1
|
Papadimitriou-Tsantarliotou A, Avgeros C, Konstantinidou M, Vizirianakis IS. Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation. IUBMB Life 2024. [PMID: 39052023 DOI: 10.1002/iub.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
Collapse
Affiliation(s)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Konstantinidou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
2
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
3
|
Choque-Quispe BM, Vásquez-Velásquez C, Gonzales GF. Evaluation of dietary composition between hemoglobin categories, total body iron content and adherence to multi-micronutrients in preschooler residents of the highlands of Puno, Peru. BMC Nutr 2024; 10:28. [PMID: 38347656 PMCID: PMC10860272 DOI: 10.1186/s40795-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The anemia prevalence is higher in highlands populations. It is assumed that iron deficiency anemia (IDA) in children is mainly due to low dietary intake. However, other suggest that high prevalence of anemia is due to an inappropriate hemoglobin (Hb) adjustment for altitude. MATERIALS AND METHODS Cross-sectional study conducted in 338 preschoolers (PSC) from Puno-Peru. Hb was measured in whole blood, and ferritin, Soluble transferrin receptor, and Interleukin 6 in serum.The dietary iron intake was assessed by 24-h dietary recall, using NutriCap Software. Hb concentration was assessed as adjusted or unadjusted for altitude. RESULTS With unadjusted Hb, the anemia prevalence was 4.7%, whereas after Hb correction, the prevalence raised-up to 65.6% (p < 0.001). Reciprocally, erythrocytosis proportion decreased from 20.35 to 0.30% (p < 0.001). Total Body Iron (TBI) showed that 7.44% had ID and 0.32% had IDA. PSC with normal unadjusted Hb levels have more protein and micronutrients intake than anemic ones. PSC with erythrocytosis consumed less fat, and more niacin and ascorbic acid than anemics. Total iron intake was lower in anemic than the other groups, but without statistical significance due to the standard deviation of the data in a small number of anemic PSC (n = 16). TBI, unadjusted Hb, and adjusted Hb were not different between groups consuming or not multimicronutrients. CONCLUSIONS The consumption of iron and iron status in children who live at high altitude is adequate, and that anemia could be due to other micronutrient deficiencies and/or that the adjustment of Hb by altitude is inappropriate.
Collapse
Affiliation(s)
| | - Cinthya Vásquez-Velásquez
- Laboratorio de Endocrinología y Reproducción (Laboratorios de Investigación y Desarrollo), Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Gustavo F Gonzales
- Laboratorio de Endocrinología y Reproducción (Laboratorios de Investigación y Desarrollo), Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
4
|
Park JB, Ko K, Baek YH, Kwon WY, Suh S, Han SH, Kim YH, Kim HY, Yoo YH. Pharmacological Prevention of Ectopic Erythrophagocytosis by Cilostazol Mitigates Ferroptosis in NASH. Int J Mol Sci 2023; 24:12862. [PMID: 37629045 PMCID: PMC10454295 DOI: 10.3390/ijms241612862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatic iron overload (HIO) is a hallmark of nonalcoholic fatty liver disease (NAFLD) with a poor prognosis. Recently, the role of hepatic erythrophagocytosis in NAFLD is emerging as a cause of HIO. We undertook various assays using human NAFLD patient pathology samples and an in vivo nonalcoholic steatohepatitis (NASH) mouse model named STAMTM. To make the in vitro conditions comparable to those of the in vivo NASH model, red blood cells (RBCs) and platelets were suspended and subjected to metabolic and inflammatory stresses. An insert-coculture system, in which activated THP-1 cells and RBCs are separated from HepG2 cells by a porous membrane, was also employed. Through various analyses in this study, the effect of cilostazol was examined. The NAFLD activity score, including steatosis, ballooning degeneration, inflammation, and fibrosis, was increased in STAMTM mice. Importantly, hemolysis occurred in the serum of STAMTM mice. Although cilostazol did not improve lipid or glucose profiles, it ameliorated hepatic steatosis and inflammation in STAMTM mice. Platelets (PLTs) played an important role in increasing erythrophagocytosis in the NASH liver. Upregulated erythrophagocytosis drives cells into ferroptosis, resulting in liver cell death. Cilostazol inhibited the augmentation of PLT and RBC accumulation. Cilostazol prevented the PLT-induced increase in ectopic erythrophagocytosis in in vivo and in vitro NASH models. Cilostazol attenuated ferroptosis of hepatocytes and phagocytosis of RBCs by THP-1 cells. Augmentation of hepatic erythrophagocytosis by activated platelets in NASH exacerbates HIO. Cilostazol prevents ectopic erythrophagocytosis, mitigating HIO-mediated ferroptosis in NASH models.
Collapse
Affiliation(s)
- Joon Beom Park
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (J.B.P.); (K.K.); (W.Y.K.)
| | - Kangeun Ko
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (J.B.P.); (K.K.); (W.Y.K.)
| | - Yang Hyun Baek
- Department of Gastroenterology, Dong-A University College of Medicine, Busan 49201, Republic of Korea;
| | - Woo Young Kwon
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (J.B.P.); (K.K.); (W.Y.K.)
| | - Sunghwan Suh
- Department of Endocrinology, Dong-A University College of Medicine, Busan 49201, Republic of Korea;
| | - Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Busan 49201, Republic of Korea;
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Hye Young Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (J.B.P.); (K.K.); (W.Y.K.)
| |
Collapse
|
5
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
6
|
Akyüz E, Saleem QH, Sari Ç, Auzmendi J, Lazarowski A. Enlightening the mechanism of ferroptosis in epileptic heart. Curr Med Chem 2023; 31:CMC-EPUB-129729. [PMID: 36815654 DOI: 10.2174/0929867330666230223103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic neurological degenerative disease with a high incidence, affecting all age groups. Refractory Epilepsy (RE) occurs in approximately 30-40% of cases with a higher risk of sudden unexpected death in epilepsy (SUDEP). Recent studies have shown that spontaneous seizures developed in epilepsy can be related to an increase in oxidative stress and reactive oxygen derivatives (ROS) production. Increasing ROS concentration causes lipid peroxidation, protein oxidation, destruction of nuclear genetic material, enzyme inhibition, and cell death by a mechanism known as "ferroptosis" (Fts). Inactivation of glutathione peroxidase 4 (GPX4) induces Fts, while oxidative stress is linked with increased intracellular free iron (Fe+2) concentration. Fts is also a non-apoptotic programmed cell death mechanism, where a hypoxia-inducible factor 1 alpha (HIF-141) dependent hypoxic stress-like condition appears to occur with accumulation of iron and cytotoxic ROS in affected cells. Assuming convulsive crises as hypoxic stress, repetitive convulsive/hypoxic stress can be an effective inducer of the "epileptic heart" (EH), which is characterized by altered autonomic function and a high risk of malignant or fatal bradycardia. We previously reported that experimental recurrent seizures induce cardiomyocyte Fts associated with SUDEP. Furthermore, several genes related to Fts and hypoxia have recently been identified in acute myocardial infarction. An emerging theme from recent studies indicates that inhibition of GPX4 through modulating expression or activities of the xCT antiporter system (SLC7A11) governs cell sensitivity to oxidative stress from ferroptosis. Furthermore, during hypoxia, an increased expression of stress transcriptional factor ATF3 can promote Fts induced by erastin in a HIF-141-dependent manner. We propose that inhibition of Fts with ROS scavengers, iron chelators, antioxidants, and transaminase inhibitors could provide a therapeutic effect in epilepsy and improve the prognosis of SUDEP risk by protecting the heart from ferroptosis.
Collapse
Affiliation(s)
- Enes Akyüz
- University of Health Sciences, Faculty of International Medicine, Department of Biophysics, Istanbul, Turkey
| | - Qamar Hakeem Saleem
- University of Health Sciences, Faculty of International Medicine, Istanbul, Turkey
| | - Çiğdem Sari
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Jerónimo Auzmendi
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Silvestri L, Pettinato M, Furiosi V, Bavuso Volpe L, Nai A, Pagani A. Managing the Dual Nature of Iron to Preserve Health. Int J Mol Sci 2023; 24:ijms24043995. [PMID: 36835406 PMCID: PMC9961779 DOI: 10.3390/ijms24043995] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Because of its peculiar redox properties, iron is an essential element in living organisms, being involved in crucial biochemical processes such as oxygen transport, energy production, DNA metabolism, and many others. However, its propensity to accept or donate electrons makes it potentially highly toxic when present in excess and inadequately buffered, as it can generate reactive oxygen species. For this reason, several mechanisms evolved to prevent both iron overload and iron deficiency. At the cellular level, iron regulatory proteins, sensors of intracellular iron levels, and post-transcriptional modifications regulate the expression and translation of genes encoding proteins that modulate the uptake, storage, utilization, and export of iron. At the systemic level, the liver controls body iron levels by producing hepcidin, a peptide hormone that reduces the amount of iron entering the bloodstream by blocking the function of ferroportin, the sole iron exporter in mammals. The regulation of hepcidin occurs through the integration of multiple signals, primarily iron, inflammation and infection, and erythropoiesis. These signals modulate hepcidin levels by accessory proteins such as the hemochromatosis proteins hemojuvelin, HFE, and transferrin receptor 2, the serine protease TMPRSS6, the proinflammatory cytokine IL6, and the erythroid regulator Erythroferrone. The deregulation of the hepcidin/ferroportin axis is the central pathogenic mechanism of diseases characterized by iron overload, such as hemochromatosis and iron-loading anemias, or by iron deficiency, such as IRIDA and anemia of inflammation. Understanding the basic mechanisms involved in the regulation of hepcidin will help in identifying new therapeutic targets to treat these disorders.
