1
|
Pays E. Apolipoprotein-L1 (APOL1): From Sleeping Sickness to Kidney Disease. Cells 2024; 13:1738. [PMID: 39451256 PMCID: PMC11506758 DOI: 10.3390/cells13201738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Apolipoprotein-L1 (APOL1) is a membrane-interacting protein induced by inflammation, which confers human resistance to infection by African trypanosomes. APOL1 kills Trypanosoma brucei through induction of apoptotic-like parasite death, but two T. brucei clones acquired resistance to APOL1, allowing them to cause sleeping sickness. An APOL1 C-terminal sequence alteration, such as occurs in natural West African variants G1 and G2, restored human resistance to these clones. However, APOL1 unfolding induced by G1 or G2 mutations enhances protein hydrophobicity, resulting in kidney podocyte dysfunctions affecting renal filtration. The mechanism involved in these dysfunctions is debated. The ability of APOL1 to generate ion pores in trypanosome intracellular membranes or in synthetic membranes was provided as an explanation. However, transmembrane insertion of APOL1 strictly depends on acidic conditions, and podocyte cytopathology mainly results from secreted APOL1 activity on the plasma membrane, which occurs under non-acidic conditions. In this review, I argue that besides inactivation of APOL3 functions in membrane dynamics (fission and fusion), APOL1 variants induce inflammation-linked podocyte toxicity not through pore formation, but through plasma membrane disturbance resulting from increased interaction with cholesterol, which enhances cation channels activity. A natural mutation in the membrane-interacting domain (N264K) abrogates variant APOL1 toxicity at the expense of slightly increased sensitivity to trypanosomes, further illustrating the continuous mutual adaptation between host and parasite.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
2
|
Yu T, Ji Y, Cui X, Liang N, Wu S, Xiang C, Li Y, Tao H, Xie Y, Zuo H, Wang W, Khan N, Ullah K, Xu F, Zhang Y, Lin C. Novel Pathogenic Mutation of P209L in TRPC6 Gene Causes Adult Focal Segmental Glomerulosclerosis. Biochem Genet 2024:10.1007/s10528-023-10651-y. [PMID: 38315264 DOI: 10.1007/s10528-023-10651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a leading kidney disease, clinically associated with proteinuria and progressive renal failure. The occurrence of this disease is partly related to gene mutations. We describe a single affected family member who presented with FSGS. We used high-throughput sequencing, sanger sequencing to identify the pathogenic mutations, and a systems genetics analysis in the BXD mice was conducted to explore the genetic regulatory mechanisms of pathogenic genes in the development of FSGS. We identified high urinary protein (++++) and creatinine levels (149 μmol/L) in a 29-year-old male diagnosed with a 5-year history of grade 2 hypertension. Histopathology of the kidney biopsy showed stromal hyperplasia at the glomerular segmental sclerosis and endothelial cell vacuolation degeneration. Whole-exome sequencing followed by Sanger sequencing revealed a heterozygous missense mutation (c.643C > T) in exon 2 of TRPC6, leading to the substitution of arginine with tryptophan at position 215 (p.Arg215Trp). Systems genetics analysis of the 53 BXD mice kidney transcriptomes identified Pygm as the upstream regulator of Trpc6. Those two genes are jointly involved in the regulation of FSGS mainly via Wnt and Hippo signaling pathways. We present a novel variant in the TRPC6 gene that causes FSGS. Moreover, our data suggested TRPC6 works with PYGM, as well as Wnt and Hippo signaling pathways to regulate renal function, which could guide future clinical prevention and targeted treatment for FSGS outcomes.
Collapse
Affiliation(s)
- Tianxi Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Xin Cui
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Ning Liang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Shuang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Chongjun Xiang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yue Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Huiying Tao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yaqi Xie
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongwei Zuo
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wenting Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Nauman Khan
- Department of Biology, Faculty of Biological and Biomedical Sciences, The University of Haripur, Haripur, KP, Pakistan
| | - Kamran Ullah
- Department of Biology, Faculty of Biological and Biomedical Sciences, The University of Haripur, Haripur, KP, Pakistan
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yan Zhang
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
3
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
5
|
Vydra Bousova K, Zouharova M, Jiraskova K, Vetyskova V. Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation. Int J Mol Sci 2023; 24:15162. [PMID: 37894842 PMCID: PMC10607381 DOI: 10.3390/ijms242015162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction with calmodulin (CaM), a cytosol ubiquitous calcium-binding protein. The association between TRPM channels and CaM relies on the presence of specific CaM-binding domains in the channel structure. Upon CaM binding, the channel undergoes direct and/or allosteric structural changes and triggers down- or up-stream signaling pathways. According to current knowledge, ion channel members TRPM2, TRPM3, TRPM4, and TRPM6 are directly modulated by CaM, resulting in their activation or inhibition. This review specifically focuses on the interplay between TRPM channels and CaM and summarizes the current known effects of CaM interactions and modulations on TRPM channels in cellular physiology.
Collapse
|
6
|
Fu T, Sullivan DP, Gonzalez AM, Haynes ME, Dalal PJ, Rutledge NS, Tierney AL, Yescas JA, Weber EW, Muller WA. Mechanotransduction via endothelial adhesion molecule CD31 initiates transmigration and reveals a role for VEGFR2 in diapedesis. Immunity 2023; 56:2311-2324.e6. [PMID: 37643615 DOI: 10.1016/j.immuni.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/04/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.
Collapse
Affiliation(s)
- Tao Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Annette M Gonzalez
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maureen E Haynes
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Prarthana J Dalal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nakisha S Rutledge
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Abigail L Tierney
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia A Yescas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Evan W Weber
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
Batool L, Hariharan K, Xu Y, Kaßmann M, Tsvetkov D, Gohlke BO, Kaden S, Gossen M, Nürnberg B, Kurtz A, Gollasch M. An inactivating human TRPC6 channel mutation without focal segmental glomerulosclerosis. Cell Mol Life Sci 2023; 80:265. [PMID: 37615749 PMCID: PMC10449997 DOI: 10.1007/s00018-023-04901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Transient receptor potential cation channel-6 (TRPC6) gene mutations cause familial focal segmental glomerulosclerosis (FSGS), which is inherited as an autosomal dominant disease. In patients with TRPC6-related FSGS, all mutations map to the N- or C-terminal TRPC6 protein domains. Thus far, the majority of TRPC6 mutations are missense resulting in increased or decreased calcium influx; however, the fundamental molecular mechanisms causing cell injury and kidney pathology are unclear. We report a novel heterozygous TRPC6 mutation (V691Kfs*) in a large kindred with no signs of FSGS despite a largely truncated TRPC6 protein. We studied the molecular effects of V691Kfs* TRPC6 mutant using the tridimensional cryo-EM structure of the tetrameric TRPC6 protein. The results indicated that V691 is localized at the pore-forming transmembrane region affecting the ion conduction pathway, and predicted that V691Kfs* causes closure of the ion-conducting pathway leading to channel inactivation. We assessed the impact of V691Kfs* and two previously reported TRPC6 disease mutants (P112Q and G757D) on calcium influx in cells. Our data show that the V691Kfs* fully inactivated the TRCP6 channel-specific calcium influx consistent with a complete loss-of-function phenotype. Furthermore, the V691Kfs* truncation exerted a dominant negative effect on the full-length TRPC6 proteins. In conclusion, the V691Kfs* non-functional truncated TRPC6 is not sufficient to cause FSGS. Our data corroborate recently characterized TRPC6 loss-of-function and gain-of-function mutants suggesting that one defective TRPC6 gene copy is not sufficient to cause FSGS. We underscore the importance of increased rather than reduced calcium influx through TRPC6 for podocyte cell death.
Collapse
Affiliation(s)
- Lilas Batool
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Krithika Hariharan
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Fraunhofer-Institute for Biomedical Engineering (IBMT), Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - Yao Xu
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Mario Kaßmann
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Dmitry Tsvetkov
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Björn-Oliver Gohlke
- Department of Information Technology, Science-IT, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Kaden
- Electron Microscopy Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institut für Aktive Polymere, Hereon TeltowAbteilung Stammzellmodifikation und Biomaterialien, Teltow, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, Tübingen, Germany
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Biomedical Data and Bioethics, Fraunhofer-Institute for Biomedical Engineering (IBMT), Berlin, Germany.
| | - Maik Gollasch
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany.
- Klinik für Nephrologie und Internistische Intensivmedizin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Hua MR, Zhao YL, Yang JZ, Zou L, Zhao YY, Li X. Membranous nephropathy: Mechanistic insights and therapeutic perspectives. Int Immunopharmacol 2023; 120:110317. [PMID: 37207447 DOI: 10.1016/j.intimp.2023.110317] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Membranous nephropathy (MN) is one of the most common causes of non-diabetic nephrotic syndrome in adults. About 80% of cases are renal limited (primary MN) and 20% are associated with other systemic diseases or exposures (secondary MN). Autoimmune reaction is the main pathogenic factor of MN, and the discovery of autoantigens including the phospholipase A2 receptor and thrombospondin type-1 domain-containing protein 7A has led to new insights into the pathogenesis, they can induce humoral immune responses led by IgG4 makes them suitable for the diagnosis and monitoring of MN. In addition, complement activation, genetic susceptibility genes and environmental pollution are also involved in MN immune response. In clinical practice, due to the spontaneous remission of MN, the combination of supportive therapy and pharmacological treatment is widely used. Immunosuppressive drugs are the cornerstone of MN treatment, and the dangers and benefits of this approach vary from person to person. In summary, this review provides a more comprehensive review of the immune pathogenesis, interventions and unresolved issues of MN in the hope of providing some new ideas for clinical and scientific researchers in the treatment of MN.
