1
|
Fessard A, Zavoriti A, Boyer N, Guillemaud J, Rahmati M, Del Carmine P, Gobet C, Chazaud B, Gondin J. Neuromuscular electrical stimulation training induces myonuclear accretion and hypertrophy in mice without overt signs of muscle damage and regeneration. Skelet Muscle 2025; 15:3. [PMID: 39910613 DOI: 10.1186/s13395-024-00372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Skeletal muscle is a plastic tissue that adapts to increased mechanical loading/contractile activity through fusion of muscle stem cells (MuSCs) with myofibers, a physiological process referred to as myonuclear accretion. However, it is still unclear whether myonuclear accretion is driven by increased mechanical loading per se, or occurs, at least in part, in response to muscle injury/regeneration. Here, we developed a non-damaging protocol to evaluate contractile activity-induced myonuclear accretion/hypertrophy in physiological conditions. METHODS Contractile activity was generated by applying repeated electrical stimuli over the mouse plantar flexor muscles. This method is commonly referred to as NeuroMuscular Electrical Simulation (NMES) in Human. Each NMES training session consisted of 80 isometric contractions delivered at ∼15% of maximal tetanic force to avoid muscle damage. C57BL/6J male mice were submitted to either a short (i.e., 6 sessions) or long (i.e., 12 sessions) individualized NMES training program while unstimulated mice were used as controls. Histological investigations were performed to assess the impact of NMES on MuSC number and status, myonuclei content and muscle tissue integrity, typology and size. RESULTS NMES led to a robust proliferation of MuSCs and myonuclear accretion in the absence of overt signs of muscle damage/regeneration. NMES-induced myonuclear accretion was specific to type IIB myofibers and was an early event preceding muscle hypertrophy inasmuch as a mild increase in myofiber cross-sectional area was only observed in response to the long-term NMES training protocol. CONCLUSION We conclude that NMES-induced myonuclear accretion and muscle hypertrophy are driven by a mild increase in mechanical loading in the absence of overt signs of muscle injury.
Collapse
Affiliation(s)
- Aurélie Fessard
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, 8 Avenue Rockefeller, Lyon, France
| | - Aliki Zavoriti
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, 8 Avenue Rockefeller, Lyon, France
| | - Natacha Boyer
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, 8 Avenue Rockefeller, Lyon, France
| | - Jules Guillemaud
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, 8 Avenue Rockefeller, Lyon, France
| | - Masoud Rahmati
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, 8 Avenue Rockefeller, Lyon, France
- Department of Exercise Physiology, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| | - Peggy Del Carmine
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, 8 Avenue Rockefeller, Lyon, France
| | - Christelle Gobet
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, 8 Avenue Rockefeller, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, 8 Avenue Rockefeller, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, 8 Avenue Rockefeller, Lyon, France.
| |
Collapse
|
2
|
Kahn RE, Zhu P, Roy I, Peek C, Hawley JA, Dayanidhi S. Ablation of satellite cell-specific clock gene, Bmal1, alters force production, muscle damage, and repair following contractile-induced injury. FASEB J 2025; 39:e70325. [PMID: 39812604 PMCID: PMC11734708 DOI: 10.1096/fj.202402145rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury. At baseline, SC-Bmal1iKO animals exhibited a ~20-25% reduction in normalized force production (ex vivo and in vivo) versus control SC-Bmal1Cntrl and SC-Bmal1iKO untreated littermates (p < .05). Following contractile injury, SC-Bmal1iKO animals displayed reduced muscle damage and subsequent repair post-injury (Dystrophinnegative fibers 24 h: SC-Bmal1Cntrl 199 ± 41; SC-Bmal1iKO 36 ± 13, p < .05) (eMHC+ fibers 7 day: SC-Bmal1Cntrl 217.8 ± 115.5; SC-Bmal1iKO 27.8 ± 17.3; Centralized nuclei 7 day: SC-Bmal1Cntrl 160.7 ± 70.5; SC-Bmal1iKO 46.2 ± 15.7). SC-Bmal1iKO animals also showed reduced neutrophil infiltration, consistent with less injury (Neutrophil content 24 h: SC-Bmal1Cntrl 2.4 ± 0.4; SC-Bmal1iKO 0.4 ± 0.2, % area fraction, p < .05). SC-Bmal1iKO animals had greater SC activation/proliferation at an earlier timepoint (p < .05) and an unexplained increase in activation 7 days post injury. Collectively, these data suggest SC-Bmal1 plays a regulatory role in force production, influencing the magnitude of muscle damage/repair, with an altered SC myogenic progression following contractile-induced muscle injury.
Collapse
Affiliation(s)
- Ryan E. Kahn
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
- Shirley Ryan AbilityLabChicagoIllinoisUSA
| | - Pei Zhu
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ishan Roy
- Shirley Ryan AbilityLabChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Clara Peek
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - John A. Hawley
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
- Department of Sport and Exercise SciencesManchester Metropolitan University Institute of SportManchester
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLabChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
3
|
Chambers TL, Dimet‐Wiley A, Keeble AR, Haghani A, Lo W, Kang G, Brooke R, Horvath S, Fry CS, Watowich SJ, Wen Y, Murach KA. Methylome-proteome integration after late-life voluntary exercise training reveals regulation and target information for improved skeletal muscle health. J Physiol 2025; 603:211-237. [PMID: 39058663 PMCID: PMC11702923 DOI: 10.1113/jp286681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine β-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.
Collapse
Affiliation(s)
- Toby L. Chambers
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Alexander R. Keeble
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Amin Haghani
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
| | - Wen‐Juo Lo
- Department of Educational Statistics and Research MethodsUniversity of ArkansasFayettevilleARUSA
| | - Gyumin Kang
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Robert Brooke
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Steve Horvath
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Stanley J. Watowich
- Ridgeline TherapeuticsHoustonTXUSA
- Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Yuan Wen
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Kevin A. Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
4
|
Horwath O, Cumming KT, Eftestøl E, Ekblom B, Ackermann P, Raastad T, Gundersen K, Psilander N. No detectable loss of myonuclei from human muscle fibers after 6 wk of immobilization following an Achilles tendon rupture. Am J Physiol Cell Physiol 2025; 328:C20-C26. [PMID: 39545617 DOI: 10.1152/ajpcell.00692.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Muscle disuse has rapid and debilitating effects on muscle mass and overall health, making it an important issue from both scientific and clinical perspectives. However, the myocellular adaptations to muscle disuse are not yet fully understood, particularly those related to the myonuclear permanence hypothesis. Therefore, in this study, we assessed fiber size, number of myonuclei, satellite cells, and capillaries in human gastrocnemius muscle after a period of immobilization following an Achilles tendon rupture. Six physically active patients (5 males/1 female, 43 ± 15 yr) were recruited to participate after sustaining an acute unilateral Achilles tendon rupture. Muscle biopsies were obtained from the lateral part of the gastrocnemius before and after 6 wk of immobilization using a plaster cast and orthosis. Muscle fiber characteristics were analyzed in tissue cross-sections and isolated single fibers using immunofluorescence and high-resolution microscopy. Immobilization did not change muscle fiber type composition nor cross-sectional area of type I or type II fibers, but muscle fiber volume tended to decline by 13% (P = 0.077). After immobilization, the volume per myonucleus was significantly reduced by 20% (P = 0.008). Myonuclei were not lost in response to immobilization but tended to increase in single fibers and type II fibers. No significant changes were observed for satellite cells or capillaries. Myonuclei were not lost in the gastrocnemius muscle after a prolonged period of immobilization, which may provide support to the myonuclear permanence hypothesis in human muscle. Capillaries remained stable throughout the immobilization period, whereas the response was variable for satellite cells, particularly in type II fibers.NEW & NOTEWORTHY The impact of prolonged immobilization on muscle fiber characteristics is difficult to study in humans and therefore remains poorly understood. We analyzed cross-sections and single fibers from gastrocnemius before and after 6 wk of immobilization due to an Achilles tendon rupture. Our data suggest that myonuclei are not lost in response to such stimuli, thus lending support to the hypothesis of myonuclear permanency in human muscle.
Collapse
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Kristoffer Toldnes Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Faculty of Health, Welfare and Organisation, Østfold University College, Fredrikstad, Norway
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
- Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Paul Ackermann
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Niklas Psilander
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
5
|
Borowik AK, Murach KA, Miller BF. The expanding roles of myonuclei in adult skeletal muscle health and function. Biochem Soc Trans 2024; 52:1-14. [PMID: 39700019 DOI: 10.1042/bst20241637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Skeletal muscle cells (myofibers) require multiple nuclei to support a cytoplasmic volume that is larger than other mononuclear cell types. It is dogmatic that mammalian resident myonuclei rely on stem cells (specifically satellite cells) for adding new DNA to muscle fibers to facilitate cytoplasmic expansion that occurs during muscle growth. In this review, we discuss the relationship between cell size and supporting genetic material. We present evidence that myonuclei may undergo DNA synthesis as a strategy to increase genetic material in myofibers independent from satellite cells. We then describe the details of our experiments that demonstrated that mammalian myonuclei can replicate DNA in vivo. Finally, we present our findings in the context of expanding knowledge about myonuclear heterogeneity, myonuclear mobility and shape. We also address why myonuclear replication is potentially important and provide future directions for remaining unknowns. Myonuclear DNA replication, coupled with new discoveries about myonuclear transcription, morphology, and behavior in response to stress, may provide opportunities to leverage previously unappreciated skeletal muscle biological processes for therapeutic targets that support muscle mass, function, and plasticity.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, U.S.A
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
- Oklahoma City VA Medical Center, Oklahoma City, OK, U.S.A
| |
Collapse
|
6
|
Cumming KT, Reitzner SM, Hanslien M, Skilnand K, Seynnes OR, Horwath O, Psilander N, Sundberg CJ, Raastad T. Muscle memory in humans: evidence for myonuclear permanence and long-term transcriptional regulation after strength training. J Physiol 2024; 602:4171-4193. [PMID: 39159314 DOI: 10.1113/jp285675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
The objective of this work was to investigate myonuclear permanence and transcriptional regulation as mechanisms for cellular muscle memory after strength training in humans. Twelve untrained men and women performed 10 weeks of unilateral elbow-flexor strength training followed by 16 weeks of de-training. Thereafter, 10 weeks' re-training was conducted with both arms: the previously trained arm and the contralateral untrained control arm. Muscle biopsies were taken from the trained arm before and after both training periods and from the control arm before and after re-training. Muscle biopsies were analysed for fibre cross-sectional area (fCSA), myonuclei and global transcriptomics (RNA sequencing). During the first training period, myonuclei increased in type 1 (13 ± 17%) and type 2 (33 ± 23%) fibres together with a 30 ± 43% non-significant increase in mixed fibre fCSA (P = 0.069). Following de-training, fCSA decreased in both fibre types, whereas myonuclei were maintained, resulting in 33% higher myonuclear number in previously trained vs. control muscle in type 2 fibres. Furthermore, in the previously trained muscle, three differentially expressed genes (DEGs; EGR1, MYL5 and COL1A1) were observed. Following re-training, the previously trained muscle showed larger type 2 fCSA compared to the control (P = 0.035). However, delta change in type 2 fCSA was not different between muscles. Gene expression was more dramatically changed in the control arm (1338 DEGs) than in the previously trained arm (822 DEGs). The sustained higher number of myonuclei in the previously trained muscle confirms myonuclear accretion and permanence in humans. Nevertheless, because of the unclear effect on the subsequent hypertrophy with re-training, the physiological benefit remains to be determined. KEY POINTS: Muscle memory is a cellular mechanism that describes the capacity of skeletal muscle fibres to respond differently to training stimuli if the stimuli have been previously encountered. This study overcomes past methodological limitations related to the choice of muscles and analytical procedures. We show that myonuclear number is increased after strength training and maintained during de-training. Increased myonuclear number and differentially expressed genes related to muscle performance and development in the previously trained muscle did not translate into a clearly superior responses during re-training. Because of the unclear effect on the subsequent hypertrophy and muscle strength gain with re-training, the physiological benefit remains to be determined.