Collapse
Affiliation(s)
- Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-0226436889; Fax: +39-0226434723
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Furiosi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Letizia Bavuso Volpe
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
8
|
Abstract
The cardiovascular system requires iron to maintain its high energy demands and metabolic activity. Iron plays a critical role in oxygen transport and storage, mitochondrial function, and enzyme activity. However, excess iron is also cardiotoxic due to its ability to catalyze the formation of reactive oxygen species and promote oxidative damage. While mammalian cells have several redundant iron import mechanisms, they are equipped with a single iron-exporting protein, which makes the cardiovascular system particularly sensitive to iron overload. As a result, iron levels are tightly regulated at many levels to maintain homeostasis. Iron dysregulation ranges from iron deficiency to iron overload and is seen in many types of cardiovascular disease, including heart failure, myocardial infarction, anthracycline-induced cardiotoxicity, and Friedreich's ataxia. Recently, the use of intravenous iron therapy has been advocated in patients with heart failure and certain criteria for iron deficiency. Here, we provide an overview of systemic and cellular iron homeostasis in the context of cardiovascular physiology, iron deficiency, and iron overload in cardiovascular disease, current therapeutic strategies, and future perspectives.
Collapse
Affiliation(s)
- Konrad Teodor Sawicki
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Adam De Jesus
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
9
|
Salgar S, Bolívar BE, Flanagan JM, Anum SJ, Bouchier-Hayes L. The NLRP3 inflammasome fires up heme-induced inflammation in hemolytic conditions. Transl Res 2023; 252:34-44. [PMID: 36041706 DOI: 10.1016/j.trsl.2022.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/21/2022] [Indexed: 01/14/2023]
Abstract
Overactive inflammatory responses are central to the pathophysiology of many hemolytic conditions including sickle cell disease. Excessive hemolysis leads to elevated serum levels of heme due to saturation of heme scavenging mechanisms. Extracellular heme has been shown to activate the NLRP3 inflammasome, leading to activation of caspase-1 and release of pro-inflammatory cytokines IL-1β and IL-18. Heme also activates the non-canonical inflammasome pathway, which may contribute to NLRP3 inflammasome formation and leads to pyroptosis, a type of inflammatory cell death. Some clinical studies indicate there is a benefit to blocking the NLRP3 inflammasome pathway in patients with sickle cell disease and other hemolytic conditions. However, a thorough understanding of the mechanisms of heme-induced inflammasome activation is needed to fully leverage this pathway for clinical benefit. This review will explore the mechanisms of heme-induced NLRP3 inflammasome activation and the role of this pathway in hemolytic conditions including sickle cell disease.
Collapse
Affiliation(s)
- Suruchi Salgar
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Beatriz E Bolívar
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jonathan M Flanagan
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Shaniqua J Anum
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
10
|
Abstract
Iron is an essential micronutrient for all types of organisms; however, iron has chemical properties that can be harmful to cells. Because iron is both necessary and potentially damaging, insects have homeostatic processes that control the redox state, quantity, and location of iron in the body. These processes include uptake of iron from the diet, intracellular and extracellular iron transport, and iron storage. Early studies of iron-binding proteins in insects suggested that insects and mammals have surprisingly different mechanisms of iron homeostasis, including different primary mechanisms for exporting iron from cells and for transporting iron from one cell to another, and subsequent studies have continued to support this view. This review summarizes current knowledge about iron homeostasis in insects, compares insect and mammalian iron homeostasis mechanisms, and calls attention to key remaining knowledge gaps.
Collapse
Affiliation(s)
- Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA;
| |
Collapse
|
11
|
Ji X, Ma S, Sun X, Yu D, Song Y, Li R. Analysis of ferroptosis-associated genes in Crohn's disease based on bioinformatics. Front Med (Lausanne) 2023; 9:1058076. [PMID: 36714107 PMCID: PMC9881725 DOI: 10.3389/fmed.2022.1058076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Background Ferroptosis, a novel mode of apoptosis has recently been shown to be associated with fibrosis, tumor, cardiovascular, and other diseases. In this study, using bioinformatic analysis, we identified ferroptosis genes associated with Crohn's disease (CD) and performed biological function analysis, identified potential drug targets, and provided new directions for the future treatment of CD. Methods Differential expression analysis was performed using the GSE186582 dataset from the Gene Expression Omnibus (GEO) database. Ferroptosis-associated genes were downloaded from the FerrDB database, and overlapping genes associated with CD and ferroptosis were extracted. Then, we performed functional enrichment analysis, constructed a protein-protein interaction network (PPI), identified the correlation between hub genes and immune infiltration, performed external validation using a second and third dataset (GSE102133, GSE95095), and identified potential therapeutic agents. Finally, we validated the protein expression levels of the identified hub genes by immunohistochemical staining in the colon tissues from CD and healthy participants. Results A total of 28 ferroptosis-associated genes associated with CD were identified in our analysis, which included 22 up-regulated and 6 down-regulated genes. Gene Ontology (GO) analysis showed that these genes are essential for the apical plasma membrane and amide transport, and Metascape analysis showed that these genes mainly act on IL-4 and IL-13 signaling pathways. Five hub genes, PTGS2, IL6, IL1B, NOS2, and IDO1, were identified by a protein interaction network, and external validation of these hub genes showed statistically significant differences in expression between the CD patients and normal participants (p < 0.05), and all AUC values were greater than 0.8. Further, we predicted the top 10 drugs used to treat CD. Immune infiltration results suggest that Hub gene is related to T cells, macrophages, dendritic cells, and other immune cells. Finally, the results of immunohistochemical experiments showed that the protein expression of the hub gene was higher in CD colon tissue than in normal subjects (p < 0.05). Conclusion Bioinformatics analysis showed that ferroptosis is closely related to the development of CD, and the prediction of potential drugs provides new targets for the treatment of CD. Moreover, five hub genes identified are potentially new and effective markers for the diagnosis of CD.
Collapse
Affiliation(s)
- Xingyu Ji
- Department of Gastroenterology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China,Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, China
| | - Su Ma
- Department of Gastroenterology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China,Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xiaomei Sun
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, China,*Correspondence: Xiaomei Sun,
| | - Dan Yu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, China
| | - Ye Song
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
12
|
Chen L, Chen L, Li X, Qin L, Zhu Y, Zhang Q, Tan D, He Y, Wang YH. Transcriptomic profiling of hepatic tissues for drug metabolism genes in nonalcoholic fatty liver disease: A study of human and animals. Front Endocrinol (Lausanne) 2023; 13:1034494. [PMID: 36686439 PMCID: PMC9845619 DOI: 10.3389/fendo.2022.1034494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Background Drug metabolism genes are involved in the in vivo metabolic processing of drugs. In previous research, we found that a high-fat diet affected the transcript levels of mouse hepatic genes responsible for drug metabolism. Aims Our research intends to discover the drug metabolism genes that are dysregulated at the transcriptome level in nonalcoholic fatty liver disease (NAFLD). Methods We analyzed the transcriptome for drug metabolism genes of 35 human liver tissues obtained during laparoscopic cholecystectomy. Additionally, we imported transcriptome data from mice fed a high-fat diet in previous research and two open-access Gene Expression Omnibus (GEO) datasets (GSE63067 and GSE89632). Then, using quantitative real-time polymerase chain reaction (qRT-PCR), we cross-linked the differentially expressed genes (DEGs) in clinical and animal samples and validated the common genes. Results In this study, we identified 35 DEGs, of which 33 were up-regulated and two were down-regulated. Moreover, we found 71 DEGs (39 up- and 32 down-regulated), 276 DEGs (157 up- and 119 down-regulated), and 158 DEGs (117 up- and 41 down-regulated) in the GSE63067, GSE89632, and high-fat diet mice, respectively. Of the 35 DEGs, nine co-regulated DEGs were found in the Venn diagram (CYP20A1, CYP2U1, SLC9A6, SLC26A6, SLC31A1, SLC46A1, SLC46A3, SULT1B1, and UGT2A3). Conclusion Nine significant drug metabolism genes were identified in NAFLD. Future research should investigate the impacts of these genes on drug dose adjustment in patients with NAFLD. Clinical Trial Registration http://www.chictr.org.cn, identifier ChiCTR2100041714.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Lu Chen
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xu Li
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Lin Qin
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yan Zhu
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianru Zhang
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Daopeng Tan
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu-He Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Cell-Level Analysis Visualizing Photodynamic Therapy with Porphylipoprotein and Talaporphyrin Sodium. Int J Mol Sci 2022; 23:ijms232113140. [PMID: 36361927 PMCID: PMC9655257 DOI: 10.3390/ijms232113140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/20/2022] Open
Abstract
We revealed the difference in the mechanism of photodynamic therapy (PDT) between two photosensitizers: porphylipoprotein (PLP), which has recently attracted attention for its potential to be highly effective in treating cancer, and talaporphyrin sodium (NPe6). (1) NPe6 accumulates in lysosomes, whereas PLP is incorporated into phagosomes formed by PLP injection. (2) PDT causes NPe6 to generate reactive oxygen species, thereby producing actin filaments and stress fibers. In the case of PLP, however, reactive oxygen species generated by PDT remain in the phagosomes until the phagosomal membrane is destroyed, which delays the initiation of RhoA activation and RhoA*/ROCK generation. (4) After the disruption of the phagosomal membrane, however, the outflow of various reactive oxygen species accelerates the production of actin filaments and stress fibers, and blebbing occurs earlier than in the case of NPe6. (5) PLP increases the elastic modulus of cells without RhoA activity in the early stage. This is because phagosomes are involved in polymerizing actin filaments and pseudopodia formation. Considering the high selectivity and uptake of PLP into cancer cells, a larger effect with PDT can be expected by skillfully combining the newly discovered characteristics, such as the appearance of a strong effect at an early stage.
