1
|
Cheng Z, Chu H, Seki E, Lin R, Yang L. Hepatocyte programmed cell death: the trigger for inflammation and fibrosis in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2024; 12:1431921. [PMID: 39071804 PMCID: PMC11272544 DOI: 10.3389/fcell.2024.1431921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
By replacing and removing defective or infected cells, programmed cell death (PCD) contributes to homeostasis maintenance and body development, which is ubiquitously present in mammals and can occur at any time. Besides apoptosis, more novel modalities of PCD have been described recently, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. PCD not only regulates multiple physiological processes, but also participates in the pathogenesis of diverse disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is mainly classified into metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), and the latter putatively progresses to cirrhosis and hepatocellular carcinoma. Owing to increased incidence and obscure etiology of MASH, its management still remains a tremendous challenge. Recently, hepatocyte PCD has been attracted much attention as a potent driver of the pathological progression from MASL to MASH, and some pharmacological agents have been proved to exert their salutary effects on MASH partly via the regulation of the activity of hepatocyte PCD. The current review recapitulates the pathogenesis of different modalities of PCD, clarifies the mechanisms underlying how metabolic disorders in MASLD induce hepatocyte PCD and how hepatocyte PCD contributes to inflammatory and fibrotic progression of MASH, discusses several signaling pathways in hepatocytes governing the execution of PCD, and summarizes some potential pharmacological agents for MASH treatment which exert their therapeutic effects partly via the regulation of hepatocyte PCD. These findings indicate that hepatocyte PCD putatively represents a new therapeutic point of intervention for MASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Wang Q, Bu Q, Xu Z, Liang Y, Zhou J, Pan Y, Zhou H, Lu L. Macrophage ATG16L1 expression suppresses metabolic dysfunction-associated steatohepatitis progression by promoting lipophagy. Clin Mol Hepatol 2024; 30:515-538. [PMID: 38726504 PMCID: PMC11261221 DOI: 10.3350/cmh.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is an unmet clinical challenge due to the rapid increased occurrence but lacking approved drugs. Autophagy-related protein 16-like 1 (ATG16L1) plays an important role in the process of autophagy, which is indispensable for proper biogenesis of the autophagosome, but its role in modulating macrophage-related inflammation and metabolism during MASH has not been documented. Here, we aimed to elucidate the role of ATG16L1 in the progression of MASH. METHODS Expression analysis was performed with liver samples from human and mice. MASH models were induced in myeloid-specific Atg16l1-deficient and myeloid-specific Atg16l1-overexpressed mice by high-fat and high-cholesterol diet or methionine- and choline-deficient diet to explore the function and mechanism of macrophage ATG16L1 in MASH. RESULTS Macrophage-specific Atg16l1 knockout exacerbated MASH and inhibited energy expenditure, whereas macrophage-specific Atg16l1 transgenic overexpression attenuated MASH and promotes energy expenditure. Mechanistically, Atg16l1 knockout inhibited macrophage lipophagy, thereby suppressing macrophage β-oxidation and decreasing the production of 4-hydroxynonenal, which further inhibited stimulator of interferon genes(STING) carbonylation. STING palmitoylation was enhanced, STING trafficking from the endoplasmic reticulum to the Golgi was promoted, and downstream STING signaling was activated, promoting proinflammatory and profibrotic cytokines secretion, resulting in hepatic steatosis and hepatic stellate cells activation. Moreover, Atg16l1-deficiency enhanced macrophage phagosome ability but inhibited lysosome formation, engulfing mtDNA released by pyroptotic hepatocytes. Increased mtDNA promoted cGAS/STING signaling activation. Moreover, pharmacological promotion of ATG16L1 substantially blocked MASH progression. CONCLUSION ATG16L1 suppresses MASH progression by maintaining macrophage lipophagy, restraining liver inflammation, and may be a promising therapeutic target for MASH management.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yufeng Pan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Xu X, Wang J, Xia Y, Yin Y, Zhu T, Chen F, Hai C. Autophagy, a double-edged sword for oral tissue regeneration. J Adv Res 2024; 59:141-159. [PMID: 37356803 PMCID: PMC11081970 DOI: 10.1016/j.jare.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Oral health is of fundamental importance to maintain systemic health in humans. Stem cell-based oral tissue regeneration is a promising strategy to achieve the recovery of impaired oral tissue. As a highly conserved process of lysosomal degradation, autophagy induction regulates stem cell function physiologically and pathologically. Autophagy activation can serve as a cytoprotective mechanism in stressful environments, while insufficient or over-activation may also lead to cell function dysregulation and cell death. AIM OF REVIEW This review focuses on the effects of autophagy on stem cell function and oral tissue regeneration, with particular emphasis on diverse roles of autophagy in different oral tissues, including periodontal tissue, bone tissue, dentin pulp tissue, oral mucosa, salivary gland, maxillofacial muscle, temporomandibular joint, etc. Additionally, this review introduces the molecular mechanisms involved in autophagy during the regeneration of different parts of oral tissue, and how autophagy can be regulated by small molecule drugs, biomaterials, exosomes/RNAs or other specific treatments. Finally, this review discusses new perspectives for autophagy manipulation and oral tissue regeneration. KEY SCIENTIFIC CONCEPTS OF REVIEW Overall, this review emphasizes the contribution of autophagy to oral tissue regeneration and highlights the possible approaches for regulating autophagy to promote the regeneration of human oral tissue.
Collapse
Affiliation(s)
- Xinyue Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Jia Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Yunlong Xia
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Tianxiao Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Faming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Chunxu Hai
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
4
|
Souza LL, Rossetti CL, Peixoto TC, Manhães AC, de Moura EG, Lisboa PC. Neonatal nicotine exposure affects adult rat hepatic pathways involved in endoplasmic reticulum stress and macroautophagy in a sex-dependent manner. J Dev Orig Health Dis 2023; 14:639-647. [PMID: 38037831 DOI: 10.1017/s2040174423000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) involves changes in hepatic pathways, as lipogenesis, oxidative stress, endoplasmic reticulum (ER) stress, and macroautophagy. Maternal nicotine exposure exclusively during lactation leads to fatty liver (steatosis) only in the adult male offspring, not in females. Therefore, our hypothesis is that neonatal exposure to nicotine sex-dependently affects the signaling pathways involved in hepatic homeostasis of the offspring, explaining the hepatic lipid accumulation phenotype only in males. For this, between postnatal days 2 and 16, Wistar rat dams were implanted with osmotic minipumps, which released nicotine (NIC; 6 mg/Kg/day) or vehicle. The livers of offspring were evaluated at postnatal day 180. Only the male offspring that had been exposed to nicotine neonatally showed increased protein expression of markers of unfolded protein response (UPR), highlighting the presence of ER stress, as well as disruption of the activation of the macroautophagy repair pathway. These animals also had increased expression of diacylglycerol O-acyltransferase 1 and 4-hydroxynonenal, suggesting increased triglyceride esterification and oxidative stress. These parameters were not altered in the female offspring that had been neonatally exposed to nicotine, however they exhibited increased phospho adenosine monophosphate-activated protein kinase pAMPK expression, possibly as a protective mechanism. Thus, the disturbance in the hepatic homeostasis by UPR, macroautophagy, and oxidative stress modifications seem to be the molecular mechanisms underlying the liver steatosis in the adult male offspring of the nicotine-programming model. This highlights the importance of maternal smoking cessation during breastfeeding to decrease the risk of NAFLD development, especially in males.