Collapse
Affiliation(s)
- Kristoffer Toldnes Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Faculty of Health, Welfare and Organisation, Østfold University College, Fredrikstad, Norway
| | - Stefan Markus Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marit Hanslien
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Kenneth Skilnand
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Olivier R Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Niklas Psilander
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
7
|
Burke BI, Ismaeel A, McCarthy JJ. The utility of the rodent synergist ablation model in identifying molecular and cellular mechanisms of skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2024; 327:C601-C606. [PMID: 39069822 PMCID: PMC11427019 DOI: 10.1152/ajpcell.00362.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
Skeletal muscle exhibits remarkable plasticity to adapt to stimuli such as mechanical loading. The mechanisms that regulate skeletal muscle hypertrophy due to mechanical overload have been thoroughly studied. Remarkably, our understanding of many of the molecular and cellular mechanisms that regulate hypertrophic growth were first identified using the rodent synergist ablation (SA) model and subsequently corroborated in human resistance exercise training studies. To demonstrate the utility of the SA model, we briefly summarize the hypertrophic mechanisms identified using the model and the following translation of these mechanism to human skeletal muscle hypertrophy induced by resistance exercise training.
Collapse
Affiliation(s)
- Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
8
|
Rader EP, McKinstry KA, Baker BA. Transcriptional and morphological responses following distinct muscle contraction protocols for Snell dwarf (Pit1 dw/dw) mice. Physiol Rep 2024; 12:e70027. [PMID: 39227324 PMCID: PMC11371489 DOI: 10.14814/phy2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
The Snell dwarf mouse (Pit1dw/dw), an animal model of congenital combined pituitary hormone deficiency, displays skeletal muscle weakness. While enhanced responsivity to repeated exposures of muscle contractions have been documented for Snell dwarf mice, the response following single exposure to distinct contraction protocols remained uncharacterized. The purpose of this study was to investigate the muscle recovery of Snell dwarf and control littermate mice following a single exposure to two separate protocols-an intermittent slow velocity (30°/s) contraction protocol or a continuous rapid velocity (500°/s) contraction protocol. Following both protocols for control mice, torque values were 30% and 80% of pre-protocol values at 5 min and 3 days, respectively. At 10 days, performance returned to baseline for the 30°/s protocol and were depressed for the 500°/s protocol. For Snell dwarf mice following both protocols, torques were depressed to 5% of pre-protocol values at 5 min and returned to baseline by 3 days. Recovery following the 30°/s protocol for control mice and both protocols for Snell dwarf mice coincided with increased transcriptional output, upregulation of cytokine-mediated signaling genes, and a distribution shift to smaller muscle fibers with reduced area per nucleus. These features represent efficacious remodeling ubiquitous across distinct contraction paradigms in the context of the Pit1 mutation.
Collapse
Affiliation(s)
- Erik P. Rader
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Kimberly A. McKinstry
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Brent A. Baker
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| |
Collapse
|
9
|
Roberts MD, Hornberger TA, Phillips SM. The utility-and limitations-of the rodent synergist ablation model in examining mechanisms of skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2024; 327:C607-C613. [PMID: 39069828 PMCID: PMC11427104 DOI: 10.1152/ajpcell.00405.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
In this issue, Burke et al. discuss the utility of the rodent synergist ablation (SA) model for examining mechanisms associated with skeletal muscle hypertrophy. In this invited perspective, we aim to complement their original perspective by discussing limitations to the model along with alternative mechanical overload models that have strengths and limitations.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Ismaeel A, Peck BD, Montgomery MM, Burke BI, Goh J, Kang G, Franco AB, Xia Q, Goljanek-Whysall K, McDonagh B, McLendon JM, Koopmans PJ, Jacko D, Schaaf K, Bloch W, Gehlert S, Wen Y, Murach KA, Peterson CA, Boudreau RL, Fisher-Wellman KH, McCarthy JJ. microRNA-1 Regulates Metabolic Flexibility in Skeletal Muscle via Pyruvate Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607377. [PMID: 39149347 PMCID: PMC11326265 DOI: 10.1101/2024.08.09.607377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - McLane M Montgomery
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Abigail B Franco
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Mass Spectrometry and Proteomics Core, University of Kentucky, Lexington, KY, USA
| | - Qin Xia
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Jared M McLendon
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Pieter J Koopmans
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Daniel Jacko
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Kirill Schaaf
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Ryan L Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
11
|
Dimet-Wiley AL, Latham CM, Brightwell CR, Neelakantan H, Keeble AR, Thomas NT, Noehren H, Fry CS, Watowich SJ. Nicotinamide N-methyltransferase inhibition mimics and boosts exercise-mediated improvements in muscle function in aged mice. Sci Rep 2024; 14:15554. [PMID: 38969654 PMCID: PMC11226645 DOI: 10.1038/s41598-024-66034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Human hallmarks of sarcopenia include muscle weakness and a blunted response to exercise. Nicotinamide N-methyltransferase inhibitors (NNMTis) increase strength and promote the regenerative capacity of aged muscle, thus offering a promising treatment for sarcopenia. Since human hallmarks of sarcopenia are recapitulated in aged (24-month-old) mice, we treated mice from 22 to 24 months of age with NNMTi, intensive exercise, or a combination of both, and compared skeletal muscle adaptations, including grip strength, longitudinal running capacity, plantarflexor peak torque, fatigue, and muscle mass, fiber type, cross-sectional area, and intramyocellular lipid (IMCL) content. Exhaustive proteome and metabolome analyses were completed to identify the molecular mechanisms underlying the measured changes in skeletal muscle pathophysiology. Remarkably, NNMTi-treated aged sedentary mice showed ~ 40% greater grip strength than sedentary controls, while aged exercised mice only showed a 20% increase relative to controls. Importantly, the grip strength improvements resulting from NNMTi treatment and exercise were additive, with NNMTi-treated exercised mice developing a 60% increase in grip strength relative to sedentary controls. NNMTi treatment also promoted quantifiable improvements in IMCL content and, in combination with exercise, significantly increased gastrocnemius fiber CSA. Detailed skeletal muscle proteome and metabolome analyses revealed unique molecular mechanisms associated with NNMTi treatment and distinct molecular mechanisms and cellular processes arising from a combination of NNMTi and exercise relative to those given a single intervention. These studies suggest that NNMTi-based drugs, either alone or combined with exercise, will be beneficial in treating sarcopenia and a wide range of age-related myopathies.
Collapse
Affiliation(s)
| | - Christine M Latham
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Alexander R Keeble
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Haley Noehren
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Valentino TR, Burke BI, Kang G, Goh J, Dungan CM, Ismaeel A, Mobley CB, Flythe MD, Wen Y, McCarthy JJ. Microbial-Derived Exerkines Prevent Skeletal Muscle Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596432. [PMID: 38854012 PMCID: PMC11160717 DOI: 10.1101/2024.05.29.596432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Regular exercise yields a multitude of systemic benefits, many of which may be mediated through the gut microbiome. Here, we report that cecal microbial transplants (CMTs) from exercise-trained vs. sedentary mice have modest benefits in reducing skeletal muscle atrophy using a mouse model of unilaterally hindlimb-immobilization. Direct administration of top microbial-derived exerkines from an exercise-trained gut microbiome preserved muscle function and prevented skeletal muscle atrophy.
Collapse
Affiliation(s)
- Taylor R Valentino
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Current Address: Buck Institute for Research on Aging, Novato, CA
| | - Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| | - Cory M Dungan
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Current Address: Department of Health, Human Performance, and Recreation, Robbins College of Health & Human Sciences, Baylor University, Waco, TX
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| | - C Brooks Mobley
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Current Address: School of Kinesiology, Auburn University, Auburn, AL
| | - Michael D Flythe
- USDA Agriculture Research Service, Forage-Animal Production Research Unit, University of Kentucky, Lexington, KY
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
13
|
Nolt GL, Keeble AR, Wen Y, Strong AC, Thomas NT, Valentino TR, Brightwell CR, Murach KA, Patrizia S, Weinstabl H, Gollner A, McCarthy JJ, Fry CS, Franti M, Filareto A, Peterson CA, Dungan CM. Inhibition of p53-MDM2 binding reduces senescent cell abundance and improves the adaptive responses of skeletal muscle from aged mice. GeroScience 2024; 46:2153-2176. [PMID: 37872294 PMCID: PMC10828311 DOI: 10.1007/s11357-023-00976-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Skeletal muscle adaptation to external stimuli, such as regeneration following injury and hypertrophy in response to resistance exercise, are blunted with advanced age. The accumulation of senescent cells, along with defects in myogenic progenitor cell (MPC) proliferation, have been strongly linked as contributing factors to age-associated impairment in muscle adaptation. p53 plays an integral role in all these processes, as upregulation of p53 causes apoptosis in senescent cells and prevents mitotic catastrophe in MPCs from old mice. The goal of this study was to determine if a novel pharmaceutical agent (BI01), which functions by upregulating p53 through inhibition of binding to MDM2, the primary p53 regulatory protein, improves muscle regeneration and hypertrophy in old mice. BI01 effectively reduced the number of senescent cells in vitro but had no effect on MPC survival or proliferation at a comparable dose. Following repeated oral gavage with 2 mg/kg of BI01 (OS) or vehicle (OV), old mice (24 months) underwent unilateral BaCl2 injury in the tibialis anterior (TA) muscle, with PBS injections serving as controls. After 7 days, satellite cell number was higher in the TA of OS compared to OV mice, as was the expression of genes involved in ATP production. By 35 days, old mice treated with BI01 displayed reduced senescent cell burden, enhanced regeneration (higher muscle mass and fiber cross-sectional area) and restoration of muscle function relative to OV mice. To examine the impact of 2 mg/kg BI01 on muscle hypertrophy, the plantaris muscle was subjected to 28 days of mechanical overload (MOV) in OS and OV mice. In response to MOV, OS mice had larger plantaris muscles and muscle fibers than OV mice, particularly type 2b + x fibers, associated with reduced senescent cells. Together our data show that BI01 is an effective senolytic agent that may also augment muscle metabolism to enhance muscle regeneration and hypertrophy in old mice.