Collapse
|
14
|
Kim SL, Shin S, Yang SJ. Iron Homeostasis and Energy Metabolism in Obesity. Clin Nutr Res 2022; 11:316-330. [PMID: 36381472 PMCID: PMC9633967 DOI: 10.7762/cnr.2022.11.4.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Iron plays a role in energy metabolism as a component of vital enzymes and electron transport chains (ETCs) for adenosine triphosphate (ATP) synthesis. The tricarboxylic acid (TCA) cycle and oxidative phosphorylation are crucial in generating ATP in mitochondria. At the mitochondria matrix, heme and iron-sulfur clusters are synthesized. Iron-sulfur cluster is a part of the aconitase in the TCA cycle and a functional or structural component of electron transfer proteins. Heme is the prosthetic group for cytochrome c, a principal component of the respiratory ETC. Regarding fat metabolism, iron regulates mitochondrial fat oxidation and affects the thermogenesis of brown adipose tissue (BAT). Thermogenesis is a process that increases energy expenditure, and BAT is a tissue that generates heat via mitochondrial fuel oxidation. Iron deficiency may impair mitochondrial fuel oxidation by inhibiting iron-containing molecules, leading to decreased energy expenditure. Although it is expected that impaired mitochondrial fuel oxidation may be restored by iron supplementation, its underlying mechanisms have not been clearly identified. Therefore, this review summarizes the current evidence on how iron regulates energy metabolism considering the TCA cycle, oxidative phosphorylation, and thermogenesis. Additionally, we relate iron-mediated metabolic regulation to obesity and obesity-related complications.
Collapse
Affiliation(s)
- Se Lin Kim
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| | - Sunhye Shin
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| |
Collapse
|
15
|
Novakova Z, Milosevic M, Kutil Z, Ondrakova M, Havlinova B, Kasparek P, Sandoval-Acuña C, Korandova Z, Truksa J, Vrbacky M, Rohlena J, Barinka C. Generation and characterization of human U-2 OS cell lines with the CRISPR/Cas9-edited protoporphyrinogen oxidase IX gene. Sci Rep 2022; 12:17081. [PMID: 36224252 PMCID: PMC9556554 DOI: 10.1038/s41598-022-21147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
In humans, disruptions in the heme biosynthetic pathway are associated with various types of porphyrias, including variegate porphyria that results from the decreased activity of protoporphyrinogen oxidase IX (PPO; E.C.1.3.3.4), the enzyme catalyzing the penultimate step of the heme biosynthesis. Here we report the generation and characterization of human cell lines, in which PPO was inactivated using the CRISPR/Cas9 system. The PPO knock-out (PPO-KO) cell lines are viable with the normal proliferation rate and show massive accumulation of protoporphyrinogen IX, the PPO substrate. Observed low heme levels trigger a decrease in the amount of functional heme containing respiratory complexes III and IV and overall reduced oxygen consumption rates. Untargeted proteomics further revealed dysregulation of 22 cellular proteins, including strong upregulation of 5-aminolevulinic acid synthase, the major regulatory protein of the heme biosynthesis, as well as additional ten targets with unknown association to heme metabolism. Importantly, knock-in of PPO into PPO-KO cells rescued their wild-type phenotype, confirming the specificity of our model. Overall, our model system exploiting a non-erythroid human U-2 OS cell line reveals physiological consequences of the PPO ablation at the cellular level and can serve as a tool to study various aspects of dysregulated heme metabolism associated with variegate porphyria.
Collapse
Affiliation(s)
- Zora Novakova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Mirko Milosevic
- grid.448014.dLaboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic ,grid.4491.80000 0004 1937 116XFaculty of Science, Charles University, Vinicna 5, Prague, 12108 Czech Republic
| | - Zsofia Kutil
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Marketa Ondrakova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Barbora Havlinova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Petr Kasparek
- grid.418827.00000 0004 0620 870XCzech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Cristian Sandoval-Acuña
- grid.448014.dLaboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Zuzana Korandova
- grid.418925.30000 0004 0633 9419Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220 Czech Republic ,grid.4491.80000 0004 1937 116XFirst Faculty of Medicine, Charles University, Katerinska 32, Prague, 12108 Czech Republic
| | - Jaroslav Truksa
- grid.448014.dLaboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Marek Vrbacky
- grid.418925.30000 0004 0633 9419Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220 Czech Republic
| | - Jakub Rohlena
- grid.448014.dLaboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Cyril Barinka
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| |
Collapse
|
16
|
Khan AZ, Badar S, O'Callaghan KM, Zlotkin S, Roth DE. Fecal Iron Measurement in Studies of the Human Intestinal Microbiome. Curr Dev Nutr 2022; 6:nzac143. [PMID: 36475017 PMCID: PMC9718653 DOI: 10.1093/cdn/nzac143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 04/22/2024] Open
Abstract
Iron is an essential micronutrient for humans and their intestinal microbiota. Host intestinal cells and iron-dependent bacteria compete for intraluminal iron, so the composition and functions of the gut microbiota may influence iron availability. Studies of the effects of the microbiota or probiotic interventions on host iron absorption may be particularly relevant to settings with high burdens of iron deficiency and gastrointestinal infections, since inflammation reduces iron bioavailability and unabsorbed intraluminal iron may modify the composition of the microbiota. The quantification of stool iron content may serve as an indicator of the amount of intraluminal iron to which the intestinal microbiota is exposed, which is particularly relevant for studies of the effect of iron on the intestinal microbiome, where fecal samples collected for purposes of microbiome characterization can be leveraged for stool iron analysis. However, few studies are available to guide researchers in the selection and implementation of stool iron assays, particularly because cross-comparison of available methods is limited in literature. This review aims to describe the available stool iron quantification methods and highlight their potential application in studies of iron-microbiome relationships, with a focus on pediatric research. MS-based methods offer high sensitivity and precision, but the need for expensive equipment and the high per-sample and maintenance costs may limit their widespread use. Conversely, colorimetric assays offer lower cost, ease of use, and rapid turnaround times but have thus far been optimized primarily for blood-derived matrices rather than stool. Further research efforts are needed to validate and standardize methods for stool iron assessment and to determine if the incorporation of such analyses in human microbiome studies 1) yields insights into the interactions between intestinal microbiota and iron and 2) contributes to the development of interventions that mitigate iron deficiency and promote a healthy microbiome.