Collapse
Affiliation(s)
- Luana Lopes Souza
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Lüdke Rossetti
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamara Cherem Peixoto
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2023:01515467-990000000-00454. [PMID: 37212145 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
6
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
7
|
Ding M, Zhou F, Li Y, Liu C, Gu Y, Wu J, Fan G, Li Y, Li X. Cassiae Semen improves non-alcoholic fatty liver disease through autophagy-related pathway. CHINESE HERBAL MEDICINES 2023. [PMID: 37538867 PMCID: PMC10394324 DOI: 10.1016/j.chmed.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Objective Cassiae Semen (CS, Juemingzi in Chinese) has been used for thousands of years in ancient Chinese history for relieving constipation, improving liver function as well as preventing myopia. Here we aimed to elucidate the anti-steatosis effect and underlying mechanism of CS against non-alcoholic fatty liver disease (NAFLD). Methods High-performance liquid chromatography (HPLC) was used to identify the major components of CS water extract. Mice were fed with a high-fat and sugar-water (HFSW) diet to induce hepatic steatosis and then treated with CS. The anti-NAFLD effect was determined by measuring serum biomarkers and histopathology staining. Additionally, the effects of CS on cell viability and lipid metabolism in oleic acid and palmitic acid (OAPA)-treated HepG2 cells were measured. The expression of essential genes and proteins involved in lipid metabolism and autophagy signalings were measured to uncover the underlying mechanism. Results Five compounds, including aurantio-obtusin, rubrofusarin gentiobioside, cassiaside C, emodin and rhein were simultaneously identified in CS extract. CS not only improved the diet-induced hepatic steatosis in vivo, as indicated by decreased number and size of lipid droplets, hepatic and serum triglycerides (TG) levels, but also markedly attenuated the OAPA-induced lipid accumulation in hepatocytes. These lipid-lowering effects induced by CS were largely dependent on the inhibition of fatty acid synthase (FASN) and the activation of autophagy-related signaling, including AMP-activated protein kinase (AMPK), light chain 3-II (LC3-II)/ LC3-1 and autophagy-related gene5 (ATG5). Conclusion Our study suggested that CS effectively protected liver steatosis via decreasing FASN-related fatty acid synthesis and activating AMPK-mediated autophagy, which might become a promising therapeutic strategy for relieving NAFLD.
Collapse
|
8
|
Gong J, Tu W, Liu J, Tian D. Hepatocytes: A key role in liver inflammation. Front Immunol 2023; 13:1083780. [PMID: 36741394 PMCID: PMC9890163 DOI: 10.3389/fimmu.2022.1083780] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, are responsible for a variety of cellular functions including carbohydrate, lipid and protein metabolism, detoxification and immune cell activation to maintain liver homeotasis. Recent studies show hepatocytes play a pivotal role in liver inflammation. After receiving liver insults and inflammatory signals, hepatocytes may undergo organelle damage, and further respond by releasing mediators and expressing molecules that can act in the microenvironment as well as initiate a robust inflammatory response. In this review, we summarize how the hepatic organelle damage link to liver inflammation and introduce numerous hepatocyte-derived pro-inflammatory factors in response to chronic liver injury.
Collapse
Affiliation(s)
| | | | | | - Dean Tian
- *Correspondence: Jingmei Liu, ; Dean Tian,
| |
Collapse
|
9
|
Xiao Z, Liu M, Yang F, Liu G, Liu J, Zhao W, Ma S, Duan Z. Programmed cell death and lipid metabolism of macrophages in NAFLD. Front Immunol 2023; 14:1118449. [PMID: 36742318 PMCID: PMC9889867 DOI: 10.3389/fimmu.2023.1118449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has now become the leading chronic liver disease worldwide with lifestyle changes. This may lead to NAFLD becoming the leading cause of end-stage liver disease in the future. To date, there are still no effective therapeutic drugs for NAFLD. An in-depth exploration of the pathogenesis of NAFLD can help to provide a basis for new therapeutic agents or strategies. As the most important immune cells of the liver, macrophages play an important role in the occurrence and development of liver inflammation and are expected to become effective targets for NAFLD treatment. Programmed cell death (PCD) of macrophages plays a regulatory role in phenotypic transformation, and there is also a certain connection between different types of PCD. However, how PCD regulates macrophage polarization has still not been systematically elucidated. Based on the role of lipid metabolic reprogramming in macrophage polarization, PCD may alter the phenotype by regulating lipid metabolism. We reviewed the effects of macrophages on inflammation in NAFLD and changes in their lipid metabolism, as well as the relationship between different types of PCD and lipid metabolism in macrophages. Furthermore, interactions between different types of PCD and potential therapeutic agents targeting of macrophages PCD are also explored.