Collapse
Affiliation(s)
- Georgia L Nolt
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Alexander R Keeble
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Aubrey C Strong
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Taylor R Valentino
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Sini Patrizia
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Harald Weinstabl
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Michael Franti
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Antonio Filareto
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA.
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, Waco, TX, 76706, USA.
| |
Collapse
|
14
|
Jones RG, von Walden F, Murach KA. Exercise-Induced MYC as an Epigenetic Reprogramming Factor That Combats Skeletal Muscle Aging. Exerc Sport Sci Rev 2024; 52:63-67. [PMID: 38391187 PMCID: PMC10963142 DOI: 10.1249/jes.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Of the "Yamanaka factors" Oct3/4 , Sox2 , Klf4 , and c-Myc (OSKM), the transcription factor c-Myc ( Myc ) is the most responsive to exercise in skeletal muscle and is enriched within the muscle fiber. We hypothesize that the pulsatile induction of MYC protein after bouts of exercise can serve to epigenetically reprogram skeletal muscle toward a more resilient and functional state.
Collapse
Affiliation(s)
- Ronald G. Jones
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR
| | - Ferdinand von Walden
- Neuropediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A. Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR
| |
Collapse
|
15
|
Beaudry AG, Law ML, Gilley-Connor KR, Buley H, Dungan CM, Nascimento CMC, Vichaya EG, Wiggs MP. Diet-induced obesity does not exacerbate cachexia in male mice bearing Lewis-lung carcinoma tumors. Am J Physiol Regul Integr Comp Physiol 2024; 326:R254-R265. [PMID: 38252513 DOI: 10.1152/ajpregu.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Cachexia is a muscle-wasting syndrome commonly observed in patients with cancer, which can significantly worsen clinical outcomes. Because of a global rise in obesity, the coexistence of cachexia in obese individuals poses unique challenges, with the impact of excessive adiposity on cachexia severity and underlying pathophysiology not well defined. Understanding the interplay between cachexia and obesity is crucial for improving diagnosis and treatment strategies for these patients; therefore, the present study examined differences in cachexia between lean and obese mice bearing Lewis lung carcinoma (LLC) tumors. Nine-week-old, male C57Bl6J mice were placed on either a chow or a high-fat diet (HFD) for 9 wk. After the diet intervention, mice were inoculated with LLC or vehicle. Markers of cachexia, such as body and muscle loss, were noted in both chow and HFD groups with tumors. Tumor weight of HFD animals was greater than that of chow. LLC tumors reduced gastrocnemius, plantaris, and soleus mass, regardless of diet. The tibialis anterior and plantaris mass and cross-sectional area of type IIb/x fibers in the gastrocnemius were not different between HFD-chow, HFD-tumor, and chow-tumor. Using RNA sequencing (RNA-seq) of the plantaris muscle from chow-tumor and HFD-tumor groups, we identified ∼400 differentially expressed genes. Bioinformatic analysis identified changes in lipid metabolism, mitochondria, bioenergetics, and proteasome degradation. Atrophy was not greater despite larger tumor burden in animals fed an HFD, and RNA-seq data suggests that partial protection is mediated through differences in mitochondrial function and protein degradation, which may serve as future mechanistic targets.NEW & NOTEWORTHY This study provides timely information on the interaction between obesity and cancer cachexia. Lean and obese animals show signs of cachexia with reduced body weight, adipose tissue, and gastrocnemius muscle mass. There was not significant wasting in the tibialis anterior, plantaris, or fast twitch fibers in the gastrocnemius muscle of obese animals with tumors. RNA-seq analysis reveals that obese tumor bearing animals had differential expression of mitochondria- and degradation-related genes, which may direct future studies in mechanistic research.
Collapse
Affiliation(s)
- Anna G Beaudry
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Michelle L Law
- Department of Human Sciences and Design, Baylor University, Waco, Texas, United States
| | - Kayla R Gilley-Connor
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States
| | - Hailey Buley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States
| | - Cory M Dungan
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | | | - Elisabeth G Vichaya
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States
| | - Michael P Wiggs
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| |
Collapse
|
16
|
Koopmans PJ, Williams‐Frey TD, Zwetsloot KA. Stuart has got the PoWeR! Skeletal muscle adaptations to a novel heavy progressive weighted wheel running exercise model in C57BL/6 mice. Exp Physiol 2024; 109:271-282. [PMID: 37974360 PMCID: PMC10988744 DOI: 10.1113/ep091494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Murine exercise models are developed to study the molecular and cellular mechanisms regulating muscle mass. A progressive weighted wheel running model, named 'PoWeR', was previously developed to serve as a more translatable alternative to involuntary resistance-type exercise models in rodents, such as synergist ablation. However, mice still run great distances despite the added resistance as evidenced by a large glycolytic-to-oxidative shift in muscle fibre type. Thus, PoWeR reflects a blended resistance/endurance model. In an attempt to bias PoWeR further towards resistance-type exercise, we developed a novel heavy PoWeR model (hPoWeR) utilizing higher wheel loads (max of 12.5 g vs 6 g). Adult male C57BL/6 mice voluntarily performed an 8-week progressive loading protocol (PoWeR or hPoWeR). Running distance peaked at ∼5-6 km day-1 in both treatments and was maintained by PoWeR mice, but declined in the hPoWeR mice as load increased beyond 7.5 g. Peak isometric force of the gastrocnemius-soleus-plantaris complex tended to increase in wheel running treatments. Soleus mass increased by 19% and 24% in PoWeR and hPoWeR treatments, respectively, and plantaris fibre cross-sectional area was greater in hPoWeR, compared to PoWeR. There were fewer glycolytic and more oxidative fibres in the soleus and plantaris muscles in the PoWeR treatment, but not hPoWeR. Collectively, these data suggest hPoWeR may modestly alter skeletal muscle supporting the aim of better reflecting typical resistance training adaptations, in line with decreased running volume and exposure to higher resistance. Regardless, PoWeR remains an effective hypertrophic concurrent training model in mice.
Collapse
Affiliation(s)
- Pieter J. Koopmans
- Integrative Muscle Physiology LaboratoryAppalachian State UniversityBooneNorth CarolinaUSA
- Department of Public Health and Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Therin D. Williams‐Frey
- Integrative Muscle Physiology LaboratoryAppalachian State UniversityBooneNorth CarolinaUSA
- Department of BiologyAppalachian State UniversityBooneNorth CarolinaUSA
| | - Kevin A. Zwetsloot
- Integrative Muscle Physiology LaboratoryAppalachian State UniversityBooneNorth CarolinaUSA
- Department of Public Health and Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
- Department of BiologyAppalachian State UniversityBooneNorth CarolinaUSA
| |
Collapse
|
17
|
Nielsen JL, Rasmussen JJ, Frandsen MN, Fredberg J, Brandt-Jacobsen NH, Aagaard P, Kistorp C. Higher Myonuclei Density in Muscle Fibers Persists Among Former Users of Anabolic Androgenic Steroids. J Clin Endocrinol Metab 2023; 109:e266-e273. [PMID: 37466198 DOI: 10.1210/clinem/dgad432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
CONTEXT No information exists on the long-lasting effects of supraphysiological anabolic androgenic steroids (AASs) usage on the myocellular properties of human skeletal muscle in previous AAS users. OBJECTIVE We hypothesized that former AAS users would demonstrate smaller myonuclei domains (ie, higher myonuclei density) than matched controls. METHODS A community-based cross-sectional study in men aged 18-50 years engaged in recreational strength training. Muscle biopsies were obtained from the m. vastus lateralis. Immunofluorescence analyses were performed to quantify myonuclei density and myofiber size. RESULTS Twenty-five males were included: 8 current and 7 previous AAS users and 10 controls. Median (25th-75th percentiles) accumulated duration of AAS use was 174 (101-206) and 140 (24-260) weeks in current and former AAS users, respectively (P = .482). Geometric mean (95% CI) elapsed duration since AAS cessation was 4.0 (1.2; 12.7) years among former AAS users. Type II muscle fibers in former AAS users displayed higher myonuclei density and DNA to cytoplasm ratio than controls, corresponding to smaller myonuclei domains (P = .013). Longer accumulated AAS use (weeks, log2) was associated with smaller myonuclei domains in previous AAS users: beta-coefficient (95% CI) -94 (-169; -18), P = .024. Type I fibers in current AAS users exhibited a higher amount of satellite cells per myofiber (P = .031) than controls. CONCLUSION Muscle fibers in former AAS users demonstrated persistently higher myonuclei density and DNA to cytoplasm ratio 4 years after AAS cessation suggestive of enhanced retraining capacity.
Collapse
Affiliation(s)
- Jakob Lindberg Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense DK-5230, Denmark
| | - Jon Jarløv Rasmussen
- Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2200, Denmark
| | - Mikkel Nicklas Frandsen
- Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2200, Denmark
| | - Jeppe Fredberg
- Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2200, Denmark
| | - Niels Høegh Brandt-Jacobsen
- Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2200, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense DK-5230, Denmark
| | - Caroline Kistorp
- Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2200, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
18
|
Ismaeel A, Valentino TR, Burke B, Goh J, Saliu TP, Albathi F, Owen A, McCarthy JJ, Wen Y. Acetate and succinate benefit host muscle energetics as exercise-associated post-biotics. Physiol Rep 2023; 11:e15848. [PMID: 37940330 PMCID: PMC10632089 DOI: 10.14814/phy2.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Recently, the gut microbiome has emerged as a potent modulator of exercise-induced systemic adaptation and appears to be crucial for mediating some of the benefits of exercise. This study builds upon previous evidence establishing a gut microbiome-skeletal muscle axis, identifying exercise-induced changes in microbiome composition. Metagenomics sequencing of fecal samples from non-exercise-trained controls or exercise-trained mice was conducted. Biodiversity indices indicated exercise training did not change alpha diversity. However, there were notable differences in beta-diversity between trained and untrained microbiomes. Exercise significantly increased the level of the bacterial species Muribaculaceae bacterium DSM 103720. Computation simulation of bacterial growth was used to predict metabolites that accumulate under in silico culture of exercise-responsive bacteria. We identified acetate and succinate as potential gut microbial metabolites that are produced by Muribaculaceae bacterium, which were then administered to mice during a period of mechanical overload-induced muscle hypertrophy. Although no differences were observed for the overall muscle growth response to succinate or acetate administration during the first 5 days of mechanical overload-induced hypertrophy, acetate and succinate increased skeletal muscle mitochondrial respiration. When given as post-biotics, succinate or acetate treatment may improve oxidative metabolism during muscle hypertrophy.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Benjamin Burke
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Jensen Goh
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Tolulope P. Saliu
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Fatmah Albathi
- Department of Pharmacology and Nutritional Sciences, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Allison Owen
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic TrainingCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - John J. McCarthy
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Yuan Wen
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Division of Biomedical Informatics, Department of Internal Medicine, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
19
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
20
|
Lima G, Kolliari-Turner A, Wang G, Ho P, Meehan L, Roeszler K, Seto J, Malinsky FR, Karanikolou A, Eichhorn G, Tanisawa K, Ospina-Betancurt J, Hamilton B, Kumi PYO, Shurlock J, Skiadas V, Twycross-Lewis R, Kilduff L, Guppy FM, North K, Pitsiladis Y, Fossati C, Pigozzi F, Borrione P. The MMAAS Project: An Observational Human Study Investigating the Effect of Anabolic Androgenic Steroid Use on Gene Expression and the Molecular Mechanism of Muscle Memory. Clin J Sport Med 2023; 33:e115-e122. [PMID: 35533133 DOI: 10.1097/jsm.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 03/20/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE It remains unknown whether myonuclei remain elevated post anabolic-androgenic steroid (AAS) usage in humans. Limited data exist on AAS-induced changes in gene expression. DESIGN Cross-sectional/longitudinal. SETTING University. PARTICIPANTS Fifty-six men aged 20 to 42 years. INDEPENDENT VARIABLES Non-resistance-trained (C) or resistance-trained (RT), RT currently using AAS (RT-AS), of which if AAS usage ceased for ≥18 weeks resampled as Returning Participants (RP) or RT previously using AAS (PREV). MAIN OUTCOME MEASURES Myonuclei per fiber and cross-sectional area (CSA) of trapezius muscle fibers. RESULTS There were no significant differences between C (n = 5), RT (n = 15), RT-AS (n = 17), and PREV (n = 6) for myonuclei per fiber. Three of 5 returning participants (RP1-3) were biopsied twice. Before visit 1, RP1 ceased AAS usage 34 weeks before, RP2 and RP3 ceased AAS usage ≤2 weeks before, and all had 28 weeks between visits. Fiber CSA decreased for RP1 and RP2 between visits (7566 vs 6629 μm 2 ; 7854 vs 5677 μm 2 ) while myonuclei per fiber remained similar (3.5 vs 3.4; 2.5 vs 2.6). Respectively, these values increased for RP3 between visits (7167 vs 7889 μm 2 ; 2.6 vs 3.3). CONCLUSIONS This cohort of past AAS users did not have elevated myonuclei per fiber values, unlike previous research, but reported AAS usage was much lower. Training and AAS usage history also varied widely among participants. Comparable myonuclei per fiber numbers despite decrements in fiber CSA postexposure adheres with the muscle memory mechanism, but there is variation in usage relative to sampling date and low numbers of returning participants.