Collapse
Affiliation(s)
- Meng-Ru Hua
- Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi 710000, China
| | - Yan-Long Zhao
- Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi 710000, China
| | - Jun-Zheng Yang
- Guangdong nephrotic drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, No. 71 Dongpeng avenue, Guangzhou, Guangdong 510530, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Ying-Yong Zhao
- Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi 710000, China; School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China; School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Xia Li
- Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
9
|
Gao Y, Su X, Xue T, Zhang N. The beneficial effects of astragaloside IV on ameliorating diabetic kidney disease. Biomed Pharmacother 2023; 163:114598. [PMID: 37150034 DOI: 10.1016/j.biopha.2023.114598] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) has become the major cause of chronic kidney disease or end-stage renal disease. There is still a need for innovative treatment strategies for preventing, arresting, treating, and reversing DKD, and a plethora of scientific evidence has revealed that Chinese herbal monomers can attenuate DKD in multiple ways. Astragaloside IV (AS-IV) is one of the active ingredients of Astragalus membranaceus and was selected as a chemical marker in the Chinese Pharmacopeia for quality control purposes. An increasing amount of studies indicate that AS-IV is a promising novel drug for the treatment of DKD. AS-IV has been shown to improve DKD by combating oxidative stress, attenuating endoplasmic reticulum stress, regulating calcium homeostasis, alleviating inflammation, improving vascular function, improving epithelial to mesenchymal transition and so on. This review briefly summarizes the pathogenesis of DKD, systematically reviews the mechanisms by which AS-IV improves DKD, and aims to facilitate related pharmacological research and development to promote the utilization of Chinese herbal monomers in DKD.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Xin Su
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Taiqi Xue
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
10
|
Han Y, Su Y, Han M, Liu Y, Shi Q, Li X, Wang P, Li W, Li W. Ginsenoside Rg1 attenuates glomerular fibrosis by inhibiting CD36/TRPC6/NFAT2 signaling in type 2 diabetes mellitus mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115923. [PMID: 36375645 DOI: 10.1016/j.jep.2022.115923] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginsenoside Rg1 (Rg1) is one of the main active components in Panax ginseng C. A. Meyer (ginseng), which has been widely used to delay senescence or improve health conditions for more than 2000 years. Increasing studies have revealed that Rg1 could regulate cell proliferation and differentiation, as well as anti-inflammatory and anti-apoptotic effects, and might have protective effects on many chronic kidney diseases. AIM OF THE STUDY Diabetic nephropathy (DN) is one of the most dangerous microvascular complications of diabetes and is the leading cause of end-stage renal disease worldwide. However, the role and mechanism of Rg1 against high-glucose and high-fat-induced glomerular fibrosis in DN are not clear. This study aimed to investigate the protective effect of Rg1 on DN and its possible mechanism. MATERIALS AND METHODS The type 2 diabetes mellitus (T2DM) mice models were established with a high-fat diet (HFD) combined with an intraperitoneal injection of streptozotocin (STZ). Urine protein and serum biochemical indexes were detected by corresponding kits. The kidney was stained with H&E, PAS, and Masson to observe the pathological morphology, glycogen deposition, and fibrosis. The expression of CD36 and p-PLC in the kidney cortex was detected by IHC. The expressions of FN and COL4 were detected by IF. Western blot and PCR were performed to examine protein and mRNA expressions of kidney fibrosis and TRPC6/NFAT2-related pathways in DN mice. Calcium imaging was used to examine the effect of Rg1 on [Ca2+]i in PA + HG-induced human mesangial cells (HMCs). Visualization of the interaction between Rg1 and CD36 was detected by molecular docking. RESULTS Rg1 treatment for 8 weeks could prominently decrease urinary protein, serum creatinine, and urea nitrogen and downgrade blood lipid levels and renal lipid accumulation in T2DM mice. The pathological results indicated that Rg1 treatment attenuated renal pathological injury and glomerular fibrosis. The further results demonstrated that Rg1 treatment remarkably decreased the expressions of CD36, TRPC6, p-PLC, CN, NFAT2, TGF-β, p-Smad2/3, COL4, and FN in renal tissues from T2DM mice. Calcium imaging results found that Rg1 downgraded the base levels of [Ca2+]i and ΔRatioF340/F380 after BAPTA and CaCl2 treatment. Molecular docking results showed that Rg1 could interact with CD36 with a good affinity. CONCLUSION These results revealed that Rg1 could ameliorate renal lipid accumulation, pathological damage, and glomerular fibrosis in T2DM mice. The mechanism may be involved in reducing the overexpression of CD36 and inhibiting the TRPC6/NFAT2 signaling pathway in renal tissues of T2DM mice.
Collapse
Affiliation(s)
- Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Min Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Yan Liu
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Qifeng Shi
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Penghui Wang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
11
|
Genetic nephrotic syndrome associated with disturbed function of glomerular slit membrane and podocyte cytoskeleton in children. Clin Exp Nephrol 2023; 27:101-109. [PMID: 36482266 DOI: 10.1007/s10157-022-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Genetic nephrotic syndrome is caused by pathogenic variants in genes encoding proteins necessary for the stability and functionality of the glomerular filtration barrier. To date, more than 70 genes associated with steroid-resistant nephrotic syndrome have been identified. We review the clinical and molecular aspects of genetic nephrotic syndrome with a particular focus on genes associated with slit membrane and podocyte cytoskeleton defects. Sanger sequencing and next-generation sequencing are widely used in the identification of novel gene variants and help us gain a better understanding of the disease. Despite these findings, therapy is mainly supportive and focused on the reduction of proteinuria and management of chronic kidney disease with an unfavorable outcome for a significant proportion of cases. Positive therapeutic effects of immunosuppressive drugs have been reported in some patients; however, their long-time administration cannot be generally recommended. CONCLUSION Personalized treatment based on understanding the distinct disease pathogenesis is needed. With this, it will be possible to avoid harmful immunosuppressive therapy and improve outcomes and quality of life for pediatric patients suffering from genetic nephrotic syndrome.
Collapse
|
12
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
13
|
Yu J, Li C, Ma L, Zhai B, Xu A, Shao D. Transient receptor potential canonical 6 knockdown ameliorated diabetic kidney disease by inhibiting nuclear factor of activated T cells 2 expression in glomerular mesangial cells. Ren Fail 2022; 44:1780-1790. [DOI: 10.1080/0886022x.2022.2134796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Jian Yu
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Chunchun Li
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Lisha Ma
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Bin Zhai
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Aiping Xu
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Decui Shao
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| |
Collapse
|
14
|
Ahmadian E, Eftekhari A, Atakishizada S, Valiyeva M, Ardalan M, Khalilov R, Kavetskyy T. Podocytopathy: The role of actin cytoskeleton. Biomed Pharmacother 2022; 156:113920. [DOI: 10.1016/j.biopha.2022.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
|
15
|
Dryer SE, Kim EY. The Effects of TRPC6 Knockout in Animal Models of Kidney Disease. Biomolecules 2022; 12:1710. [PMID: 36421724 PMCID: PMC9687984 DOI: 10.3390/biom12111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2023] Open
Abstract
Diseases that induce a loss of renal function affect a substantial portion of the world's population and can range from a slight decline in the glomerular filtration rate or microalbuminuria to complete kidney failure. Kidney disorders can be acute or chronic, but any significant reduction in renal function is associated with increased all-cause morbidity and mortality, especially when the conditions become chronic. There is an urgent need for new therapeutic approaches to slow or halt the progression of kidney disease. One potential target of considerable interest is the canonical transient receptor potential-6 (TRPC6) channel. TRCP6 is a cationic channel with a significant permeability to Ca2+. It is expressed in several tissues, including in multiple cell types of the kidney in glomeruli, microvasculature, and tubules. Here, we will describe TRPC6 channels and their roles in signal transduction, with an emphasis on renal cells, and the studies implicating TRPC6 channels in the progression of inherited and acquired kidney diseases. We then describe studies using TRPC6 knockout mice and rats subjected to treatments that model human diseases, including nephrotic syndromes, diabetic nephropathy, autoimmune glomerulonephritis, and acute kidney injuries induced by renal ischemia and by obstruction of the urinary tract. TRPC6 knockout has been shown to reduce glomerular manifestations of disease in several of these models and reduces renal fibrosis caused by urinary tract obstruction. TRPC6 knockout has proven to be less effective at reducing diabetic nephropathy in mouse and rat models. We also summarize the implications of these studies for drug development.