Collapse
Affiliation(s)
- Zhun Xiao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Minghao Liu
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Fangming Yang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Guangwei Liu
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiangkai Liu
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxia Zhao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Suping Ma
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Suping Ma, ; Zhongping Duan,
| | - Zhongping Duan
- Beijing Institute of Hepatology, Beijing Youan Hospital Capital Medical University, Beijing, China,*Correspondence: Suping Ma, ; Zhongping Duan,
| |
Collapse
|
10
|
Systems Pharmacology-Based Strategy to Investigate the Mechanism of Ruangan Lidan Decoction for Treatment of Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2940654. [PMID: 36578460 PMCID: PMC9791079 DOI: 10.1155/2022/2940654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022]
Abstract
epatocellular carcinoma (HCC) is one of the leading contributors to cancer mortality worldwide. Currently, the prevention and treatment of HCC remains a major challenge. As a traditional Chinese medicine (TCM) formula, Ruangan Lidan decoction (RGLD) has been proved to own the effect of relieving HCC symptoms. However, due to its biological effects and complex compositions, its underlying mechanism of actions (MOAs) have not been fully clarified yet. In this study, we proposed a pharmacological framework to systematically explore the MOAs of RGLD against HCC. We firstly integrated the active ingredients and potential targets of RGLD. We next highlighted 25 key targets that played vital roles in both RGLD and HCC disease via a protein-protein interaction (PPI) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Furthermore, an ingredient-target network of RGLD consisting of 216 ingredients with 306 targets was constructed, and multilevel systems pharmacology analyses indicated that RGLD could act on multiple biological processes related to the pathogenesis of HCC, such as cellular response to hypoxia and cell proliferation. Additionally, integrated pathway analysis of RGLD uncovered that RGLD might treat HCC through regulating various pathways, including MAPK signaling pathway, PI3K/Akt signaling pathway, TNF signaling pathway, and ERBB signaling pathway. Survival analysis results showed that HCC patients with low expression of VEGFA, HIF1A, CASP8, and TOP2A were related with a higher survival rate than those with high expression, indicating the potential clinical significance for HCC. Finally, molecular docking results of core ingredients and targets further proved the feasibility of RGLD in the treatment of HCC. Overall, this study indicates that RGLD may treat HCC through multiple mechanisms, which also provides a potential paradigm to investigate the MOAs of TCM prescription.
Collapse
|
11
|
Zeng H, Li X, Liu Y, Li X, Qu D, Chen Y. An icaritin-loaded microemulsion based on coix oil for improved pharmacokinetics and enhanced antitumor efficacy. Drug Deliv 2022; 29:3454-3466. [PMID: 36447364 PMCID: PMC9848417 DOI: 10.1080/10717544.2022.2147601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Combinational icaritin (IC) and coix seed oil (CSO) holds promising potential in the treatment of hepatocellular carcinoma. However, traditional cocktail therapy is facing difficulties to optimize the synergistic antitumor efficacy due to the asynchronous pharmacokinetics. Therefore, we developed an icaritin-loaded microemulsion based on coix seed oil (IC-MEs) for improved pharmacokinetics and enhanced antitumor efficacy. The preparation technology of IC-MEs was optimized by the Box-Behnken design and the pharmaceutical properties were characterized in detail. IC-MEs show synergistic antiproliferation against HepG2 cells compared with monotherapy. The mechanism is associated with stronger apoptosis induction via enhancing caspases-3 activity. IC-MEs significantly improve the bioavailability of IC due to the encapsulation of coix oil-based microemulsion and also obtain the desired liver accumulation and elimination. More importantly, IC-MEs exhibit the overwhelming antitumor ability among all of the treatments on the HepG2 xenograft-bearing mice. This study verifies the feasibility of using coix oil-based microemulsion to improve the antitumor effect of water-insoluble components.
Collapse
Affiliation(s)
- Huating Zeng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China,CONTACT Yan Chen Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Chinese Medicine, 100 Shizi Road, Nanjing 210028, China
| |
Collapse
|
12
|
Lian YE, Bai YN, Lai JL, Huang AM. Aberrant regulation of autophagy disturbs fibrotic liver regeneration after partial hepatectomy. Front Cell Dev Biol 2022; 10:1030338. [DOI: 10.3389/fcell.2022.1030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023] Open
Abstract
Reports indicate that autophagy is essential for maintaining hepatocyte proliferative capacity during liver regeneration. However, the role of autophagy in fibrotic liver regeneration is incompletely elucidated. We investigated the deregulation of autophagic activities in liver regeneration after partial hepatectomy using a CCl4-induced fibrosis mouse model. The baseline autophagic activity was significantly increased in the fibrotic liver. After 50% partial hepatectomy (PHx), liver regeneration was remarkably decreased, accompanied by increased hepatocyte size and binuclearity ratio. Moreover, the expression of autophagy-related proteins was functionally deregulated and resulted in a reduction in the number of autophagosome and autophagosome–lysosome fusions. We further showed upregulation of autophagy activities through verapamil administration, improved hepatocyte proliferation capacity, and restricted cellular hypertrophy and binuclearity ratio. In conclusion, we demonstrated that the impairment of liver regeneration is associated with aberrant autophagy in fibrotic liver and that enhancing autophagy with verapamil may partially restore the impaired liver regeneration following PHx.
Collapse
|
13
|
Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 2022; 77:1136-1160. [PMID: 35750137 DOI: 10.1016/j.jhep.2022.06.012] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).
Collapse
|
14
|
Huo Y, Cao K, Kou B, Chai M, Dou S, Chen D, Shi Y, Liu X. TP53BP2: Roles in suppressing tumorigenesis and therapeutic opportunities. Genes Dis 2022. [PMID: 37492707 PMCID: PMC10363587 DOI: 10.1016/j.gendis.2022.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Malignant tumor is still a major problem worldwide. During tumorigenesis or tumor development, tumor suppressor p53-binding protein 2 (TP53BP2), also known as apoptosis stimulating protein 2 of p53 (ASPP2), plays a critical role in p53 dependent and independent manner. Expression of TP53BP2 is highly correlated with the prognosis and survival rate of malignant tumor patients. TP53BP2 can interact with p53, NF-κB p65, Bcl-2, HCV core protein, PP1, YAP, CagA, RAS, PAR3, and other proteins to regulate cell function. Moreover, TP53BP2 can also regulate the proliferation, apoptosis, autophagy, migration, EMT and drug resistance of tumor cells through downstream signaling pathways, such as NF-κB, RAS/MAPK, mevalonate, TGF-β1, PI3K/AKT, aPKC-ι/GLI1 and autophagy pathways. As a potential therapeutic target, TP53BP2 has been attracted more attention. We review the role of TP53BP2 in tumorigenesis or tumor development and the signal pathway involved in TP53BP2, which may provide more deep insight and strategies for tumor treatment.