Collapse
Affiliation(s)
- Afreen Z Khan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Sayema Badar
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Karen M O'Callaghan
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Stanley Zlotkin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Daniel E Roth
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Mokgalaboni K, Phoswa W. Cross-link between type 2 diabetes mellitus and iron deficiency anemia. A mini-review. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Sugino Y, Uchiyama R, Shibasaki C, Kugawa F. Regulation of Iron-Ion Transporter SLC11A2 by Three Identical miRNAs. Biol Pharm Bull 2022; 45:1291-1299. [DOI: 10.1248/bpb.b22-00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuta Sugino
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| | - Reina Uchiyama
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| | - Chihiro Shibasaki
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| | - Fumihiko Kugawa
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences
| |
Collapse
|
19
|
Wang D, Wu H, Yang J, Li M, Ling C, Gao Z, Lu H, Shen H, Tang Y. Loss of SLC46A1 decreases tumor iron content in hepatocellular carcinoma. Hepatol Commun 2022; 6:2914-2924. [PMID: 35811443 PMCID: PMC9512484 DOI: 10.1002/hep4.2031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
It is interesting that high iron is an independent inducer or cofactor of hepatocellular carcinoma (HCC) while the amount of iron is decreased in the liver tumor tissues. Due to the previous findings that iron deficiency promoted HCC metastasis, it is of significance to identify the underlying mechanism of iron deficiency in HCC. The tumor iron content and expressions of iron‐metabolic molecules were observed in the primary liver cancers of rats and mice. The molecules that changed independently of iron were identified by comparing the expression profiles in the human HCC tissues and iron‐deprived HCC cells. The downstream effects of these molecules on regulating intracellular iron content were investigated in vitro and further validated in vivo. Both in primary liver cancers of rats and mice, we confirmed the decreased iron content in tumor tissues and the altered expressions of iron‐metabolic molecules, including transferrin receptor 1 (TfR1), six‐transmembrane epithelial antigen of prostate 3 (STEAP3), divalent metal transporter 1 (DMT1), SLC46A1, ferroportin, hepcidin, and ferritin. Among these, STEAP3, DMT1, and SLC46A1 were altered free of iron deficiency. However, only silence or overexpression of SLC46A1 controlled the intracellular iron content of HCC cells. The interventions of STEAP3 or DMT1 could not change the intracellular iron content. Lentivirus‐mediated regain of SLC46A1 expression restored the iron content in orthotopically implanted tumors, with correspondingly changes in the iron‐metabolic molecules as iron increasing. Conclusion: Taken together, these results suggest that the loss of SLC46A1 expression leads to iron deficiency in liver tumor tissues, which would be an effective target to manage iron homeostasis in HCC.
Collapse
Affiliation(s)
- Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Huiwen Wu
- Department of Nutrition, Second Military Medical University, Shanghai, China.,Department of Nutrition, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Yang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zelong Gao
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Hongtao Lu
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Yuxiao Tang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Tsuchiya H. Iron-Induced Hepatocarcinogenesis—Preventive Effects of Nutrients. Front Oncol 2022; 12:940552. [PMID: 35832553 PMCID: PMC9271801 DOI: 10.3389/fonc.2022.940552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 01/10/2023] Open
Abstract
The liver is a primary organ that stores body iron, and plays a central role in the regulation of iron homeostasis. Hepatic iron overload (HIO) is a prevalent feature among patients with chronic liver diseases (CLDs), including alcoholic/nonalcoholic liver diseases and hepatitis C. HIO is suggested to promote the progression toward hepatocellular carcinoma because of the pro-oxidant nature of iron. Iron metabolism is tightly regulated by various factors, such as hepcidin and ferroportin, in healthy individuals to protect the liver from such deteriorative effects. However, their intrinsic expressions or functions are frequently compromised in patients with HIO. Thus, various nutrients have been reported to regulate hepatic iron metabolism and protect the liver from iron-induced damage. These nutrients are beneficial in HIO-associated CLD treatment and eventually prevent iron-mediated hepatocarcinogenesis. This mini-review aimed to discuss the mechanisms and hepatocarcinogenic risk of HIO in patients with CLDs. Moreover, nutrients that hold the potential to prevent iron-induced hepatocarcinogenesis are summarized.
Collapse
|
21
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
22
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
23
|
Balusikova K, Dostalikova-Cimburova M, Tacheci I, Kovar J. Expression profiles of iron transport molecules along the duodenum. J Cell Mol Med 2022; 26:2995-3004. [PMID: 35445529 PMCID: PMC9097835 DOI: 10.1111/jcmm.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Duodenal biopsies are considered a suitable source of enterocytes for studies of dietary iron absorption. However, the expression level of molecules involved in iron absorption may vary along the length of duodenum. We aimed to determine whether the expression of molecules involved in the absorption of heme and non-heme iron differs depending on the location in the duodenum. Analysis was performed with samples of duodenal biopsies from 10 individuals with normal iron metabolism. Samples were collected at the following locations: (a) immediately post-bulbar, (b) 1-2 cm below the papilla of Vater and (c) in the distal duodenum. The gene expression was analyzed at the mRNA and protein level using real-time PCR and Western blot analysis. At the mRNA level, significantly different expression of HCP1, DMT1, ferroportin and Zip8 was found at individual positions of duodenum. Position-dependent expression of other molecules, especially of FLVCR1, HMOX1 and HMOX2 was also detected but with no statistical significances. At the protein level, we observed statistically significantly decreasing expression of transporters HCP1, FLVCR1, DMT1, ferroportin, Zip14 and Zip8 with advancing positions of duodenum. Our results are consistent with a gradient of diminishing iron absorption along the duodenum for both heme and non-heme iron.
Collapse
Affiliation(s)
- Kamila Balusikova
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Dostalikova-Cimburova
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ilja Tacheci
- 2nd Department of Internal Medicine - Gastroenterology, University Hospital and Charles University in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Kovar
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
24
|
Iron in Porphyrias: Friend or Foe? Diagnostics (Basel) 2022; 12:diagnostics12020272. [PMID: 35204362 PMCID: PMC8870839 DOI: 10.3390/diagnostics12020272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Iron is a trace element that is important for many vital processes, including oxygen transport, oxidative metabolism, cellular proliferation, and catalytic reactions. Iron supports these functions mainly as part of the heme molecule. Heme synthesis is an eight-step process which, when defective at the level of one of the eight enzymes involved, can cause the development of a group of diseases, either inherited or acquired, called porphyrias. Despite the strict link between iron and heme, the role of iron in the different types of porphyrias, particularly as a risk factor for disease development/progression or as a potential therapeutic target or molecule, is still being debated, since contrasting results have emerged from clinical observations, in vitro studies and animal models. In this review we aim to deepen such aspects by drawing attention to the current evidence on the role of iron in porphyrias and its potential implication. Testing for iron status and its metabolic pathways through blood tests, imaging techniques or genetic studies on patients affected by porphyrias can provide additional diagnostic and prognostic value to the clinical care, leading to a more tailored and effective management.
Collapse
|
25
|
Zeidan RS, Han SM, Leeuwenburgh C, Xiao R. Iron homeostasis and organismal aging. Ageing Res Rev 2021; 72:101510. [PMID: 34767974 DOI: 10.1016/j.arr.2021.101510] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Iron is indispensable for normal body functions across species because of its critical roles in red blood cell function and many essential proteins and enzymes required for numerous physiological processes. Regulation of iron homeostasis is an intricate process involving multiple modulators at the systemic, cellular, and molecular levels. Interestingly, emerging evidence has demonstrated that many modulators of iron homeostasis contribute to organismal aging and longevity. On the other hand, the age-related dysregulation of iron homeostasis is often associated with multiple age-related pathologies including bone resorption and neurodegenerative diseases such as Alzheimer's disease. Thus, a thorough understanding on the interconnections between systemic and cellular iron balance and organismal aging may help decipher the etiologies of multiple age-related diseases, which could ultimately lead to developing therapeutic strategies to delay aging and treat various age-related diseases. Here we present the current understanding on the mechanisms of iron homeostasis. We also discuss the impacts of aging on iron homeostatic processes and how dysregulated iron metabolism may affect aging and organismal longevity.
Collapse
|
26
|
Trzeciak A, Wang YT, Perry JSA. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metab 2021; 33:2126-2141. [PMID: 34433074 PMCID: PMC8568659 DOI: 10.1016/j.cmet.2021.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Clearance of apoptotic cells, or "efferocytosis," is essential for diverse processes including embryonic development, tissue turnover, organ regeneration, and immune cell development. The human body is estimated to remove approximately 1% of its body mass via apoptotic cell clearance daily. This poses several intriguing cell metabolism problems. For instance, phagocytes such as macrophages must induce or suppress metabolic pathways to find, engulf, and digest apoptotic cells. Then, phagocytes must manage the potentially burdensome biomass of the engulfed apoptotic cell. Finally, phagocytes reside in complex tissue architectures that vary in nutrient availability, the types of dying cells or debris that require clearance, and the neighboring cells they interact with. Here, we review advances in our understanding of these three key areas of phagocyte metabolism. We end by proposing a model of efferocytosis that integrates recent findings and establishes a new paradigm for testing how efferocytosis prevents chronic inflammatory disease and autoimmunity.