Collapse
Affiliation(s)
- Stuart E. Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204-5001, USA
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
16
|
Lu T, Sun X, Necela BM, Lee HC, Norton N. TRPC6 N338S is a gain-of-function mutant identified in patient with doxorubicin-induced cardiotoxicity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166505. [PMID: 35882306 PMCID: PMC10858733 DOI: 10.1016/j.bbadis.2022.166505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/23/2023]
Abstract
The canonical transient receptor potential 6 gene, TRPC6, has been implicated as a putative risk gene for chemotherapy-induced congestive heart failure, but knowledge of specific risk variants is lacking. Following our genome-wide association study and subsequent fine-mapping, a rare missense mutant of TRPC6 N338S, was identified in a breast cancer patient who received anthracycline-containing chemotherapy regiments and developed congestive heart failure. However, the function of N338S mutant has not been examined. Using intracellular Ca2+ imaging, patch clamp recording and molecular docking techniques, we assessed the function of N338S mutant heterologously expressed in HEK293 cells and HL-1 cardiac cells. We found that expression of TRPC6 N338S significantly increased intracellular Ca2+ levels ([Ca2+]i) and current densities in response to 50 μM 1-oleoyl 2-acetyl-sn-glycerol (OAG), an activator of TRPC6 channels, compared to those of TRPC6 WT. A 24-h pretreatment with 0.5 μM doxorubicin (DOX) further potentiated the OAG effects on TRPC6 N338S current densities and [Ca2+]i, and these effects were abolished by 1 μM BI-749327, a highly selective TRPC6 inhibitor. Moreover, DOX treatment significantly upregulated the mRNA and protein expressions of TRPC6 N338S, compared to those of TRPC6 WT. Molecular docking and dynamics simulation showed that OAG binds to the pocket constituted by the pore-helix, S5 and S6 domains of TRPC6. However, the N338S mutation strengthened the interaction with OAG, therefore stabilizing the OAG-TRPC6 N338S complex and enhancing OAG binding affinity. Our results indicate that TRPC6 N338S is a gain-of-function mutant that may contribute to DOX-induced cardiotoxicity by increasing Ca2+ influx and [Ca2+]i in cardiomyocytes.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Xiaojing Sun
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brian M Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nadine Norton
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
17
|
Nandlal L, Winkler CA, Bhimma R, Cho S, Nelson GW, Haripershad S, Naicker T. Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa. Eur J Pediatr 2022; 181:3595-3606. [PMID: 35920919 PMCID: PMC10673688 DOI: 10.1007/s00431-022-04581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
There is a paucity of data identifying genetic mutations that account for the high rate of steroid-resistant nephrotic syndrome (SRNS) in a South African paediatric population. The aim was to identify causal mutations in genes implicated in SRNS within a South African paediatric population. We enrolled 118 children with primary nephrotic syndrome (NS), 70 SRNS and 48 steroid-sensitive NS. All children with SRNS underwent kidney biopsy. We first genotyped the NPHS2 gene for the p.V260E variant in all NS cases (n = 118) and controls (n = 219). To further identify additional variants, we performed whole-exome sequencing and interrogated ten genes (NPHS1, NPHS2, WT1, LAMB2, ACTN4, TRPC6, INF2, CD2AP, PLCE1, MYO1E) implicated in SRNS with histopathological features of focal segmental glomerulosclerosis (FSGS) in 56 SRNS cases and 29 controls; we also performed exome sequencing on two patients carrying the NPHS2 p.V260E mutation as positive controls. The overall detection rate of causal and putative pathogenic mutations in children with SRNS was 27/70 (39%): 15 (21%) carried the NPHS2 p.V260E causal mutation in the homozygous state, and 12 (17%) SRNS cases carried a putative pathogenic mutation in the heterozygous state in genes (INF2 (n = 8), CD2AP (n = 3) and TRPC6 (n = 1)) known to have autosomal dominant inheritance mode. NPHS2 p.V260E homozygosity was specifically associated with biopsy-proven FSGS, accounting for 24% of children of Black ethnicity (15 of 63) with steroid-resistant FSGS. No causal or putative pathogenic mutations were identified in NPHS1, WT1, LAMB2, PLCE1, MYO1E and ACTN4. We report four novel variants in INF2, PLCE1, ACTN4 and TRPC6. Conclusion: We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant-FSGS children. However, the NPHS2 p.V260E mutation is a prevalent cause of steroid-resistant FSGS among Black South African children occurring in 24% of children with SRNS. Screening all Black African children presenting with NS for NPHS2 p.V260E will provide a precision diagnosis of steroid-resistant FSGS and inform clinical management. What is Known: • Limited data is available on the genetic disparity of SNRS in a South African paediatric setting. • The high rate of steroid resistance in Black South African children with FSGS compared to other racial groups is partially explained by the founder variant NPHS2 p.V260E. What is New: • We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant FSGS children. • NPHS2 p.V260E mutation remains a prevalent cause of steroid-resistant FSGS among Black South African children, demonstrating precision diagnostic utility.
Collapse
Affiliation(s)
- Louansha Nandlal
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa.
| | - Cheryl A Winkler
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - Rajendra Bhimma
- Department of Paediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa
| | - Sungkweon Cho
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - George W Nelson
- Frederick National Laboratory for Cancer Research, Frederick Advanced Biomedical Computational Science, Washington, DC, USA
| | - Sudesh Haripershad
- Department of Nephrology, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Brown BJ, Boekell KL, Stotter BR, Talbot BE, Schlondorff JS. Gain-of-function, focal segmental glomerulosclerosis Trpc6 mutation minimally affects susceptibility to renal injury in several mouse models. PLoS One 2022; 17:e0272313. [PMID: 35913909 PMCID: PMC9342776 DOI: 10.1371/journal.pone.0272313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations in TRPC6 are a cause of autosomal dominant focal segmental glomerulosclerosis in humans. Many of these mutations are known to have a gain-of-function effect on the non-specific cation channel function of TRPC6. In vitro studies have suggested these mutations affect several signaling pathways, but in vivo studies have largely compared wild-type and Trpc6-deficient rodents. We developed mice carrying a gain-of-function Trpc6 mutation encoding an E896K amino acid change, corresponding to a known FSGS mutation in TRPC6. Homozygous mutant Trpc6 animals have no appreciable renal pathology, and do not develop albuminuria until very advanced age. The Trpc6E896K mutation does not impart susceptibility to PAN nephrosis. The animals show a slight delay in recovery from the albumin overload model. In response to chronic angiotensin II infusion, Trpc6E896K/E896K mice have slightly greater albuminuria initially compared to wild-type animals, an effect that is lost at later time points, and a statistically non-significant trend toward more glomerular injury. This phenotype is nearly opposite to that of Trpc6-deficient animals previously described. The Trpc6 mutation does not appreciably impact renal interstitial fibrosis in response to either angiotensin II infusion, or folate-induced kidney injury. TRPC6 protein and TRPC6-agonist induced calcium influx could not be detected in glomeruli. In sum, these findings suggest that a gain-of-function Trpc6 mutation confers only a mild susceptibility to glomerular injury in the mouse.
Collapse
Affiliation(s)
- Brittney J. Brown
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kimber L. Boekell
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian R. Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna E. Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Johannes S. Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
How immunosuppressive drugs may directly target podocytes in glomerular diseases. Pediatr Nephrol 2022; 37:1431-1441. [PMID: 34244853 DOI: 10.1007/s00467-021-05196-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Podocytes are the direct target of immunologic injury in many immune-mediated glomerular diseases, leading to proteinuria and subsequent kidney failure. Immunosuppressive agents such as steroids, calcineurin inhibitors, and rituximab are the commonly used treatment strategies in this context for their immunotherapeutic or anti-inflammatory properties. However, in recent years, studies have demonstrated that immunosuppressive agents can have a direct effect on podocytes, introducing the concept of the non-immunologic mechanism of kidney protection by immunomodulators. In this review, we focus on the mechanisms by which these agents may directly target the podocyte independent of their systemic effects and examine their clinical significance.
Collapse
|
20
|
Boekell KL, Brown BJ, Talbot BE, Schlondorff JS. Trpc6 gain-of-function disease mutation enhances phosphatidylserine exposure in murine platelets. PLoS One 2022; 17:e0270431. [PMID: 35749414 PMCID: PMC9231752 DOI: 10.1371/journal.pone.0270431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/09/2022] [Indexed: 01/28/2023] Open
Abstract
Platelets enhance coagulation by exposing phosphatidylserine (PS) on their cell surface in response to strong agonist activation. Transient receptor potential channels, including TRPC6, have been implicated in the calcium influx central to this process. Here, we characterize the effect of a Trpc6 gain-of-function (GOF) disease-associated, and a dominant negative (DN), mutation on murine platelet activation. Platelets from mice harboring Trpc6E896K/E896K (GOF) and Trpc6DN/DN mutations were subject to in vitro analysis. Trpc6E896K/E896K and Trpc6DN/DN mutant platelets show enhanced and absent calcium influx, respectively, upon addition of the TRPC3/6 agonist GSK1702934A (GSK). GSK was sufficient to induce integrin αIIbβ3 activation, P-selection and PS exposure, talin cleavage, and MLC2 phosphorylation in Trpc6E896K/E896K, but not in wild-type, platelets. Thrombin-induced calcium influx and PS exposure were enhanced, and clot retraction delayed, by GOF TRPC6, while no differences were noted between wild-type and Trpc6DN/DN platelets. In contrast, Erk activation upon GSK treatment was absent in Trpc6DN/DN, and enhanced in Trpc6E896K/E896K, platelets, compared to wild-type. The positive allosteric modulator, TRPC6-PAM-C20, and fluoxetine maintained their ability to enhance and inhibit, respectively, GSK-mediated calcium influx in Trpc6E896K/E896K platelets. The data demonstrate that gain-of-function mutant TRPC6 channel can enhance platelet activation, including PS exposure, while confirming that TRPC6 is not necessary for this process. Furthermore, the results suggest that Trpc6 GOF disease mutants do not simply increase wild-type TRPC6 responses, but can affect pathways not usually modulated by TRPC6 channel activity, displaying a true gain-of-function phenotype.
Collapse
Affiliation(s)
- Kimber L. Boekell
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brittney J. Brown
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna E. Talbot
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Johannes S. Schlondorff
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
Ding Y, Tang X, Wang Y, Yu D, Zhu C, Yu J. Tetrandrine alleviates podocyte injury via calcium-dependent calpain-1 signaling blockade. BMC Complement Med Ther 2021; 21:296. [PMID: 34906112 PMCID: PMC8670271 DOI: 10.1186/s12906-021-03469-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/26/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Podocytes have become a crucial target for interventions in proteinuric kidney diseases. Many studies have reported that overexpression of transient receptor potential cation channel protein 6 (TRPC6) in podocyte injury upregulates intracellular Ca2+ influx and stimulates Ca2+-dependent protease calpain-1 signaling. The traditional Chinese drug, tetrandrine, a nonselective Ca2+ channel blocker, has long been used to treat chronic kidney disease. This research aimed to explore the possible mechanisms underlying the anti-proteinuric properties of tetrandrine. METHODS We investigated the involvement of tetrandrine in Ca2+ dependent calpain-1 signaling in mouse podocytes and adriamycin-induced nephropathy rats. Cyclosporine A (CsA) and U73122 were used as positive controls. Cell viability, cytotoxicity, Ca2+ concentration, calpain activity, and mRNA and protein expression levels of calpain-1 signaling pathways were examined. The clinical and pathological changes were measured. RESULTS Tetrandrine decreased intracellular Ca2+ influx in cultured TRPC6-overexpressing podocytes. In both in vitro and in vivo studies, the administration of tetrandrine downregulated calpain activity and the expression of calpain-1 and restored the expression of downstream Talin-1 and nephrin. Compared to CsA, tetrandrine treatment exhibited superior inhibitory effects on calpain activity and calpain-1 expression. CONCLUSIONS Tetrandrine has therapeutic potential in podocyte damage by blocking Ca2+-dependent activation of the calpain-1 signaling pathway. Tetrandrine reduced proteinuria, improved renal function, and alleviate renal pathological damage.