Collapse
|
15
|
Increased Levels of Phosphorylated ERK Induce CTGF Expression in Autophagy-Deficient Mouse Hepatocytes. Cells 2022; 11:cells11172704. [PMID: 36078110 PMCID: PMC9454551 DOI: 10.3390/cells11172704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy performs essential cell functions in the liver through an intracellular lysosomal degradation process. Several studies have reported that autophagy deficiency can lead to liver injury, including hepatic fibrosis; however, the mechanisms underlying the relationship between autophagy deficiency and liver pathology are unclear. In this study, we examined the expression levels of fibrosis-associated genes in hepatocyte-specific ATG7-deficient mice. The expression levels of the connective tissue growth factor (CTGF) and phosphorylated ERK (phospho-ERK) proteins were increased significantly in primary hepatocytes isolated from hepatocyte-specific ATG7-deficient mice compared to those isolated from control mice. In addition, the inhibition of autophagy in cultured mammalian hepatic AML12 and LX2 cells increased CTGF and phospho-ERK protein levels without altering CTGF mRNA expression. In addition, the autophagy deficiency-mediated enhancement of CTGF expression was attenuated when ERK was inhibited. Overall, these results suggest that the inhibition of autophagy in hepatocytes increases phospho-ERK expression, which in turn increases the expression of CTGF, a biomarker of fibrosis.
Collapse
|
16
|
Design and Evaluation of Autophagy-Inducing Particles for the Treatment of Abnormal Lipid Accumulation. Pharmaceutics 2022; 14:pharmaceutics14071379. [PMID: 35890275 PMCID: PMC9318411 DOI: 10.3390/pharmaceutics14071379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Autophagy is a fundamental housekeeping process by which cells degrade their components to maintain homeostasis. Defects in autophagy have been associated with aging, neurodegeneration and metabolic diseases. Non-alcoholic fatty liver diseases (NAFLDs) are characterized by hepatic fat accumulation with or without inflammation. No treatment for NAFLDs is currently available, but autophagy induction has been proposed as a promising therapeutic strategy. Here, we aimed to design autophagy-inducing particles, using the autophagy-inducing peptide (Tat-Beclin), and achieve liver targeting in vivo, taking NAFLD as a model disease. Polylactic acid (PLA) particles were prepared by nanoprecipitation without any surfactant, followed by surface peptide adsorption. The ability of Tat-Beclin nanoparticles (NP T-B) to modulate autophagy and to decrease intracellular lipid was evaluated in vitro by LC3 immunoblot and using a cellular model of steatosis, respectively. The intracellular localization of particles was evaluated by transmission electron microscopy (TEM). Finally, biodistribution of fluorescent NP T-B was evaluated in vivo using tomography in normal and obese mice. The results showed that NP T-B induce autophagy with a long-lasting and enhanced effect compared to the soluble peptide, and at a ten times lower dose. Intracellular lipid also decreased in a cellular model of NAFLD after treatment with T-B and NP T-B under the same dose conditions. Ultrastructural studies revealed that NP T-B are internalized and located in endosomal, endolysosomal and autolysosomal compartments, while in healthy and obese mice, NP T-B could accumulate for several days in the liver. Given the beneficial effects of autophagy-inducing particles in vitro, and their capacity to target the liver of normal and obese mice, NP T-B could be a promising therapeutic tool for NAFLDs, warranting further in vivo investigation.
Collapse
|
17
|
SGLT2 Inhibitors as the Most Promising Influencers on the Outcome of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23073668. [PMID: 35409028 PMCID: PMC8998221 DOI: 10.3390/ijms23073668] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most frequent liver disease in the Western world, is a common hepatic manifestation of metabolic syndrome (MetS). A specific cure has not yet been identified, and its treatment is currently based on risk factor therapy. Given that the initial accumulation of triglycerides in the liver parenchyma, in the presence of inflammatory processes, mitochondrial dysfunction, lipotoxicity, glucotoxicity, and oxidative stress, can evolve into non-alcoholic steatohepatitis (NASH). The main goal is to identify the factors contributing to this evolution because, once established, untreated NASH can progress through fibrosis to cirrhosis and, ultimately, be complicated by hepatocellular carcinoma (HCC). Several drugs have been tested in clinical trials for use as specific therapy for NAFLD; most of them are molecules used to cure type 2 diabetes mellitus (T2DM), which is one of the main risk factors for NAFLD. Among the most studied is pioglitazone, either alone or in combination with vitamin E, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors. Actually, the most promising category seems to be sodium-glucose cotransporter (SGLT2) inhibitors. Their action is carried out by inhibiting glucose reabsorption in the proximal renal tubule, leading to its increased excretion in urine and decreased levels in plasma. Experimental studies in animal models have suggested that SGLT2 inhibitors may have beneficial modulatory effects on NAFLD/NASH, and several trials in patients have proven their beneficial effects on liver enzymes, BMI, blood lipids, blood glucose, and insulin resistance in NAFLD patients, thus creating strong expectations for their possible use in preventing the evolution of liver damage in these patients. We will review the main pathogenetic mechanisms, diagnostic modalities, and recent therapies of NAFLD, with particular attention to the use of SGLT2 inhibitors.
Collapse
|
18
|
Lotersztajn S, Riva A, Wang S, Dooley S, Chokshi S, Gao B. Inflammation in alcohol-associated liver disease progression. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:58-66. [PMID: 35042254 DOI: 10.1055/a-1714-9246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronic alcohol consumption induces stress and damage in alcohol metabolising hepatocytes, which leads to inflammatory and fibrogenic responses. Besides these direct effects, alcohol disrupts intestinal barrier functions and induces gut microbial dysbiosis, causing translocation of bacteria or microbial products through the gut mucosa to the liver and, which induce inflammation indirectly. Inflammation is one of the key drivers of alcohol-associated liver disease progression from steatosis to severe alcoholic hepatitis. The current standard of care for the treatment of severe alcoholic hepatitis is prednisolone, aiming to reduce inflammation. Prednisolone, however improves only short-term but not long-term survival rates in those patients, and even increases the risk for bacterial infections. Thus, recent studies focus on the exploration of more specific inflammatory targets for the treatment of severe alcoholic hepatitis. These comprise, among others interference with inflammatory cytokines, modulation of macrophage phenotypes or targeting of immune cell communication, as summarized in the present overview. Although several approaches give promising results in preclinical studies, data robustness and ability to transfer experimental results to human disease is still not sufficient for effective clinical translation.