Collapse
Affiliation(s)
- Alissa Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Justin Shaun Arnold Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 417 E 68th Street, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 417 E 68th Street, New York, NY 10065, USA.
| |
Collapse
|
27
|
Zago G, Saavedra PHV, Keshari KR, Perry JSA. Immunometabolism of Tissue-Resident Macrophages - An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Front Immunol 2021; 12:665782. [PMID: 34025667 PMCID: PMC8138590 DOI: 10.3389/fimmu.2021.665782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue-resident macrophages exist in unique environments, or niches, that inform their identity and function. There is an emerging body of literature suggesting that the qualities of this environment, such as the types of cells and debris they eat, the intercellular interactions they form, and the length of time spent in residence, collectively what we call habitare, directly inform their metabolic state. In turn, a tissue-resident macrophage’s metabolic state can inform their function, including whether they resolve inflammation and protect the host from excessive perturbations of homeostasis. In this review, we summarize recent work that seeks to understand the metabolic requirements for tissue-resident macrophage identity and maintenance, for how they respond to inflammatory challenges, and for how they perform homeostatic functions or resolve inflammatory insults. We end with a discussion of the emerging technologies that are enabling, or will enable, in situ study of tissue-resident macrophage metabolism.
Collapse
Affiliation(s)
- Giulia Zago
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Pedro H V Saavedra
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
28
|
Seyoum Y, Baye K, Humblot C. Iron homeostasis in host and gut bacteria - a complex interrelationship. Gut Microbes 2021; 13:1-19. [PMID: 33541211 PMCID: PMC7872071 DOI: 10.1080/19490976.2021.1874855] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 02/08/2023] Open
Abstract
Iron deficiency is the most frequent nutritional deficiency in the world with an estimated 1.4 billion people affected. The usual way to fight iron deficiency is iron fortification, but this approach is not always effective and can have undesirable side effects including an increase in the growth and virulence of gut bacterial pathogens responsible for diarrhea and gut inflammation. Iron is mainly absorbed in the duodenum and is tightly regulated in mammals. Unabsorbed iron enters the colonic lumen where many microorganisms, referred to as gut microbiota, reside. Iron is essential for these bacteria, and its availability consequently affects this microbial ecosystem. The aim of this review is to provide further insights into the complex relationship between iron and gut microbiota. Given that overcoming anemia caused by iron deficiency is still a challenge today, gut microbiota could help identify more efficient ways to tackle this public health problem.
Collapse
Affiliation(s)
- Yohannes Seyoum
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kaleab Baye
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| |
Collapse
|
29
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
30
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
31
|
Li H, Wang D, Wu H, Shen H, Lv D, Zhang Y, Lu H, Yang J, Tang Y, Li M. SLC46A1 contributes to hepatic iron metabolism by importing heme in hepatocytes. Metabolism 2020; 110:154306. [PMID: 32621820 DOI: 10.1016/j.metabol.2020.154306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Iron is finely regulated due to its vital roles in organisms and the peroxidase reactivity if excess. Solute Carrier Family 46 Member 1 (SLC46A1), also named PCFT or HCP1, is the main importer of heme‑iron in the intestine, but has a high abundance in the liver. Since the liver has a central role in iron homeostasis, whether SLC46A1 regulates hepatic iron metabolism is of interest to be identified. METHODS The recombinant adeno-associated virus vectors were used to hepatic-specifically inhibit SLC46A1 expression to observe its effects on hepatic iron metabolism. Then the abilities of SLC46A1 in importing heme and folate, and consequent alterations of iron content in hepatocytes were determined. Furthermore, effects of iron on SLC46A1 expression were investigated both in vitro and in vivo. RESULTS The hepatocyte-specific inhibition of SLC46A1 decreases iron content in the liver and increases iron content in serum. Expressions of iron-related molecules, transferrin receptor 1, hepcidin and ferroportin, are correspondingly altered. Interestingly, free heme concentration in serum is increased, indicating a decreased import of heme by the liver. In hepatocytes, SLC46A1 is capable of importing hemin, increasing intracellular iron content. The import of hemin by SLC46A1 is unaffected by its other substrate, folate. Instead, hemin treatment decreases SLC46A1 expression, reducing the import of folate. In addition, SLC46A1 itself shows to be iron-responsive both in vivo and in vitro, making it available for regulating iron metabolism. CONCLUSION The results elucidate that SLC46A1 regulates iron metabolism in the liver through a folate-independent manner of importing heme. The iron-responsive characters of SLC46A1 give us a new clue to link heme or iron overload with folate deficiency diseases.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China; Faculty of Pharmacy, Shanghai University, Shanghai, China
| | - Huiwen Wu
- Department of Nutrition, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shen
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Diya Lv
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yinyin Zhang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Hongtao Lu
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Jianxin Yang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Yuxiao Tang
- Department of Nutrition, Second Military Medical University, Shanghai, China.
| | - Min Li
- Department of Nutrition, Second Military Medical University, Shanghai, China; Institute of International Medical Science and Technology, Sanda University, Shanghai, China.
| |
Collapse
|
32
|
Grubić Kezele T, Ćurko-Cofek B. Age-Related Changes and Sex-Related Differences in Brain Iron Metabolism. Nutrients 2020; 12:E2601. [PMID: 32867052 PMCID: PMC7551829 DOI: 10.3390/nu12092601] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential element that participates in numerous cellular processes. Any disruption of iron homeostasis leads to either iron deficiency or iron overload, which can be detrimental for humans' health, especially in elderly. Each of these changes contributes to the faster development of many neurological disorders or stimulates progression of already present diseases. Age-related cellular and molecular alterations in iron metabolism can also lead to iron dyshomeostasis and deposition. Iron deposits can contribute to the development of inflammation, abnormal protein aggregation, and degeneration in the central nervous system (CNS), leading to the progressive decline in cognitive processes, contributing to pathophysiology of stroke and dysfunctions of body metabolism. Besides, since iron plays an important role in both neuroprotection and neurodegeneration, dietary iron homeostasis should be considered with caution. Recently, there has been increased interest in sex-related differences in iron metabolism and iron homeostasis. These differences have not yet been fully elucidated. In this review we will discuss the latest discoveries in iron metabolism, age-related changes, along with the sex differences in iron content in serum and brain, within the healthy aging population and in neurological disorders such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke.
Collapse
Affiliation(s)
- Tanja Grubić Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
33
|
Briguglio M, Hrelia S, Malaguti M, Lombardi G, Riso P, Porrini M, Perazzo P, Banfi G. The Central Role of Iron in Human Nutrition: From Folk to Contemporary Medicine. Nutrients 2020; 12:nu12061761. [PMID: 32545511 PMCID: PMC7353323 DOI: 10.3390/nu12061761] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is a fundamental element in human history, from the dawn of civilization to contemporary days. The ancients used the metal to shape tools, to forge weapons, and even as a dietary supplement. This last indication has been handed down until today, when martial therapy is considered fundamental to correct deficiency states of anemia. The improvement of the martial status is mainly targeted with dietary supplements that often couple diverse co-factors, but other methods are available, such as parenteral preparations, dietary interventions, or real-world approaches. The oral absorption of this metal occurs in the duodenum and is highly dependent upon its oxidation state, with many absorption influencers possibly interfering with the intestinal uptake. Bone marrow and spleen represent the initial and ultimate step of iron metabolism, respectively, and the most part of body iron circulates bound to specific proteins and mainly serves to synthesize hemoglobin for new red blood cells. Whatever the martial status is, today’s knowledge about iron biochemistry allows us to embrace exceedingly personalized interventions, which however owe their success to the mythical and historical events that always accompanied this metal.
Collapse
Affiliation(s)
- Matteo Briguglio
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, 20161 Milan, Italy;
- Correspondence:
| | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (S.H.); (M.M.)
| | - Marco Malaguti
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (S.H.); (M.M.)
| | - Giovanni Lombardi
- IRCCS Orthopedic Institute Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, 20161 Milan, Italy;
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, University of Milan, 20133 Milan, Italy; (P.R.); (M.P.)
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, University of Milan, 20133 Milan, Italy; (P.R.); (M.P.)
| | - Paolo Perazzo
- IRCCS Orthopedic Institute Galeazzi, Postoperative Intensive Care Unit & Anesthesia, 20161 Milan, Italy;
| | - Giuseppe Banfi
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, 20161 Milan, Italy;
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
34
|
Abstract
Iron deficiency or overload poses an increasingly complex issue in cardiovascular disease, especially heart failure. The potential benefits and side effects of iron supplementation are still a matter of concern, even though current guidelines suggest therapeutic management of iron deficiency. In this review, we sought to examine the iron metabolism and to identify the rationale behind iron supplementation and iron chelation. Cardiovascular disease is increasingly linked with iron dysmetabolism, with an increased proportion of heart failure patients being affected by decreased plasma iron levels and in turn, by the decreased quality of life. Multiple studies have concluded on a benefit of iron administration, even if just for symptomatic relief. However, new studies field evidence for negative effects of dysregulated non-bound iron and its reactive oxygen species production, with concern to heart diseases. The molecular targets of iron usage, such as the mitochondria, are prone to deleterious effects of the polyvalent metal, added by the scarcely described processes of iron elimination. Iron supplementation and iron chelation show promise of therapeutic benefit in heart failure, with the extent and mechanisms of both prospects not being entirely understood. It may be that a state of decreased systemic and increased mitochondrial iron levels proves to be a useful frame for future advancements in understanding the interconnection of heart failure and iron metabolism.
