1
|
Korytina GF, Markelov VA, Gibadullin IA, Zulkarneev SR, Nasibullin TR, Zulkarneev RH, Avzaletdinov AM, Avdeev SN, Zagidullin NS. The Relationship Between Differential Expression of Non-coding RNAs (TP53TG1, LINC00342, MALAT1, DNM3OS, miR-126-3p, miR-200a-3p, miR-18a-5p) and Protein-Coding Genes (PTEN, FOXO3) and Risk of Idiopathic Pulmonary Fibrosis. Biochem Genet 2025:10.1007/s10528-024-11012-z. [PMID: 39881079 DOI: 10.1007/s10528-024-11012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive interstitial lung disease of unknown pathogenesis with no effective treatment currently available. Given the regulatory roles of lncRNAs (TP53TG1, LINC00342, H19, MALAT1, DNM3OS, MEG3), miRNAs (miR-218-5p, miR-126-3p, miR-200a-3p, miR-18a-5p, miR-29a-3p), and their target protein-coding genes (PTEN, TGFB2, FOXO3, KEAP1) in the TGF-β/SMAD3, Wnt/β-catenin, focal adhesion, and PI3K/AKT signaling pathways, we investigated the expression levels of selected genes in peripheral blood mononuclear cells (PBMCs) and lung tissue from patients with IPF. Lung tissue and blood samples were collected from 33 newly diagnosed, treatment-naive patients and 70 healthy controls. Gene expression levels were analyzed by RT-qPCR. TaqMan assays and TaqMan MicroRNA assay were employed to quantify the expression of target lncRNAs, mRNAs, and miRNAs. Our study identified significant differential expression in PBMCs from IPF patients compared to healthy controls, including lncRNAs MALAT1 (Fold Change = 3.809, P = 0.0001), TP53TG1 (Fold Change = 0.4261, P = 0.0021), and LINC00342 (Fold Change = 1.837, P = 0.0448); miRNAs miR-126-3p (Fold Change = 0.102, P = 0.0028), miR-200a-3p (Fold Change = 0.442, P = 0.0055), and miR-18a-5p (Fold Change = 0.154, P = 0.0034); and mRNAs FOXO3 (Fold Change = 4.604, P = 0.0032) and PTEN (Fold Change = 2.22, P = 0.0011). In lung tissue from IPF patients, significant expression changes were observed in TP53TG1 (Fold Change = 0.2091, P = 0.0305) and DNM3OS (Fold Change = 4.759, P = 0.05). Combined analysis of PBMCs expression levels for TP53TG1, MALAT1, miRNA miR-126-3p, and PTEN distinguished IPF patients from healthy controls with an AUC = 0.971, sensitivity = 0.80, and specificity = 0.955 (P = 6 × 10-8). These findings suggest a potential involvement of the identified ncRNAs and mRNAs in IPF pathogenesis. However, additional functional validation studies are needed to elucidate the precise molecular mechanisms by which these lncRNAs, miRNAs, and their targets contribute to PF.
Collapse
Affiliation(s)
- Gulnaz F Korytina
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktyabrya, 71, Ufa, 450054, Russian Federation.
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation.
| | - Vitaly A Markelov
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktyabrya, 71, Ufa, 450054, Russian Federation
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation
| | - Irshat A Gibadullin
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation
| | - Shamil R Zulkarneev
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation
| | - Timur R Nasibullin
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktyabrya, 71, Ufa, 450054, Russian Federation
| | - Rustem H Zulkarneev
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation
| | | | - Sergey N Avdeev
- Sechenov First Moscow State Medical University (Sechenov University), 8-2, Trubetskaya Str., Moscow, 119991, Russian Federation
| | - Naufal Sh Zagidullin
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation
| |
Collapse
|
2
|
Timofeeva AV, Fedorov IS, Nikonets AD, Tarasova AM, Balashova EN, Degtyarev DN, Sukhikh GT. Increased Levels of hsa-miR-199a-3p and hsa-miR-382-5p in Maternal and Neonatal Blood Plasma in the Case of Placenta Accreta Spectrum. Int J Mol Sci 2024; 25:13309. [PMID: 39769074 PMCID: PMC11678653 DOI: 10.3390/ijms252413309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Despite the increasing number of placenta accreta spectrum (PAS) cases in recent years, its impact on neonatal outcomes and respiratory morbidity, as well as the underlying pathogenetic mechanism, has not yet been extensively studied. Moreover, no study has yet demonstrated the effectiveness of antenatal corticosteroid therapy (CT) for the prevention of respiratory distress syndrome (RDS) in newborns of mothers with PAS at the molecular level. In this regard, microRNA (miRNA) profiling by small RNA deep sequencing and quantitative real-time PCR was performed on 160 blood plasma samples from preterm infants (gestational age: 33-36 weeks) and their mothers who had been diagnosed with or without PAS depending on the timing of the antenatal RDS prophylaxis. A significant increase in hsa-miR-199a-3p and hsa-miR-382-5p levels was observed in the blood plasma of the newborns from mothers with PAS compared to the control group. A clear trend toward the normalization of hsa-miR-199a-3p and hsa-miR-382-5p levels in the neonatal blood plasma of the PAS groups was observed when CT was administered within 14 days before delivery, but not beyond 14 days. Direct correlations were found among the hsa-miR-382-5p level in neonatal blood plasma and the hsa-miR-199a-3p level in the same sample (r = 0.49; p < 0.001), the oxygen requirements in the NICU (r = 0.41; p = 0.001), the duration of the NICU stay (r = 0.31; p = 0.019), and the severity of the newborn's condition based on the NEOMOD scale (r = 0.36; p = 0.005). Logistic regression models based on the maternal plasma levels of hsa-miR-199a-3p and hsa-miR-382-5p predicted the need for cardiotonic therapy, invasive mechanical ventilation, or high-frequency oscillatory ventilation in newborns during the early neonatal period, with a sensitivity of 95-100%. According to the literary data, these miRNAs regulate fetal organogenesis via IGF-1, the formation of proper lung tissue architecture, surfactant synthesis in alveolar cells, and vascular tone.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician Kulakov V.I., 117997 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
3
|
Yang XR, Wen R, Yang N, Zhang TN. Role of sirtuins in sepsis and sepsis-induced organ dysfunction: A review. Int J Biol Macromol 2024; 278:134853. [PMID: 39163955 DOI: 10.1016/j.ijbiomac.2024.134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes a high mortality rate and current treatment focuses on supportive therapies but lacks specific therapeutic targets. Notably, sirtuins (SIRTs) shows potential clinical application in the treatment of sepsis. It has been demonstrated that SIRTs, the nicotinamide adenine dinucleotide+(NAD+)-dependent deacetylases that regulate key signaling pathways in eukaryotes and prokaryotes, are involved in a variety of biological processes. To date, seven mammalian yeast Sir2 homologs have been identified. SIRTs can regulate inflammation, oxidative stress, apoptosis, autophagy, and other pathways that play important roles in sepsis-induced organ dysfunction. However, the existing studies on SIRTs in sepsis are too scattered, and there is no relevant literature to integrate them. This review innovatively summarizes the different mechanisms of SIRTs in sepsis organ dysfunction according to the different systems, and focuses on SIRT agonists, inhibitors, and targeted drugs that have been proved to be effective in the treatment of sepsis, so as to integrate the clinical research and basic research closely. We searched PubMed for all literature related to SIRTs and sepsis since its inception using the following medical subject headings: sirtuins, SIRTs, and sepsis. Data on the mechanisms of SIRTs in sepsis-induced organ damage and their potential as targets for disease treatment were extracted.
Collapse
Affiliation(s)
- Xin-Ru Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
4
|
Chen Y, Peng S, Liang J, Wei K. SIRT1 in acute lung injury: unraveling its pleiotropic functions and therapeutic development prospects. Mol Cell Biochem 2024:10.1007/s11010-024-05111-z. [PMID: 39269678 DOI: 10.1007/s11010-024-05111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, often associated with severe complications and even death. In ALI, macrophages, alveolar epithelial cells and vascular endothelial cells in the lung are damaged to varying degrees and their function is impaired. Research in recent years has focused on the use of SIRT1 for the treatment of ALI. In this paper, we reviewed the role of SIRT1 in ALI in terms of its cellular and molecular mechanism, targeting of SIRT1 by non-coding RNAs and drug components, as well as pointing out the value of SIRT1 for clinical diagnosis and prognosis. Based on the current literature, SIRT1 exhibits diverse functionalities and possesses significant therapeutic potential. Targeting SIRT1 may provide new therapeutic ideas for the treatment of ALI.
Collapse
Affiliation(s)
- Yina Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shuangyan Peng
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junjie Liang
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ke Wei
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Province Key Laboratory of Integrative Pathogen Biology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
5
|
Koutroulis I, Kratimenos P, Hoptay C, O’Brien WN, Sanidas G, Byrd C, Triantafyllou M, Goldstein E, Jablonska B, Bharadwaj M, Gallo V, Freishtat R. Mesenchymal stem cell-derived small extracellular vesicles alleviate the immunometabolic dysfunction in murine septic encephalopathy. iScience 2024; 27:110573. [PMID: 39165840 PMCID: PMC11334791 DOI: 10.1016/j.isci.2024.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/20/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection that results in high mortality and long-term sequela. The central nervous system (CNS) is susceptible to injury from infectious processes, which can lead to clinical symptoms of septic encephalopathy (SE). SE is linked to a profound energetic deficit associated with immune dysregulation. Here, we show that intravenous administration of adipose tissue mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) in septic mice improved disease outcomes by reducing SE clinical severity, restoring aerobic metabolism, and lowering pro-inflammatory cytokines in the cerebellum, a key region affected by SE. Our high throughput analysis showed that MSC-derived sEVs partially reversed sepsis-induced transcriptomic changes, highlighting the potential association of miRNA regulators in the cerebellum of MSC-derived sEV-treated mice with miRNAs identified in sEV cargo. MSC-derived sEVs could serve as a promising therapeutic agent in SE through their favorable immunometabolic properties.
