional Imaging, KK Womens' and Childrens' Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Chee Hui Ng
- Department of Diagnostic and Interventional Imaging, KK Womens' and Childrens' Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| |
Collapse
|
43
|
Gürün E, Akdulum İ, Kılıç P, Tokgöz N, Uçar M. Evaluation of schwannoma using the 3D-SPACE sequence: comparison with the 3D-CISS sequence in 3T-MRI. Turk J Med Sci 2021; 51:1123-1135. [PMID: 33387986 PMCID: PMC8283456 DOI: 10.3906/sag-2010-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background/aim The purpose of this study is to compare the diagnostic accuracy and interobserver reliability of the T2-weighted 3D-SPACE (three-dimensional sampling perfection with application-optimized contrasts by using different flip angle evolutions) sequence in comparison with T2-weighted 3D-CISS (three-dimensional constructive interference in steady state) sequences for diagnosis of schwannomas. Materials and methods Forty patients with cerebellopontine angle (CPA), internal acoustic canal (IAC), and cochlear schwannoma who had undergone magnetic resonance imaging (MRI) using the 3D-CISS and 3D-SPACE sequences were identified. The sequences were retrospectively evaluated by two radiologists for the qualitative analyses, which were subsequently compared using the Mann–Whitney U test. Following this, kappa values were used for interobserver agreement. P < 0.05 was considered to be of statistical significance. Results The interobserver agreement was found to be excellent between the two observers for the interpretation of all qualitative analyses for both sequences (kappa value > 0.8). The 3D-SPACE sequences demonstrated significantly better qualitative scores and fewer artifacts compared with the 3D-CISS sequences (p < 0.05). Conclusion Our results demonstrate that 3D-SPACE is superior to 3D-CISS in the imaging process of the schwannoma in terms of image quality, description of the relationship between the lesion and cranial nerve, signal differentiation between lesion and cistern, and signal differentiation between the lesion and adjacent brain.
Collapse
Affiliation(s)
- Enes Gürün
- Department of Radiology, İskilip Atıf Hoca State Hospital, Çorum, Turkey
| | - İsmail Akdulum
- Department of Radiology, Gazi University Hospital, Ankara, Turkey
| | - Pınar Kılıç
- Department of Radiology, Pursaklar State Hospital, Ankara, Turkey
| | - Nil Tokgöz
- Department of Radiology, Gazi University Hospital, Ankara, Turkey
| | - Murat Uçar
- Department of Radiology, Gazi University Hospital, Ankara, Turkey
| |
Collapse
|
44
|
Mani P, Reyaldeen R, Xu B. Multimodality imaging assessment of bicuspid aortic valve disease, thoracic aortic ectasia, and thoracic aortic aneurysmal disease. Cardiovasc Diagn Ther 2021; 11:896-910. [PMID: 34295712 DOI: 10.21037/cdt-20-279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/31/2021] [Indexed: 11/06/2022]
Abstract
Acute aortic syndromes have extremely high mortality rates and those with aortic dilation are at increased risk for these often catastrophic events. Serial monitoring of patients with aortic dilation is critical to determine the appropriate timing of preventative interventions. The thoracic aorta can be imaged and measured using multiple imaging modalities including transthoracic echocardiography, transesophageal echocardiography, multidetector cardiac computed tomography, and magnetic resonance imaging. There has not been agreement on the specific techniques that should be used to measure thoracic aortic dimensions with each imaging modality, leading to potential errors and challenges in comparing changes in measurements over time. It is critical to understand the current recommendations on thoracic aortic measurements for each imaging modality and cardiovascular imaging specialists need to be explicit about the methods that they have used to derive the thoracic aortic measurements. In those at high risk for aortic pathology, such as those with connective tissue diseases or bicuspid aortic valve, a multimodality imaging strategy incorporating echocardiography including three-dimensional measurements along with cardiac computed tomography or magnetic resonance imaging should be used to establish aortic dimensions and for continued monitoring to avoid progression to acute aortic syndromes.