Collapse
|
35
|
Zhang J, Hamza I. Zebrafish as a model system to delineate the role of heme and iron metabolism during erythropoiesis. Mol Genet Metab 2019; 128:204-212. [PMID: 30626549 PMCID: PMC6591114 DOI: 10.1016/j.ymgme.2018.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/17/2022]
Abstract
Coordination of iron acquisition and heme synthesis is required for effective erythropoiesis. The small teleost zebrafish (Danio rerio) is an ideal vertebrate animal model to replicate various aspects of human physiology and provides an efficient and cost-effective way to model human pathophysiology. Importantly, zebrafish erythropoiesis largely resembles mammalian erythropoiesis. Gene discovery by large-scale forward mutagenesis screening has identified key components in heme and iron metabolism. Reverse genetic screens, using morpholino-knockdown and CRISPR/Cas9, coupled with the genetic tractability of the developing embryo have further accelerated functional studies. Ultimately, the ex utero development of zebrafish embryos combined with their transparency and developmental plasticity could provide a deeper understanding of the role of iron and heme metabolism during early vertebrate embryonic development.
Collapse
Affiliation(s)
- Jianbing Zhang
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
36
|
Abstract
Iron is an essential element that is indispensable for life. The delicate physiological body iron balance is maintained by both systemic and cellular regulatory mechanisms. The iron-regulatory hormone hepcidin assures maintenance of adequate systemic iron levels and is regulated by circulating and stored iron levels, inflammation and erythropoiesis. The kidney has an important role in preventing iron loss from the body by means of reabsorption. Cellular iron levels are dependent on iron import, storage, utilization and export, which are mainly regulated by the iron response element-iron regulatory protein (IRE-IRP) system. In the kidney, iron transport mechanisms independent of the IRE-IRP system have been identified, suggesting additional mechanisms for iron handling in this organ. Yet, knowledge gaps on renal iron handling remain in terms of redundancy in transport mechanisms, the roles of the different tubular segments and related regulatory processes. Disturbances in cellular and systemic iron balance are recognized as causes and consequences of kidney injury. Consequently, iron metabolism has become a focus for novel therapeutic interventions for acute kidney injury and chronic kidney disease, which has fuelled interest in the molecular mechanisms of renal iron handling and renal injury, as well as the complex dynamics between systemic and local cellular iron regulation.
Collapse
|
37
|
Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: The mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med 2019; 133:88-100. [PMID: 30092350 PMCID: PMC6363905 DOI: 10.1016/j.freeradbiomed.2018.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/02/2023]
Abstract
Heme is an essential cofactor and signaling molecule required for virtually all aerobic life. However, excess heme is cytotoxic. Therefore, heme must be safely transported and trafficked from the site of synthesis in the mitochondria or uptake at the cell surface, to hemoproteins in most subcellular compartments. While heme synthesis and degradation are relatively well characterized, little is known about how heme is trafficked and transported throughout the cell. Herein, we review eukaryotic heme transport, trafficking, and mobilization, with a focus on factors that regulate bioavailable heme. We also highlight the role of gasotransmitters and small molecules in heme mobilization and bioavailability, and heme trafficking at the host-pathogen interface.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Courtney M Moore
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - David A Hanna
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Amit R Reddi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Parker Petit Institute for Bioengineering & Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
38
|
Gomes AC, Moreira AC, Mesquita G, Gomes MS. Modulation of Iron Metabolism in Response to Infection: Twists for All Tastes. Pharmaceuticals (Basel) 2018; 11:ph11030084. [PMID: 30200471 PMCID: PMC6161156 DOI: 10.3390/ph11030084] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential nutrient for almost all living organisms, but is not easily made available. Hosts and pathogens engage in a fight for the metal during an infection, leading to major alterations in the host’s iron metabolism. Important pathological consequences can emerge from the mentioned interaction, including anemia. Several recent reports have highlighted the alterations in iron metabolism caused by different types of infection, and several possible therapeutic strategies emerge, based on the targeting of the host’s iron metabolism. Here, we review the most recent literature on iron metabolism alterations that are induced by infection, the consequent development of anemia, and the potential therapeutic approaches to modulate iron metabolism in order to correct iron-related pathologies and control the ongoing infection.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana C Moreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Gonçalo Mesquita
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Salomé Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
39
|
Nakatani S, Nakatani A, Ishimura E, Toi N, Tsuda A, Mori K, Emoto M, Hirayama Y, Saito A, Inaba M. Urinary Iron Excretion is Associated with Urinary Full-Length Megalin and Renal Oxidative Stress in Chronic Kidney Disease. Kidney Blood Press Res 2018; 43:458-470. [PMID: 29590662 DOI: 10.1159/000488470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Megalin mediates the uptake of glomerular-filtered iron in the proximal tubules. Urinary full length megalin (C-megalin) excretion has been found to be increased in association with megalin-mediated metabolic load to the endo-lysosomal system in proximal tubular epithelial cells (PTECs) of residual nephrons. In the present study, we investigated the association between urinary iron and C-megalin in chronic kidney disease (CKD) patients, and the possible harmful effect of iron in renal tubules. METHODS Urinary levels of iron and C-megalin were measured in 63 CKD patients using automatic absorption spectrometry and a recently-established sandwich ELISA, respectively. RESULTS Although both urinary C-megalin and urinary total protein levels were correlated with urinary iron (C-megalin: ρ = 0.574, p <0.001; total protein: ρ = 0.500, p <0.001, respectively), urinary C-megalin alone emerged as an independent factor positively associated with urinary iron (β = 0.520, p <0.001) (R2 = 0.75, p <0.001). Furthermore, urinary iron was significantly and positively associated with urinary 8-hydroxydeoxyguanosine, an oxidative stress marker, while no association with other markers of renal tubular injury, i.e., β2-microglobulin and N-acetyl-β-D-glucosaminidase, was noted. CONCLUSIONS Our findings suggest that renal iron handling may be associated with megalin-mediated endo-lysosomal metabolic load in PTECs of residual nephrons and oxidative stress in renal tubules.
Collapse
Affiliation(s)
- Shinya Nakatani
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Nakatani
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Eiji Ishimura
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Norikazu Toi
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshiaki Hirayama
- Reagent Research and Development Department, Denka Seiken Co., Ltd., Gosen, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
40
|
Effects of an Acute Exercise Bout on Serum Hepcidin Levels. Nutrients 2018; 10:nu10020209. [PMID: 29443922 PMCID: PMC5852785 DOI: 10.3390/nu10020209] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/30/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023] Open
Abstract
Iron deficiency is a frequent and multifactorial disorder in the career of athletes, particularly in females. Exercise-induced disturbances in iron homeostasis produce deleterious effects on performance and adaptation to training; thus, the identification of strategies that restore or maintain iron homeostasis in athletes is required. Hepcidin is a liver-derived hormone that degrades the ferroportin transport channel, thus reducing the ability of macrophages to recycle damaged iron, and decreasing iron availability. Although it has been suggested that the circulating fraction of hepcidin increases during early post-exercise recovery (~3 h), it remains unknown how an acute exercise bout may modify the circulating expression of hepcidin. Therefore, the current review aims to determine the post-exercise expression of serum hepcidin in response to a single session of exercise. The review was carried out in the Dialnet, Elsevier, Medline, Pubmed, Scielo and SPORTDiscus databases, using hepcidin (and “exercise” or “sport” or “physical activity”) as a strategy of search. A total of 19 articles were included in the review after the application of the inclusion/exclusion criteria. This search found that a single session of endurance exercise (intervallic or continuous) at moderate or vigorous intensity (60–90% VO2peak) stimulates an increase in the circulating levels of hepcidin between 0 h and 6 h after the end of the exercise bout, peaking at ~3 h post-exercise. The magnitude of the response of hepcidin to exercise seems to be dependent on the pre-exercise status of iron (ferritin) and inflammation (IL-6). Moreover, oxygen disturbances and the activation of a hypoxia-induced factor during or after exercise may stimulate a reduction of hepcidin expression. Meanwhile, cranberry flavonoids supplementation promotes an anti-oxidant effect that may facilitate the post-exercise expression of hepcidin. Further studies are required to explore the effect of resistance exercise on hepcidin expression.