Collapse
Affiliation(s)
- Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Panagiotis Kratimenos
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pediatrics, Division of Neonatology, Children’s National Hospital, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Claire Hoptay
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Wade N. O’Brien
- Dartmouth College Geisel School of Medicine, Hanover, NH 03755, USA
| | - Georgios Sanidas
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Chad Byrd
- Children’s National Research Institute, Washington, DC 20010, USA
| | | | - Evan Goldstein
- Augusta University Medical College of Georgia, Augusta, GA 30912, USA
| | - Beata Jablonska
- Children’s National Research Institute, Washington, DC 20010, USA
| | | | - Vittorio Gallo
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Robert Freishtat
- Department of Pediatrics, Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| |
Collapse
|
6
|
Artimovič P, Špaková I, Macejková E, Pribulová T, Rabajdová M, Mareková M, Zavacká M. The ability of microRNAs to regulate the immune response in ischemia/reperfusion inflammatory pathways. Genes Immun 2024; 25:277-296. [PMID: 38909168 PMCID: PMC11327111 DOI: 10.1038/s41435-024-00283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
MicroRNAs play a crucial role in regulating the immune responses induced by ischemia/reperfusion injury. Through their ability to modulate gene expression, microRNAs adjust immune responses by targeting specific genes and signaling pathways. This review focuses on the impact of microRNAs on the inflammatory pathways triggered during ischemia/reperfusion injury and highlights their ability to modulate inflammation, playing a critical role in the pathophysiology of ischemia/reperfusion injury. Dysregulated expression of microRNAs contributes to the pathogenesis of ischemia/reperfusion injury, therefore targeting specific microRNAs offers an opportunity to restore immune homeostasis and improve patient outcomes. Understanding the complex network of immunoregulatory microRNAs could provide novel therapeutic interventions aimed at attenuating excessive inflammation and preserving tissue integrity.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ema Macejková
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Timea Pribulová
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Martina Zavacká
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia.
| |
Collapse
|
7
|
Jiang YZ, Huang XR, Chang J, Zhou Y, Huang XT. SIRT1: An Intermediator of Key Pathways Regulating Pulmonary Diseases. J Transl Med 2024; 104:102044. [PMID: 38452903 DOI: 10.1016/j.labinv.2024.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Silent information regulator type-1 (SIRT1), a nicotinamide adenine dinucleotide+-dependent deacetylase, is a member of the sirtuins family and has unique protein deacetylase activity. SIRT1 participates in physiological as well as pathophysiological processes by targeting a wide range of protein substrates and signalings. In this review, we described the latest progress of SIRT1 in pulmonary diseases. We have introduced the basic information and summarized the prominent role of SIRT1 in several lung diseases, such as acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung cancer, and aging-related diseases.
Collapse
Affiliation(s)
- Yi-Zhu Jiang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xin-Ran Huang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Chang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, China.
| |
Collapse
|
8
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Xu Y, Xin J, Sun Y, Wang X, Sun L, Zhao F, Niu C, Liu S. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment. Pharmaceuticals (Basel) 2024; 17:472. [PMID: 38675431 PMCID: PMC11054595 DOI: 10.3390/ph17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by widespread lung dysfunction, is associated with significant morbidity and mortality due to the lack of effective pharmacological treatments available clinically. Small-molecule compounds derived from natural products represent an innovative source and have demonstrated therapeutic potential against sepsis-induced ALI. These natural small molecules may provide a promising alternative treatment option for sepsis-induced ALI. This review aims to summarize the pathogenesis of sepsis and potential therapeutic targets. It assembles critical updates (from 2014 to 2024) on natural small molecules with therapeutic potential against sepsis-induced ALI, detailing their sources, structures, effects, and mechanisms of action.
Collapse
Affiliation(s)
- Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| |
Collapse
|
10
|
Xu B, Huang M, Qi H, Xu H, Cai L. Tomatidine activates autophagy to improve lung injury and inflammation in sepsis by inhibiting NF-κB and MAPK pathways. Mol Genet Genomics 2024; 299:14. [PMID: 38400847 DOI: 10.1007/s00438-024-02109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening medical condition with high mortality and morbidity. Autophagy is involved in the pathophysiological process of sepsis-induced ALI, including inflammation, which indicates that regulating autophagy may be beneficial for this disease. Tomatidine, a natural compound abundant in unripe tomatoes, has been reported to have anti-inflammatory, anti-tumorigenic, and lipid-lowering effects. However, the biological functions and mechanisms of tomatidine in sepsis-induced ALI remain unknown. The principal objective of this study was to investigate the effect of tomatidine on sepsis-induced ALI. Cecal ligation and puncture (CLP) was used to induce septic lung injury in mice, and 10 mg/kg tomatidine was intraperitoneally injected into mice 2 h after the operation. The results of hematoxylin and eosin staining and assessment of lung edema and total protein levels in bronchoalveolar lavage fluid (BALF) demonstrated that tomatidine alleviated CLP-induced severe lung injuries such as hemorrhage, infiltration of inflammatory cells, and interstitial and alveolar edema in mice. Additionally, the levels of proinflammatory cytokines in BALF and lung tissues were measured by enzyme-linked immunosorbent assay (ELISA), and the results showed that tomatidine inhibited CLP-induced inflammatory damage to lungs. Moreover, the results of western blotting showed that tomatidine promoted autophagy during CLP-induced ALI. Mechanistically, immunofluorescence staining and western blotting were used to measure the protein levels of TLR4, phosphorylated NF-κB, phosphorylated IκBα, and phosphorylated MAPKs, showing that tomatidine inactivated NF-κB and MAPK signaling in lung tissues of CLP-induced ALI mice. In conclusion, tomatidine exerts protective effects against sepsis-induced severe damage to the lungs by inhibiting inflammation and activating autophagy in CLP-treated mice through inactivating the NF-κB and MAPK pathways, which may be an effective candidate for treating septic ALI.
Collapse
Affiliation(s)
- Bo Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China.
| | - Min Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 230000, China
| | - Hang Qi
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Hongzhou Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Liang Cai
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| |
Collapse
|
11
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Zeng Y, Xu G, Feng C, Cai D, Wu S, Liu Y, Chen Y, Ma W. Klotho inhibits the activation of NLRP3 inflammasome to alleviate lipopolysaccharide-induced inflammatory injury in A549 cells and restore mitochondrial function through SIRT1/Nrf2 signaling pathway. CHINESE J PHYSIOL 2023; 66:335-344. [PMID: 37929344 DOI: 10.4103/cjop.cjop-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Acute lung injury is a severe clinical condition constituting a major cause of mortality in intensive care units. This study aimed to investigate the role of klotho in alleviating lipopolysaccharide (LPS)-induced acute lung injury. LPS-induced acute lung injury was used to simulate the acute lung injury caused by severe pneumonia in vitro. The viability and apoptosis of A549 cells were detected by cell counting kit-8 assay and flow cytometry. The inflammatory response, oxidative stress, and mitochondrial function in A549 cells were analyzed by commercial assay kits and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl carbocyanine iodide (JC-1) staining. The expression of apoptosis-related proteins, Sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins, and NOD-like receptor family pyrin domain containing 3 (NLRP3) expression in A549 cells was detected by western blot. The mtDNA synthase level in A549 cells was analyzed by reverse transcription-quantitative polymerase chain reaction. The results showed that, klotho had no cytotoxic effect on A549 cells. The viability and mitochondrial function were inhibited and apoptosis, inflammatory response, and oxidative stress were aggravated in LPS-induced A549 cells, which were all reversed by klotho. Klotho activated the SIRT1/Nrf2 signaling pathway to inhibit the LPS-induced NLRP3 inflammasome activation in A549 cells. However, EX527, a SIRT1 inhibitor, attenuated the klotho effect to suppress viability and mitochondrial function and promoted apoptosis, inflammatory response, and oxidative stress of A549 cells. In conclusion, klotho inhibited the activation of NLRP3 inflammasome to alleviate LPS-induced inflammatory injury of A549 cells and restore mitochondrial function through activating the SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yanjun Zeng
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Gang Xu
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Congrui Feng
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Danyan Cai
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Sizhi Wu
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuanling Liu
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuluo Chen
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wei Ma
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Wu M, Li G, Wang W, Ren H. Emerging roles of microRNAs in septic cardiomyopathy. Front Pharmacol 2023; 14:1181372. [PMID: 37475718 PMCID: PMC10354437 DOI: 10.3389/fphar.2023.1181372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
As one of the serious complications of sepsis, septic cardiomyopathy has gained more and more attention, because of its high morbidity and mortality. With the in-depth study of septic cardiomyopathy, several methods have been adopted clinically but have poor therapeutic effects due to failure to find precise therapeutic targets. In recent years, microRNAs have been found to be related to the pathogenesis, diagnosis, and treatment of septic cardiomyopathy via regulating immunity and programmed cell death. This paper reviews the role of microRNAs in septic cardiomyopathy, aiming to provide new targets for the diagnosis and treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
| | | | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongsheng Ren
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
14
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
15
|
Mu Q, Zhang C, Li R, Guo Z. CircPalm2 knockdown alleviates LPS-evoked pulmonary microvascular endothelial cell apoptosis and inflammation via miR-450b-5p/ROCK1 axis. Int Immunopharmacol 2022; 113:109199. [DOI: 10.1016/j.intimp.2022.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
|
16
|
Wang W, Wang Z, Yang X, Song W, Chen P, Gao Z, Wu J, Huang F. Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1. Life Sci 2022; 310:121115. [DOI: 10.1016/j.lfs.2022.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
17
|
Xu X, Liu X, Dong X, Yang Y, Liu L. MiR-199a-3p-regulated alveolar macrophage-derived secretory autophagosomes exacerbate lipopolysaccharide-induced acute respiratory distress syndrome. Front Cell Infect Microbiol 2022; 12:1061790. [PMID: 36523634 PMCID: PMC9745060 DOI: 10.3389/fcimb.2022.1061790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Acute respiratory distress syndrome (ARDS) is a prevalent illness in intensive care units. Extracellular vesicles and particles released from activated alveolar macrophages (AMs) assist in ARDS lung injury and the inflammatory process through mechanisms that are unclear. This study investigated the role of AM-derived secretory autophagosomes (SAPs) in lung injury and microRNA (MiR)-199a-3p-regulated inflammation associated with ARDS in vitro and in a murine model. Methods The ARDS model in mouse was established by intratracheal LPS lipopolysaccharide (LPS) injection. The agomirs or antagomirs of MiR-199a-3p were injected into the caudal vein to figure out whether MiR-199a-3p could influence ARDS inflammation and lung injury, whereas the mimics or inhibitors of MiR-199a-3p, siRNA of Rab8a, or PAK4 inhibitor were transfected or applied to RAW264.7 cells to evaluate the mechanism of SAP release. Culture supernatants of RAW264.7 cells treated with LPS or bronchoalveolar lavage fluid from mice were collected for the isolation of SAPs. Results We found that MiR-199a-3p was over-expressed in the lungs of ARDS mice. The MiR-199a-3p antagomir alleviated, whereas the MiR-199a-3p agomir exacerbated LPS-induced inflammation in mice by promoting AM-derived SAP secretion. In addition, MiR-199a-3p over-expression exacerbated LPS-induced ARDS via activating Rab8a, and Rab8a silencing significantly suppressed the promoting influence of the MiR-199a-3p mimic on SAP secretion. Furthermore, MiR-199a-3p mimic activated Rab8a by directly inhibiting PAK4 expression. Conclusion The novel finding of this study is that MiR-199a-3p participated in the regulation of SAP secretion and the inflammatory process via targeting of PAK4/Rab8a, and is a potential therapeutic candidate for ARDS treatment.