Collapse
Affiliation(s)
- Giscard Lima
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | | | - Guan Wang
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
| | - Patrick Ho
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Australia
| | - Lyra Meehan
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Australia
| | - Kelly Roeszler
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Australia
| | - Jane Seto
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Australia
| | | | - Antonia Karanikolou
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
| | - Gregor Eichhorn
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, United Kingdom
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Blair Hamilton
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
- Centre for Stress and Age-related Disease, University of Brighton, Brighton, United Kingdom
- The Gender Identity Clinic Tavistock and Portman NHS Foundation Trust, London, United Kingdom
| | - Paulette Y O Kumi
- Centre for Sports and Exercise Medicine, William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | | | - Vasileios Skiadas
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Richard Twycross-Lewis
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- University College of Football Business (UCFB Wembley Campus), Wembley, London, United Kingdom ; and
| | - Liam Kilduff
- Applied Sports, Technology, Exercise, and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, Wales
| | - Fergus M Guppy
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
- Centre for Stress and Age-related Disease, University of Brighton, Brighton, United Kingdom
| | - Kathryn North
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Australia
| | - Yannis Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| |
Collapse
|
21
|
Zhang S, Yang F, Huang Y, He L, Li Y, Wan YCE, Ding Y, Chan KM, Xie T, Sun H, Wang H. ATF3 induction prevents precocious activation of skeletal muscle stem cell by regulating H2B expression. Nat Commun 2023; 14:4978. [PMID: 37591871 PMCID: PMC10435463 DOI: 10.1038/s41467-023-40465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Skeletal muscle stem cells (also called satellite cells, SCs) are important for maintaining muscle tissue homeostasis and damage-induced regeneration. However, it remains poorly understood how SCs enter cell cycle to become activated upon injury. Here we report that AP-1 family member ATF3 (Activating Transcription Factor 3) prevents SC premature activation. Atf3 is rapidly and transiently induced in SCs upon activation. Short-term deletion of Atf3 in SCs accelerates acute injury-induced regeneration, however, its long-term deletion exhausts the SC pool and thus impairs muscle regeneration. The Atf3 loss also provokes SC activation during voluntary exercise and enhances the activation during endurance exercise. Mechanistically, ATF3 directly activates the transcription of Histone 2B genes, whose reduction accelerates nucleosome displacement and gene transcription required for SC activation. Finally, the ATF3-dependent H2B expression also prevents genome instability and replicative senescence in SCs. Therefore, this study has revealed a previously unknown mechanism for preserving the SC population by actively suppressing precocious activation, in which ATF3 is a key regulator.
Collapse
Affiliation(s)
- Suyang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China
| | - Feng Yang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yile Huang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangqiang He
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Ching Esther Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518172, China
| | - Yingzhe Ding
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518172, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China.
| |
Collapse
|
22
|
Dungan CM, Wells JM, Murach KA. The life and times of cellular senescence in skeletal muscle: friend or foe for homeostasis and adaptation? Am J Physiol Cell Physiol 2023; 325:C324-C331. [PMID: 37335024 PMCID: PMC10393344 DOI: 10.1152/ajpcell.00553.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
A gradual decline in skeletal muscle mass and function is closely tied to increased mortality and disease risk during organismal aging. Exercise training is the most effective way to enhance muscle health, but the adaptive response to exercise as well as muscle repair potential is blunted in older individuals. Numerous mechanisms contribute to the loss of muscle mass and plasticity as aging progresses. An emerging body of recent evidence implicates an accumulation of senescent ("zombie") cells in muscle as a contributing factor to the aging phenotype. Senescent cells cannot divide but can release inflammatory factors and create an unfavorable environment for homeostasis and adaptation. On balance, some evidence indicates that cells with senescent characteristics can be beneficial for the muscle adaptive process, specifically at younger ages. Emerging evidence also suggests that multinuclear muscle fibers could become senescent. In this review, we summarize current literature on the prevalence of senescent cells in skeletal muscle and highlight the consequences of senescent cell removal on muscle mass, function, and adaptability. We examine key limitations in the field of senescence specifically in skeletal muscle and identify areas of research that require future investigation.NEW & NOTEWORTHY There is evidence to suggest that senescent "zombie" cells may or may not accrue in aging skeletal muscle. When muscle is perturbed regardless of age, senescent-like cells do appear, and the benefits of removing them could be age-dependent. More work is needed to determine the magnitude of accumulation and source of senescent cells in muscle. Regardless, pharmacological senolytic treatment of aged muscle is beneficial for adaptation.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Jaden M Wells
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
23
|
Collao N, Sanders O, Caminiti T, Messeiller L, De Lisio M. Resistance and endurance exercise training improves muscle mass and the inflammatory/fibrotic transcriptome in a rhabdomyosarcoma model. J Cachexia Sarcopenia Muscle 2023; 14:781-793. [PMID: 36797054 PMCID: PMC10067492 DOI: 10.1002/jcsm.13185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is an aggressive soft tissue sarcoma that most often develops in children. Chemoradiation therapy is a standard treatment modality; however, the detrimental long-term skeletal muscle consequences of this therapy in juvenile cancer survivors include muscle atrophy and fibrosis resulting in decreased physical performance. Using a novel model of murine resistance and endurance exercise training, we investigate its role in preventing the long-term effects of juvenile RMS plus therapy. METHODS Four-week-old male (n = 10) and female (n = 10) C57Bl/6J mice were injected with M3-9-M RMS cell into the left gastrocnemius with the right limb serving as an internal control (CON). Mice received a systemic vincristine injection and then five doses of 4.8 Gy of gamma radiation localized to the left hindlimb (RMS + Tx). Mice were then randomly divided into either sedentary (SED) or resistance and endurance exercise training (RET) groups. Changes in exercise performance, body composition, myocellular adaptations and the inflammatory/fibrotic transcriptome were assessed. RESULTS RET improved endurance performance (P < 0.0001) and body composition (P = 0.0004) compared to SED. RMS + Tx resulted in significantly lower muscle weight (P = 0.015) and significantly smaller myofibre cross-sectional area (CSA) (P = 0.014). Conversely, RET resulted in significantly higher muscle weight (P = 0.030) and significantly larger Type IIA (P = 0.014) and IIB (P = 0.015) fibre CSA. RMS + Tx resulted in significantly more muscle fibrosis (P = 0.028), which was not prevented by RET. RMS + Tx resulted in significantly fewer mononuclear cells (P < 0.05) and muscle satellite (stem) cells (MuSCs) (P < 0.05) and significantly more immune cells (P < 0.05) than CON. RET resulted in significantly more fibro-adipogenic progenitors (P < 0.05), a trend for more MuSCs (P = 0.076) than SED and significantly more endothelial cells specifically in the RMS + Tx limb. Transcriptomic changes revealed significantly higher expression of inflammatory and fibrotic genes in RMS + Tx, which was prevented by RET. In the RMS + Tx model, RET also significantly altered expression of genes involved in extracellular matrix turnover. CONCLUSIONS Our study suggests that RET preserves muscle mass and performance in a model of juvenile RMS survivorship while partially restoring cellular dynamics and the inflammatory and fibrotic transcriptome.
Collapse
Affiliation(s)
- Nicolas Collao
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Olivia Sanders
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Taylor Caminiti
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Laura Messeiller
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Regenerative Medicine Program, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Bagley JR, Denes LT, McCarthy JJ, Wang ET, Murach KA. The myonuclear domain in adult skeletal muscle fibres: past, present and future. J Physiol 2023; 601:723-741. [PMID: 36629254 PMCID: PMC9931674 DOI: 10.1113/jp283658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.
Collapse
Affiliation(s)
- James R. Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, California
| | | | - John J. McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, Florida
- Myology Institute, University of Florida
- Genetics Institute, University of Florida
| | - Kevin A. Murach
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
- Cell and Molecular Biology Graduate Program, University of Arkansas
| |
Collapse
|
25
|
Jones RG, Dimet-Wiley A, Haghani A, da Silva FM, Brightwell CR, Lim S, Khadgi S, Wen Y, Dungan CM, Brooke RT, Greene NP, Peterson CA, McCarthy JJ, Horvath S, Watowich SJ, Fry CS, Murach KA. A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle. J Physiol 2023; 601:763-782. [PMID: 36533424 PMCID: PMC9987218 DOI: 10.1113/jp283836] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.