Collapse
Affiliation(s)
- Preethi Mani
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Reza Reyaldeen
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bo Xu
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
45
|
Nussbaum LA, Schwarzrock CA, Burke EM, Torok CM, Nussbaum ES. CT cisternography to visualize epidermoid tumors for stereotactic radiosurgery treatment planning. J Clin Neurosci 2021; 89:91-96. [PMID: 34119301 DOI: 10.1016/j.jocn.2021.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
The visualization of intracranial epidermoid tumors is often limited by difficulties associated with distinguishing the tumor from the surrounding cerebrospinal fluid using traditional computed tomography (CT) or magnetic resonance imaging (MRI) modalities. This report describes our experience using CT cisternography to visualize intracranial epidermoid tumors in three illustrative cases. CT cisternography of the epidermoid tumor provides more clarity and precision compared to traditional neuroimaging modalities. We demonstrate the feasibility of using CT cisternography to produce high-resolution images with well-defined tumor margins that can be used effectively for precise SRS treatment planning.
Collapse
Affiliation(s)
- Leslie A Nussbaum
- Department of Neurosurgery, National Brain Aneurysm & Tumor Center, United Hospital, 3033 Excelsior Blvd., Suite 495, Minneapolis, MN 55416, USA; John Naseff Cyberknife Center at United Hospital, Allina Health, 310 Smith Ave N #440, St. Paul, MN 55102, USA.
| | - Camille A Schwarzrock
- John Naseff Cyberknife Center at United Hospital, Allina Health, 310 Smith Ave N #440, St. Paul, MN 55102, USA
| | | | - Collin M Torok
- Midwest Radiology, 2355 Highway 36 West, Roseville, MN 55113, USA
| | - Eric S Nussbaum
- Department of Neurosurgery, National Brain Aneurysm & Tumor Center, United Hospital, 3033 Excelsior Blvd., Suite 495, Minneapolis, MN 55416, USA
| |
Collapse
|
46
|
Takayama Y, Nishie A, Okamoto D, Fujita N, Asayama Y, Ushijima Y, Yoshizumi T, Yoneyama M, Ishigami K. Differentiating Liver Hemangioma from Metastatic Tumor Using T2-enhanced Spin-echo Imaging with a Time-reversed Gradient-echo Sequence in the Hepatobiliary Phase of Gadoxetic Acid-enhanced MR Imaging. Magn Reson Med Sci 2021; 21:445-457. [PMID: 33883364 PMCID: PMC9316131 DOI: 10.2463/mrms.mp.2020-0151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose: To evaluate the utility of T2-enhanced spin-echo imaging using the time-reversed gradient echo sequence (T2FFE imaging) in the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI (Gd-EOB-MRI) for differentiating hemangiomas from metastatic tumors. Methods: A total of 61 patients with 133 liver lesions, including 37 hemangiomas and 96 metastatic tumors, were scanned by Gd-EOB-MRI. Four data sets were independently analyzed by two readers: (1) 3D fat-suppressed T2-weighted imaging (FS-T2WI) alone; (2) the combination of 3D FS-T2WI and T2FFE imaging in the HBP of Gd-EOB-MRI; (3) the combination of 3D FS-T2WI, diffusion-weighted imaging (DWI) with the b-value of 1000 s/mm2 and the apparent diffusion coefficient (ADC); and (4) a dynamic study of Gd-EOB-MRI. After classifying the lesion sizes as ≤ 10 mm or > 10 mm, we conducted a receiver-operating characteristic analysis to compare diagnostic accuracies among the four data sets for differentiating hemangiomas from metastatic tumors. Results: The areas under the curves (AUCs) of the four data sets of two readers were: (1) ≤ 10 mm (0.85 and 0.91) and > 10 mm (0.88 and 0.97), (2) ≤ 10 mm (0.94 and 0.94) and > 10 mm (0.96 and 0.95), (3) ≤ 10 mm (0.90 and 0.87) and > 10 mm (0.89 and 0.95), and (4) ≤ 10 mm (0.62 and 0.67) and > 10 mm (0.76 and 0.71), respectively. Data sets (2) and (3) showed no significant differences in AUCs, but both showed significantly higher AUCs compared to that of (4) regardless of the lesion size (P < 0.05). Conclusion: The combination of 3D FS-T2WI and T2FFE imaging in the HBP of Gd-EOB-MRI achieved an accuracy equivalent to that of the combination of 3D FS-T2WI, DWI, and ADC and might be helpful in differentiating hemangiomas from metastatic tumors.