Collapse
Affiliation(s)
| | | | | | - Yi Yang
- *Correspondence: Yi Yang, ; Ling Liu,
| | - Ling Liu
- *Correspondence: Yi Yang, ; Ling Liu,
| |
Collapse
|
18
|
Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4032704. [PMID: 36132227 PMCID: PMC9484957 DOI: 10.1155/2022/4032704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023]
Abstract
The hallmark of the coronavirus disease 2019 (COVID-19) pathophysiology was reported to be an inappropriate and uncontrolled immune response, evidenced by activated macrophages, and a robust surge of proinflammatory cytokines, followed by the release of reactive oxygen species, that synergistically result in acute respiratory distress syndrome, fibroproliferative lung response, and possibly even death. For these reasons, all identified risk factors and pathophysiological processes of COVID-19, which are feasible for the prevention and treatment, should be addressed in a timely manner. Accordingly, the evolving anti-inflammatory and antifibrotic therapy for severe COVID-19 and hindering post-COVID-19 fibrosis development should be comprehensively investigated. Experimental evidence indicates that renalase, a novel amino-oxidase, derived from the kidneys, exhibits remarkable organ protection, robustly addressing the most powerful pathways of cell trauma: inflammation and oxidative stress, necrosis, and apoptosis. As demonstrated, systemic renalase administration also significantly alleviates experimentally induced organ fibrosis and prevents adverse remodeling. The recognition that renalase exerts cytoprotection via sirtuins activation, by raising their NAD+ levels, provides a “proof of principle” for renalase being a biologically impressive molecule that favors cell protection and survival and maybe involved in the pathogenesis of COVID-19. This premise supports the rationale that renalase's timely supplementation may prove valuable for pathologic conditions, such as cytokine storm and related acute respiratory distress syndrome. Therefore, the aim for this review is to acknowledge the scientific rationale for renalase employment in the experimental model of COVID-19, targeting the acute phase mechanisms and halting fibrosis progression, based on its proposed molecular pathways. Novel therapies for COVID-19 seek to exploit renalase's multiple and distinctive cytoprotective mechanisms; therefore, this review should be acknowledged as the thorough groundwork for subsequent research of renalase's employment in the experimental models of COVID-19.
Collapse
|
19
|
Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
|
20
|
Zhang F, Zhou Y, Ding J. The current landscape of microRNAs (miRNAs) in bacterial pneumonia: opportunities and challenges. Cell Mol Biol Lett 2022; 27:70. [PMID: 35986232 PMCID: PMC9392286 DOI: 10.1186/s11658-022-00368-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNAs), which were initially discovered in Caenorhabditis elegans, can regulate gene expression by recognizing cognate sequences and interfering with the transcriptional or translational machinery. The application of bioinformatics tools for structural analysis and target prediction has largely driven the investigation of certain miRNAs. Notably, it has been found that certain miRNAs which are widely involved in the inflammatory response and immune regulation are closely associated with the occurrence, development, and outcome of bacterial pneumonia. It has been shown that certain miRNA techniques can be used to identify related targets and explore associated signal transduction pathways. This enhances the understanding of bacterial pneumonia, notably for "refractory" or drug-resistant bacterial pneumonia. Although these miRNA-based methods may provide a basis for the clinical diagnosis and treatment of this disease, they still face various challenges, such as low sensitivity, poor specificity, low silencing efficiency, off-target effects, and toxic reactions. The opportunities and challenges of these methods have been completely reviewed, notably in bacterial pneumonia. With the continuous improvement of the current technology, the miRNA-based methods may surmount the aforementioned limitations, providing promising support for the clinical diagnosis and treatment of "refractory" or drug-resistant bacterial pneumonia.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yunxin Zhou
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
21
|
Lu Q, Yu S, Meng X, Shi M, Huang S, Li J, Zhang J, Liang Y, Ji M, Zhao Y, Fan H. MicroRNAs: Important Regulatory Molecules in Acute Lung Injury/Acute Respiratory Distress Syndrome. Int J Mol Sci 2022; 23:5545. [PMID: 35628354 PMCID: PMC9142048 DOI: 10.3390/ijms23105545] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an overactivated inflammatory response caused by direct or indirect injuries that destroy lung parenchymal cells and dramatically reduce lung function. Although some research progress has been made in recent years, the pathogenesis of ALI/ARDS remains unclear due to its heterogeneity and etiology. MicroRNAs (miRNAs), a type of small noncoding RNA, play a vital role in various diseases. In ALI/ARDS, miRNAs can regulate inflammatory and immune responses by targeting specific molecules. Regulation of miRNA expression can reduce damage and promote the recovery of ALI/ARDS. Consequently, miRNAs are considered as potential diagnostic indicators and therapeutic targets of ALI/ARDS. Given that inflammation plays an important role in the pathogenesis of ALI/ARDS, we review the miRNAs involved in the inflammatory process of ALI/ARDS to provide new ideas for the pathogenesis, clinical diagnosis, and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Siyu Huang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jianfeng Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
22
|
Carnino JM, Lee H, Smith LC, Sunil VR, Rancourt RC, Vayas K, Cervelli J, Kwok ZH, Ni K, Laskin JD, Jin Y, Laskin DL. Microvesicle-Derived miRNAs Regulate Proinflammatory Macrophage Activation in the Lung Following Ozone Exposure. Toxicol Sci 2022; 187:162-174. [PMID: 35201360 PMCID: PMC9041552 DOI: 10.1093/toxsci/kfac025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ozone is a ubiquitous air pollutant that causes lung damage and altered functioning. Evidence suggests that proinflammatory macrophages contribute to ozone toxicity. Herein, we analyzed the role of extracellular vesicles (EVs) and microRNA (miRNA) cargo in ozone-induced macrophage activation. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in increases in bronchoalveolar lavage fluid EVs, which were comprised predominantly of microvesicles (MVs). NanoFACS analysis revealed that MVs generated following both air and ozone exposure was largely from CD45+ myeloid cells; these MVs were readily taken up by macrophages. Functionally, MVs from ozone, but not air treated mice, upregulated mRNA expression of inflammatory proteins in macrophages including inducible nitric oxide synthase (iNOS), CXCL-1, CXCL-2, and interleukin (IL)-1β. The miRNA profile of MVs in bronchoalveolar lavage fluid (BALF) was altered after ozone exposure; thus, increases in miR-21, miR-145, miR320a, miR-155, let-7b, miR744, miR181, miR-17, miR-92a, and miR-199a-3p were observed, whereas miR-24-3p and miR-20 were reduced. Ingenuity pathway analysis revealed that these miRNAs regulate pathways that promote inflammatory macrophage activation, and predicted that let-7a-5p/let-7b, miR-24-3p, miR-21-5p, miR-17, and miR-181a-5p are key upstream regulators of inflammatory proteins. After ozone exposure, miR-199a-3p, but not precursor miR-199a-3p, was increased in lung macrophages, indicating that it is derived from MV-mediated delivery. Furthermore, lung macrophage mRNA expression of IL-1β was upregulated after administration of MVs containing miR-199a-3p mimic but downregulated by miR-199a-3p inhibitor. Collectively, these data suggest that MVs generated following ozone exposure contribute to proinflammatory macrophage activation via MV-derived miRNAs including miR-199a-3p. These findings identify a novel pathway regulating macrophage inflammatory responses to inhaled ozone.