Collapse
Affiliation(s)
- Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | | | - Amin Haghani
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Francielly Morena da Silva
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Camille R. Brightwell
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Seongkyun Lim
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Yuan Wen
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | - Cory M. Dungan
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | | | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Charlotte A. Peterson
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - John J. McCarthy
- Altos Labs, San Diego, CA, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - Steve Horvath
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Stanley J. Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Galveston, TX, USA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| |
Collapse
|
26
|
Viggars MR, Owens DJ, Stewart C, Coirault C, Mackey AL, Jarvis JC. PCM1 labeling reveals myonuclear and nuclear dynamics in skeletal muscle across species. Am J Physiol Cell Physiol 2023; 324:C85-C97. [PMID: 36409178 DOI: 10.1152/ajpcell.00285.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Myonuclei transcriptionally regulate muscle fibers during homeostasis and adaptation to exercise. Their subcellular location and quantity are important when characterizing phenotypes of myopathies, the effect of treatments, and understanding the roles of satellite cells in muscle adaptation and muscle "memory." Difficulties arise in identifying myonuclei due to their proximity to the sarcolemma and closely residing interstitial cell neighbors. We aimed to determine to what extent (pericentriolar material-1) PCM1 is a specific marker of myonuclei in vitro and in vivo. Single isolated myofibers and cross sections from mice and humans were studied from several models including wild-type and Lamin A/C mutant mice after functional overload and damage and recovery in humans following forced eccentric contractions. Fibers were immunolabeled for PCM1, Pax7, and DNA. C2C12 myoblasts were also studied to investigate changes in PCM1 localization during myogenesis. PCM1 was detected at not only the nuclear envelope of myonuclei in mature myofibers and in newly formed myotubes but also centrosomes in proliferating myogenic precursors, which may or may not fuse to join the myofiber syncytium. PCM1 was also detected in nonmyogenic nuclei near the sarcolemma, especially in regenerating areas of the Lmna+/ΔK32 mouse and damaged human muscle. Although PCM1 is not completely specific to myonuclei, the impact that PCM1+ macrophages and interstitial cells have on myonuclei counts would be small in healthy muscle. PCM1 may prove useful as a marker of satellite cell dynamics due to the distinct change in localization during differentiation, revealing satellite cells in their quiescent (PCM1-), proliferating (PCM1+ centrosome), and prefusion states (PCM1+ nuclear envelope).
Collapse
Affiliation(s)
- Mark R Viggars
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Department of Physiology and Aging, University of Florida, Gainesville, Florida.,Myology Institute, University of Florida, Gainesville, Florida
| | - Daniel J Owens
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Sorbonne Université, INSERM, Myology Research Center, Paris, France
| | - Claire Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Abigail L Mackey
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Center for Healthy Aging, Xlab, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan C Jarvis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
27
|
Vainshtein A, Slavin MB, Cheng AJ, Memme JM, Oliveira AN, Perry CGR, Abdul-Sater AA, Belcastro AN, Riddell MC, Triolo M, Haas TL, Roudier E, Hood DA. Scientific meeting report: International Biochemistry of Exercise 2022. J Appl Physiol (1985) 2022; 133:1381-1393. [PMID: 36356257 DOI: 10.1152/japplphysiol.00475.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exercise is one of the only nonpharmacological remedies known to counteract genetic and chronic diseases by enhancing health and improving life span. Although the many benefits of regular physical activity have been recognized for some time, the intricate and complex signaling systems triggered at the onset of exercise have only recently begun to be uncovered. Exercising muscles initiate a coordinated, multisystemic, metabolic rewiring, which is communicated to distant organs by various molecular mediators. The field of exercise research has been expanding beyond the musculoskeletal system, with interest from industry to provide realistic models and exercise mimetics that evoke a whole body rejuvenation response. The 18th International Biochemistry of Exercise conference took place in Toronto, Canada, from May 25 to May 28, 2022, with more than 400 attendees. Here, we provide an overview of the most cutting-edge exercise-related research presented by 66 speakers, focusing on new developments in topics ranging from molecular and cellular mechanisms of exercise adaptations to exercise therapy and management of disease and aging. We also describe how the manipulation of these signaling pathways can uncover therapeutic avenues for improving human health and quality of life.
Collapse
Affiliation(s)
| | - Mikhaela B Slavin
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Arthur J Cheng
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Jonathan M Memme
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Ashley N Oliveira
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Angelo N Belcastro
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Michael C Riddell
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Matthew Triolo
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Tara L Haas
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Emilie Roudier
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - David A Hood
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Eftestøl E, Ochi E, Juvkam IS, Hansson KA, Gundersen K. A juvenile climbing exercise establishes a muscle memory boosting the effects of exercise in adult rats. Acta Physiol (Oxf) 2022; 236:e13879. [PMID: 36017589 DOI: 10.1111/apha.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023]
Abstract
AIM Investigate whether juvenile exercise could induce a long-term muscle memory, boosting the effects of exercise in adults. METHODS We devised a 5-week climbing exercise scheme with food reward administered to male juvenile rats (post-natal week 4-9). Subsequently, the animals were subjected to 10 weeks of detraining (week 9-19) without climbing and finally retraining during week 19-21. RESULTS The juvenile exercise increased fiber cross-sectional area (fCSA) by 21% (p = 0.0035), boosted nuclear accretion by 13% (p = 0.057), and reduced intraperitoneal fat content by 28% (p = 0.007) and body weight by 9% (p = 0.001). During detraining, the fCSA became similar in the animals that had been climbing compared to naive controls, but the elevated number of myonuclei induced by the climbing were maintained (15%, p = 0.033). When the naive rats were subjected to 2 weeks of adult exercise there was little effect on fCSA, while the previously trained rats displayed an increase of 19% (p = 0.0007). Similarly, when the rats were subjected to unilateral surgical overload in lieu of the adult climbing exercise, the increase in fCSA was 20% (p = 0.0039) in the climbing group, while there was no significant increase in naive rats when comparing to the contralateral leg. CONCLUSION This demonstrates that juvenile exercise can establish a muscle memory boosting the effects of adult exercise. The juvenile climbing exercise with food reward also led to leaner animals with lower body weight. These differences were to some extent maintained throughout the adult detraining period in spite of all animals being fed ad libitum, indicating a form of body weight memory.
Collapse
Affiliation(s)
- Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eisuke Ochi
- Department of Biosciences, University of Oslo, Oslo, Norway.,Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Inga S Juvkam
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
29
|
Rahmati M, McCarthy JJ, Malakoutinia F. Myonuclear permanence in skeletal muscle memory: a systematic review and meta-analysis of human and animal studies. J Cachexia Sarcopenia Muscle 2022; 13:2276-2297. [PMID: 35961635 PMCID: PMC9530508 DOI: 10.1002/jcsm.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity. The objective of this study was to perform a meta-analysis to assess the permanence of myonuclei associated with changes in physical activity and ageing. When available, the abundance of satellite cells (SCs) was also considered given their potential influence on changes in myonuclear abundance. One hundred forty-seven peer-reviewed articles were identified for inclusion across five separate meta-analyses; (1-2) human and rodent studies assessed muscle response to hypertrophy; (3-4) human and rodent studies assessed muscle response to atrophy; and (5) human studies assessed muscle response with ageing. Skeletal muscle hypertrophy was associated with higher myonuclear content that was retained in rodents, but not humans, with atrophy (SMD = -0.60, 95% CI -1.71 to 0.51, P = 0.29, and MD = 83.46, 95% CI -649.41 to 816.32, P = 0.82; respectively). Myonuclear and SC content were both lower following atrophy in humans (MD = -11, 95% CI -0.19 to -0.03, P = 0.005, and SMD = -0.49, 95% CI -0.77 to -0.22, P = 0.0005; respectively), although the response in rodents was affected by the type of muscle under consideration and the mode of atrophy. Whereas rodent myonuclei were found to be more permanent regardless of the mode of atrophy, atrophy of ≥30% was associated with a reduction in myonuclear content (SMD = -1.02, 95% CI -1.53 to -0.51, P = 0.0001). In humans, sarcopenia was accompanied by a lower myonuclear and SC content (MD = 0.47, 95% CI 0.09 to 0.85, P = 0.02, and SMD = 0.78, 95% CI 0.37-1.19, P = 0.0002; respectively). The major finding from the present meta-analysis is that myonuclei are not permanent but are lost during periods of atrophy and with ageing. These findings do not support the concept of skeletal muscle memory based on the permanence of myonuclei and suggest other mechanisms, such as epigenetics, may have a more important role in mediating this aspect of skeletal muscle plasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| | - John J. McCarthy
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Fatemeh Malakoutinia
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| |
Collapse
|
30
|
Rader EP, Baker BA. Elevated muscle mass accompanied by transcriptional and nuclear alterations several months following cessation of resistance-type training in rats. Physiol Rep 2022; 10:e15476. [PMID: 36259109 PMCID: PMC9579736 DOI: 10.14814/phy2.15476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023] Open
Abstract
Rodent studies investigating long-term effects following termination of hypertrophy-inducing loading have predominantly involved exposures such as synergist ablation and weighted wheel running or ladder climbing. This research yielded a spectrum of results regarding the extent of detraining in terms of muscle mass and myonuclei number. The studies were also limited in their lack of sensitive performance measures and indirect relatedness to resistance training. Our research group developed and validated a relevant rat model of resistance-type training that induces increased muscle mass and performance. The aim of the present study was to determine to what extent these features persist 3 months following the termination of this training. While performance returned to baseline, muscle mass remained elevated by 17% and a shift in distribution to larger muscle fibers persisted. A 16% greater total RNA and heightened mRNA levels of ribosomal protein S6 kinases implicated preserved transcriptional output and ribosomal content. Remodeling of muscle fiber nuclei was consistent with these findings - increased nuclear number and a distribution shift to a more circular nuclear shape. These findings indicate that muscle mass detrains at a slower rate than performance and implicates multiple forms of myonuclear remodeling in muscle memory.
Collapse
Affiliation(s)
- Erik P. Rader
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Brent A. Baker
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| |
Collapse
|
31
|
Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, Mobley CB, Murach KA, Brightwell CR, Long DE, Fry CS, Kern PA, McCarthy JJ, Peterson CA. Senolytic treatment rescues blunted muscle hypertrophy in old mice. GeroScience 2022; 44:1925-1940. [PMID: 35325353 PMCID: PMC9616988 DOI: 10.1007/s11357-022-00542-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/06/2022] [Indexed: 01/07/2023] Open
Abstract
With aging, skeletal muscle plasticity is attenuated in response to exercise. Here, we report that senescent cells, identified using senescence-associated β-galactosidase (SA β-Gal) activity and p21 immunohistochemistry, are very infrequent in resting muscle, but emerge approximately 2 weeks after a bout of resistance exercise in humans. We hypothesized that these cells contribute to blunted hypertrophic potential in old age. Using synergist ablation-induced mechanical overload (MOV) of the plantaris muscle to model resistance training in adult (5-6-month) and old (23-24-month) male C57BL/6 J mice, we found increased senescent cells in both age groups during hypertrophy. Consistent with the human data, there were negligible senescent cells in plantaris muscle from adult and old sham controls, but old mice had significantly more senescent cells 7 and 14 days following MOV relative to young. Old mice had blunted whole-muscle hypertrophy when compared to adult mice, along with smaller muscle fibers, specifically glycolytic type 2x + 2b fibers. To ablate senescent cells using a hit-and-run approach, old mice were treated with vehicle or a senolytic cocktail consisting of 5 mg/kg dasatinib and 50 mg/kg quercetin (D + Q) on days 7 and 10 during 14 days of MOV; control mice underwent sham surgery with or without senolytic treatment. Old mice given D + Q had larger muscles and muscle fibers after 14 days of MOV, fewer senescent cells when compared to vehicle-treated old mice, and changes in the expression of genes (i.e., Igf1, Ddit4, Mmp14) that are associated with hypertrophic growth. Our data collectively show that senescent cells emerge in human and mouse skeletal muscle following a hypertrophic stimulus and that D + Q improves muscle growth in old mice.