Collapse
Affiliation(s)
- Sophie Lotersztajn
- Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research affiliated with King's College London, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Sai Wang
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research affiliated with King's College London, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Bin Gao
- Laboratory of Liver diseases, National Institute on Alcohol Abuse and Alcoholism Laboratory of Liver Diseases, Bethesda, United States
| |
Collapse
|
19
|
Le TV, Dinh NBT, Dang MT, Phan NCL, Dang LTT, Grassi G, Holterman AXL, Le HM, Truong NH. Effects of autophagy inhibition by chloroquine on hepatic stellate cell activation in CCl4-induced acute liver injury mouse model. J Gastroenterol Hepatol 2022; 37:216-224. [PMID: 34713488 DOI: 10.1111/jgh.15726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIM Hepatic stellate cells (HSCs) activation, a critical event in liver fibrosis, has been recently shown to be related to autophagy. Determine whether chloroquine (CQ) could affect (i) the activation of HSC in vivo and (ii) the hepatic damage in a mice acute liver injury model. METHODS The acute liver injury was induced in BALB/c mice by carbon tetrachloride (CCl4 group); 24 h before and after CCl4 administration animals were treated by CQ (CCl4 + CQ group). As control, mice treated by olive oil were considered. After 48 h from CCl4 /olive oil administration, blood samples, liver tissues, and HSCs were harvested for analysis. RESULTS In vivo, CQ attenuates CCl4 -induced acute liver damage as evidenced by (i) the reduction of liver enlargement, (ii) the reduction of liver swelling and necrosis also supported by a certain decrease of circulating transaminases level, and (iii) the reduction of liver fibrosis evaluated by collagen deposition and α-sma protein expression. In HSCs isolated from CQ treated group, we observed the inhibition of autophagy proved by the increase in p62 protein and the decrease of lc3 protein. In addition, CQ reduced the expression of the HSCs activation markers α-sma/collagen-I and down-regulated the expression of the proliferative marker ki67. CONCLUSION The autophagy attenuation exerted by CQ together with the reduction of the expression of the proliferation marker in HSCs can lessen the acute liver damage potentially opening the way to novel therapeutic approaches for hepatic fibrosis.
Collapse
Affiliation(s)
- Trinh Van Le
- Laboratory of Stem Cell Research and Application, University of Science-VNUHCM, Ho Chi Minh City, Vietnam.,Viet Nam National University, Ho Chi Minh City, Vietnam
| | - Ngoc Bao Thi Dinh
- Laboratory of Stem Cell Research and Application, University of Science-VNUHCM, Ho Chi Minh City, Vietnam.,Viet Nam National University, Ho Chi Minh City, Vietnam.,International University, VNUHCM, Ho Chi Minh City, Vietnam
| | - Minh Thanh Dang
- Laboratory of Stem Cell Research and Application, University of Science-VNUHCM, Ho Chi Minh City, Vietnam.,Viet Nam National University, Ho Chi Minh City, Vietnam
| | - Nhan Chinh Lu Phan
- Viet Nam National University, Ho Chi Minh City, Vietnam.,Stem cell Institute, University of Science-VNUHCM, Ho Chi Minh City, Vietnam
| | - Loan Tung Thi Dang
- Viet Nam National University, Ho Chi Minh City, Vietnam.,Faculty of Biology and Biotechnology, University of Science-VNUHCM, Ho Chi Minh City, Vietnam
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Trieste, Italy
| | - Ai Xuan Le Holterman
- Department of Pediatrics and Surgery, University of Illinois College of Medicine, Chicago, IL, USA
| | - Huy Minh Le
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nhung Hai Truong
- Laboratory of Stem Cell Research and Application, University of Science-VNUHCM, Ho Chi Minh City, Vietnam.,Viet Nam National University, Ho Chi Minh City, Vietnam.,Faculty of Biology and Biotechnology, University of Science-VNUHCM, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochem Pharmacol 2021; 193:114764. [PMID: 34529948 DOI: 10.1016/j.bcp.2021.114764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
21
|
Huang L, Zeng X, Li B, Wang C, Zhou M, Lang H, Yi L, Mi M. Dihydromyricetin attenuates palmitic acid-induced oxidative stress by promoting autophagy via SIRT3-ATG4B signaling in hepatocytes. Nutr Metab (Lond) 2021; 18:83. [PMID: 34503544 PMCID: PMC8428134 DOI: 10.1186/s12986-021-00612-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oxidative stress in hepatocytes was important pathogenesis of nonalcoholic steatohepatitis (NASH). Autophagy was a cellular process that can remove damaged organelles under oxidative stress, and thus presented a potential therapeutic target against NASH. This work aimed to investigate whether autophagy was participated in the protective effects of dihydromyricetin (DHM) on palmitic acid (PA)-induced oxidative stress in hepatocytes and the underlying mechanism. METHODS HepG2 and HHL-5 cell lines were pretreated with DHM (20 μM) for 2 h, followed by PA (0.2 mM) treatment for 16 h. The oxidative stress was assessed by the quantification of intracellular reactive oxygen species (ROS), mitochondrial ROS (mtROS), mitochondrial membrane potential (MMP) and mitochondrial ultrastructural analyses. The protein expressions of SIRT3, LC3I/II, P62 and ATG4B, as well as the acetylation of AGT4B were determined by western blotting using HepG2 and HepG2/ATG4B± cells with heterozygous knockout of ATG4B. RESULTS Exposure to PA resulted in increased intracellular ROS and mtROS, decreased MMP and aggravated mitochondrial injury in HepG2 cells, which were notably attenuated by DHM treatment. DHM-induced inhibition of oxidative stress was associated with the induction of autophagy, characterized by upregulated ATG4B and LC3 II as well as downregulated P62 levels. Furthermore, the inhibitory effects of DHM on PA-induced autophagy arrest and oxidative stress were eliminated when pretreated with a SIRT3 inhibitor 3-TYP or conducted in HepG2/ATG4B± cells, suggesting that SIRT3 and ATG4B were involved in DHM-induced benefits. Moreover, DHM treatment increased the protein expression of SIRT3 and SIRT3-dependent deacetylation of ATG4B in HepG2 cells. CONCLUSION Our results demonstrated that DHM attenuated PA-induced oxidative stress in hepatocytes through induction of autophagy, which was mediated through the increased expression of SIRT3 and SIRT3-mediated ATG4B deacetylation following DHM treatment.