Collapse
Affiliation(s)
- Yukihisa Takayama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Akihiro Nishie
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Daisuke Okamoto
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Nobuhiro Fujita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Yoshiki Asayama
- Department of Advanced Imaging and Interventional Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Yasuhiro Ushijima
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University
| | | | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
47
|
Singh S, Torrealdea F, Bandula S. MR Imaging‒Guided Intervention: Evaluation of MR Conditional Biopsy and Ablation Needle Tip Artifacts at 3T Using a Balanced Fast Field Echo Sequence. J Vasc Interv Radiol 2021; 32:1068-1074.e1. [PMID: 33811996 DOI: 10.1016/j.jvir.2021.03.536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To systematically investigate artifacts produced by biopsy and ablation needles imaged at various trajectories with respect to the static magnetic field (B0). MATERIALS AND METHODS An acrylic phantom was scanned using a rapid balanced fast field echo sequence with 3.0-T magnetic resonance imaging. A 15-gauge microwave needle, a 17-gauge cryoneedle, and an 18-gauge coaxial biopsy needle were imaged in sagittal and axial planes, in 7 different orientations to B0 (0°, 15°, 30°, 45°, 60°, 75°, and 90°). For 4 angles (15°, 30°, 60°, and 75°), images were acquired with the slice orientation aligned to the needle angulation, resulting in the frequency encoding direction being parallel to the needle's long axis for the sagittal slice and perpendicular to the needle angulation for the axial acquisition. The artifact length at the needle tip and maximum artifact width were recorded. RESULTS No significant difference was noted in mean artifact length for the cryoneedle (13 mm; 95% confidence interval [CI], 7-19) and coaxial biopsy needle (8 mm; 95% CI, 5-10; P = .08). The mean artifact length was significantly smaller for the microwave ablation needle (1 mm; 95% CI, 0-2; P < .05). The mean artifact width was highest for the coaxial needle (17 mm; 95% CI, 14-19) and significantly higher than the cryoneedle (12 mm; 95% CI, 10-15; P = .024) and microwave ablation needle (8 mm; 95% CI, 6-10; P < .01). The needle tip artifact was significantly smaller when the slice orientation was aligned to the needle angulation for the coaxial and cryoablation needles (P < .01). CONCLUSIONS Needle tip artifact length and width increase with increasing angulation to the static field. At large angles (>15°), the needle tip position can be predicted better from images acquired when the slice orientation is aligned to the needle's angulation.
Collapse
Affiliation(s)
- Saurabh Singh
- Centre of Medical Imaging, University College London Hospital, London, United Kingdom; Interventional Oncology Service, University College London Hospital, London, United Kingdom.