Collapse
Affiliation(s)
- Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Raymond C Rancourt
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jessica Cervelli
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Zhi Hao Kwok
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Kareemah Ni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
23
|
Cai Q, Jin Y, Jia Z, Liu Z. Paraquat Induces Lung Injury via miR-199-Mediated SET in a Mouse Model. Front Pharmacol 2022; 13:856441. [PMID: 35431948 PMCID: PMC9011139 DOI: 10.3389/fphar.2022.856441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the molecular mechanism of lung injury caused by paraquat (PQ) poisoning by investigating miR-199-mediated SET.Methods: A paraquat poisoning model was established in C57BL/6 male mice via intraperitoneal injection of paraquat. The mice were transfected with miR-199 siRNA and or mimic. After 14 days of treatment, pathophysiological changes of the lung were observed and lung tissue was analyzed via Hematoxylin-Eosin staining. The levels of miR-199, SETs, surfactant protein SP-A and SP-B, and inflammatory and oxidative factors were analyzed by qPCR, Western Blot, and ELISA kits.Results: A acute lung-injury (ALI) model was established using PQ treatment and confirmed with edema of pulmonary endothelium with low electronic density of endothelial cytoplasm, presence of protein-rich fluid, and numerous erythrocytes in alveolar space, concentric figures of damaged tubular myelin, alveolar destruction, and increase in inflammatory cell numbers. Compared with the control group, miR-199 and SET levels were reduced in the PQ-treated group. miR-199 siRNA increased the SET level, inflammatory and oxidative levels, and reduced the levels of SP-A and SP-B, and miR-199 mimic reduced the SET level, inflammatory and oxidative levels, and increased the levels of SP-A and SP-B. PQ treatment reduced miR-199 level.Conclusion: Paraquat induces ALI by affecting miR-199-mediated SET.
Collapse
|
24
|
Electroacupuncture Pretreatment Exhibits Lung Protective and Anti-Inflammation Effects in Lipopolysaccharide-Induced Acute Lung Injury via SIRT1-Dependent Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2252218. [PMID: 35341153 PMCID: PMC8941560 DOI: 10.1155/2022/2252218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023]
Abstract
To investigate the effect of electroacupuncture (EA) on acute lung injury (ALI), a lipopolysaccharide (LPS) induced ALI mouse model was used in this study. Before receiving intratracheal LPS instillation, mice were given EA at ST36 for 7 days as a long-term treatment or one time as a short-term treatment. Lung histopathological examination, lung injury scores, lung wet/dry (W/D) ratio, and inflammatory cytokines included proinflammation factors such as TNF-α, IL-1β, and IL-6 and anti-inflammation factors such as IL-4 and IL-10 in serum and bronchoalveolar lavage fluid (BALF) were detected at the end of experiment. The results show that EA pretreatment ameliorated the lung damage and inflammatory response by LPS. In addition, we found that SIRT1 and its deacetylation of NF-κB were promoted after EA pretreatment in lung tissues. Meanwhile, the expression of angiotensin-converting enzyme 2 (ACE2) is also enhanced by EA pretreatment. Thus, the present findings suggest that EA could be a potential therapy of ALI.
Collapse
|
25
|
Niu F, Liang X, Ni J, Xia Z, Jiang L, Wang H, Liu H, Shen G, Li X. CircRNA circFADS2 is under-expressed in sepsis and protects lung cells from LPS-induced apoptosis by downregulating miR-133a. J Inflamm (Lond) 2022; 19:4. [PMID: 35279129 PMCID: PMC8917694 DOI: 10.1186/s12950-022-00300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background It has been reported that hsa_circRNA_100833 (identified as circFADS2) and miR-133a play opposite roles in LPS-induced cell apoptosis, which contributes to the development of sepsis. This study was carried out to explore the interaction between circFADS2 and miR-133a in sepsis. Methods Expression of circFADS2 and miR-133a in plasma from both sepsis patients (n=62) and healthy controls (n=62) was studied by RT-qPCR. Pearson’s correlation coefficient analysis was utilized to analyze the correlation between circFADS2 and miR-133a levels across plasma samples from sepsis patients. Cell viability and apoptosis, levels of proteins associated with apoptosis (cleaved caspase-3 and cleaved caspase-9), and expression of pro-inflammatory cytokines in LPS-treated HBEpCs were detected by MTT assay, cell apoptosis assay, western blot, and ELISA, respectively. In addition, a dual-luciferase reporter assay was performed to verify the interaction between circFADS2 and miR-133a. Results CircFADS2 was under-expressed (0.56-fold vs. control) in sepsis, and miR-133a was highly expressed (2.05-fold vs. control) in sepsis. An inverse correlation between circFADS2 and miR-133a was observed across sepsis samples. LPS decreased cell viability, increased cell apoptosis, and elevated productions of tumor necrosis factor (TNF)-α, interleukins (IL)-1β, IL-6, and IL-8 in HBEpCs in a dose-dependent manner. In addition, circFADS2 was identified as a target gene of miR-133a. The further experiment revealed that circFADS2 overexpression and miR-133a inhibition prominently promoted cell viability (1.71-fold vs. pcDNA3.1; 1.65-fold vs. NC miRNA) and decreased apoptosis of LPS-treated HBEpCs (0.44-fold vs. pcDNA3.1; 0.47-fold vs. NC miRNA). Moreover, circFADS2 knockdown and miR-133a overexpression inhibited viability (0.36-fold vs. pcDNA3.1; 0.37-fold vs. NC miRNA) and increased apoptosis (1.54-fold vs. pcDNA3.1; 1.51-fold vs. NC miRNA) of LPS-treated HBEpCs. Notably, circFADS2 overexpression reduced the effects of miR-133a on LPS-treated HBEpCs. Conclusions CircFADS2 is under-expressed in sepsis and may protect lung cells from LPS-induced apoptosis by downregulating miR-133a. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-022-00300-3.
Collapse
Affiliation(s)
- Fang Niu
- Department of Critical Care Medicine, Second Hospital of Lanzhou University, 730000, Lanzhou City, Gansu Province, P. R. China
| | - Xiaofeng Liang
- Department of Infectious Diseases, Jiujiang Maternal & Child Health Care Hospital, 332000, Jiujiang City, Jiangxi Province, P. R. China
| | - Jindi Ni
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39 Xinling Road, Minhang District, 201199, Shanghai, P. R. China
| | - Zhuye Xia
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39 Xinling Road, Minhang District, 201199, Shanghai, P. R. China
| | - Lijing Jiang
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39 Xinling Road, Minhang District, 201199, Shanghai, P. R. China
| | - Hong Wang
- Department of Cardiology, Minhang Hospital, Fudan University, 201199, Shanghai, P. R. China
| | - Hongjie Liu
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39 Xinling Road, Minhang District, 201199, Shanghai, P. R. China
| | - Guofeng Shen
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39 Xinling Road, Minhang District, 201199, Shanghai, P. R. China.
| | - Xiang Li
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39 Xinling Road, Minhang District, 201199, Shanghai, P. R. China.
| |
Collapse
|
26
|
Abusalah MAH, Khalifa M, Al-Hatamleh MAI, Jarrar M, Mohamud R, Chan YY. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. J Pers Med 2022; 12:386. [PMID: 35330388 PMCID: PMC8948998 DOI: 10.3390/jpm12030386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has shaken the world and triggered drastic changes in our lifestyle to control it. Despite the non-typical efforts, COVID-19 still thrives and plagues humanity worldwide. The unparalleled degree of infection has been met with an exceptional degree of research to counteract it. Many drugs and therapeutic technologies have been repurposed and discovered, but no groundbreaking antiviral agent has been introduced yet to eradicate COVID-19 and restore normalcy. As lethality is directly correlated with the severity of disease, hospitalized severe cases are of the greatest importance to reduce, especially the cytokine storm phenomenon. This severe inflammatory phenomenon characterized by elevated levels of inflammatory mediators can be targeted to relieve symptoms and save the infected patients. One of the promising therapeutic strategies to combat COVID-19 is nucleic acid-based therapeutic approaches, including microRNAs (miRNAs). This work is an up-to-date review aimed to comprehensively discuss the current nucleic acid-based therapeutics against COVID-19 and their mechanisms of action, taking into consideration the emerging SARS-CoV-2 variants of concern, as well as providing potential future directions. miRNAs can be used to run interference with the expression of viral proteins, while endogenous miRNAs can be targeted as well, offering a versatile platform to control SARS-CoV-2 infection. By targeting these miRNAs, the COVID-19-induced cytokine storm can be suppressed. Therefore, nucleic acid-based therapeutics (miRNAs included) have a latent ability to break the COVID-19 infection in general and quell the cytokine storm in particular.
Collapse
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Mu’taman Jarrar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Medical Education Department, King Fahd Hospital of the University, Al-Khobar 34445, Saudi Arabia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
27
|
miR-197 Participates in Lipopolysaccharide-Induced Cardiomyocyte Injury by Modulating SIRT1. Cardiol Res Pract 2022; 2022:7687154. [PMID: 35223094 PMCID: PMC8872679 DOI: 10.1155/2022/7687154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Sepsis is a systemic inflammation and is capable of inducing myocarditis, which is a major leading cause of death in patients. Studies have found that miR-197 is correlated with the prognosis of patients with inflammatory heart disease, but its effect on sepsis-induced cardiomyocyte injury remains unclear. We treated H9c2 cells with lipopolysaccharide (LPS), then detected the cell viability via the cell counting kit-8 (CCK-8) assay and quantified miR-197 expression via quantitative real-time polymerase chain reaction (qRT-PCR). Then, we investigated the role of miR-197 in LPS-induced H9c2 cells by CCK-8 assay, flow cytometry, lactate dehydrogenase (LDH) measurement, enzyme-linked immunosorbent assay (ELISA), qRT-PCR, and western blot. Subsequently, silent information regulator 1 (SIRT1) was downregulated in H9c2 cells to explore its interaction with miR-197 under LPS induction. LPS induced miR-197 overexpression in H9c2 cells. LPS restrained viability, the expressions of B-cell lymphoma-2 (Bcl-2) and SIRT1, but promoted apoptosis, LDH release, and levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), acetyl (AC)-p53, BCL2-associated X (Bax), and cleaved caspase-3 in H9c2 cells. miR-197 inhibition reversed the effects of LPS on H9c2 cells. The protective role of miR-197 downregulation in LPS-induced H9c2 cells was reversed by SIRT1 silencing. miR-197 contributed to LPS-induced cardiomyocyte injury by modulating SIRT1, which might be used as a molecular marker in the management of sepsis.