Collapse
Affiliation(s)
- Cory M Dungan
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- College of Health Sciences, University of Kentucky, 900 S. Limestone, CTW 445, Lexington, KY, 40536, USA.
| | | | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | | | | | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - C Brooks Mobley
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Douglas E Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Philip A Kern
- Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
32
|
Swanson DL, Zhang Y, Jimenez AG. Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Front Physiol 2022; 13:961392. [PMID: 35936893 PMCID: PMC9353400 DOI: 10.3389/fphys.2022.961392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Phenotypically plastic responses of animals to adjust to environmental variation are pervasive. Reversible plasticity (i.e., phenotypic flexibility), where adult phenotypes can be reversibly altered according to prevailing environmental conditions, allow for better matching of phenotypes to the environment and can generate fitness benefits but may also be associated with costs that trade-off with capacity for flexibility. Here, we review the literature on avian metabolic and muscle plasticity in response to season, temperature, migration and experimental manipulation of flight costs, and employ an integrative approach to explore the phenotypic flexibility of metabolic rates and skeletal muscle in wild birds. Basal (minimum maintenance metabolic rate) and summit (maximum cold-induced metabolic rate) metabolic rates are flexible traits in birds, typically increasing with increasing energy demands. Because skeletal muscles are important for energy use at the organismal level, especially to maximum rates of energy use during exercise or shivering thermogenesis, we consider flexibility of skeletal muscle at the tissue and ultrastructural levels in response to variations in the thermal environment and in workloads due to flight exercise. We also examine two major muscle remodeling regulatory pathways: myostatin and insulin-like growth factor -1 (IGF-1). Changes in myostatin and IGF-1 pathways are sometimes, but not always, regulated in a manner consistent with metabolic rate and muscle mass flexibility in response to changing energy demands in wild birds, but few studies have examined such variation so additional study is needed to fully understand roles for these pathways in regulating metabolic flexibility in birds. Muscle ultrastrutural variation in terms of muscle fiber diameter and associated myonuclear domain (MND) in birds is plastic and highly responsive to thermal variation and increases in workload, however, only a few studies have examined ultrastructural flexibility in avian muscle. Additionally, the relationship between myostatin, IGF-1, and satellite cell (SC) proliferation as it relates to avian muscle flexibility has not been addressed in birds and represents a promising avenue for future study.
Collapse
Affiliation(s)
- David L. Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Yufeng Zhang
- College of Health Science, University of Memphis, Memphis, TN, United States
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY, United States
- *Correspondence: Ana Gabriela Jimenez,
| |
Collapse
|
33
|
Dungan CM, Brightwell CR, Wen Y, Zdunek CJ, Latham CM, Thomas NT, Zagzoog AM, Brightwell BD, Nolt GL, Keeble AR, Watowich SJ, Murach KA, Fry CS. Muscle-Specific Cellular and Molecular Adaptations to Late-Life Voluntary Concurrent Exercise. FUNCTION 2022; 3:zqac027. [PMID: 35774589 PMCID: PMC9233305 DOI: 10.1093/function/zqac027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/07/2023] Open
Abstract
Murine exercise models can provide information on factors that influence muscle adaptability with aging, but few translatable solutions exist. Progressive weighted wheel running (PoWeR) is a simple, voluntary, low-cost, high-volume endurance/resistance exercise approach for training young mice. In the current investigation, aged mice (22-mo-old) underwent a modified version of PoWeR for 8 wk. Muscle functional, cellular, biochemical, transcriptional, and myonuclear DNA methylation analyses provide an encompassing picture of how muscle from aged mice responds to high-volume combined training. Mice run 6-8 km/d, and relative to sedentary mice, PoWeR increases plantarflexor muscle strength. The oxidative soleus of aged mice responds to PoWeR similarly to young mice in every parameter measured in previous work; this includes muscle mass, glycolytic-to-oxidative fiber type transitioning, fiber size, satellite cell frequency, and myonuclear number. The oxidative/glycolytic plantaris adapts according to fiber type, but with modest overall changes in muscle mass. Capillarity increases markedly with PoWeR in both muscles, which may be permissive for adaptability in advanced age. Comparison to published PoWeR RNA-sequencing data in young mice identified conserved regulators of adaptability across age and muscles; this includes Aldh1l1 which associates with muscle vasculature. Agrn and Samd1 gene expression is upregulated after PoWeR simultaneous with a hypomethylated promoter CpG in myonuclear DNA, which could have implications for innervation and capillarization. A promoter CpG in Rbm10 is hypomethylated by late-life exercise in myonuclei, consistent with findings in muscle tissue. PoWeR and the data herein are a resource for uncovering cellular and molecular regulators of muscle adaptation with aging.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Physical Therapy, University of Kentucky, Lexington 40536, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Yuan Wen
- Department of Physical Therapy, University of Kentucky, Lexington 40536, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
| | | | - Christine M Latham
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Alyaa M Zagzoog
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Benjamin D Brightwell
- Kinesiology and Health Promotion Graduate Program, University of Kentucky, Lexington 40536, KY, USA
| | - Georgia L Nolt
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
| | - Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston 77555, TX, USA
| | - Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville 72701, AR, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville 72701, AR, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| |
Collapse
|
34
|
Exercise Counteracts the Deleterious Effects of Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14102512. [PMID: 35626116 PMCID: PMC9139714 DOI: 10.3390/cancers14102512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review provides an overview of the effects of exercise training on the major mechanisms related to cancer cachexia (CC). The review also discusses how cancer comorbidities can influence the ability of patients/animals with cancer to perform exercise training and what precautions should be taken when they exercise. The contribution of other factors, such as exercise modality and biological sex, to exercise effectiveness in ameliorating CC are also elaborated in the final sections. We provide meticulous evidence for how advantageous exercise training can be in patients/animals with CC at molecular and cellular levels. Finally, we emphasise what factors should be considered to optimise and personalise an exercise training program in CC. Abstract Cancer cachexia (CC) is a multifactorial syndrome characterised by unintentional loss of body weight and muscle mass in patients with cancer. The major hallmarks associated with CC development and progression include imbalanced protein turnover, inflammatory signalling, mitochondrial dysfunction and satellite cell dysregulation. So far, there is no effective treatment to counteract muscle wasting in patients with CC. Exercise training has been proposed as a potential therapeutic approach for CC. This review provides an overview of the effects of exercise training in CC-related mechanisms as well as how factors such as cancer comorbidities, exercise modality and biological sex can influence exercise effectiveness in CC. Evidence in mice and humans suggests exercise training combats all of the hallmarks of CC. Several exercise modalities induce beneficial adaptations in patients/animals with CC, but concurrent resistance and endurance training is considered the optimal type of exercise. In the case of cancer patients presenting comorbidities, exercise training should be performed only under specific guidelines and precautions to avoid adverse effects. Observational comparison of studies in CC using different biological sex shows exercise-induced adaptations are similar between male and female patients/animals with cancer, but further studies are needed to confirm this.
Collapse
|
35
|
Viggars MR, Wen Y, Peterson CA, Jarvis JC. Automated cross-sectional analysis of trained, severely atrophied and recovering rat skeletal muscles using MyoVision 2.0. J Appl Physiol (1985) 2022; 132:593-610. [PMID: 35050795 DOI: 10.1152/japplphysiol.00491.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The number of myonuclei within a muscle fiber is an important factor in muscle growth, but its regulation during muscle adaptation is not well understood. We aimed to elucidate the timecourse of myonuclear dynamics during endurance training, loaded and concentric resistance training, and nerve silencing-induced disuse atrophy with subsequent recovery. We modified tibialis anterior muscle activity in free-living rats with electrical stimulation from implantable pulse generators, or with implantable osmotic pumps delivering tetrodotoxin (TTX) to silence the motor nerve without transection. We used the updated, automated software MyoVision to measure fiber type-specific responses in whole tibialis anterior cross-sections (~8000 fibers each). Seven days of continuous low frequency stimulation (CLFS) reduced muscle mass (-12%), increased slower myosin isoforms and reduced IIX/IIB fibers (-32%) and substantially increased myonuclei especially in IIX/IIB fibers (55.5%). High load resistance training (Spillover), produced greater hypertrophy (~16%) in muscle mass and fiber cross-sectional area (CSA) than low load resistance training (concentric, ~6%) and was associated with myonuclear addition in all fiber types (35-46%). TTX-induced nerve silencing resulted in progressive loss in muscle mass, fiber CSA, and myonuclei per fiber cross-section (-50.7%, -53.7%, -40.7%, respectively at 14 days). Myonuclear loss occurred in a fiber type-independent manner, but subsequent recovery during voluntary habitual activity suggested that type IIX/IIB fibers contained more new myonuclei during recovery from severe atrophy. This study demonstrates the power and accuracy provided by the updated MyoVision software and introduces new models for studying myonuclear dynamics in training, detraining, retraining, repeated disuse, and recovery.
Collapse
Affiliation(s)
- Mark Robert Viggars
- Research Institute for Sport & Exercise Sciences, grid.4425.7Liverpool John Moores University, Liverpool, United Kingdom.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States.,Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States.,MyoAnalytics, LLC, Lexington, Kentucky, United States
| | - Charlotte A Peterson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Jonathan C Jarvis
- Research Institute for Sport & Exercise Sciences, grid.4425.7Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
36
|
Murach KA, Dungan CM, von Walden F, Wen Y. Epigenetic evidence for distinct contributions of resident and acquired myonuclei during long-term exercise adaptation using timed in vivo myonuclear labeling. Am J Physiol Cell Physiol 2022; 322:C86-C93. [PMID: 34817266 PMCID: PMC8765804 DOI: 10.1152/ajpcell.00358.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Muscle fibers are syncytial postmitotic cells that can acquire exogenous nuclei from resident muscle stem cells, called satellite cells. Myonuclei are added to muscle fibers by satellite cells during conditions such as load-induced hypertrophy. It is difficult to dissect the molecular contributions of resident versus satellite cell-derived myonuclei during adaptation due to the complexity of labeling distinct nuclear populations in multinuclear cells without label transference between nuclei. To sidestep this barrier, we used a genetic mouse model where myonuclear DNA can be specifically and stably labeled via nonconstitutive H2B-GFP at any point in the lifespan. Resident myonuclei (Mn) were GFP-tagged in vivo before 8 wk of progressive weighted wheel running (PoWeR) in adult mice (>4-mo-old). Resident + satellite cell-derived myonuclei (Mn+SC Mn) were labeled at the end of PoWeR in a separate cohort. Following myonuclear isolation, promoter DNA methylation profiles acquired with low-input reduced representation bisulfite sequencing (RRBS) were compared to deduce epigenetic contributions of satellite cell-derived myonuclei during adaptation. Resident myonuclear DNA has hypomethylated promoters in genes related to protein turnover, whereas the addition of satellite cell-derived myonuclei shifts myonuclear methylation profiles to favor transcription factor regulation and cell-cell signaling. By comparing myonucleus-specific methylation profiling to previously published single-nucleus transcriptional analysis in the absence (Mn) versus the presence of satellite cells (Mn+SC Mn) with PoWeR, we provide evidence that satellite cell-derived myonuclei may preferentially supply specific ribosomal proteins to growing myofibers and retain an epigenetic "memory" of prior stem cell identity. These data offer insights on distinct epigenetic myonuclear characteristics and contributions during adult muscle growth.