| | - Francisco Torrealdea
- Department of Medical Physics, University College London Hospital, London, United Kingdom
| | - Steve Bandula
- Centre of Medical Imaging, University College London Hospital, London, United Kingdom; Interventional Oncology Service, University College London Hospital, London, United Kingdom
| |
Collapse
|
48
|
Jang H, Ma Y, Carl M, Jerban S, Chang EY, Du J. Ultrashort echo time Cones double echo steady state (UTE-Cones-DESS) for rapid morphological imaging of short T 2 tissues. Magn Reson Med 2021; 86:881-892. [PMID: 33755258 DOI: 10.1002/mrm.28769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE In this study, we aimed to develop a new technique, ultrashort echo time Cones double echo steady state (UTE-Cones-DESS), for highly efficient morphological imaging of musculoskeletal tissues with short T2 s. We also proposed a novel, single-point Dixon (spDixon)-based approach for fat suppression. METHODS The UTE-Cones-DESS sequence was implemented on a 3T MR system. It uses a short radiofrequency (RF) pulse followed by a pair of balanced spiral-out and spiral-in readout gradients separated by an unbalanced spoiling gradient in-between. The readout gradients are applied immediately before or after the RF pulses to achieve a UTE image (S+ ) and a spin/stimulated echo image (S- ). Weighted echo subtraction between S+ and S- was performed to achieve high contrast specific to short T2 tissues, and spDixon was applied to suppress fat by using the intrinsic complex signal of S+ and S- . Six healthy volunteers and five patients with osteoarthritis were recruited for whole-knee imaging. Additionally, two healthy volunteers were recruited for lower leg imaging. RESULTS The UTE-Cones-DESS sequence allows fast volumetric imaging of musculoskeletal tissues with excellent image contrast for the osteochondral junction, tendons, menisci, and ligaments in the knee joint as well as cortical bone and aponeurosis in the lower leg within 5 min. spDixon yields efficient fat suppression in both S+ and S- images without requiring any additional acquisitions or preparation pulses. CONCLUSION The rapid UTE-Cones-DESS sequence can be used for high contrast morphological imaging of short T2 tissues, providing a new tool to assess their association with musculoskeletal disorders.
Collapse
Affiliation(s)
- Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | | | - Saeed Jerban
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, San Diego, CA, USA.,Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
49
|
Perez-Sanchez LI, Gutierrez-Vazquez J, Satrustegui-Lapetra M, Ferreira-Manuel F, Arevalo-Manso JJ, Gomez-Herrera JJ, Criado-Alvarez JJ. Ocular biometry through fully refocused steady-state magnetic resonance imaging sequence: reliability and agreement with the IOLMaster ® 500. Int Ophthalmol 2021; 41:1863-1874. [PMID: 33619690 DOI: 10.1007/s10792-021-01748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/06/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To evaluate the reliability and agreement between Fully Refocused Steady-State magnetic resonance sequences (FRSS) and the IOLMaster® 500 optical biometer for measuring anterior chamber depth (ACD) and axial length (AL). METHODS In a sample of 32 healthy volunteers, separate observers measured the ACD and AL of both eyes using both techniques (inter-method) and through repeated FRSS measurements (interobserver) and by the same observer (intraobserver). We employed the Bland-Altman method to determine the agreement between FRSS and partial coherence interferometry (using the IOLMaster®) and the interobserver and intraobserver variability, providing the limits of agreement (LoA, or mean difference ± 1.96 SD). Correlation coefficients and intraclass correlation coefficients were also provided. RESULTS For ACD measurements with FRSS in pseudo-color scale, we obtained an LoA of 0.016 ± 0.266 mm compared with partial coherence interferometry. For AL with FRSS in greyscale, the LoA was 0.019 ± 0.383 mm. Maximum interobserver variability showed a - 0.036 ± 0.247 mm LoA for ACD with FRSS in pseudo-color scale. Maximum intraobserver variability was 0.000 ± 0.157 mm LoA for AL with FRSS in greyscale. CONCLUSIONS ACD and AL measurements using FRSS sequencing present high LoA and reliability when compared with partial coherence interferometry using the IOLMaster® 500. The results were better for FRSS in pseudo-color scale in ACD determination and for FRSS in greyscale in AL determination. FRSS would not be recommended for IOL power calculation due to variability of AL measurement.