Collapse
|
28
|
Ren Y, Li L, Wang M, Yang Z, Sun Z, Zhang W, Cao L, Nie S. Knockdown of circRNA Paralemmin 2 Ameliorates Lipopolysaccharide-induced Murine Lung Epithelial Cell Injury by Sponging miR-330-5p to Reduce ROCK2 Expression. Immunol Invest 2022; 51:1707-1724. [PMID: 35171050 DOI: 10.1080/08820139.2022.2027961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous data have reported the high expression of circRNA paralemmin 2 (circPALM2) in mice with acute lung injury (ALI). However, the role of circPALM2 in ALI pathogenesis remains unclear. The study aims to reveal the function of circPALM2 in ALI and the underlying mechanism. C57BL/6 J mice and murine lung epithelial-12 (MLE-12) cells were treated with lipopolysaccharide (LPS) to simulate ALI mouse and ALI cell models, respectively. Lung injury score and lung wet-to-dry ratio assays were used to evaluate the ALI mouse model. Quantitative real-time polymerase chain reaction and Western blot assays were implemented to analyze the expressions of circPALM2, microRNA-330-5p (miR-330-5p), rho-associated coiled-coil containing protein kinase 2 (ROCK2), and apoptosis-related markers. Cell viability, apoptosis, and the production of inflammatory cytokines were investigated by cell counting kit-8, flow cytometry, and enzyme-linked immunosorbent assays. The expressions of circPALM2 and ROCK2 were significantly increased, while miR-330-5p was decreased in ALI mice and LPS-induced MLE-12 cells compared with controls. LPS treatment inhibited cell viability but induced apoptosis, inflammatory cytokine production, and oxidative stress; however, these effects were attenuated after the combination of circPALM2 knockdown and LPS. CircPALM2 regulated LPS-caused MLE-12 cell damage by targeting miR-330-5p. Additionally, ROCK2, a target gene of miR-330-5p, participated in LPS-induced MLE-12 cell injury. Further, circPALM2 activated ROCK2 by associating with miR-330-5p. CircPALM2 modulated LPS-caused murine lung epithelial cell injury by the miR-330-5p/ROCK2 pathway, providing a therapeutic target for ALI.
Collapse
Affiliation(s)
- Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Liang Li
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| |
Collapse
|
29
|
Zhou Y, Zhang F, Ding J. As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Immune Netw 2022; 22:e21. [PMID: 35799705 PMCID: PMC9250864 DOI: 10.4110/in.2022.22.e21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yunxin Zhou
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Fan Zhang
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
30
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Gandhirajan A, Roychowdhury S, Vachharajani V. Sirtuins and Sepsis: Cross Talk between Redox and Epigenetic Pathways. Antioxidants (Basel) 2021; 11:antiox11010003. [PMID: 35052507 PMCID: PMC8772830 DOI: 10.3390/antiox11010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis and septic shock are the leading causes of death among hospitalized patients in the US. The immune response in sepsis transitions from a pro-inflammatory and pro-oxidant hyper-inflammation to an anti-inflammatory and cytoprotective hypo-inflammatory phase. While 1/3rd sepsis-related deaths occur during hyper-, a vast majority of sepsis-mortality occurs during the hypo-inflammation. Hyper-inflammation is cytotoxic for the immune cells and cannot be sustained. As a compensatory mechanism, the immune cells transition from cytotoxic hyper-inflammation to a cytoprotective hypo-inflammation with anti-inflammatory/immunosuppressive phase. However, the hypo-inflammation is associated with an inability to clear invading pathogens, leaving the host susceptible to secondary infections. Thus, the maladaptive immune response leads to a marked departure from homeostasis during sepsis-phases. The transition from hyper- to hypo-inflammation occurs via epigenetic programming. Sirtuins, a highly conserved family of histone deacetylators and guardians of homeostasis, are integral to the epigenetic programming in sepsis. Through their anti-inflammatory and anti-oxidant properties, the sirtuins modulate the immune response in sepsis. We review the role of sirtuins in orchestrating the interplay between the oxidative stress and epigenetic programming during sepsis.
Collapse
Affiliation(s)
- Anugraha Gandhirajan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
32
|
Du J, Li J, Li R, Yan X. High concentration of hydrogen ameliorates lipopolysaccharide-induced acute lung injury in a sirt1-dependent manner. Respir Physiol Neurobiol 2021; 296:103808. [PMID: 34757082 DOI: 10.1016/j.resp.2021.103808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 01/28/2023]
Abstract
The aim of this study was to investigate the efficacy and underlying mechanism of high concentration of hydrogen on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We have established a corresponding mouse model and examined the function of hydrogen inhalation on lung pathology and pulmonary edema induced by LPS, as well as contents of IL-1β, TNF-α and IL-8. The pulmonary microvascular permeability and 66.7 % hydrogen on the expression of sirt1 and its downstream signaling molecules were tested. Results showed that 66.7 % hydrogen alleviated lung pathological changes and pulmonary edema caused by LPS, and reduced the degree of ALI by inhibiting pro-inflammatory cytokine release and oxidative stress response, thereby decreasing the expression of molecules related to intercellular adhesion. sirt1 contributed to the repair of LPS-induced ALI by hydrogen through the regulation of NF-κB and catalase expression. In conclusion, 66.7 % hydrogen protected against LPS-induced ALI by suppressing inflammatory response and oxidative stress mediated by NF-κB and catalase in a sirt1-dependent manner.
Collapse
Affiliation(s)
- Junfeng Du
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, Cangzhou 061001, China
| | - Jingwen Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Respiratory and Critical Diseases, Shijiazhuang 050000, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Respiratory and Critical Diseases, Shijiazhuang 050000, China; Hebei Provincial Institute of Respiratory Diseases, Shijiazhuang 050000, China.
| |
Collapse
|
33
|
Sirt3 Maintains Microvascular Endothelial Adherens Junction Integrity to Alleviate Sepsis-Induced Lung Inflammation by Modulating the Interaction of VE-Cadherin and β-Catenin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8978795. [PMID: 34630854 PMCID: PMC8500765 DOI: 10.1155/2021/8978795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022]
Abstract
Inflammatory injury is a hallmark of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). However, the mechanisms underlying inflammatory injury remain obscure. Here, we developed the novel strategy to suppress lung inflammation through maintaining microvascular endothelial barrier integrity. VE-cadherin is the main adherens junction protein that interacts with β-catenin and forms a complex. We found that lung inflammation was accompanied by decreased VE-cadherin expression and increased β-catenin activity in animal models and human pulmonary microvascular endothelial cells (HPMECs), illuminating the relationship among VE-cadherin/β-catenin complex, microvascular endothelial barrier integrity, and inflammation. Furthermore, we showed that the VE-cadherin/β-catenin complex dissociated upon lung inflammation, while Sirt3 promoted the stability of such a complex. Sirt3 was decreased during lung inflammation in vivo and in vitro. Sirt3 deficiency not only led to the downregulation of VE-cadherin but also enhanced the transcriptional activity of β-catenin that further increased β-catenin target gene MMP-7 expression, thereby promoting inflammatory factor COX-2 expression. Sirt3 overexpression promoted VE-cadherin expression, inhibited β-catenin transcriptional activity, strengthened the stability of the VE-cadherin/β-catenin complex, and suppressed inflammation in HPMECs. Notably, Sirt3 deficiency significantly damaged microvascular endothelial barrier integrity and intensified lung inflammation in animal model. These results demonstrated the role of Sirt3 in modulating microvascular endothelial barrier integrity to inhibit inflammation. Therefore, strategies that aim at enhancing the stability of endothelial VE-cadherin/β-catenin complex are potentially beneficial for preventing sepsis-induced lung inflammation.
Collapse
|
34
|
Zhang J, Xu X, Wang M. Clinical significance of serum miR-101-3p expression in patients with neonatal sepsis. Per Med 2021; 18:541-550. [PMID: 34610759 DOI: 10.2217/pme-2020-0182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aim: This study aimed to evaluate the levels and functions of miR-101-3p in neonatal sepsis (NS). Materials & methods: Quantitative real-time PCR was conducted to investigate the expression of miR-101-3p and the receiver operating characteristic curve was applied to manifest its diagnostic effects. Results: miR-101-3p was increased in the NS patients and the dysregulation of miR-101-3p was associated with levels of procalcitonin, CRP, IL-8 and TNF-α. The combination of miR-101-3p and procalcitonin could function as a promising indicator in distinguishing NS patients. The silenced miR-101-3p reversed the increased levels of TNF-α and IL-8 caused by lipopolysaccharide in vitro. DUSP1 was identified as a direct target gene of miR-101-3p in NS. Conclusion: The abundance of miR-101-3p facilitated the inflammation in NS by targeting DUSP1.
Collapse
Affiliation(s)
- Juan Zhang
- Neonatal Intensive Care Unit, Dongying People's Hospital, Dongying, Shandong, 257091, China
| | - Xinwei Xu
- Department of Neonatology, Dongying People's Hospital, Dongying, Shandong, 257091, China
| | - Min Wang
- Department of Neonatology, Dongying People's Hospital, Dongying, Shandong, 257091, China
| |
Collapse
|
35
|
Li X, Li Y, Zhang Q. Piper Kadsura Extract Inhibits miR-155 to Protect Lipopolysaccharide-Induced Acute Lung Injury. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute lung injury (ALI) is a common and critical disease encountered in clinical practice. When the disease progresses to a more serious stage, it is called acute respiratory distress syndrome and is associated with a high mortality rate. However, there is a lack of specific drugs for
treating this disease; therefore, it is very important to find safe and effective drugs for treatment. Piper kadsura (P. kadsura), part of the of the vin family Piperaceae, has a capability to dispel wind and dampness and its n-butanol extract can provide protection against inflammatory
responses, such as inflammatory infiltration and hyperplasia of synovial tissue of joints. In order to explore the therapeutic effect of P. kadsura extract on ALI, we treated HPAEpiC cells with different doses of its extract. We found that after treatment using low-medium and high-dose
P. kadsura extract, the optical density value was decreased in HPAEpiC cells as induced by lipopolysaccharide (LPS). In addition, the following were statistically and significantly decreased in a dose-dependent (P < 0.05): the apoptosis rate, cleaved-caspase3 expression, the
expression levels of TNF-α, IL-6, and miR-155. However, procaspase 3 increased the expression of miR-155, which can promote LPS-induced apoptosis and the release of inflammatory factors in HPAEpiC cells. The overexpressed miR-155 can weaken the protection conferred by P. kadsura
extract on ALI. These results suggest that P. kadsura extract may play a protective role against ALI induced by LPS by decreasing the expression of miR-155.