Collapse
Affiliation(s)
- Yin Ding
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Xuanli Tang
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Yuhui Wang
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Dongrong Yu
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Caifeng Zhu
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Jin Yu
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China.
| |
Collapse
|
22
|
Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov 2021; 20:770-788. [PMID: 34262140 PMCID: PMC8278373 DOI: 10.1038/s41573-021-00242-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Loss of normal kidney function affects more than 10% of the population and contributes to morbidity and mortality. Kidney diseases are currently treated with immunosuppressive agents, antihypertensives and diuretics with partial but limited success. Most kidney disease is characterized by breakdown of the glomerular filtration barrier (GFB). Specialized podocyte cells maintain the GFB, and structure-function experiments and studies of intercellular communication between the podocytes and other GFB cells, combined with advances from genetics and genomics, have laid the groundwork for a new generation of therapies that directly intervene at the GFB. These include inhibitors of apolipoprotein L1 (APOL1), short transient receptor potential channels (TRPCs), soluble fms-like tyrosine kinase 1 (sFLT1; also known as soluble vascular endothelial growth factor receptor 1), roundabout homologue 2 (ROBO2), endothelin receptor A, soluble urokinase plasminogen activator surface receptor (suPAR) and substrate intermediates for coenzyme Q10 (CoQ10). These molecular targets converge on two key components of GFB biology: mitochondrial function and the actin-myosin contractile machinery. This Review discusses therapies and developments focused on maintaining GFB integrity, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeremy S Duffield
- Research and Development, Prime Medicine, Cambridge, MA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
23
|
Hu S, Han R, Chen L, Qin W, Xu X, Shi J, Zhu X, Zhang M, Zeng C, Tang Z, Bao H, Liu Z. Upregulated LRRC55 promotes BK channel activation and aggravates cell injury in podocytes. J Exp Med 2021; 218:e20192373. [PMID: 33346797 PMCID: PMC7756252 DOI: 10.1084/jem.20192373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Podocyte injury is a common hallmark in various glomerular diseases. The level of LRRC55 was increased in podocytes of patients with focal segmental glomerulosclerosis (FSGS), diabetic nephropathy (DN), and membranous nephropathy (MN). Upregulated LRRC55 and increased intracellular Ca2+ led to BK channel activation and the loss of intracellular potassium, resulting in apoptosome formation and caspase-3 activation in angiotensin II (Ang II)-treated podocytes. Knockout of Lrrc55 or the BK channel prevented the BK current and ameliorated podocyte injury in Ang II-treated mice. Upstream, NFATc3 regulated the expression of LRRC55. Increased LRRC55 expression in podocytes was also evident in animal models of FSGS, DN, and MN. Treatment with losartan or LRRC55 siRNA suppressed LRRC55 expression, prevented BK channel activation, and attenuated podocyte injury in animal models of FSGS, DN, and MN. In conclusion, upregulated LRRC55 promotes BK channel activation and aggravates cell injury in podocytes in FSGS, DN, and MN. LRRC55 inhibition may represent a new therapeutic approach for podocyte injury.
Collapse
Affiliation(s)
- Shuai Hu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Runhong Han
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Long Chen
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jingsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zheng Tang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hao Bao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
24
|
Ge M, Molina J, Ducasa GM, Mallela SK, Varona Santos J, Mitrofanova A, Kim JJ, Liu X, Sloan A, Mendez AJ, Banerjee S, Liu S, Szeto HH, Shin MK, Hoek M, Kopp JB, Fontanesi F, Merscher S, Fornoni A. APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis. Hum Mol Genet 2021; 30:182-197. [PMID: 33517446 DOI: 10.1093/hmg/ddab022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lipotoxicity was recently reported in several forms of kidney disease, including focal segmental glomerulosclerosis (FSGS). Susceptibility to FSGS in African Americans is associated with the presence of genetic variants of the Apolipoprotein L1 gene (APOL1) named G1 and G2. If and how endogenous APOL1 may alter mitochondrial function by the modifying cellular lipid metabolism is unknown. Using transgenic mice expressing the APOL1 variants (G0, G1 or G2) under endogenous promoter, we show that APOL1 risk variant expression in transgenic mice does not impair kidney function at baseline. However, APOL1 G1 expression worsens proteinuria and kidney function in mice characterized by the podocyte inducible expression of nuclear factor of activated T-cells (NFAT), which we have found to cause FSGS. APOL1 G1 expression in this FSGS-model also results in increased triglyceride and cholesterol ester contents in kidney cortices, where lipid accumulation correlated with loss of renal function. In vitro, we show that the expression of endogenous APOL1 G1/G2 in human urinary podocytes is associated with increased cellular triglyceride content and is accompanied by mitochondrial dysfunction in the presence of compensatory oxidative phosphorylation (OXPHOS) complexes elevation. Our findings indicate that APOL1 risk variant expression increases the susceptibility to lipid-dependent podocyte injury, ultimately leading to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - G Michelle Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Shamroop K Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Javier Varona Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Xiaochen Liu
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Armando J Mendez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Santanu Banerjee
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Shaoyi Liu
- Social Profit Network Research Lab, Alexandria Launch Labs, New York, New York 10016, USA
| | - Hazel H Szeto
- Social Profit Network Research Lab, Alexandria Launch Labs, New York, New York 10016, USA
| | - Myung K Shin
- Merck & Company, Inc., Kennilworth, New Jersey 07033, USA
| | - Maarten Hoek
- Merck & Company, Inc., Kennilworth, New Jersey 07033, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, Maryland 20892, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
25
|
Park SJ, Li C, Chen YM. Endoplasmic Reticulum Calcium Homeostasis in Kidney Disease: Pathogenesis and Therapeutic Targets. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:256-265. [PMID: 33245915 DOI: 10.1016/j.ajpath.2020.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 01/15/2023]
Abstract
Calcium (Ca2+) homeostasis is a crucial determinant of cellular function and survival. Endoplasmic reticulum (ER) acts as the largest intracellular Ca2+ store that maintains Ca2+ homeostasis through the ER Ca2+ uptake pump, sarco/ER Ca2+ ATPase, ER Ca2+ release channels, inositol 1,4,5-trisphosphate receptor channel, ryanodine receptor, and Ca2+-binding proteins inside of the ER lumen. Alterations in ER homeostasis trigger ER Ca2+ depletion and ER stress, which have been associated with the development of a variety of diseases. In addition, recent studies have highlighted the role of ER Ca2+ imbalance caused by dysfunction of sarco/ER Ca2+ ATPase, ryanodine receptor, and inositol 1,4,5-trisphosphate receptor channel in various kidney diseases. Despite progress in the understanding of the importance of these ER Ca2+ channels, pumps, and binding proteins in the pathogenesis of kidney disease, treatment is still lacking. This mini-review is focused on: i) Ca2+ homeostasis in the ER, ii) ER Ca2+ dyshomeostasis and apoptosis, and iii) altered ER Ca2+ homeostasis in kidney disease, including podocytopathy, diabetic nephropathy, albuminuria, autosomal dominant polycystic kidney disease, and ischemia/reperfusion-induced acute kidney injury.
Collapse
Affiliation(s)
- Sun-Ji Park
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Chuang Li
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
26
|
Struk T, Nair V, Eichinger F, Kretzler M, Wedlich-Söldner R, Bayraktar S, Pavenstädt H. Transcriptome analysis of primary podocytes reveals novel calcium regulated regulatory networks. FASEB J 2020; 34:14490-14506. [PMID: 32931033 DOI: 10.1096/fj.201902493rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 11/11/2022]
Abstract
Podocytes are pivotal in establishing the selective permeability of the glomerular filtration barrier. Recently, we showed that an increase of the intracellular calcium ion concentration [Ca2+ ] causes a rapid and transient actin reset (CaAR) measurable through live imaging microscopy using lifeact-mCherry as an actin dye in different cell types including the podocyte. This and other studies show the critical role [Ca2+ ] and the actin cytoskeleton play in podocyte homeostasis. To further investigate the role of [Ca2+ ] and the actin cytoskeleton in podocytes, we used a double fluorescent reporter mouse model to establish a primary podocyte culture system. We treated these podocytes temporarily with a Calcium Ionophore and facultatively with Latrunculin A, an inhibitor of actin polymerization. Unbiased genome wide transcriptional analysis identified a transcriptional response in podocytes to elevated [Ca2+ ] levels, affecting mRNA levels of PDGF-BB, RICTOR, and MIR17HG as mediators of Ca2+ -signaling. Comparison of the ex vivo transcriptional response from the primary podocyte culture with glomerular transcripts across a wide spectrum of CKD disease confirmed co-regulation of transcript sets, establishing the disease relevance of the model system. Our findings demonstrate novel [Ca2+ ] regulated gene networks in podocytes deepening our understanding of podocyte biology and disease.
Collapse
Affiliation(s)
- Thaddäus Struk
- Department of Medicine, University of Münster, Münster, Germany
| | - Viji Nair
- Michigan Kidney Translational Medical Core, University of Michigan, Ann Arbor, MI, USA
| | - Felix Eichinger
- Michigan Kidney Translational Medical Core, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Michigan Kidney Translational Medical Core, University of Michigan, Ann Arbor, MI, USA.,Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | | | - Samet Bayraktar
- Department of Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
27
|
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020; 9:E1983. [PMID: 32872338 PMCID: PMC7565274 DOI: 10.3390/cells9091983] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Gagandeep Sooch
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Isaac S. Demaree
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Fletcher A. White
- The Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Zhao J, Liu Z. Treatment of nephrotic syndrome: going beyond immunosuppressive therapy. Pediatr Nephrol 2020; 35:569-579. [PMID: 30904930 DOI: 10.1007/s00467-019-04225-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 01/15/2023]
Abstract
It is indisputable that immunosuppressive therapy and pathological diagnosis of renal biopsy have greatly improved the prognosis of childhood nephrotic syndrome. Unfortunately, there is no "one-size-fits-all" approach for precise patient stratification and treatment when facing the huge challenges posed by steroid-resistant nephrotic syndrome (SRNS). But genomic medicine has brought a glimmer of light, and the cognition of SRNS has entered a new stage. Based on this, identification of single genetic variants of SRNS has recognized the key role of podocyte injury in its pathogenesis. Targeted treatment of podocyte injury is paramount, and immunosuppressant with podocyte-targeted therapy seems to be more suitable as the first choice for SRNS, that is, we need to pay attention to their additional non-immunosuppressive effects. In the same way, other effect factors of nephrotic syndrome and the related causes of immunosuppressive therapy resistance require us to select reasonable and targeted non-immunosuppressive therapies, instead of only blindly using steroids and immunosuppressants, which may be ineffective and bring significant side effects. This article provides a summary of the clinical value of identification of genetic variants in podocytes and non-immunosuppressive therapy for nephrotic syndrome in children.