Collapse
Affiliation(s)
- Li Huang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, 30th Gaotanyan Main Street, Shapingba District, 400038, Chongqing, People's Republic of China
| | - Xianglong Zeng
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, 30th Gaotanyan Main Street, Shapingba District, 400038, Chongqing, People's Republic of China.,General Hospital of Tibet Military Command Area, 850000, Lhasa, Tibet, People's Republic of China
| | - Bo Li
- Department of Blood Transfusion, 925 Hospital, Joint Logistics Support Force, PLA, 550009, Guiyang, People's Republic of China
| | - Cong Wang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, 30th Gaotanyan Main Street, Shapingba District, 400038, Chongqing, People's Republic of China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, 30th Gaotanyan Main Street, Shapingba District, 400038, Chongqing, People's Republic of China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, 30th Gaotanyan Main Street, Shapingba District, 400038, Chongqing, People's Republic of China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, 30th Gaotanyan Main Street, Shapingba District, 400038, Chongqing, People's Republic of China.
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, 30th Gaotanyan Main Street, Shapingba District, 400038, Chongqing, People's Republic of China.
| |
Collapse
|
22
|
Gilgenkrantz H, Mallat A, Moreau R, Lotersztajn S. Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol 2021; 74:1442-1454. [PMID: 33631228 DOI: 10.1016/j.jhep.2021.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
In recent years, there have been major advances in our understanding of the mechanisms underlying fibrosis progression and regression, and how coordinated interactions between parenchymal and non-parenchymal cells impact on the fibrogenic process. Recent studies have highlighted that metabolic reprogramming of parenchymal cells, immune cells (immunometabolism) and hepatic stellate cells is required to support the energetic and anabolic demands of phenotypic changes and effector functions. In this review, we summarise how targeting cell-intrinsic metabolic modifications of the main fibrogenic cell actors may impact on fibrosis progression and we discuss the antifibrogenic potential of metabolically targeted interventions.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Ariane Mallat
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Richard Moreau
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Sophie Lotersztajn
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France.
| |
Collapse
|
23
|
Wan J, Weiss E, Ben Mkaddem S, Mabire M, Choinier PM, Picq O, Thibault-Sogorb T, Hegde P, Pishvaie D, Bens M, Broer L, Gilgenkrantz H, Moreau R, Saveanu L, Codogno P, Monteiro RC, Lotersztajn S. LC3-associated phagocytosis protects against inflammation and liver fibrosis via immunoreceptor inhibitory signaling. Sci Transl Med 2021; 12:12/539/eaaw8523. [PMID: 32295902 DOI: 10.1126/scitranslmed.aaw8523] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/11/2019] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
Sustained hepatic and systemic inflammation, particularly originating from monocytes/macrophages, is a driving force for fibrosis progression to end-stage cirrhosis and underlies the development of multiorgan failure. Reprogramming monocyte/macrophage phenotype has emerged as a strategy to limit inflammation during chronic liver injury. Here, we report that LC3-associated phagocytosis (LAP), a noncanonical form of autophagy, protects against hepatic and systemic inflammation during chronic liver injury in rodents, with beneficial antifibrogenic effects. LAP is enhanced in blood and liver monocytes from patients with fibrosis and cirrhosis. Pharmacological inhibition of LAP components in human monocytes from patients with cirrhosis or genetic disruption of LAP in mice with chronic liver injury exacerbates both the inflammatory signature in isolated human monocytes and the hepatic inflammatory profile in mice, resulting in enhanced liver fibrosis. Mechanistically, patients with cirrhosis showed increased monocyte expression of Fc fragment of IgG receptor IIA (FcγRIIA) and enhanced engulfment of immunoglobulin G in LC3+ phagosomes that triggers an FcγRIIA/Src homology region 2 domain-containing phosphatase-1 (SHP-1) inhibitory immunoreceptor tyrosine-based activation motif (ITAMi) anti-inflammatory pathway. Mice overexpressing human FcγRIIA in myeloid cells show enhanced LAP in response to chronic liver injury and resistance to inflammation and liver fibrosis. Activation of LAP is lost in monocytes from patients with multiorgan failure and restored by specifically targeting ITAMi signaling with anti-FcγRIIA F(ab')2 fragments, or with intravenous immunoglobulin (IVIg). These data suggest the existence of an ITAMi-mediated mechanism by which LAP might protect against inflammation. Sustaining LAP may open therapeutic perspectives for patients with chronic liver disease.
Collapse
Affiliation(s)
- JingHong Wan
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France
| | - Emmanuel Weiss
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France.,Department of Anesthesiology and Critical Care, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, F-92110 Clichy, France
| | - Sanae Ben Mkaddem
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France
| | - Morgane Mabire
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France
| | - Pierre-Marie Choinier
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France.,Department of Anesthesiology and Critical Care, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, F-92110 Clichy, France
| | - Olivia Picq
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France.,Department of Anesthesiology and Critical Care, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, F-92110 Clichy, France
| | - Tristan Thibault-Sogorb
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France.,Department of Anesthesiology and Critical Care, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, F-92110 Clichy, France
| | - Pushpa Hegde
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France
| | - Dorsa Pishvaie
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, F-92110, Clichy, France
| | - Marcelle Bens
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France
| | - Linda Broer
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France
| | - Hélène Gilgenkrantz
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France
| | - Richard Moreau
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France.,Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, F-92110, Clichy, France
| | - Loredana Saveanu
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France
| | - Patrice Codogno
- Université de Paris Institut Necker-Enfants malades (INEM), INSERM, U1151, CNRS UMR8223, F-75015 Paris, France
| | - Renato C Monteiro
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France
| | - Sophie Lotersztajn
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France.
| |
Collapse
|
24
|
Wang XK, Peng ZG. Targeting Liver Sinusoidal Endothelial Cells: An Attractive Therapeutic Strategy to Control Inflammation in Nonalcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:655557. [PMID: 33935770 PMCID: PMC8082362 DOI: 10.3389/fphar.2021.655557] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially its advanced stage nonalcoholic steatohepatitis (NASH), has become a threatened public health problem worldwide. However, no specific drug has been approved for clinical use to treat patients with NASH, though there are many promising candidates against NAFLD in the drug development pipeline. Recently, accumulated evidence showed that liver sinusoidal endothelial cells (LSECs) play an essential role in the occurrence and development of liver inflammation in patients with NAFLD. LSECs, as highly specialized endothelial cells with unique structure and anatomical location, contribute to the maintenance of liver homeostasis and could be a promising therapeutic target to control liver inflammation of NAFLD. In this review, we outline the pathophysiological roles of LSECs related to inflammation of NAFLD, highlight the pro-inflammatory and anti-inflammatory effects of LSECs, and discuss the potential drug development strategies against NAFLD based on targeting to LSECs.