Collapse
Affiliation(s)
- Xiufeng Li
- Department of Medicine, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Yingna Li
- Department of Medicine, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Qinmei Zhang
- Department of Pediatrics, The Third People’s Hospital of Linyi, Linyi, 276023, Shandong, China
| |
Collapse
|
36
|
Liu S, Gao S, Yang Z, Zhang P. miR-128-3p reduced acute lung injury induced by sepsis via targeting PEL12. Open Med (Wars) 2021; 16:1109-1120. [PMID: 34430706 PMCID: PMC8345018 DOI: 10.1515/med-2021-0258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 01/01/2023] Open
Abstract
Objective Acute lung injury (ALI) caused by sepsis is clinically a syndrome, which is featured by damage to the alveolar epithelium and endothelium. In this study, we employed mice models of cecal ligation and puncture (CLP) and primary mice pulmonary microvascular endothelial cells (MPVECs) in vitro to investigate the effect of miR-128-3p in ALI caused by sepsis. Methods miR-128-3p agomir or randomized control were injected into adult male C57BL/6 mice 1 week before the CLP surgery. We used miR-128-3p agomir or scrambled control to transfect MPVECs and then employed lipopolysaccharide (LPS) stimulation on the cells. Pellino homolog 2 (PELI2) was predicted to be a direct target of miR-128-3p via luciferase reporter assay. MPVECs were cotransfected with lentiviral vector that expressed PELI2 (or empty vector) as well as miR-128-3p-mimics 1 day before LPS stimulation in rescue experiment. Transcriptional activity of caspase-3, cell apoptosis rate, and the expression levels of miR-128-3p, interleukin-1β (IL-1β), interleukin-6 (IL-6), and PELI2 were analyzed. Results Compared with the sham group, the lung of mice in the CLP group showed pulmonary morphological abnormalities, and the expression of IL-6 and IL-1β, caspase-3 activity, and apoptosis rate were significantly upregulated in the CLP group. Inflammatory factor levels and apoptosis rate were also significantly induced by LPS stimulation on MPVECs. Upregulation of miR-128-3p effectively inhibited sepsis-induced ALI, apoptosis as well as inflammation. miR-128-3p also played a role in antiapoptosis and anti-inflammation in MPVECs with LPS treatment. PEL12 upregulation in MPVECs alleviated miR-128-3p-induced caspase-3 activity inhibition and pro-inflammatory factor production. Conclusions miR-128-3p enabled to alleviate sepsis-induced ALI by inhibiting PEL12 expression, indicating a novel treatment strategy of miR-128-3p for sepsis-induced ALI.
Collapse
Affiliation(s)
- Shinan Liu
- Department of Thoracic Surgery, China Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Gao
- Department of Thoracic Surgery, China Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyu Yang
- Department of Thoracic Surgery, China Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Department of Thoracic Surgery, China Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
37
|
Huang Q, Chen L, Bai Q, Tong T, Zhou Y, Li Z, Lu C, Chen S, Chen L. The roles of microRNAs played in lung diseases via regulating cell apoptosis. Mol Cell Biochem 2021; 476:4265-4275. [PMID: 34398353 DOI: 10.1007/s11010-021-04242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/10/2021] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are a type of endogenous non-coding short-chain RNA, which plays a crucial role in the regulation of many essential cellular functions, including cellular migration, proliferation, invasion, autophagy, oxidative stress, apoptosis, and differentiation. The lung can be damaged by pathogenic microorganisms, as well as physical or chemical factors. Research has confirmed that miRNAs and lung cell apoptosis can affect the development and progression of several lung diseases. This article reviews the role of miRNAs in the development of lung disease through regulating host cell apoptosis.
Collapse
Affiliation(s)
- Qiaoling Huang
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Li Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Ting Tong
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - You Zhou
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Zhongyu Li
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Chunxue Lu
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Shenghua Chen
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| | - Lili Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China. .,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| |
Collapse
|
38
|
Ha ZL, Yu ZY. Downregulation of miR-29b-3p aggravates podocyte injury by targeting HDAC4 in LPS-induced acute kidney injury. Kaohsiung J Med Sci 2021; 37:1069-1076. [PMID: 34369661 DOI: 10.1002/kjm2.12431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 01/26/2023] Open
Abstract
Sepsis is a severe organ dysfunction disease, usually accompanied by acute kidney injury (AKI). miR-29b-3p was inhibited in sepsis-induced AKI, while its role in AKI was unclear. Therefore, this study determined the role of miR-29b-3p in sepsis-induced AKI, and investigated its underlying mechanism. In this study, the AKI model was established through injecting with lipopolysaccharides (LPS) intraperitoneally. In LPS challenged mice, serum blood urea nitrogen and creatinine were increased, and renal tissues pathological damage was induced. Besides, miR-29b-3p was declined in LPS-induced AKI mice and podocytes. In addition, HDAC4 was elevated in LPS-treated podocytes. Furthermore, upregulated miR-29b-3p attenuated LPS-induced mice podocyte injury, and HDAC4 was identified as a direct target of miR-29b-3p. Moreover, overexpression of miR-29b-3p attenuated LPS-induced AKI in mice. In conclusion, miR-29b-3p was inhibited in LPS-induced AKI. Downregulation of miR-29b-3p aggravated podocyte injury through targeting HDAC4 in LPS-induced AKI. miR-29b-3p may act as a valuable target for AKI therapy.
Collapse
Affiliation(s)
- Zong-Lan Ha
- Department of Critical Care Medicine, Qinghai University Affiliated Hospital, Xining, China
| | - Zi-Ying Yu
- Department of Emergency, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
39
|
Zia A, Sahebdel F, Farkhondeh T, Ashrafizadeh M, Zarrabi A, Hushmandi K, Samarghandian S. A review study on the modulation of SIRT1 expression by miRNAs in aging and age-associated diseases. Int J Biol Macromol 2021; 188:52-61. [PMID: 34364937 DOI: 10.1016/j.ijbiomac.2021.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Sirtuin-1 (SIRT1) as a NAD + -dependent Class III protein deacetylase, involves in longevity and various cellular physiological processes. SIRT1 via deacetylating transcription factors regulates cell growth, inflammation, metabolism, hypoxic responses, cell survival, senescence, and aging. MicroRNAs (miRNAs) are short non-coding RNAs that modulate the expression of target genes in a post-transcriptional manner. Recent investigations have exhibited that miRNAs have an important role in regulating cell growth, development, stress responses, tumor formation and suppression, cell death, and aging. In the present review, we summarize recent findings about the roles of miRNAs in regulating SIRT1 and SIRT1-associated signaling cascade and downstream effects, like apoptosis and aging. Here we introduce and discuss how activity and expression of SIRT1 are modulated by miRNAs and further review the therapeutic potential of targeting miRNAs for age-associated diseases that involve SIRT1 dysfunction. Although at its infancy, research on the roles of miRNAs in aging and their function through modulating SIRT1 may provide new insights in deciphering the key molecular pathways related to aging and age-associated disorders.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, Division of epidemiology, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
40
|
Chen DD, Wang HW, Cai XJ. Long non-coding RNA ZFAS1 alleviates sepsis-induced myocardial injury via target miR-34b-5p/SIRT1. Innate Immun 2021; 27:377-387. [PMID: 34340571 PMCID: PMC8419299 DOI: 10.1177/17534259211034221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Long non-coding RNA ZFAS1 is down-regulated in sepsis. However, whether ZFAS1 participates in sepsis-induced cardiomyopathy (SIC) remains largely unknown. LPS injection to rats was used to establish an in vivo sepsis model, while LPS stimulation with H9C2 cell was used to mimic an in vitro sepsis-induced myocardial injury model. Western blots and quantitative RT-PCR were performed to evaluate protein and mRNA levels, respectively. ELISA was conducted to determine cytokine levels in supernatant. Flow cytometry was used to test apoptosis. Dual-luciferase assay was performed to validate binding between ZFAS1 and miR-34b-5p, miR-34b-5p and SIRT1. Our data revealed that ZFAS1 and SIRT1 were down-regulated, while miR-34b-5p was up-regulated in LPS-induced H9C2 cells. Inhibition of miR-34b-5p or overexpression of ZFAS1 alleviated inflammatory response and cell apoptosis in LPS-stimulated H9C2 cells. A mechanism study revealed that ZFAS1 sponged miR-34b-5p and thus elevated expression of SIRT1, which was prohibited by miR-34b-5p. ZFAS1 alleviated inflammatory response and cell apoptosis in LPS-stimulated H9C2 cells via the miR-34b-5p/SIRT1 axis, providing novel potential therapeutic targets for SIC.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Department of Critical Care Medicine, Haikou Hospital, Xiangya Medical College, Central South University, P.R. China
| | - Hong-Wu Wang
- Department of Critical Care Medicine, Haikou Hospital, Xiangya Medical College, Central South University, P.R. China
| | - Xing-Jun Cai
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, P.R. China
| |
Collapse
|
41
|