Collapse
|
41
|
Ambachew S, Biadgo B. Hepcidin in Iron Homeostasis: Diagnostic and Therapeutic Implications in Type 2 Diabetes Mellitus Patients. Acta Haematol 2017; 138:183-193. [PMID: 29136618 DOI: 10.1159/000481391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
The prevalence of type 2 diabetes is increasing in epidemic proportions worldwide. Evidence suggests body iron overload is frequently linked and observed in patients with type 2 diabetes. Body iron metabolism is based on iron conservation and recycling by which only a part of the daily need is replaced by duodenal absorption. The principal liver-produced peptide called hepcidin plays a fundamental role in iron metabolism. It directly binds to ferroportin, the sole iron exporter, resulting in the internalization and degradation of ferroportin. However, inappropriate production of hepcidin has been shown to play a role in the pathogenesis of type 2 diabetes mellitus and its complications, based on the regulation and expression in iron-abundant cells. Underexpression of hepcidin results in body iron overload, which triggers the production of reactive oxygen species simultaneously thought to play a major role in diabetes pathogenesis mediated both by β-cell failure and insulin resistance. Increased hepcidin expression results in increased intracellular sequestration of iron, and is associated with the complications of type 2 diabetes. Besides, hepcidin concentrations have been linked to inflammatory cytokines, matriptase 2, and chronic hepatitis C infection, which have in turn been reported to be associated with diabetes by several approaches. Either hepcidin-targeted therapy alone or as adjunctive therapy with phlebotomy, iron chelators, or dietary iron restriction may be able to alter iron parameters in diabetic patients. Therefore, measuring hepcidin may improve differential diagnosis and the monitoring of disorders of iron metabolism.
Collapse
Affiliation(s)
- Sintayehu Ambachew
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | |
Collapse
|
42
|
Roth-Walter F, Pacios LF, Bianchini R, Jensen-Jarolim E. Linking iron-deficiency with allergy: role of molecular allergens and the microbiome. Metallomics 2017; 9:1676-1692. [PMID: 29120476 DOI: 10.1039/c7mt00241f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atopic individuals tend to develop a Th2 dominant immune response, resulting in hyperresponsiveness to harmless antigens, termed allergens. In the last decade, epidemiological studies have emerged that connected allergy with a deficient iron-status. Immune activation under iron-deficient conditions results in the expansion of Th2-, but not Th1 cells, can induce class-switching in B-cells and hampers the proper activation of M2, but not M1 macrophages. Moreover, many allergens, in particular with the lipocalin and lipocalin-like folds, seem to be capable of binding iron indirectly via siderophores harboring catechol moieties. The resulting locally restricted iron-deficiency may then lead during immune activation to the generation of Th2-cells and thus prepare for allergic sensitization. Moreover, iron-chelators seem to also influence clinical reactivity: mast cells accumulate iron before degranulation and seem to respond differently depending on the type of the encountered siderophore. Whereas deferoxamine triggers degranulation of connective tissue-type mast cells, catechol-based siderophores reduce activation and degranulation and improve clinical symptoms. Considering the complex interplay of iron, siderophores and immune molecules, it remains to be determined whether iron-deficiencies are the cause or the result of allergy.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Rodolfo Bianchini
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
| | - Erika Jensen-Jarolim
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria. and Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Khurana M, Fung EB, Vichinsky EP, Theil EC. Dietary nonheme iron is equally bioavailable from ferritin or ferrous sulfate in thalassemia intermedia. Pediatr Hematol Oncol 2017; 34:455-467. [PMID: 29232169 DOI: 10.1080/08880018.2017.1395935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
UNLABELLED Transfusion-independent patients with thalassemia intermedia (TI) develop fatal iron overload from excessive iron absorption triggered by ineffective erythropoiesis. More information about iron pharmacokinetics and nonheme, dietary iron absorption in such patients is needed to optimize management. To obtain more information, different forms of supplemental nonheme iron sources (ferritin and ferrous sulfate) were compared in 4 TI (hemoglobin <9 g/dL) and 6 control (hemoglobin 12-16 g/dL) patients. Serial serum iron concentrations were measured during the 24 hours following consumption of 1 mg/kg of elemental iron as ferritin or ferrous sulfate. Serum iron concentrations were also measured for one TI patient and one control patient 2 hours after the ingestion of 2 mg/kg of dietary iron in ferritin or ferrous sulfate. Maximum serum iron concentrations were observed 4 hours after the consumption of either dietary iron source. However, the serum iron values were unchanged for either dietary iron source, even at the higher doses of consumed iron. Thus, the bioavailability of dietary iron, either as ferritin or ferrous sulfate, was equivalent in both groups of patients. The pilot data support ferritin as an alternative dietary iron supplement to ferrous sulfate. ABBREVIATIONS CRP C-reactive protein; Hb hemoglobin; IDA iron-deficient anemia; ICP inductively coupled plasma; IE ineffective erythropoiesis; SCD sickle cell disease; sTf transferrin saturation; TI thalassemia intermedia; TIBC total iron binding capacity; TM thalassemia major; Tf transferrin.
Collapse
Affiliation(s)
- Monica Khurana
- a Department of Hematology/Oncology , UCSF Benioff Children's Hospital Oakland , Oakland , USA.,b Department of Hematology/Oncology , Children's Hospital Oakland Research Institute , Oakland , USA.,c Department of Hematology/Oncology , Riley Hospital for Children at Indiana University Health , Indianapolis , USA
| | - Ellen B Fung
- a Department of Hematology/Oncology , UCSF Benioff Children's Hospital Oakland , Oakland , USA.,b Department of Hematology/Oncology , Children's Hospital Oakland Research Institute , Oakland , USA
| | - Elliott P Vichinsky
- a Department of Hematology/Oncology , UCSF Benioff Children's Hospital Oakland , Oakland , USA.,b Department of Hematology/Oncology , Children's Hospital Oakland Research Institute , Oakland , USA
| | - Elizabeth C Theil
- b Department of Hematology/Oncology , Children's Hospital Oakland Research Institute , Oakland , USA
| |
Collapse
|
44
|
Okazaki Y, Glass J. Protoporphyrin IX regulates peripheral benzodiazepine receptor associated protein 7 (PAP7) and divalent metal transporter 1 (DMT1) in K562 cells. Biochem Biophys Rep 2017; 10:26-31. [PMID: 28955733 PMCID: PMC5614651 DOI: 10.1016/j.bbrep.2017.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/17/2017] [Accepted: 02/25/2017] [Indexed: 11/28/2022] Open
Abstract
Background Protoporphyrin IX (PP IX), the immediate precursor to heme, combines with ferrous iron to make this product. The effects of exogenous PP IX on iron metabolism remain to be elucidated. Peripheral-type benzodiazepine receptor (PBR) is implicated in the transport of coproporphyrinogen into the mitochondria for conversion to PP IX. We have demonstrated that PBR-Associated Protein 7 (PAP7) bound to the Iron Responsive Element (IRE) isoform of divalent metal transporter 1 (DMT1). PP IX and PAP7 are ligands for PBR, thus, we hypothesized that PAP7 interact with PP IX via PBR. Methods We have examined in K562 cells, which can be induced to undergo erythroid differentiation by PP IX and hemin, the effects of PP IX on the expression of PAP7 and other proteins involved in cellular iron metabolism, transferrin receptor 1 (TfR1), DMT1, ferritin heavy chain (FTH), c-Myc and C/EBPα by western blot and quantitative real time PCR analyses. Results PP IX significantly decreased mRNA levels of DMT1 (IRE) and (non-IRE) from 4 h. PP IX markedly decreased protein levels of C/EBPα, PAP7 and DMT1. In contrast, hemin, which like PP IX also induces K562 cell differentiation, had no effect on PAP7 or DMT1 expression. Conclusion We hypothesize that PP IX binds to PBR displacing PAP7 protein, which is then degraded, decreasing the interaction of PAP7 with DMT1 (IRE) and resulting in increased turnover of DMT1. General significance These results suggest that exogenous PP IX disrupts iron metabolism by decreasing the protein expression levels of PAP7, DMT1 and C/EBPα. Protoporphyrin IX (PP IX) decreased protein levels of PAP7 and DMT1 in K562. PP IX decreased mRNA levels of DMT1 (IRE) and (non-IRE) isoforms in K562. PP IX decreased protein level of C/EBPα, which transcribes DMT1 mRNA, in K562.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Feist-Weiller Cancer Center and the Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Jonathan Glass
- Feist-Weiller Cancer Center and the Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| |
Collapse
|
45
|
Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption. PLoS One 2017; 12:e0181117. [PMID: 28704474 PMCID: PMC5514692 DOI: 10.1371/journal.pone.0181117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/25/2017] [Indexed: 12/22/2022] Open
Abstract
Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.