Collapse
Affiliation(s)
- Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
29
|
Yu J, Zhu C, Yin J, Yu D, Wan F, Tang X, Jiang X. Tetrandrine Suppresses Transient Receptor Potential Cation Channel Protein 6 Overexpression- Induced Podocyte Damage via Blockage of RhoA/ROCK1 Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:361-370. [PMID: 32095070 PMCID: PMC6995298 DOI: 10.2147/dddt.s234262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023]
Abstract
Objective Podocyte damage is common in many renal diseases characterized by proteinuria. Transient receptor potential cation channel protein 6 (TRPC6) plays an important role in renal function through its regulation of intracellular Ca2+ influx and RhoA/ROCK pathways. Chinese herb Stephania tetrandra, with the main active component being tetrandrine, has been used for the treatment of various kidney diseases for several years and has shown a positive effect. This study aimed at investigating the effect and mechanism of tetrandrine in podocyte damage induced by high expression of TRPC6. Methods Immortalized, differentiated murine podocytes, MPC5 were treated with valsartan (0–800 μM) and tetrandrine (0–40 μM) for 48 h. The maximum safe concentrations of valsartan and tetrandrine were selected using a cell viability assay. MPC5 podocytes stably expressing TRPC6 were constructed using a lentivirus packaging system, followed by treatment with valsartan, tetrandrine, and Y-27632 for 48 h and U73122 (10 μM) for 10 min. The RhoA/ROCK pathway and podocyte-specific proteins (nephrin and synaptopodin) levels were quantified. Podocyte apoptosis and intracellular Ca2+ concentration were measured. Results Maximum safe concentrations of 100 μM valsartan and 10 μM tetrandrine showed no observable toxicity in podocytes. MPC5 podocytes stably expressing TRPC6 had higher intracellular Ca2+ influx, apoptotic percentages, and expression of RhoA/ROCK proteins, but lower expression of nephrin and synaptopodin proteins. U73122 treatment for 10 min did not inhibit TRPC6, but suppressed RhoA/ROCK protein. Y-27632 decreased ROCK1 expression, but did not influence the expression of TRPC6 protein. Both 100 μM valsartan and 10 μM tetrandrine for 48 h significantly inhibited intracellular Ca2+ influx, apoptosis, and RhoA/ROCK pathway, and increased nephrin and synaptopodin proteins in podocytes stably expressing TRPC6. Conclusion Elevated TRPC6 expression can lead to podocyte injury by inducing intracellular Ca2+ influx and apoptosis of podocytes, and this effect may be mediated by activation of the RhoA/ROCK1 pathway. Tetrandrine can alleviate podocyte injury induced by TRPC6 expression through inhibition of the RhoA/ROCK pathway, suggesting a protective role in podocyte damage.
Collapse
Affiliation(s)
- Jin Yu
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Caifeng Zhu
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Jiazhen Yin
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Dongrong Yu
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Feng Wan
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Xuanli Tang
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Xue Jiang
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| |
Collapse
|
30
|
Comprehensive genetic diagnosis of Japanese patients with severe proteinuria. Sci Rep 2020; 10:270. [PMID: 31937884 PMCID: PMC6959278 DOI: 10.1038/s41598-019-57149-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Numerous disease-causing gene mutations have been identified in proteinuric diseases, such as nephrotic syndrome and glomerulosclerosis. This report describes the results of comprehensive genetic diagnosis of Japanese patients with severe proteinuria. In addition, the report describes the clinical characteristics of patients with monogenic disease-causing mutations. We conducted comprehensive gene screening of patients who had either congenital nephrotic syndrome, infantile nephrotic syndrome, steroid-resistant nephrotic syndrome, or focal segmental glomerular sclerosis. Using targeted next-generation sequencing, 60 podocyte-related genes were screened in 230 unrelated patients with proteinuria. A retrospective review of clinical data was conducted for these patients. We detected monogenic disease-causing mutations in 30% (69 of 230) of patients among 19 of the screened genes. Common genes with disease-causing mutations were WT1 (25%), NPHS1 (12%), INF2 (12%), TRPC6 (10%), and LAMB2 (9%). With various immunosuppressive or renoprotective therapies, remission of proteinuria in patients with unknown causative mutations was observed in 26% of patients, whereas only 5% of patients with monogenic disease-causing mutations exhibited complete remission. We assessed the genetic backgrounds of Japanese patients with severe proteinuria. The proportion of patients with gene defects was similar to that of other reports, but the disease-causing gene mutation frequency was considerably different.
Collapse
|
31
|
Post-Translational Modification and Natural Mutation of TRPC Channels. Cells 2020; 9:cells9010135. [PMID: 31936014 PMCID: PMC7016788 DOI: 10.3390/cells9010135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transient Receptor Potential Canonical (TRPC) channels are homologues of Drosophila TRP channel first cloned in mammalian cells. TRPC family consists of seven members which are nonselective cation channels with a high Ca2+ permeability and are activated by a wide spectrum of stimuli. These channels are ubiquitously expressed in different tissues and organs in mammals and exert a variety of physiological functions. Post-translational modifications (PTMs) including phosphorylation, N-glycosylation, disulfide bond formation, ubiquitination, S-nitrosylation, S-glutathionylation, and acetylation play important roles in the modulation of channel gating, subcellular trafficking, protein-protein interaction, recycling, and protein architecture. PTMs also contribute to the polymodal activation of TRPCs and their subtle regulation in diverse physiological contexts and in pathological situations. Owing to their roles in the motor coordination and regulation of kidney podocyte structure, mutations of TRPCs have been implicated in diseases like cerebellar ataxia (moonwalker mice) and focal and segmental glomerulosclerosis (FSGS). The aim of this review is to comprehensively integrate all reported PTMs of TRPCs, to discuss their physiological/pathophysiological roles if available, and to summarize diseases linked to the natural mutations of TRPCs.
Collapse
|
32
|
Hall G, Wang L, Spurney RF. TRPC Channels in Proteinuric Kidney Diseases. Cells 2019; 9:cells9010044. [PMID: 31877991 PMCID: PMC7016871 DOI: 10.3390/cells9010044] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Over a decade ago, mutations in the gene encoding TRPC6 (transient receptor potential cation channel, subfamily C, member 6) were linked to development of familial forms of nephrosis. Since this discovery, TRPC6 has been implicated in the pathophysiology of non-genetic forms of kidney disease including focal segmental glomerulosclerosis (FSGS), diabetic nephropathy, immune-mediated kidney diseases, and renal fibrosis. On the basis of these findings, TRPC6 has become an important target for the development of therapeutic agents to treat diverse kidney diseases. Although TRPC6 has been a major focus for drug discovery, more recent studies suggest that other TRPC family members play a role in the pathogenesis of glomerular disease processes and chronic kidney disease (CKD). This review highlights the data implicating TRPC6 and other TRPC family members in both genetic and non-genetic forms of kidney disease, focusing on TRPC3, TRPC5, and TRPC6 in a cell type (glomerular podocytes) that plays a key role in proteinuric kidney diseases.
Collapse
|
33
|
Talbot BE, Vandorpe DH, Stotter BR, Alper SL, Schlondorff JS. Transmembrane insertases and N-glycosylation critically determine synthesis, trafficking, and activity of the nonselective cation channel TRPC6. J Biol Chem 2019; 294:12655-12669. [PMID: 31266804 PMCID: PMC6709635 DOI: 10.1074/jbc.ra119.008299] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential cation channel subfamily C member 6 (TRPC6) is a widely expressed ion channel. Gain-of-function mutations in the human TRPC6 channel cause autosomal-dominant focal segmental glomerulosclerosis, but the molecular components involved in disease development remain unclear. Here, we found that overexpression of gain-of-function TRPC6 channel variants is cytotoxic in cultured cells. Exploiting this phenotype in a genome-wide CRISPR/Cas screen for genes whose inactivation rescues cells from TRPC6-associated cytotoxicity, we identified several proteins essential for TRPC6 protein expression, including the endoplasmic reticulum (ER) membrane protein complex transmembrane insertase. We also identified transmembrane protein 208 (TMEM208), a putative component of a signal recognition particle-independent (SND) ER protein-targeting pathway, as being necessary for expression of TRPC6 and several other ion channels and transporters. TRPC6 expression was also diminished by loss of the previously uncharacterized WD repeat domain 83 opposite strand (WDR83OS), which interacted with both TRPC6 and TMEM208. Additionally enriched among the screen hits were genes involved in N-linked protein glycosylation. Deletion of the mannosyl (α-1,3-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase (MGAT1), necessary for the generation of complex N-linked glycans, abrogated TRPC6 gain-of-function variant-mediated Ca2+ influx and extracellular signal-regulated kinase activation in HEK cells, but failed to diminish cytotoxicity in cultured podocytes. However, mutating the two TRPC6 N-glycosylation sites abrogated the cytotoxicity of mutant TRPC6 and reduced its surface expression. These results expand the targets of TMEM208-mediated ER translocation to include multipass transmembrane proteins and suggest that TRPC6 N-glycosylation plays multiple roles in modulating channel trafficking and activity.