Collapse
Affiliation(s)
- Kevin A. Murach
- 1Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas,2Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas,3The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Cory M. Dungan
- 3The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky,4Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Ferdinand von Walden
- 5Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| | - Yuan Wen
- 3The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky,6Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky,7Myoanalytics, LLC, Lexington, Kentucky
| |
Collapse
|
37
|
Hockey BL, Baranowski RW. Do you have the guts to adapt to exercise? J Physiol 2021; 600:9-10. [PMID: 34820845 DOI: 10.1113/jp282575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Briana L Hockey
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St Catharines, Ontario, Canada
| | - Ryan W Baranowski
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St Catharines, Ontario, Canada
| |
Collapse
|
38
|
Valentino TR, Vechetti IJ, Mobley CB, Dungan CM, Golden L, Goh J, McCarthy JJ. Dysbiosis of the gut microbiome impairs mouse skeletal muscle adaptation to exercise. J Physiol 2021; 599:4845-4863. [PMID: 34569067 DOI: 10.1113/jp281788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence of a gut microbiome-skeletal muscle axis. The purpose of this study was to determine if an intact gut microbiome was necessary for skeletal muscle adaptation to exercise. Forty-two 4-month-old female C57BL/6J mice were randomly assigned to untreated (U) or antibiotic-treated (T) non-running controls (CU or CT, respectively) or progressive weighted wheel running (PoWeR, P) untreated (PU) or antibiotic-treated (PT) groups. Antibiotic treatment resulted in disruption of the gut microbiome as indicated by a significant depletion of gut microbiome bacterial species in both CT and PT groups. The training stimulus was the same between PU and PT groups as assessed by weekly (12.35 ± 2.06 vs. 11.09 ± 1.76 km/week, respectively) and total (778.9 ± 130.5 vs. 703.8 ± 112.9 km, respectively) running activity. In response to PoWeR, PT showed less hypertrophy of soleus type 1 and 2a fibres and plantaris type 2b/x fibres compared to PU. The higher satellite cell and myonuclei abundance of PU plantaris muscle after PoWeR was not observed in PT. The fibre-type shift of PU plantaris muscle to a more oxidative type 2a fibre composition following PoWeR was blunted in PT. There was no difference in serum cytokine levels among all groups suggesting disruption of the gut microbiome did not induce systemic inflammation. The results of this study provide the first evidence that an intact gut microbiome is necessary for skeletal muscle adaptation to exercise. KEY POINTS: Dysbiosis of the gut microbiome caused by continuous antibiotic treatment did not affect running activity. Continuous treatment with antibiotics did not result in systemic inflammation as indicated by serum cytokine levels. Gut microbiome dysbiosis was associated with blunted fibre type-specific hypertrophy in the soleus and plantaris muscles in response to progressive weighted wheel running (PoWeR). Gut microbiome dysbiosis was associated with impaired PoWeR-induced fibre-type shift in the plantaris muscle. Gut microbiome dysbiosis was associated with a loss of PoWeR-induced myonuclei accretion in the plantaris muscle.
Collapse
Affiliation(s)
- Taylor R Valentino
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | | | - Cory M Dungan
- Center for Muscle Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Lesley Golden
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
39
|
Zhu WG, Hibbert JE, Lin KH, Steinert ND, Lemens JL, Jorgenson KW, Newman SM, Lamming DW, Hornberger TA. Weight Pulling: A Novel Mouse Model of Human Progressive Resistance Exercise. Cells 2021; 10:cells10092459. [PMID: 34572107 PMCID: PMC8465477 DOI: 10.3390/cells10092459] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
This study describes a mouse model of progressive resistance exercise that utilizes a full-body/multi-joint exercise (weight pulling) along with a training protocol that mimics a traditional human paradigm (three training sessions per week, ~8–12 repetitions per set, 2 min of rest between sets, approximately two maximal-intensity sets per session, last set taken to failure, and a progressive increase in loading that is based on the individual’s performance). We demonstrate that weight pulling can induce an increase in the mass of numerous muscles throughout the body. The relative increase in muscle mass is similar to what has been observed in human studies, and is associated with the same type of long-term adaptations that occur in humans (e.g., fiber hypertrophy, myonuclear accretion, and, in some instances, a fast-to-slow transition in Type II fiber composition). Moreover, we demonstrate that weight pulling can induce the same type of acute responses that are thought to drive these long-term adaptations (e.g., the activation of signaling through mTORC1 and the induction of protein synthesis at 1 h post-exercise). Collectively, the results of this study indicate that weight pulling can serve as a highly translatable mouse model of progressive resistance exercise.
Collapse
Affiliation(s)
- Wenyuan G. Zhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kuan Hung Lin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathaniel D. Steinert
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jake L. Lemens
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah M. Newman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.M.N.); (D.W.L.)
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.M.N.); (D.W.L.)
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence:
| |
Collapse
|
40
|
Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021; 35:e21893. [PMID: 34480776 PMCID: PMC9293230 DOI: 10.1096/fj.202101096r] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
41
|
Sharples AP. Skeletal Muscle Possesses an Epigenetic Memory of Exercise: Role of Nucleus Type-Specific DNA Methylation. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab047. [PMID: 35330953 PMCID: PMC8788876 DOI: 10.1093/function/zqab047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/07/2023]
|
42
|
Wen Y, Dungan CM, Mobley CB, Valentino T, von Walden F, Murach KA. Nucleus Type-Specific DNA Methylomics Reveals Epigenetic "Memory" of Prior Adaptation in Skeletal Muscle. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab038. [PMID: 34870208 PMCID: PMC8636928 DOI: 10.1093/function/zqab038] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Using a mouse model of conditional and inducible in vivo fluorescent myonuclear labeling (HSA-GFP), sorting purification of nuclei, low-input reduced representation bisulfite sequencing (RRBS), and a translatable and reversible model of exercise (progressive weighted wheel running, PoWeR), we provide the first nucleus type-specific epigenetic information on skeletal muscle adaptation and detraining. Adult (>4 mo) HSA-GFP mice performed PoWeR for 8 wk then detrained for 12 wk; age-matched untrained mice were used to control for the long duration of the study. Myonuclei and interstitial nuclei from plantaris muscles were isolated for RRBS. Relative to untrained, PoWeR caused similar myonuclear CpG hypo- and hyper-methylation of promoter regions and substantial hypomethylation in interstitial nuclear promoters. Over-representation analysis of promoters revealed a larger number of hyper- versus hypo-methylated pathways in both nuclear populations after training and evidence for reciprocal regulation of methylation between nucleus types, with hypomethylation of promoter regions in Wnt signaling-related genes in myonuclei and hypermethylation in interstitial nuclei. After 12 wk of detraining, promoter CpGs in documented muscle remodeling-associated genes and pathways that were differentially methylated immediately after PoWeR were persistently differentially methylated in myonuclei, along with long-term promoter hypomethylation in interstitial nuclei. No enduring gene expression changes in muscle tissue were observed using RNA-sequencing. Upon 4 wk of retraining, mice that trained previously grew more at the whole muscle and fiber type-specific cellular level than training naïve mice, with no difference in myonuclear number. Muscle nuclei have a methylation epi-memory of prior training that may augment muscle adaptability to retraining.
Collapse
Affiliation(s)
- Yuan Wen
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA,The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA,College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - C Brooks Mobley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA,The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Taylor Valentino
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA,The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm 171 77, Sweden
| | | |
Collapse
|
43
|
Wen Y, Englund DA, Peck BD, Murach KA, McCarthy JJ, Peterson CA. Myonuclear transcriptional dynamics in response to exercise following satellite cell depletion. iScience 2021; 24:102838. [PMID: 34368654 PMCID: PMC8326190 DOI: 10.1016/j.isci.2021.102838] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
Skeletal muscle is composed of post-mitotic myofibers that form a syncytium containing hundreds of myonuclei. Using a progressive exercise training model in the mouse and single nucleus RNA-sequencing (snRNA-seq) for high-resolution characterization of myonuclear transcription, we show myonuclear functional specialization in muscle. After 4 weeks of exercise training, snRNA-seq reveals that resident muscle stem cells, or satellite cells, are activated with acute exercise but demonstrate limited lineage progression while contributing to muscle adaptation. In the absence of satellite cells, a portion of nuclei demonstrates divergent transcriptional dynamics associated with mixed-fate identities compared with satellite cell replete muscles. These data provide a compendium of information about how satellite cells influence myonuclear transcription in response to exercise.
Collapse
Affiliation(s)
- Yuan Wen
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Davis A Englund
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
44
|
Shamim B, Camera DM, Whitfield J. Myofibre Hypertrophy in the Absence of Changes to Satellite Cell Content Following Concurrent Exercise Training in Young Healthy Men. Front Physiol 2021; 12:625044. [PMID: 34149439 PMCID: PMC8213074 DOI: 10.3389/fphys.2021.625044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Concurrent exercise training has been suggested to create an ‘interference effect,’ attenuating resistance training-based skeletal muscle adaptations, including myofibre hypertrophy. Satellite cells support myofibre hypertrophy and are influenced by exercise mode. To determine whether satellite cells contribute to the ‘interference effect’ changes in satellite cell and myonuclear content were assessed following a period of training in 32 recreationally active males (age: 25 ± 5 year; body mass index: 24 ± 3 kg⋅m–2; mean ± SD) who undertook 12-week of either isolated (3 d⋅w–1) resistance (RES; n = 10), endurance (END; n = 10), or alternate day (6 d⋅w–1) concurrent (CET, n = 12) training. Skeletal muscle biopsies were obtained pre-intervention and after 2, 8, and 12 weeks of training to determine fibre type-specific cross-sectional area (CSA), satellite cell content (Pax7+DAPI+), and myonuclei (DAPI+) using immunofluorescence microscopy. After 12 weeks, myofibre CSA increased in all training conditions in type II (P = 0.0149) and mixed fibres (P = 0.0102), with no difference between conditions. Satellite cell content remained unchanged after training in both type I and type II fibres. Significant correlations were observed between increases in fibre type-specific myonuclear content and CSA of Type I (r = 0.63, P < 0.0001), Type II (r = 0.69, P < 0.0001), and mixed fibres (r = 0.72, P < 0.0001). Resistance, endurance, and concurrent training induce similar myofibre hypertrophy in the absence of satellite cell and myonuclear pool expansion. These findings suggest that myonuclear accretion via satellite cell fusion is positively correlated with hypertrophy after 12 weeks of concurrent training, and that individuals with more myonuclear content displayed greater myofibre hypertrophy.