Chen D, Hou Y, Cai X. MiR-210-3p Enhances Cardiomyocyte Apoptosis and Mitochondrial Dysfunction by Targeting the NDUFA4 Gene in Sepsis-Induced Myocardial Dysfunction. Int Heart J 2021; 62:636-646. [PMID: 33994501 DOI: 10.1536/ihj.20-512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is a common complication with high incidence rates in sepsis patients. This study aimed to investigate the roles of miR-210-3p in regulating cardiomyocyte apoptosis and mitochondrial dysfunction associated with SIMD pathogenesis.A rat sepsis model was established by cecal ligation and puncture. Serum inflammatory factors, myocardial tissue apoptosis, and expression of miR-210-3p were evaluated. In vitro, miR-210-3p expression in H9C2 cells was altered by transfection with its mimics or inhibitors. H9C2 viability was assessed via CCK-8 assay, and reactive oxygen species (ROS) production and apoptosis were detected through flow cytometry. The targeting regulatory relations between miR-210-3p and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 (NDUFA4) were validated by dual luciferase reporter assay.The rat sepsis model showed increased serum TNF-α and IL-6 levels, significant myocardial tissue injuries and apoptosis with decreased Bcl-2 and increased Caspase-1 protein levels. In vitro, septic rat serum suppressed viability, promoted ROS production and apoptosis, impaired COX IV activities and increased cytochrome release in H9C2 cells. The expression of miR-210-3p was greatly increased in myocardial tissues of septic rats and septic serum-treated H9C2 cells. miR-210-3p directly binds to the 3' UTR of the NDUFA4 gene. Septic rat serum suppressed NDUFA4 and Iron-Sulfur Cluster Assembly Protein U gene expressions in H9C2 cells. The above cellular and molecular alterations in H9C2 cells induced by septic serum were enhanced by miR-210-3p mimics and abrogated by miR-210-3p inhibitors.miR-210-3p promoted SIMD pathogenesis by targeting NDUFA4 to enhance cardiomyocyte apoptosis and impair mitochondrial function.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University
| | - Yu Hou
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University
| | - Xingjun Cai
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital
| |
Collapse
|
42
|
Downregulation of miR-497-5p Improves Sepsis-Induced Acute Lung Injury by Targeting IL2RB. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6624702. [PMID: 33954185 PMCID: PMC8057895 DOI: 10.1155/2021/6624702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 03/13/2021] [Indexed: 01/04/2023]
Abstract
Introduction Acute lung injury (ALI) induced by sepsis is a process related to inflammatory reactions, which involves lung cell apoptosis and production of inflammatory cytokine. Here, lipopolysaccharide (LPS) was applied to stimulate the mouse or human normal lung epithelial cell line (BEAS-2B) to construct a sepsis model in vivo and in vitro, and we also investigated the effect of miR-497-5p on sepsis-induced ALI. Material and Methods. Before LPS treatment, miR-497-5p antagomir was injected intravenously into mice to inhibit miR-497-5p expression in vivo. Similarly, miR-497-5p was knocked down in BEAS-2B cells. Luciferase reporter assay was applied to predict and confirm the miR-497-5p target gene. Cell viability, apoptosis, the levels of miR-497-5p, IL2RB, SP1, inflammatory cytokine, and lung injury were assessed. Results In BEAS-2B cells, a significant increase of apoptosis and inflammatory cytokine was shown after LPS stimulation. In septic mice, increased inflammatory cytokine production and apoptosis in lung cells and pulmonary morphological abnormalities were shown. The miR-497-5p inhibitor transfection showed antiapoptotic and anti-inflammatory effects on BEAS-2B cells upon LPS stimulation. In septic mice, the miR-497-5p antagomir injection also alleviated ALI, apoptosis, and inflammation caused by sepsis. The downregulation of IL2RB in BEAS-2B cells reversed the protective effects of the miR-497-5p inhibitor against ALI. Conclusion In conclusion, downregulation of miR-497-5p reduced ALI caused by sepsis through targeting IL2RB, indicating the potential effect of miR-497-5p for improving ALI caused by sepsis.
Collapse
|
43
|
From sepsis to acute respiratory distress syndrome (ARDS): emerging preventive strategies based on molecular and genetic researches. Biosci Rep 2021; 40:222737. [PMID: 32319516 PMCID: PMC7199454 DOI: 10.1042/bsr20200830] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A healthy body activates the immune response to target invading pathogens (i.e. viruses, bacteria, fungi, and parasites) and avoid further systemic infection. The activation of immunological mechanisms includes several components of the immune system, such as innate and acquired immunity. Once any component of the immune response to infections is aberrantly altered or dysregulated, resulting in a failure to clear infection, sepsis will develop through a pro-inflammatory immunological mechanism. Furthermore, the severe inflammatory responses induced by sepsis also increase vascular permeability, leading to acute pulmonary edema and resulting in acute respiratory distress syndrome (ARDS). Apparently, potential for improvement exists in the management of the transition from sepsis to ARDS; thus, this article presents an exhaustive review that highlights the previously unrecognized relationship between sepsis and ARDS and suggests a direction for future therapeutic developments, including plasma and genetic pre-diagnostic strategies and interference with proinflammatory signaling.
Collapse
|
44
|
Xiao L, Gong D, Liang L, Liang A, Liang H, Xu X, Teng H. Inhibition of HDAC4 by GSK3β leads to downregulation of KLF5 and ASK1 and prevents the progression of intravertebral disc degeneration. Clin Epigenetics 2021; 13:53. [PMID: 33691773 PMCID: PMC7948391 DOI: 10.1186/s13148-021-01005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a major cause of lower back pain. This study aimed at exploring the effects of histone deacetylase 4 (HDAC4) and its upstream and downstream signaling molecules on IDD development. METHODS A murine IDD model was established by inducing a needle puncture injury to the vertebrate, whereupon we isolated and transfected of nucleus pulposus (NP) cells. Disc height index (DHI) of the mice was determined by X-ray tomography, while the pain experienced by the IDD mice was evaluated by mechanical and thermal sensitivity tests. Next, the interaction between GSK3β and HDAC4 as well as that between HDAC4 and KLF5 acetylation was assessed by co-immunoprecipitation, while the promoter region binding was assessed identified by chromatin immunoprecipitation. By staining methods with TUNEL, Safranin O fast green, and hematoxylin and eosin, the NP cell apoptosis, degradation of extracellular matrix, and morphology of intervertebral disc tissues were measured. Furthermore, mRNA and protein expressions of GSK3β, HDAC4, KLF5, and ASK1, as well as the extent of HDAC4 phosphorylation, were determined by RT-qPCR and Western blotting. RESULTS GSK3β was identified to be downregulated in the intervertebral disc tissues obtained from IDD mice, while HDAC4, KLF5, and ASK1 were upregulated. HDAC4 silencing alleviated IDD symptoms. It was also found that GSK3β promoted the phosphorylation of HDAC4 to increase its degradation, while HDAC4 promoted ASK1 expression through upregulating the expression of KLF5. In IDD mice, GSK3β overexpression resulted in increased DHI, inhibition of NP cell apoptosis, alleviation of disc degeneration, and promoted mechanical and thermal pain thresholds. However, HDAC4 overexpression reversed these effects by promoting ASK1 expression. CONCLUSION Based on the key findings of the current study, we conclude that GSK3β can promote degradation of HDAC4, which lead to an overall downregulation of the downstream KLF5/ASK1 axis, thereby alleviating the development of IDD.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dongping Gong
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Loufeng Liang
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Anwei Liang
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Huaxin Liang
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiayi Xu
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hongli Teng
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
45
|
Li X, Li R, Gong Q, Shi D, Song L, Song Y. Circular RNA circVMA21 ameliorates lipopolysaccharide (LPS)-induced acute kidney injury by targeting the miR-199a-5p/NRP1 axis in sepsis. Biochem Biophys Res Commun 2021; 548:174-181. [PMID: 33647793 DOI: 10.1016/j.bbrc.2021.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sepsis is a serious and elusive syndrome caused by infection, with high mortality worldwide. Circular RNAs vacuolar ATPase assembly factor (circVMA21) has been reported to be related to the inflammatory damages in sepsis. This study is designed to explore the role and mechanism of circVMA21 in the lipopolysaccharide (LPS)-induced cell injury in sepsis. METHODS Cell viability and apoptosis were detected by CCK-8, and flow cytometry assays. CircVMA21, microRNA-199a-5p (miR-199a-5p), and Neuropilin-1 (NRP1) level were determined by RT-qPCR. Protein levels of Bcl-2, Bax, cleaved-caspase 3, and NRP1 were examined by Western blot assay. IL-1β, IL-6, and TNF-α were detected using ELISA. Superoxide Dismutase (SOD) and glutathione (GSH) were measured by the special kits. The binding relationship between miR-199a-5p and circVMA21 or NRP1 was predicted by Starbase 3.0 and then verified by a dual-luciferase reporter and RIP assays. RESULTS CircVMA21 and NRP1 were decreased, and miR-199a-5p was increased in LPS-induced THP-1 cells. Moreover, circVMA21 overexpression could repress LPS-mediated cell viability, apoptosis, inflammation, and oxidative stress in THP-1 cells. The mechanical analysis suggested that circVMA21 regulated NRP1 expression through sponging miR-199a-5p. CONCLUSION CircVMA21 upregulation could attenuate LPS-triggered THP-1 cell injury through modulating the miR-199a-5p/NRP1 axis, hinting an underlying therapeutic strategy for sepsis patients.