Collapse
Affiliation(s)
- Brianna E Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - David H Vandorpe
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Brian R Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Seth L Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Johannes S Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
34
|
Farmer LK, Rollason R, Whitcomb DJ, Ni L, Goodliff A, Lay AC, Birnbaumer L, Heesom KJ, Xu SZ, Saleem MA, Welsh GI. TRPC6 Binds to and Activates Calpain, Independent of Its Channel Activity, and Regulates Podocyte Cytoskeleton, Cell Adhesion, and Motility. J Am Soc Nephrol 2019; 30:1910-1924. [PMID: 31416818 DOI: 10.1681/asn.2018070729] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/17/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Mutations in the transient receptor potential channel 6 (TRPC6) gene are associated with an inherited form of FSGS. Despite widespread expression, patients with TRPC6 mutations do not present with any other pathologic phenotype, suggesting that this protein has a unique yet unidentified role within the target cell for FSGS, the kidney podocyte. METHODS We generated a stable TRPC6 knockout podocyte cell line from TRPC6 knockout mice. These cells were engineered to express wild-type TRPC6, a dominant negative TRPC6 mutation, or either of two disease-causing mutations of TRPC6, G109S or K874*. We extensively characterized these cells using motility, detachment, and calpain activity assays; immunofluorescence; confocal or total internal reflection fluorescence microscopy; and western blotting. RESULTS Compared with wild-type cells, TRPC6-/- podocytes are less motile and more adhesive, with an altered actin cytoskeleton. We found that TRPC6 binds to ERK1/2 and the actin regulatory proteins, caldesmon (a calmodulin- and actin-binding protein) and calpain 1 and 2 (calcium-dependent cysteine proteases that control the podocyte cytoskeleton, cell adhesion, and motility via cleavage of paxillin, focal adhesion kinase, and talin). Knockdown or expression of the truncated K874* mutation (but not expression of the gain-of-function G019S mutation or dominant negative mutant of TRPC6) results in the mislocalization of calpain 1 and 2 and significant downregulation of calpain activity; this leads to altered podocyte cytoskeleton, motility, and adhesion-characteristics of TRPC6 -/- podocytes. CONCLUSIONS Our data demonstrate that independent of TRPC6 channel activity, the physical interaction between TRPC6 and calpain in the podocyte is important for cell motility and detachment and demonstrates a scaffolding role of the TRPC6 protein in disease.
Collapse
Affiliation(s)
| | | | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, and
| | - Lan Ni
- Bristol Renal, Bristol Medical School
| | | | | | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.,Faculty of Medical Sciences, Institute of Biomedical Research, Catholic University of Argentina, Buenos Aires, Argentina; and
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Shang-Zhong Xu
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | | |
Collapse
|
35
|
Polat OK, Uno M, Maruyama T, Tran HN, Imamura K, Wong CF, Sakaguchi R, Ariyoshi M, Itsuki K, Ichikawa J, Morii T, Shirakawa M, Inoue R, Asanuma K, Reiser J, Tochio H, Mori Y, Mori MX. Contribution of Coiled-Coil Assembly to Ca 2+/Calmodulin-Dependent Inactivation of TRPC6 Channel and its Impacts on FSGS-Associated Phenotypes. J Am Soc Nephrol 2019; 30:1587-1603. [PMID: 31266820 DOI: 10.1681/asn.2018070756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved. METHODS We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes. RESULTS Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton. CONCLUSIONS The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.
Collapse
Affiliation(s)
- Onur K Polat
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
| | - Masatoshi Uno
- Department of Biophysics, Graduate School of Science.,Department of Molecular Engineering, Graduate School of Engineering
| | - Terukazu Maruyama
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
| | - Ha Nam Tran
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering.,Department of Technology and Ecology, Laboratory of Environmental Systems Biology, Graduate School of Global Environmental Studies
| | - Kayo Imamura
- Department of Biophysics, Graduate School of Science
| | - Chee Fah Wong
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering.,Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Perak, Malaysia
| | - Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Mariko Ariyoshi
- Department of Molecular Engineering, Graduate School of Engineering
| | - Kyohei Itsuki
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Jun Ichikawa
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Kyoto, Japan
| | | | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, School of Medicine, Chiba University, Chiba, Japan
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | | | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,
| |
Collapse
|
36
|
-254C>G SNP in the TRPC6 Gene Promoter Influences Its Expression via Interaction with the NF- κB Subunit RELA in Steroid-Resistant Nephrotic Syndrome Children. Int J Genomics 2019; 2019:2197837. [PMID: 31281825 PMCID: PMC6590578 DOI: 10.1155/2019/2197837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/07/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
This study is aimed at exploring the mechanism by which the −254C>G single nucleotide polymorphism (SNP) on the transient receptor potential cation channel 6 (TRPC6) gene promoter could increase its activation in steroid-resistant nephrotic syndrome children of China. Plasmids containing the TRPC6 promoter region (with the −254C or G allele) were constructed and then transfected into human embryonic kidney (HEK) 293T cells and human podocytes. Luciferase assays were used to test the promoter activity in both cell lines with or without tumor necrosis factor-α (TNF-α) treatment, and chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) analysis was used to verify the transcription factor that could bind to this mutant sequence. Luciferase results indicate that the activity of the mutant promoter was greater than that of the normal promoter of the TRPC6 gene in both cell lines. We further predicted and verified that this variation was mediated by the nuclear factor kappa B (NF-κB) subunit RELA, and TNF-α significantly enhanced the transcription activity of TRPC6 with the −254G allele. In conclusion, the −254C>G SNP is a gain-of-function variation of the TRPC6 gene, and it is also an early and effective factor for predicting steroid-resistant nephrotic syndrome (SRNS) in Chinese children.
Collapse
|
37
|
Angiotensin II-mediated MYH9 downregulation causes structural and functional podocyte injury in diabetic kidney disease. Sci Rep 2019; 9:7679. [PMID: 31118506 PMCID: PMC6531474 DOI: 10.1038/s41598-019-44194-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
MYH9, a widely expressed gene encoding nonmuscle myosin heavy chain, is also expressed in podocytes and is associated with glomerular pathophysiology. However, the mechanisms underlying MYH9-related glomerular diseases associated with proteinuria are poorly understood. Therefore, we investigated the role and mechanism of MYH9 in diabetic kidney injury. MYH9 expression was decreased in glomeruli from diabetic patients and animals and in podocytes treated with Ang II in vitro. Ang II treatment and siRNA-mediated MYH9 knockdown in podocytes resulted in actin cytoskeleton reorganization, reduced cell adhesion, actin-associated protein downregulation, and increased albumin permeability. Ang II treatment increased NOX4 expression and ROS generation. The Ang II receptor blocker losartan and the ROS scavenger NAC restored MYH9 expression in Ang II-treated podocytes, attenuated disrupted actin cytoskeleton and decreased albumin permeability. Furthermore, MYH9 overexpression in podocytes restored the effects of Ang II on the actin cytoskeleton and actin-associated proteins. Ang II-mediated TRPC6 activation reduced MYH9 expression. These results suggest that Ang II-mediated MYH9 depletion in diabetic nephropathy may increase filtration barrier permeability by inducing structural and functional podocyte injury through TRPC6-mediated Ca2+ influx by NOX4-mediated ROS generation. These findings reveal a novel MYH9 function in maintaining urinary filtration barrier integrity. MYH9 may be a potential target for treating diabetic nephropathy.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The underlining goal of this review is to offer a concise, detailed look into current knowledge surrounding transient receptor potential canonical channel 6 (TRPC6) in the progression of diabetic kidney disease (DKD). RECENT FINDINGS Mutations and over-activation in TRPC6 channel activity lead to the development of glomeruli injury. Angiotensin II, reactive oxygen species, and other factors in the setting of DKD stimulate drastic increases in calcium influx through the TRPC6 channel, causing podocyte hypertrophy and foot process effacement. Loss of the podocytes further promote deterioration of the glomerular filtration barrier and play a major role in the development of both albuminuria and the renal injury in DKD. Recent genetic manipulation with TRPC6 channels in various rodent models provide additional knowledge about the role of TRPC6 in DKD and are reviewed here. The TRPC6 channel has a pronounced role in the progression of DKD, with deviations in activity yielding detrimental outcomes. The benefits of targeting TRPC6 or its upstream or downstream signaling pathways in DKD are prominent.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Clement J. Zablocki VA Medical Center, Milwaukee, WI, 53295, USA.
| | - Denisha Spires
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
39
|
Yang G, Ma H, Wu Y, Zhou B, Zhang C, Chai C, Cao Z. Activation of TRPC6 channels contributes to (+)-conocarpan-induced apoptotic cell death in HK-2 cells. Food Chem Toxicol 2019; 129:281-290. [PMID: 31054997 DOI: 10.1016/j.fct.2019.04.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
(+)-Conocarpan (CNCP), a neolignan frequently found in many medicinal and edible plants displays a broad spectrum of bioactivity. Here, we demonstrated that CNCP induced apoptotic cell death in human kidney-2 (HK-2) cells in a concentration-dependent manner (IC50 = 19.3 μM) and led to the sustained elevation of intracellular Ca2+ ([Ca2+]i). Lower extracellular Ca2+ concentrations from 2.3 mM to 0 mM significantly suppressed the CNCP-induced Ca2+ response by 69.1%. Moreover, the depletion of intracellular Ca2+ stores using thapsigargin normalized CNCP-induced Ca2+ release from intracellular Ca2+ stores, suggesting that the CNCP-induced Ca2+ response involved both extracellular Ca2+ influx and Ca2+ release from intracellular Ca2+ stores. SAR7334, a TRPC3/6/7 channel inhibitor, but neither Pyr3, a selective TRPC3 channel inhibitor, nor Pico145, a TRPC1/4/5 inhibitor, suppressed the CNCP-induced Ca2+ response by 57.2% and decreased CNCP-induced cell death by 53.4%, suggesting a critical role for TRPC6 channels in CNCP-induced Ca2+ influx and apoptotic cell death. Further electrophysiological recording demonstrated that CNCP directly activated TRPC6 channels by increasing channel open probability with an EC50 value of 6.01 μM. Considered together, these data demonstrate that the direct activation of TRPC6 channels contributes to CNCP-induced apoptotic cell death in HK-2 cells. Our data point out the potential risk of renal toxicity from CNCP if used as a therapeutic agent.
Collapse
Affiliation(s)
- Guoling Yang
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Hui Ma
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yanliang Wu
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Baoping Zhou
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chunlei Zhang
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chengzhi Chai
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
40
|
Dryer SE, Roshanravan H, Kim EY. TRPC channels: Regulation, dysregulation and contributions to chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1041-1066. [PMID: 30953689 DOI: 10.1016/j.bbadis.2019.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the gene encoding canonical transient receptor potential-6 (TRPC6) channels result in severe nephrotic syndromes that typically lead to end-stage renal disease. Many but not all of these mutations result in a gain in the function of the resulting channel protein. Since those observations were first made, substantial work has supported the hypothesis that TRPC6 channels can also contribute to progression of acquired (non-genetic) glomerular diseases, including primary and secondary FSGS, glomerulosclerosis during autoimmune glomerulonephritis, and possibly in type-1 diabetes. Their regulation has been extensively studied, especially in podocytes, but also in mesangial cells and other cell types present in the kidney. More recent evidence has implicated TRPC6 in renal fibrosis and tubulointerstitial disease caused by urinary obstruction. Consequently TRPC6 is being extensively investigated as a target for drug discovery. Other TRPC family members are present in kidney. TRPC6 can form a functional heteromultimer with TRPC3, and it has been suggested that TRPC5 may also play a role in glomerular disease progression, although the evidence on this is contradictory. Here we review literature on the expression and regulation of TRPC6, TRPC3 and TRPC5 in various cell types of the vertebrate kidney, the evidence that these channels are dysregulated in disease models, and research showing that knock-out or pharmacological inhibition of these channels can reduce the severity of kidney disease. We also summarize several areas that remain controversial, and some of the large gaps of knowledge concerning the fundamental role of these proteins in regulation of renal function.