Collapse
Affiliation(s)
- Lorenzo Ismael Perez-Sanchez
- Department of Radiology, Complejo Asistencial de Segovia, C/Luis Erik Clavería Neurólogo, s/n, 40002, Segovia, Spain.
| | - Julia Gutierrez-Vazquez
- Department of Radiology, Complejo Asistencial de Segovia, C/Luis Erik Clavería Neurólogo, s/n, 40002, Segovia, Spain
| | | | - Francisco Ferreira-Manuel
- Department of Radiology, Complejo Asistencial de Segovia, C/Luis Erik Clavería Neurólogo, s/n, 40002, Segovia, Spain
| | | | - Juan Jesus Gomez-Herrera
- Department of Radiology, Complejo Asistencial de Segovia, C/Luis Erik Clavería Neurólogo, s/n, 40002, Segovia, Spain
| | - Juan Jose Criado-Alvarez
- Talavera de La Reina Integrated Healthcare Area, Servicio de Salud de Castilla La Mancha, Talavera de La Reina, Toledo, Spain.,Department of Medical Sciences, School of Health Science, Universidad de Castilla La Mancha, Talavera de La Reina, Toledo, Spain
| |
Collapse
|
50
|
Sanders JW, Venkatesan AM, Levitt CA, Bathala T, Kudchadker RJ, Tang C, Bruno TL, Starks C, Santiago E, Wells M, Weaver CP, Ma J, Frank SJ. Fully Balanced SSFP Without an Endorectal Coil for Postimplant QA of MRI-Assisted Radiosurgery (MARS) of Prostate Cancer: A Prospective Study. Int J Radiat Oncol Biol Phys 2021; 109:614-625. [PMID: 32980498 DOI: 10.1016/j.ijrobp.2020.09.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE To investigate fully balanced steady-state free precession (bSSFP) with optimized acquisition protocols for magnetic resonance imaging (MRI)-based postimplant quality assessment of low-dose-rate (LDR) prostate brachytherapy without an endorectal coil (ERC). METHODS AND MATERIALS Seventeen patients at a major academic cancer center who underwent MRI-assisted radiosurgery (MARS) LDR prostate cancer brachytherapy were imaged with moderate, high, or very high spatial resolution fully bSSFP MRIs without using an ERC. Between 1 and 3 signal averages (NEX) were acquired with acceleration factors (R) between 1 and 2, with the goal of keeping scan times between 4 and 6 minutes. Acquisitions with R >1 were reconstructed with parallel imaging and compressed sensing (PICS) algorithms. Radioactive seeds were identified by 3 medical dosimetrists. Additionally, some of the MRI techniques were implemented and tested at a community hospital; 3 patients underwent MARS LDR prostate brachytherapy and were imaged without an ERC. RESULTS Increasing the in-plane spatial resolution mitigated partial volume artifacts and improved overall seed and seed marker visualization at the expense of reduced signal-to-noise ratio (SNR). The reduced SNR as a result of imaging at higher spatial resolution and without an ERC was partially compensated for by the multi-NEX acquisitions enabled by PICS. Resultant image quality was superior to the current clinical standard. All 3 dosimetrists achieved near-perfect precision and recall for seed identification in the 17 patients. The 3 postimplant MRIs acquired at the community hospital were sufficient to identify 208 out of 211 seeds implanted without reference to computed tomography (CT). CONCLUSIONS Acquiring postimplant prostate brachytherapy MRI without an ERC has several advantages including better patient tolerance, lower costs, higher clinical throughput, and widespread access to precision LDR prostate brachytherapy. This prospective study confirms that the use of an ERC can be circumvented with fully bSSFP and advanced MRI scan techniques in a major academic cancer center and community hospital, potentially enabling postimplant assessment of MARS LDR prostate brachytherapy without CT.
Collapse
Affiliation(s)
- Jeremiah W Sanders
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; Medical Physics Graduate Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.
| | | | - Chad A Levitt
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Rajat J Kudchadker
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chad Tang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Teresa L Bruno
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine Starks
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin Santiago
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle Wells
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl P Weaver
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jingfei Ma
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; Medical Physics Graduate Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|