Collapse
Affiliation(s)
- Ximei Li
- Department of Intensive Medicine, Shanxi Provincial Peoples Hospital, Taiyuan City, Shanxi Province, China.
| | - Rongshan Li
- Department of Nephrology Medicine, Shanxi Provincial Peoples Hospital, Taiyuan City, Shanxi Province, China
| | - Qingmei Gong
- Department of Intensive Medicine, Shanxi Provincial Peoples Hospital, Taiyuan City, Shanxi Province, China
| | - Dongwu Shi
- Department of Intensive Medicine, Shanxi Provincial Peoples Hospital, Taiyuan City, Shanxi Province, China
| | - Lu Song
- Department of Intensive Medicine, Shanxi Provincial Peoples Hospital, Taiyuan City, Shanxi Province, China
| | - Yu Song
- Department of Intensive Medicine, Shanxi Provincial Peoples Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
46
|
Asensio-Lopez MC, Sassi Y, Soler F, Fernandez Del Palacio MJ, Pascual-Figal D, Lax A. The miRNA199a/SIRT1/P300/Yy1/sST2 signaling axis regulates adverse cardiac remodeling following MI. Sci Rep 2021; 11:3915. [PMID: 33594087 PMCID: PMC7887255 DOI: 10.1038/s41598-021-82745-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/25/2021] [Indexed: 01/14/2023] Open
Abstract
Left ventricular remodeling following myocardial infarction (MI) is related to adverse outcome. It has been shown that an up-regulation of plasma soluble ST2 (sST2) levels are associated with lower pre-discharge left ventricular (LV) ejection fraction, adverse cardiovascular outcomes and mortality outcome after MI. The mechanisms involved in its modulation are unknown and there is not specific treatment capable of lowering plasma sST2 levels in acute-stage HF. We recently identified Yin-yang 1 (Yy1) as a transcription factor related to circulating soluble ST2 isoform (sST2) expression in infarcted myocardium. However, the underlying mechanisms involved in this process have not been thoroughly elucidated. This study aimed to evaluate the pathophysiological implication of miR-199a-5p in cardiac remodeling and the expression of the soluble ST2 isoform. Myocardial infarction (MI) was induced by permanent ligation of the left anterior coronary artery in C57BL6/J mice that randomly received antimiR199a therapy, antimiR-Ctrl or saline. A model of biomechanical stretching was also used to characterize the underlying mechanisms involved in the activation of Yy1/sST2 axis. Our results show that the significant upregulation of miR-199a-5p after myocardial infarction increases pathological cardiac hypertrophy by upregulating circulating soluble sST2 levels. AntimiR199a therapy up-regulates Sirt1 and inactivates the co-activator P300 protein, thus leading to Yy1 inhibition which decreases both expression and release of circulating sST2 by cardiomyocytes after myocardial infarction. Pharmacological inhibition of miR-199a rescues cardiac hypertrophy and heart failure in mice, offering a potential therapeutic approach for cardiac failure.
Collapse
Affiliation(s)
- Maria Carmen Asensio-Lopez
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fernando Soler
- Biochemical and Molecular Biology Department, University of Murcia, Murcia, Spain
| | | | - Domingo Pascual-Figal
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca, University of Murcia, Murcia, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBERCV, Madrid, Spain.
| | - Antonio Lax
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain.
| |
Collapse
|
47
|
He K, Han S, An L, Zhang J. Inhibition of MicroRNA-214 Alleviates Lung Injury and Inflammation via Increasing FGFR1 Expression in Ventilator-Induced Lung Injury. Lung 2021; 199:63-72. [PMID: 33389067 DOI: 10.1007/s00408-020-00415-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Ventilator-induced lung injury (VILI) is an additional inflammatory injury caused by mechanical ventilation (MV). This study aimed to determine the effects of microRNA-214 (miR-214) on VILI and its underlying mechanism of action. METHODS To develop a VILI mouse model, mice were subjected to MV. The expression of miR-214 was detected by qRT-PCR. The macrophages, fibroblasts, epithelial cells, and endothelial cells were isolated from lung tissues by fluorescence-activated cell sorting. The histopathological changes of lung, lung wet/dry weight (W/D) ratio, and myeloperoxidase (MPO) activity were used to evaluate the degree of lung injury. The levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter assay was performed to determine the interactions between miR-214 and FGFR1. Western blot was used to detect the protein expression of FGFR1, p-AKT, and p-PI3K. RESULTS The expression of miR-214 was increased in lung tissues and macrophages, fibroblasts, epithelial cells, and endothelial cells isolated from lung tissues in VILI mice. MiR-214 inhibition decreased the histopathological changes of lung, lung W/D ratio, MPO activity, and pro-inflammatory cytokines levels in BALF in VILI mice. FGFR1 was targeted by miR-214. The protein expression of FGFR1 was decreased in VILI mice. Ponatinib (FGFR1 inhibitor) reversed the suppressive effects of miR-214 inhibition on lung injury and inflammation of VILI mice. MiR-214 increased the activity of PI3K/AKT pathway by regulating FGFR1. CONCLUSIONS Inhibition of miR-214 attenuated lung injury and inflammation in VILI mice by increasing FGFR1 expression, providing a novel therapeutic target for VILI.
Collapse
Affiliation(s)
- Kun He
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, No. 206, Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Shuang Han
- Department of Anesthesiology, Hebei General Hospital, No. 348, Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Li An
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, No. 206, Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
| | - Jin Zhang
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, No. 206, Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| |
Collapse
|
48
|
Zhang H, Che L, Wang Y, Zhou H, Gong H, Man X, Zhao Q. Deregulated microRNA-22-3p in patients with sepsis-induced acute kidney injury serves as a new biomarker to predict disease occurrence and 28-day survival outcomes. Int Urol Nephrol 2021; 53:2107-2116. [PMID: 33511504 DOI: 10.1007/s11255-021-02784-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and serious complication of sepsis. MicroRNA-22-3p (miR-22-3p) has been found to be involved in septic AKI progression. The purpose of this study was to analyze both the serum and urinary expression of miR-22-3p in septic AKI patients, and evaluated the clinical value of miR-22-3p in the diagnosis and prognosis of sepsis-induced AKI. METHODS Serum and urinary expression of miR-22-3p was examined using qRT-PCR. The risk factors related with septic AKI onset were assessed using logistic analysis. A receiver-operating characteristic (ROC) curve was constructed to evaluate the diagnostic performance of miR-22-3p, and the Kaplan-Meier survival curves and Cox regression analysis were used to evaluate the predictive value of miR-22-3p for the 28-day survival of septic AKI patients. RESULTS Both serum and urinary miR-22-3p expression was decreased and negatively correlated with kidney injury biomarkers in septic AKI patients. MiR-22-3p expression was a risk factor for AKI onset and had diagnostic accuracy in septic AKI patients. The expression of both serum and urinary miR-22-3p was lower in patients who died, and served as a prognostic biomarker to predict 28-day survival in septic AKI patients. CONCLUSION Serum and urinary miR-22-3p was reduced in sepsis-induced AKI patients, and served as a biomarker to predict AKI occurrence and 28-day survival in sepsis patients.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Yanfei Wang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Haiyan Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Haihong Gong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Xiaofei Man
- Department of Nephrology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Qian Zhao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
49
|
Yang Y, Li L. Depleting microRNA-146a-3p attenuates lipopolysaccharide-induced acute lung injury via up-regulating SIRT1 and mediating NF-κB pathway. J Drug Target 2021; 29:420-429. [PMID: 33185125 DOI: 10.1080/1061186x.2020.1850738] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The role of microRNAs (miRs) in acute lung injury (ALI) has been discussed. This study is to uncover the effects of miR-146a-3p/Sirtuin-1 (SIRT1)/Nuclear factor-kappa B (NF-κB) axis on ALI. METHODS Human normal lung epithelial cell line BEAS-2B was exposed to lipopolysaccharide (LPS) to establish an in vitro model of ALI. NF-κB expression, cell activity, apoptosis, inflammatory factors, oxidative stress indices were detected in LPS-induced BEAS-2B cells after miR-146a-3p was down-regulated or SIRT1 was up-regulated. ALI rat model was established and the NF-κB expression, wet/dry weight (W/D) ratio, pathological changes, pneumonocyte apoptosis, inflammatory factors, oxidative stress indices were detected in ALI rats after miR-146a-3p was down-regulated or SIRT1 was up-regulated. The target relationship between miR-146a-3p and SIRT1 was confirmed. RESULTS Reduced SIRT1 and raised miR-146a-3p were found in LPS-induced BEAS-2B cells and ALI rats. SIRT1-overexpressing or miR-146a-3p-underexpressing up-regulated NF-κB expression, promoted viability and inhibited apoptosis of LPS-induced BEAS-2B cells in vitro, and increased NF-κB expression, down-regulated the W/D ratio, attenuated pathological changes, suppressed apoptosis, and alleviated inflammatory response and oxidative stress in the lung of ALI rats. MiR-146a-3p directly binds to the 3'UTR of SIRT1 mRNA. CONCLUSION Depleting miR-146a-3p improves ALI through up-regulating SIRT1 and mediating NF-κB pathway.
Collapse
Affiliation(s)
- Yuxia Yang
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Li
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
50
|
Desjarlais M, Wirth M, Lahaie I, Ruknudin P, Hardy P, Rivard A, Chemtob S. Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm. Front Pharmacol 2020; 11:602999. [PMID: 33362557 PMCID: PMC7759543 DOI: 10.3389/fphar.2020.602999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the number one health problem worldwide. As of August 2020, it has affected more than 18 million humans and caused over 700,000 deaths worldwide. COVID-19 is an infectious disease that can lead to severe acute respiratory syndrome. Under certain circumstances, the viral infection leads to excessive and uncontrolled inflammatory response, which is associated with the massive release of inflammatory cytokines in pulmonary alveolar structures. This phenomenon has been referred to as the “cytokine storm,” and it is closely linked to lung injury, acute respiratory syndrome and mortality. Unfortunately, there is currently no vaccine available to prevent the infection, and no effective treatment is available to reduce the mortality associated with the severe form of the disease. The cytokine storm associate with COVID-19 shows similarities with those observed in other pathologies such as sepsis, acute respiratory distress syndrome, acute lung injury and other viral infection including severe cases of influenza. However, the specific mechanisms that cause and modulate the cytokine storm in the different conditions remain to be determined. micro-RNAs are important regulators of gene expression, including key inflammatory cytokines involved in the massive recruitment of immune cells to the lungs such as IL1β, IL6, and TNFα. In recent years, it has been shown that nutraceutical agents can modulate the expression of miRs involved in the regulation of cytokines in various inflammatory diseases. Here we review the potential role of inflammatory-regulating-miRs in the cytokine storm associated with COVID-19, and propose that nutraceutical agents may represent a supportive therapeutic approach to modulate dysregulated miRs in this condition, providing benefits in severe respiratory diseases.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|