Collapse
|
46
|
Abstract
There are numerous blood-based biomarkers for assessing iron stores, but all come with certain limitations. Hepcidin is a hormone primarily produced in the liver that has been proposed as the 'master regulator' of dietary uptake and iron metabolism, and has enormous potential to provide a 'real time' indicator of body iron levels. In this Minireview, the biochemical function of hepcidin in regulating iron levels will be discussed, with a specific focus on how hepcidin can aid in the assessment of iron stores and clinical diagnosis of iron deficiency, iron deficiency anaemia and other iron-related disorders. The role hepcidin itself plays in diseases of iron metabolism will be examined, and current efforts to translate hepcidin assays into the clinic will be critically appraised. Potential limitations of hepcidin as a marker of iron need will also be addressed, as well as the development of new therapies that directly target the hormone that sits atop the hierarchy of systemic iron metabolism.
Collapse
Affiliation(s)
- Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
47
|
Abstract
Iron is an essential metal involved in several major cellular processes required to maintain life. Because of iron's ability to cause oxidative damage, its transport, metabolism, and storage is strictly controlled in the body, especially in the small intestine, liver, and kidney. Iron plays a major role in acute kidney injury and has been a target for therapeutic intervention. However, the therapies that have been effective in animal models of acute kidney injury have not been successful in human beings. Targeting iron trafficking via ferritin, ferroportin, or hepcidin may offer new insights. This review focuses on the biology of iron, particularly in the kidney, and its implications in acute kidney injury.
Collapse
Affiliation(s)
- Vyvyca J Walker
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; Birmingham Veterans Administration Medical Center, Birmingham, AL.
| |
Collapse
|
48
|
Kizilgun M, Takci S, Erkekoglu P, Asci A, Balci A, Yigit S, Kocer-Gumusel B. Copper, zinc and iron levels in premature infants following red blood cell transfusion. J Trace Elem Med Biol 2016; 38:126-130. [PMID: 27318531 DOI: 10.1016/j.jtemb.2016.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate effect of erythrocyte suspension (ES) transfusion on Cu, Zn, and Fe levels. It was conducted on 53 premature infants who were admitted to Hacettepe Hospital and received EST for first time. Blood samples were drawn before and 96h after ES transfusion to determine Cu, Zn, and Fe levels in plasma and/or erythrocytes. The mean plasma Cu levels were 99±3μg/dl and 113±3μg/dl; Zn levels were 105±2μg/dl and 115±23μg/dl; mean plasma Fe level was 58.1±19.4 and 75.2±25.4μg/dl and mean erythrocyte Fe level was 4182±2314μg/ml and 7009±5228μg/ml, before and after ES transfusion. The differences between before and after ES transfusion in Cu, Zn and Fe levels were significant. Correlation between plasma and erythrocyte Fe levels was significant both before and after ES transfusion. Though Fe overload is a major cause of morbidity/mortality after ES transfusion, alterations in trace elements should also be considered when transfusing blood to infants and children.
Collapse
Affiliation(s)
- Murat Kizilgun
- Department of Biochemistry, Diskapi Children's Health and Diseases, Hematology, Oncology Training and Research Hospital, Ankara, Turkey
| | - Sahin Takci
- Hacettepe University İhsan Doğramacı Childrens' Hospital, Department of Neonatology, 06100 Ankara, Turkey
| | - Pinar Erkekoglu
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, 06100 Ankara, Turkey
| | - Ali Asci
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, 06100 Ankara, Turkey; Atatürk University, Faculty of Pharmacy, Department of Toxicology, Erzurum, Turkey
| | - Aylin Balci
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, 06100 Ankara, Turkey
| | - Sule Yigit
- Hacettepe University İhsan Doğramacı Childrens' Hospital, Department of Neonatology, 06100 Ankara, Turkey
| | - Belma Kocer-Gumusel
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, 06100 Ankara, Turkey.
| |
Collapse
|
49
|
Best CM, Pressman EK, Cao C, Cooper E, Guillet R, Yost OL, Galati J, Kent TR, O'Brien KO. Maternal iron status during pregnancy compared with neonatal iron status better predicts placental iron transporter expression in humans. FASEB J 2016; 30:3541-3550. [PMID: 27402672 PMCID: PMC5024693 DOI: 10.1096/fj.201600069r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/28/2016] [Indexed: 01/06/2023]
Abstract
The placenta richly expresses nonheme and heme Fe transport proteins. To address the impact of maternal and neonatal Fe status and hepcidin on the regulation of these proteins, mRNA expression and protein abundance of nonheme and heme Fe transport proteins were evaluated in placental tissue from 154 adolescents. Regression analyses found maternal Fe status was significantly associated with multiple placental nonheme and heme transporters, whereas neonatal Fe status was related to only 3 heme transporters. Across statistical analyses, maternal Fe status was consistently associated with the placental nonheme Fe importer transferrin receptor 1 (TfR1). Protein abundance of TfR1 was related to midgestation maternal serum ferritin (SF) (β = -0.32; P = 0.005) and serum TfR (β = 0.25; P = 0.024). Protein abundance of the heme importer, proton-coupled folate transporter, was related to neonatal SF (β = 0.30; P = 0.016) and serum TfR (β = -0.46; P < 0.0001). Neonatal SF was also related to mRNA expression of the heme exporter feline leukemia virus subgroup C receptor 1 (β = -0.30; P = 0.004). In summary, maternal Fe insufficiency during pregnancy predicts increased expression of the placental nonheme Fe transporter TfR1. Associations between placental heme Fe transporters and neonatal Fe status require further study.-Best, C. M., Pressman, E. K., Cao, C., Cooper, E., Guillet, R., Yost, O. L., Galati, J., Kent, T. R., O'Brien, K. O. Maternal iron status during pregnancy compared with neonatal iron status better predicts placental iron transporter expression in humans.
Collapse
Affiliation(s)
- Cora M Best
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Eva K Pressman
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Chang Cao
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Elizabeth Cooper
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Ronnie Guillet
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Olivia L Yost
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Jonathan Galati
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Tera R Kent
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Kimberly O O'Brien
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
50
|
Claro da Silva T, Hiller C, Gai Z, Kullak-Ublick GA. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J Steroid Biochem Mol Biol 2016; 163:77-87. [PMID: 27107558 DOI: 10.1016/j.jsbmb.2016.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 01/11/2023]
Abstract
Vitamin D3 regulates genes critical for human health and its deficiency is associated with an increased risk for osteoporosis, cancer, diabetes, multiple sclerosis, hypertension, inflammatory and immunological diseases. To study the impact of vitamin D3 on genes relevant for the transport and metabolism of nutrients and drugs, we employed next-generation sequencing (NGS) and analyzed global gene expression of the human-derived Caco-2 cell line treated with 500nM vitamin D3. Genes involved in neuropeptide signaling, inflammation, cell adhesion and morphogenesis were differentially expressed. Notably, genes implicated in zinc, manganese and iron homeostasis were largely increased by vitamin D3 treatment. An ∼10-fold increase in ceruloplasmin and ∼4-fold increase in haptoglobin gene expression suggested a possible association between vitamin D and iron homeostasis. SLC30A10, the gene encoding the zinc and manganese transporter ZnT10, was the chiefly affected transporter, with ∼15-fold increase in expression. SLC30A10 is critical for zinc and manganese homeostasis and mutations in this gene, resulting in impaired ZnT10 function or expression, cause manganese intoxication, with Parkinson-like symptoms. Our NGS results were validated by real-time PCR in Caco-2 cells, as well as in duodenal biopsies taken from healthy human subjects treated with 0.5μg vitamin D3 daily for 10 days. In addition to increasing gene expression of SLC30A10 and the positive control TRPV6, vitamin D3 also increased ZnT10 protein expression, as indicated by Western blot and cytofluorescence. In silico identification of potential vitamin D responsive elements (VDREs) in the 5'-flanking region of the SLC30A10 promoter and dual-luciferase reporter assay showed enhanced promoter activity in the presence of vitamin D receptor (VDR) and retinoid X receptor (RXR) constructs, as well as vitamin D3, but not when one of these factors was absent. Electrophoretic mobility shift assay (EMSA) and competition EMSA revealed binding of select sequences, namely, nt -1623/-1588 and nt -1758/-1723 relative to the transcription start site, to VDR-containing nuclear extracts. In conclusion, we have shown that vitamin D3 transactivates the SLC30A10 gene in a VDR-dependent manner, resulting in increased ZnT10 protein expression. Because SLC30A10 is highly expressed in the small intestine, it is possible that the control of zinc and manganese systemic levels is regulated by vitamin D3 in the intestine. Zinc, manganese and vitamin D are important for bone metabolism and brain health. Future examination of a possible role for supplementation or chelation of zinc and manganese, alongside vitamin D3 administration, will further our understanding of its potential benefit in the treatment of specific illnesses, such as osteoporosis and Parkinson's disease.
Collapse
Affiliation(s)
- Tatiana Claro da Silva
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Christian Hiller
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| |
Collapse
|