Collapse
Affiliation(s)
- Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Internal Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
41
|
Ma R, Xu Y, Zhou H, Zhang D, Yao D, Song L, Liu Y. Participation of the AngII/TRPC6/NFAT axis in the pathogenesis of podocyte injury in rats with type 2 diabetes. Mol Med Rep 2019; 19:2421-2430. [PMID: 30664212 DOI: 10.3892/mmr.2019.9871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 12/19/2018] [Indexed: 11/06/2022] Open
Abstract
The canonical transient receptor potential channel 6 ion channel is expressed in podocytes and is an important component of the glomerular slit diaphragm. Focal segmental glomerulosclerosis is closely associated with TRPC6 gene mutations, and TRPC6 mediates podocyte injury induced by high glucose. Angiotensin II (AngII) has been revealed to enhance TRPC6 currents in certain types of cells, including podocytes and ventricular myocytes. It has been reported that glucose regulated TRPC6 expression in an AngII‑dependent manner in podocytes and that this pathway is critical in diabetic nephropathy. In the present study, the role of TRPC6 detected by western blotting and reverse transcription‑quantitative polymerase chain reaction in AngII‑mediated podocyte injury was evaluated in rats with type 2 diabetes induced by high‑calorie diets and streptozotocin. The results demonstrated that urinary albumin excretion was elevated, and morphological changes, including glomerular basement membrane thickening and podocyte process effacement, were observed. There was increased expression of AngII and TRPC6 in diabetic rats. The angiotensin receptor blocker valsartan significantly reduced TRPC6 and nuclear factor of activated T‑cells (NFAT) overexpression in diabetic rats. These results in vivo were confirmed by studies in vitro, which demonstrated that inhibition of TRPC6 ameliorated high glucose‑induced podocyte injury by decreasing NFAT mRNA levels. Taken together, the present results suggested that the AngII/TRPC6/NFAT axis may be a crucial signaling pathway in podocytes that is necessary for maintaining the integrity of the glomerular filtration barrier. In addition, TRPC6 may represent a potential therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Ruixia Ma
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yan Xu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hanyan Zhou
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Di Zhang
- Department of Special Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Dandan Yao
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Limin Song
- Department of Special Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yuan Liu
- Department of Special Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
42
|
Hyperglycemia potentiates the effect of ionic calcium in photoreceptor ellipsoid zone disruption in diabetic retinopathy. Int Ophthalmol 2019; 39:2237-2243. [PMID: 30628026 DOI: 10.1007/s10792-018-01063-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/21/2018] [Indexed: 01/26/2023]
Abstract
PURPOSE To study the association of serum ionic calcium and glycated hemoglobin (HbA1c) with retinal photoreceptor ellipsoid zone (EZ) disruption in diabetic retinopathy (DR). METHODS This is a tertiary care center-based observational cross-sectional study. Sixty-three consecutive cases, divided into 21 cases each with no diabetic retinopathy, non-proliferative diabetic retinopathy and proliferative diabetic retinopathy were included. Twenty-one healthy controls were also included. Ellipsoid zone disruption was assessed using spectral-domain optical coherence tomography. Serum ionic calcium and HbA1c were measured using standard protocol. Patient data from cases were divided into two groups according to their HbA1c levels: group 1 (HbA1c < 7, n = 26) and group 2 (HbA1c > 7, n = 37). Data were analyzed statistically. RESULTS Mean ionic calcium levels in group 1 and group 2 were 1.131 ± 0.073 mmol/dL and 1.170 ± 0.070 mmol/dL, respectively. In group 1, 11 out of 26 had EZ disruption (42.3%). Similarly, in group 2, 29 out of 37 had EZ disruption (78.4%). On logistic regression analysis, as compared to group 1, ellipsoid zone disruption was found to be positively associated with serum ionic calcium (p = 0.01) in group 2 cases. CONCLUSION Increased levels of serum ionic calcium are associated with increased EZ disruption in patients with HbA1c > 7 in DR.
Collapse
|
43
|
TRPC6 inactivation does not affect loss of renal function in nephrotoxic serum glomerulonephritis in rats, but reduces severity of glomerular lesions. Biochem Biophys Rep 2019; 17:139-150. [PMID: 30662960 PMCID: PMC6325086 DOI: 10.1016/j.bbrep.2018.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 12/26/2022] Open
Abstract
Canonical transient receptor potential-6 (TRPC6) channels have been implicated in a variety of chronic kidney diseases including familial and acquired forms of focal and segmental glomerulosclerosis (FSGS) and renal fibrosis following ureteral obstruction. Here we have examined the role of TRPC6 in progression of inflammation and fibrosis in the nephrotoxic serum (NTS) model of crescentic glomerulonephritis. This was assessed in rats with non-functional TRPC6 channels due to genomic disruption of an essential domain in TRPC6 channels (Trpc6del/del rats) and wild-type littermates (Trpc6wt/wt rats). Administration of NTS evoked albuminuria and proteinuria observed 4 and 28 days later that was equally severe in Trpc6wt/wt and Trpc6del/del rats. By 28 days, there were dense deposits of complement and IgG within glomeruli in both genotypes, accompanied by severe inflammation and fibrosis readily observed by standard histological methods, and also by increases in renal cortical expression of multiple markers (α-smooth muscle actin, vimentin, NLRP3, and CD68). Tubulointerstitial fibrosis appeared equally severe in Trpc6wt/wt and Trpc6del/del rats. TRPC6 inactivation did not protect against the substantial declines in renal function (increases in blood urea nitrogen, serum creatinine and kidney:body weight ratio) in NTS-treated animals, and increases in a urine maker of proximal tubule pathology (β2-macroglobulin) were actually more severe in Trpc6del/del animals. By contrast, glomerular pathology, blindly scored from histology, and from renal cortical expression of podocin suggested a partial but significant protective effect of TRPC6 inactivation within the glomerular compartment, at least during the autologous phase of the NTS model. TRPC6 inactivation in rats does not affect declines in overall renal function in an autoimmune model of rapidly progressing glomerulonephritis. TRPC6 inactivation does not reduce renal fibrosis or tubulointerstitial disease in autoimmune glomerulonephritis, and may exacerbate proximal tubule dysfunction in this model. TRPC6 inactivation reduces glomerulosclerosis and podocyte loss in autoimmune glomerulonephritis in rats.
Collapse
Key Words
- BUN, blood urea nitrogen
- CKD, chronic kidney disease
- Chronic kidney disease
- FSGS, focal and segmental glomerulosclerosis
- GBM, glomerular basement membrane
- Glomerulonephritis
- IL-1β, interleukin 1β
- NLRP3, NOD-like receptor pyrin domain containing-3 protein
- NTS, nephrotoxic serum
- PAN, puromycin amino nucleoside
- PAS, periodic acid-Schiff’s stain
- Renal fibrosis
- SMA, α-smooth muscle actin
- TCA, trichloroacetic acid
- TNF, tumor necrosis factor
- TRPC3, canonical transient receptor potential-3 channel
- TRPC5, canonical transient receptor potential-5 channel
- TRPC6
- TRPC6, canonical transient receptor potential-6 channel
- UUO, unilateral ureteral obstruction
- suPAR, soluble urokinase receptor
Collapse
|
44
|
Liu Y, Shi Y, Ren R, Xie J, Wang W, Chen N. Advanced therapeutics in focal and segmental glomerulosclerosis. Nephrology (Carlton) 2018; 23 Suppl 4:57-61. [PMID: 30298667 DOI: 10.1111/nep.13463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Yunzi Liu
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yifan Shi
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Rong Ren
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jingyuan Xie
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Weiming Wang
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Nan Chen
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
45
|
He C, Shi W, Li R, Zhang L. [NFAT2 mediates high glucose-induced apoptosis in glomerular podocytes in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1270-1276. [PMID: 30377135 DOI: 10.3969/j.issn.1673-4254.2018.10.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To determine whether hyperglycemia activates NFAT2 in cultured podocytes to cause podocyte apoptosis and explore the role of NFAT2 in high glucose-induced podocyte apoptosis. METHODS Immortalized mouse podocytes were cultured in the presence of normal (5.3 mmol/L) or high glucose (10, 20, 30, and 40 mmol/L) or pretreated with 11R-vivit (100 nmol/L) or cyclosporine A (500 nmol/L) before exposure to 20 mmol/L glucose for different durations (0.5-48 h). The activation of NFAT2 in the podocytes was detected using Western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was explored by observing the inhibition of NFAT2 activation by 11R-vivit using flow cytometry. Intracellular Ca2+ was monitored in high glucose-treated podocytes using Fluo-3/AM. The mRNA and protein expressions of the apoptosis gene Bax were detected using real time-qPCR and Western blotting. RESULTS Exposure to high glucose in the medium time- and dose-dependently activated NFAT2 in cultured podocytes. Pretreatment with cyclosporine A or 11R- VIVIT completely blocked nuclear accumulation of NFAT2. Treatment with 11R- vivit also inhibited high glucoseinduced apoptosis in cultured podocytes. Exposure to high glucose obviously increased [Ca2 +]I in the podocytes to cause activation of calcineurin and the subsequent increment of nuclear accumulation of NFAT2 and Bax expression. CONCLUSIONS High glucose-induced apoptosis in podocytes is mediated by calcineurin/NFAT2/Bax signaling pathway, which may serve as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Chaosheng He
- Department of Nephrology, Guangdong General Hospital//Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Shi
- Department of Nephrology, Guangdong General Hospital//Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong General Hospital//Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Li Zhang
- Department of Nephrology, Guangdong General Hospital//Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
46
|
Yu SMW, Nissaisorakarn P, Husain I, Jim B. Proteinuric Kidney Diseases: A Podocyte's Slit Diaphragm and Cytoskeleton Approach. Front Med (Lausanne) 2018; 5:221. [PMID: 30255020 PMCID: PMC6141722 DOI: 10.3389/fmed.2018.00221] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 01/19/2023] Open
Abstract