Collapse
Affiliation(s)
- Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Biotechnology of Antibiotics, National Health and Family Planning Commission, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Ahn JH, Jegal H, Choi MS, Kim S, Park SM, Ahn J, Han HY, Cho HS, Yoon S, Oh JH. TNFα enhances trovafloxacin-induced in vitro hepatotoxicity by inhibiting protective autophagy. Toxicol Lett 2021; 342:73-84. [PMID: 33609687 DOI: 10.1016/j.toxlet.2021.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Trovafloxacin (TVX) is associated with idiosyncratic drug-induced liver injury (iDILI) and inflammation-mediated hepatotoxicity. However, the inflammatory stress-regulated mechanisms in iDILI remain unclear. Herein, we elucidated the novel role of tumor-necrosis factor alpha (TNFα), an inflammatory stress factor, in TVX-induced in vitro hepatotoxicity and synergistic toxicity. TVX specifically induced synergistic toxicity in HepG2 cells with TNFα, which inhibits autophagy. TVX-treated HepG2 cells induced protective autophagy by inhibiting the expression of mTOR signaling proteins, while ATG5 knockdown in HepG2 cells, responsible for the impairment of autophagy, enhanced TVX-induced toxicity due to the increase in cytochrome C release and JNK pathway activation. Interestingly, the expression of mTOR signal proteins, which were suppressed by TVX, disrupted the negative feedback of the PI3K/AKT pathway and TNFα rebounded p70S6K phosphorylation. Co-treatment with TVX and TNFα inhibited protective autophagy by maintaining p70S6K activity, which enhanced TVX-induced cytotoxicity. Phosphorylation of p70S6K was inhibited by siRNA knockdown and rapamycin to restore TNFα-inhibited autophagy, which prevented the synergistic effect on TVX-induced cytotoxicity. These results indicate that TVX activates protective autophagy in HepG2 cells exposed to toxicity and an imbalance in negative feedback regulation of autophagy by TNFα synergistically enhanced the toxicity. The finding from this study may contribute to a better understanding of the mechanisms underlying iDILI associated with inflammatory stress.
Collapse
Affiliation(s)
- Jun-Ho Ahn
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Bio Medical Research Center, Bio Medical & Health Division, Korea Testing Laboratory (KTL), Seoul, 08389, Republic of Korea
| | - Hyun Jegal
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Mi-Sun Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Soojin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jaehwan Ahn
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
26
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
27
|
Migneault F, Hébert MJ. Autophagy, tissue repair, and fibrosis: a delicate balance. Matrix Biol 2021; 100-101:182-196. [PMID: 33454422 DOI: 10.1016/j.matbio.2021.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Tissue repair and fibrosis, an abnormal form of repair, occur in most human organs in response to injury or inflammation. Fibroblasts play a major role in the normal repair process by differentiating into myofibroblasts that synthesize extracellular matrix (ECM) components and favor tissue remodeling to reestablish normal function and integrity. However, their persistent accumulation at the site of injury is a hallmark of fibrosis. Autophagy is a catabolic process that occurs in eukaryotic cells as a stress response to allow cell survival and maintenance of cellular homeostasis by degrading and recycling intracellular components. Recent advances identify autophagy as an important regulator of myofibroblast differentiation, tissue remodeling, and fibrogenesis. In this mini-review, we provide an overview of the interactions between autophagy, ECM, and fibrosis, and emphasize the molecular mechanisms involved in myofibroblast differentiation. We also describe the emerging concept of secretory autophagy as a new avenue for intercellular communication at the site of tissue injury and repair.
Collapse
Affiliation(s)
- Francis Migneault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC H2X 0A9, Canada; Canadian Donation and Transplantation Research Program, Edmonton, Alberta T6G 2E1, Canada
| | - Marie-Josée Hébert
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC H2X 0A9, Canada; Canadian Donation and Transplantation Research Program, Edmonton, Alberta T6G 2E1, Canada; Département de médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
28
|
Wang Q, Liu W, Liu G, Li P, Guo X, Zhang C. AMPK-mTOR-ULK1-mediated autophagy protects carbon tetrachloride-induced acute hepatic failure by inhibiting p21 in rats. J Toxicol Pathol 2021; 34:73-82. [PMID: 33627946 PMCID: PMC7890163 DOI: 10.1293/tox.2020-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a lysosomal-dependent degradation pathway in eukaryotic cells. Recent
studies have reported that autophagy can facilitate the activation of hepatic stellate
cells (HSCs) and fibrogenesis of the liver during long-term carbon tetrachloride
(CCl4) exposure. However, little is known about the role of autophagy in
CCl4-induced acute hepatic failure (AHF). This study aimed to identify
whether modulation of autophagy can affect CCl4-induced AHF and evaluate the
upstream signaling pathways mediated by CCl4-induced autophagy in rats. The
accumulation of specific punctate distribution of endogenous LC3-II, increased expression
of LC3-II, Atg5, and Atg7 genes/proteins, and decreased expression of p62 gene were
observed after acute liver injury was induced by CCl4 in rats, indicating that
CCl4 resulted in a high level of autophagy. Moreover, loss of autophagic
function by using chloroquine (CQ, an autophagic inhibitor) aggravated liver function,
leading to increased expression of p21 (a cyclin-dependent kinase inhibitor) in
CCl4-treated rats. Furthermore, the AMPK-mTORC1-ULK1 axis was found to serve
a function in CCl4-induced autophagy. These results reveal that
AMPK-mTORC1-ULK1 signaling-induced autophagy has a protective role in
CCl4-induced hepatotoxicity by inhibiting the p21 pathway. This study suggests
a useful strategy aimed at ameliorating CCl4-induced acute hepatotoxicity by
autophagy.