Collapse
Affiliation(s)
- Baubak Shamim
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Donny M Camera
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Figueiredo VC, Wen Y, Alkner B, Fernandez-Gonzalo R, Norrbom J, Vechetti IJ, Valentino T, Mobley CB, Zentner GE, Peterson CA, McCarthy JJ, Murach KA, von Walden F. Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. J Physiol 2021; 599:3363-3384. [PMID: 33913170 DOI: 10.1113/jp281244] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter. Myonuclear-specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans. A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. ABSTRACT Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise-induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 ± 8 years, 25 ± 4 kg m-2 ) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V ̇ O 2 max ) or resistance exercise (n = 10, 4 × 7 × 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced-representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up-regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non-canonical MYC-associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc-associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene-wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation.
Collapse
Affiliation(s)
- Vandré C Figueiredo
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopaedics, Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ivan J Vechetti
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, USA
| | - Taylor Valentino
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - C Brooks Mobley
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | | | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ferdinand von Walden
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA.,Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Horwath O, Envall H, Röja J, Emanuelsson EB, Sanz G, Ekblom B, Apró W, Moberg M. Variability in vastus lateralis fiber type distribution, fiber size, and myonuclear content along and between the legs. J Appl Physiol (1985) 2021; 131:158-173. [PMID: 34013752 DOI: 10.1152/japplphysiol.00053.2021] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human skeletal muscle characteristics such as fiber type composition, fiber size, and myonuclear content are widely studied in clinical and sports-related contexts. Being aware of the methodological and biological variability of the characteristics is a critical aspect in study design and outcome interpretation, but comprehensive data on the variability of morphological features in human skeletal muscle are currently limited. Accordingly, in the present study, m. vastus lateralis biopsies (10 per subject) from young and healthy individuals, collected in a systematic manner, were analyzed for various characteristics using immunohistochemistry (n = 7) and SDS-PAGE (n = 25). None of the analyzed parameters, fiber type % (FT%), type I and II fiber cross-sectional area (fCSA), percentage fiber type area (fCSA%), myosin heavy chain composition (MyHC%), type IIX content, myonuclear content, or myonuclear domain, varied in a systematic manner longitudinally along the muscle or between the two legs. The average within-subject coefficient of variation for FT%, fCSA, fCSA%, and MyHC% ranged between 13% and 18% but was only 5% for fiber-specific myonuclear content, which reduced the variability for myonuclear domain size to 11%-12%. Pure type IIX fibers and type IIX MyHC were randomly distributed and present in <24% of the analyzed samples, with the average content being 0.1% and 1.1%, respectively. In conclusion, leg or longitudinal orientation does not seem to be an important aspect to consider when investigating human vastus lateralis characteristics. However, single muscle biopsies should preferably not be used when studying fiber type- and fiber size-related aspects, given the notable sample-to-sample variability.NEW & NOTEWORTHY This study provides a comprehensive analysis of the variability of key human skeletal muscle fiber characteristics in multiple sites along and between the m. vastus lateralis of healthy and active individuals. We found a notable but nonsystematic variability in fiber type and size, whereas myonuclear content was distinctively less variable, and the prevalence of type IIX fibers was random and very low. These data are important to consider when designing and interpreting studies including m. vastus lateralis biopsies.
Collapse
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Helena Envall
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Julia Röja
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Gema Sanz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Gnomics, Murcia, Spain
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
47
|
Snijders T, Holwerda AM, van Loon LJC, Verdijk LB. Myonuclear content and domain size in small versus larger muscle fibres in response to 12 weeks of resistance exercise training in older adults. Acta Physiol (Oxf) 2021; 231:e13599. [PMID: 33314750 PMCID: PMC8047909 DOI: 10.1111/apha.13599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
AIM To assess the relation between muscle fibre hypertrophy and myonuclear accretion in relatively small and large muscle fibre size clusters following prolonged resistance exercise training in older adults. METHODS Muscle biopsies were collected before and after 12 weeks of resistance exercise training in 40 healthy, older men (70 ± 3 years). All muscle fibres were ordered by size and categorized in four muscle fibre size clusters: 'Small': 2000-3999 µm2 , 'Moderate': 4000-5999 µm2 , 'Large': 6000-7999 µm2 and 'Largest': 8000-9999 µm2 . Changes in muscle fibre size cluster distribution were related to changes in muscle fibre size, myonuclear content and myonuclear domain size. RESULTS With training, the percentage of muscle fibres decreased in the Small (from 23 ± 12 to 17 ± 14%, P < .01) and increased in the Largest (from 11 ± 8 to 15 ± 10%, P < .01) muscle fibre size clusters. The decline in the percentage of Small muscle fibres was accompanied by an increase in overall myonuclear domain size (r = -.466, P = .002) and myonuclear content (r = -.390, P = .013). In contrast, the increase in the percentage of the Largest muscle fibres was accompanied by an overall increase in myonuclear content (r = .616, P < .001), but not in domain size. CONCLUSION Prolonged resistance-type exercise training induces a decline in the percentage of small as well as an increase in the percentage of the largest muscle fibres in older adults. Whereas the change in the percentage of small fibres is best predicted by an increase in overall myonuclear domain size, the change in the percentage of the largest fibres is associated with an overall increase in myonuclear content.
Collapse
Affiliation(s)
- Tim Snijders
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Andy M. Holwerda
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Luc J. C. van Loon
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Lex B. Verdijk
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
48
|
Solsona R, Pavlin L, Bernardi H, Sanchez AMJ. Molecular Regulation of Skeletal Muscle Growth and Organelle Biosynthesis: Practical Recommendations for Exercise Training. Int J Mol Sci 2021; 22:2741. [PMID: 33800501 PMCID: PMC7962973 DOI: 10.3390/ijms22052741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of skeletal muscle mass and organelle homeostasis is dependent on the capacity of cells to produce proteins and to recycle cytosolic portions. In this investigation, the mechanisms involved in skeletal muscle mass regulation-especially those associated with proteosynthesis and with the production of new organelles-are presented. Thus, the critical roles of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway and its regulators are reviewed. In addition, the importance of ribosome biogenesis, satellite cells involvement, myonuclear accretion, and some major epigenetic modifications related to protein synthesis are discussed. Furthermore, several studies conducted on the topic of exercise training have recognized the central role of both endurance and resistance exercise to reorganize sarcomeric proteins and to improve the capacity of cells to build efficient organelles. The molecular mechanisms underlying these adaptations to exercise training are presented throughout this review and practical recommendations for exercise prescription are provided. A better understanding of the aforementioned cellular pathways is essential for both healthy and sick people to avoid inefficient prescriptions and to improve muscle function with emergent strategies (e.g., hypoxic training). Finally, current limitations in the literature and further perspectives, notably on epigenetic mechanisms, are provided to encourage additional investigations on this topic.
Collapse
Affiliation(s)
- Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| | - Laura Pavlin
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Henri Bernardi
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Anthony MJ Sanchez
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| |
Collapse
|
49
|
Murach KA, Mobley CB, Zdunek CJ, Frick KK, Jones SR, McCarthy JJ, Peterson CA, Dungan CM. Muscle memory: myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. J Cachexia Sarcopenia Muscle 2020; 11:1705-1722. [PMID: 32881361 PMCID: PMC7749570 DOI: 10.1002/jcsm.12617] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the context of mass regulation, 'muscle memory' can be defined as long-lasting cellular adaptations to hypertrophic exercise training that persist during detraining-induced atrophy and may facilitate future adaptation. The cellular basis of muscle memory is not clearly defined but may be related to myonuclear number and/or epigenetic changes within muscle fibres. METHODS Utilizing progressive weighted wheel running (PoWeR), a novel murine exercise training model, we explored myonuclear dynamics and skeletal muscle miRNA levels with training and detraining utilizing immunohistochemistry, single fibre myonuclear analysis, and quantitative analysis of miRNAs. We also used a genetically inducible mouse model of fluorescent myonuclear labelling to study myonuclear adaptations early during exercise. RESULTS In the soleus, oxidative type 2a fibres were larger after 2 months of PoWeR (P = 0.02), but muscle fibre size and myonuclear number did not return to untrained levels after 6 months of detraining. Soleus type 1 fibres were not larger after PoWeR but had significantly more myonuclei, as well as central nuclei (P < 0.0001), the latter from satellite cell-derived or resident myonuclei, appearing early during training and remaining with detraining. In the gastrocnemius muscle, oxidative type 2a fibres of the deep region were larger and contained more myonuclei after PoWeR (P < 0.003), both of which returned to untrained levels after detraining. In the gastrocnemius and plantaris, two muscles where myonuclear number was comparable with untrained levels after 6 months of detraining, myonuclei were significantly elongated with detraining (P < 0.0001). In the gastrocnemius, miR-1 was lower with training and remained lower after detraining (P < 0.002). CONCLUSIONS This study found that (i) myonuclei gained during hypertrophy are lost with detraining across muscles, even in oxidative fibres; (ii) complete reversal of muscle adaptations, including myonuclear number, to untrained levels occurs within 6 months in the plantaris and gastrocnemius; (iii) the murine soleus is resistant to detraining; (iv) myonuclear accretion occurs early with wheel running and can be uncoupled from muscle fibre hypertrophy; (v) resident (non-satellite cell-derived) myonuclei can adopt a central location; (vi) myonuclei change shape with training and detraining; and (vii) miR-1 levels may reflect a memory of previous adaptation that facilitates future growth.
Collapse
Affiliation(s)
- Kevin A. Murach
- Department of Physical TherapyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - C. Brooks Mobley
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | | | | | | | - John J. McCarthy
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Charlotte A. Peterson
- Department of Physical TherapyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Cory M. Dungan
- Department of Physical TherapyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
50
|
Englund DA, Figueiredo VC, Dungan CM, Murach KA, Peck BD, Petrosino JM, Brightwell CR, Dupont AM, Neal AC, Fry CS, Accornero F, McCarthy JJ, Peterson CA. Satellite Cell Depletion Disrupts Transcriptional Coordination and Muscle Adaptation to Exercise. FUNCTION 2020; 2:zqaa033. [PMID: 34109314 PMCID: PMC8179974 DOI: 10.1093/function/zqaa033] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
Satellite cells are required for postnatal development, skeletal muscle regeneration across the lifespan, and skeletal muscle hypertrophy prior to maturity. Our group has aimed to address whether satellite cells are required for hypertrophic growth in mature skeletal muscle. Here, we generated a comprehensive characterization and transcriptome-wide profiling of skeletal muscle during adaptation to exercise in the presence or absence of satellite cells in order to identify distinct phenotypes and gene networks influenced by satellite cell content. We administered vehicle or tamoxifen to adult Pax7-DTA mice and subjected them to progressive weighted wheel running (PoWeR). We then performed immunohistochemical analysis and whole-muscle RNA-seq of vehicle (SC+) and tamoxifen-treated (SC-) mice. Further, we performed single myonuclear RNA-seq to provide detailed information on how satellite cell fusion affects myonuclear transcription. We show that while skeletal muscle can mount a robust hypertrophic response to PoWeR in the absence of satellite cells, growth, and adaptation are ultimately blunted. Transcriptional profiling reveals several gene networks key to muscle adaptation are altered in the absence of satellite cells.
Collapse
Affiliation(s)
- Davis A Englund
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Vandré C Figueiredo
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Cory M Dungan
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Jennifer M Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Alec M Dupont
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ally C Neal
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|