Proteinuric kidney diseases are a group of disorders with diverse pathological mechanisms associated with significant losses of protein in the urine. The glomerular filtration barrier (GFB), comprised of the three important layers, the fenestrated glomerular endothelium, the glomerular basement membrane (GBM), and the podocyte, dictates that disruption of any one of these structures should lead to proteinuric disease. Podocytes, in particular, have long been considered as the final gatekeeper of the GFB. This specialized visceral epithelial cell contains a complex framework of cytoskeletons forming foot processes and mediate important cell signaling to maintain podocyte health. In this review, we will focus on slit diaphragm proteins such as nephrin, podocin, TRPC6/5, as well as cytoskeletal proteins Rho/small GTPases and synaptopodin and their respective roles in participating in the pathogenesis of proteinuric kidney diseases. Furthermore, we will summarize the potential therapeutic options targeting the podocyte to treat this group of kidney diseases.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States
| | | | - Irma Husain
- Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Belinda Jim
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States.,Renal Division, Jacobi Medical Center, Bronx, NY, United States
| |
Collapse
|
47
|
Mechanisms underlying modulation of podocyte TRPC6 channels by suPAR: Role of NADPH oxidases and Src family tyrosine kinases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3527-3536. [PMID: 30293571 DOI: 10.1016/j.bbadis.2018.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023]
Abstract
The soluble urokinase receptor (suPAR) has been implicated in the pathogenesis of chronic kidney diseases (CKD) and may function as a circulating "permeability factor" driving primary focal and segmental glomerulosclerosis (FSGS). Here we examined the mechanisms whereby suPAR causes mobilization and increased activation of Ca2+-permeable TRPC6 channels, which are also implicated in FSGS. Treatment of immortalized mouse podocytes with recombinant suPAR for 24 h caused a marked increase in cytosolic reactive oxygen species (ROS) that required signaling through integrins. This effect was associated with increased assembly of active cell surface NADPH oxidase 2 (Nox2) complexes and was blocked by the Nox2 inhibitor apoycynin. Treatment with suPAR also evoked a functionally measurable increase in TRPC6 channels that was blocked by concurrent treatment with the ROS-quencher TEMPOL as well as by inhibition of Rac1, an essential component of active Nox2 complexes. Elevated ROS evoked by exposing cells to suPAR or H2O2 caused a marked increase in the abundance of tyrosine-phosphorylated proteins including Src, and suPAR-evoked Src activation was blocked by TEMPOL. Moreover, mobilization and increased activation of TRPC6 by suPAR or H2O2 was blocked by concurrent exposure to PP2, an inhibitor of Src family tyrosine kinases. These data suggest that suPAR induces oxidative stress in podocytes that in turn drives signaling through Src family kinases to upregulate TRPC6 channels. The combination of oxidative stress and altered Ca2+ signaling may contribute to loss of podocytes and progression of various forms of CKD.
Collapse
|
48
|
Ilatovskaya DV, Blass G, Palygin O, Levchenko V, Pavlov TS, Grzybowski MN, Winsor K, Shuyskiy LS, Geurts AM, Cowley AW, Birnbaumer L, Staruschenko A. A NOX4/TRPC6 Pathway in Podocyte Calcium Regulation and Renal Damage in Diabetic Kidney Disease. J Am Soc Nephrol 2018; 29:1917-1927. [PMID: 29793963 DOI: 10.1681/asn.2018030280] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Background Loss of glomerular podocytes is an indicator of diabetic kidney disease (DKD). The damage to these cells has been attributed in part to elevated intrarenal oxidative stress. The primary source of the renal reactive oxygen species, particularly H2O2, is NADPH oxidase 4 (NOX4). We hypothesized that NOX4-derived H2O2 contributes to podocyte damage in DKD via elevation of podocyte calcium.Methods We used Dahl salt-sensitive (SS) rats with a null mutation for the Nox4 gene (SSNox4-/-) and mice with knockout of the nonselective calcium channel TRPC6 or double knockout of TRPC5 and TRPC6. We performed whole animal studies and used biosensor measurements, electron microscopy, electrophysiology, and live calcium imaging experiments to evaluate the contribution of this pathway to the physiology of the podocytes in freshly isolated glomeruli.Results Upon induction of type 1 diabetes with streptozotocin, SSNox4-/- rats exhibited significantly lower basal intracellular Ca2+ levels in podocytes and less DKD-associated damage than SS rats did. Furthermore, the angiotensin II-elicited calcium flux was blunted in glomeruli isolated from diabetic SSNox4-/- rats compared with that in glomeruli from diabetic SS rats. H2O2 stimulated TRPC-dependent calcium influx in podocytes from wild-type mice, but this influx was blunted in podocytes from Trpc6-knockout mice and, in a similar manner, in podocytes from Trpc5/6 double-knockout mice. Finally, electron microscopy revealed that podocytes of glomeruli isolated from Trpc6-knockout or Trpc5/6 double-knockout mice were protected from damage induced by H2O2 to the same extent.Conclusions These data reveal a novel signaling mechanism involving NOX4 and TRPC6 in podocytes that could be pharmacologically targeted to abate the development of DKD.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Kristen Winsor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Leonid S Shuyskiy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; and.,Institute of Biomedical Research, School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| | | |
Collapse
|
49
|
Yang JW, Dettmar AK, Kronbichler A, Gee HY, Saleem M, Kim SH, Shin JI. Recent advances of animal model of focal segmental glomerulosclerosis. Clin Exp Nephrol 2018; 22:752-763. [PMID: 29556761 DOI: 10.1007/s10157-018-1552-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/26/2018] [Indexed: 12/15/2022]
Abstract
In the last decade, great advances have been made in understanding the genetic basis for focal segmental glomerulosclerosis (FSGS). Animal models using specific gene disruption of the slit diaphragm and cytoskeleton of the foot process mirror the etiology of the human disease. Many animal models have been developed to understand the complex pathophysiology of FSGS. Therefore, we need to know the usefulness and exact methodology of creating animal models. Here, we review classic animal models and newly developed genetic animal models. Classic animal models of FSGS involve direct podocyte injury and indirect podocyte injury due to adaptive responses. However, the phenotype depends on the animal background. Renal ablation and direct podocyte toxin (PAN, adriamycin) models are leading animal models for FSGS, which have some limitations depending on mice background. A second group of animal models were developed using combinations of genetic mutation and toxin, such as NEP25, diphtheria toxin, and Thy1.1 models, which specifically injure podocytes. A third group of animal models involves genetic engineering techniques targeting podocyte expression molecules, such as podocin, CD2-associated protein, and TRPC6 channels. More detailed information about podocytopathy and FSGS can be expected in the coming decade. Different animal models should be used to study FSGS depending on the specific aim and sometimes should be used in combination.
Collapse
Affiliation(s)
- Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, Republic of Korea
| | - Anne Katrin Dettmar
- Pediatric Nephrology, Department of Pediatrics, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Universitätskliniken Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moin Saleem
- Paediatric Renal Medicine, University of Bristol, Bristol, UK.,Children's Renal Unit, Bristol Royal Hospital for Children, Bristol, UK
| | - Seong Heon Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Republic of Korea. .,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
50
|
Tan W, Lovric S, Ashraf S, Rao J, Schapiro D, Airik M, Shril S, Gee HY, Baum M, Daouk G, Ferguson MA, Rodig N, Somers MJG, Stein DR, Vivante A, Warejko JK, Widmeier E, Hildebrandt F. Analysis of 24 genes reveals a monogenic cause in 11.1% of cases with steroid-resistant nephrotic syndrome at a single center. Pediatr Nephrol 2018; 33:305-314. [PMID: 28921387 PMCID: PMC5771840 DOI: 10.1007/s00467-017-3801-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of end-stage renal disease (ESRD) among patients manifesting at under 25 years of age. We performed mutation analysis using a high-throughput PCR-based microfluidic technology in 24 single-gene causes of SRNS in a cohort of 72 families, who presented with SRNS before the age of 25 years. METHODS Within an 18-month interval, we obtained DNA samples, pedigree information, and clinical information from 77 consecutive children with SRNS from 72 different families seen at Boston Children's Hospital (BCH). Mutation analysis was completed by combining high-throughput multiplex PCR with next-generation sequencing. We analyzed the sequences of 18 recessive and 6 dominant genes of SRNS in all 72 families for disease-causing variants. RESULTS We identified the disease-causing mutation in 8 out of 72 (11.1%) families. Mutations were detected in the six genes: NPHS1 (2 out of 72), WT1 (2 out of 72), NPHS2, MYO1E, TRPC6, and INF2. Median age at onset was 4.1 years in patients without a mutation (range 0.5-18.8), and 3.2 years in those in whom the causative mutation was detected (range 0.1-14.3). Mutations in dominant genes presented with a median onset of 4.5 years (range 3.2-14.3). Mutations in recessive genes presented with a median onset of 0.5 years (range 0.1-3.2). CONCLUSION Our molecular genetic diagnostic study identified underlying monogenic causes of steroid-resistant nephrotic syndrome in ~11% of patients with SRNS using a cost-effective technique. We delineated some of the therapeutic, diagnostic, and prognostic implications. Our study confirms that genetic testing is indicated in pediatric patients with SRNS.
Collapse
Affiliation(s)
- Weizhen Tan
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Svjetlana Lovric
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shazia Ashraf
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia Rao
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David Schapiro
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Merlin Airik
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Heon Yung Gee
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Michelle Baum
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ghaleb Daouk
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A. Ferguson
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy Rodig
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael JG. Somers
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah R. Stein
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Asaf Vivante
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jillian K. Warejko
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugen Widmeier
- Divison of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Friedhelm Hildebrandt
- Divison of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|