Collapse
Affiliation(s)
- Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Weixia Liu
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Gaopeng Liu
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Pan Li
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Xueqiang Guo
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| |
Collapse
|
29
|
Jia Y, Chen Y, Liu J. Prognosis-Predictive Signature and Nomogram Based on Autophagy-Related Long Non-coding RNAs for Hepatocellular Carcinoma. Front Genet 2020; 11:608668. [PMID: 33424932 PMCID: PMC7793718 DOI: 10.3389/fgene.2020.608668] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Autophagy plays a vital role in hepatocellular carcinoma (HCC) pathogenesis. Long non-coding RNAs (lncRNAs) are considered regulators of autophagy, and the aim of the present study was to investigate the prognostic value of autophagy-related lncRNA (ARlncRNA) and develop a new prognostic signature to predict the 1-year and 3-year overall survival (OS) of HCC patients. Transcriptome and clinical survival information of HCC patients was obtained from The Cancer Genome Atlas database. A set of ARlncRNAs was identified by co-expression analysis, from which seven ARlncRNAs (AC005229.4, AL365203.2, AL117336.3, AC099850.3, ELFN1-AS1, LUCAT1, and AL031985.3) were selected for use as a predictive signature. Risk scores were derived for each patient, who were then divided into high-risk and low-risk groups according to the median risk value. The OS of high-risk patients was significantly lower than that of low-risk patients (P < 0.0001). The 1- and 3-year time-dependent ROC curves were used to evaluate the predictive ability of the risk score (AUC = 0.785 of 1 year, 0.710 of 3 years), and its predictive ability was found to be better than TNM stage. Moreover, the risk score was significantly, linearly related to pathological grade and TNM stage (P < 0.05). Overall, a novel nomogram to predict the 1-year and 3-year OS of HCC patients was developed, which shows good reliability and accuracy, for use in improved treatment decision-making.
Collapse
Affiliation(s)
- Yu Jia
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yan Chen
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiansheng Liu
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
30
|
Yen IC, Lin JC, Chen Y, Tu QW, Lee SY. Antrodia Cinnamomea Attenuates Non-Alcoholic Steatohepatitis by Suppressing NLRP3 Inflammasome Activation In Vitro and In Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1859-1874. [PMID: 33308101 DOI: 10.1142/s0192415x20500937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Blockade of the NOD-like receptor protein 3 (NLRP3) inflammasome has been shown to be effective in halting the progression of non-alcoholic steatohepatitis (NASH). Antrodia cinnamomea is a well-known indigenous medicine used by Taiwanese aboriginal tribes. However, its effect on NASH remains unclear. This study aimed to examine the mechanistic insight of Antrodia cinnamomea extract (ACE) in both in vitro and in vivo models of NASH. Murine RAW264.7 macrophages and human hepatocellular carcinoma HepG2 cells were treated with the indicated concentration of ACE 30 minutes prior to stimulation with lipopolysaccharide (LPS) for 24 h. Levels of inflammatory markers, NLRP3 inflammasome, components, and endoplasmic reticulum (ER) stress markers were analyzed by Western blotting. For the in vivo experiments, male C57BL/6 mice weighing 21-25 g were fed a methionine/choline deficient (MCD) diet along with vehicle or ACE (100 mg/kg) for 10 consecutive days. The serum glutamate pyruvate transaminase (SGPT) levels of the mice were measured. The liver tissues from the mice underwent histological analysis (hematoxylin and eosin staining), and the levels of inflammatory markers, NLRP3 inflammasome components, and autophagy-related proteins were evaluated. ACE significantly inhibited NLRP3 inflammasome activation in vitro and in vivo. In addition, ACE attenuated the severity of MCD-induced steatohepatitis, reduced the levels of oxidative stress markers, and ameliorated inflammatory responses, but restored autophagic flux. Based on these findings, Antrodia cinnamomea could be developed into an anti-non-alcoholic fatty liver disease/NASH agent.
Collapse
Affiliation(s)
- I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jung-Chun Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Tri-Service General Hospital, Taipei City, Taiwan, ROC
| | - Yu Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Qian-Wen Tu
- Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
31
|
Zou H, Yuan J, Zhang Y, Wang T, Chen Y, Yuan Y, Bian J, Liu Z. Gap Junction Intercellular Communication Negatively Regulates Cadmium-Induced Autophagy and Inhibition of Autophagic Flux in Buffalo Rat Liver 3A Cells. Front Pharmacol 2020; 11:596046. [PMID: 33390984 PMCID: PMC7774522 DOI: 10.3389/fphar.2020.596046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Cadmium is an important environmental pollutant that poses a serious threat to the health of humans and animals. A large number of studies have shown that the liver is one of the important target organs of cadmium. Stimulation of cells can lead to rapid changes in gap junction intercellular communication (GJIC) and autophagy. Previous studies have shown that cadmium can inhibit GJIC and induce autophagy. In order to understand the dynamic changes of GJIC and autophagy in the process of cadmium-induced hepatotoxic injury and the effects of GJIC on autophagy, a time-gradient model of cadmium cytotoxicity was established. The results showed that within 24 h of cadmium exposure, 5 μmol/L cadmium inhibited GJIC by down regulating the expression levels of connexin 43 (Cx43) and disturbing the localization of Cx43 in Buffalo rat liver 3A (BRL 3A) cells. In addition, cadmium induced autophagy and then inhibited autophagic flux in the later stage. During this process, inhibiting of GJIC could exacerbate the cytotoxic damage of cadmium and induce autophagy, but further blocked autophagic flux, promoting GJIC in order to obtain the opposite results.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Junzhao Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem Biol Interact 2020; 330:109199. [DOI: 10.1016/j.cbi.2020.109199] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
33
|
Kim YS, Kim SG. Endoplasmic reticulum stress and autophagy dysregulation in alcoholic and non-alcoholic liver diseases. Clin Mol Hepatol 2020; 26:715-727. [PMID: 32951410 PMCID: PMC7641579 DOI: 10.3350/cmh.2020.0173] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Alcoholic and non-alcoholic liver diseases begin from an imbalance in lipid metabolism in hepatocytes as the earliest response. Both liver diseases share common disease features and stages (i.e., steatosis, hepatitis, cirrhosis, and hepatocellular carcinoma). However, the two diseases have differential pathogenesis and clinical symptoms. Studies have elucidated the molecular basis underlying similarities and differences in the pathogenesis of the diseases; the factors contributing to the progression of liver diseases include depletion of sulfhydryl pools, enhanced levels of reactive oxygen and nitrogen intermediates, increased sensitivity of hepatocytes to toxic cytokines, mitochondrial dysfunction, and insulin resistance. Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded proteins and calcium depletion, contributes to the pathogenesis, often causing catastrophic cell death. Several studies have demonstrated a mechanism by which ER stress triggers liver disease progression. Autophagy is an evolutionarily conserved process that regulates organelle turnover and cellular energy balance through decomposing damaged organelles including mitochondria, misfolded proteins, and lipid droplets. Autophagy dysregulation also exacerbates liver diseases. Thus, autophagy-related molecules can be potential therapeutic targets for liver diseases. Since ER stress and autophagy are closely linked to each other, an understanding of the molecules, gene clusters, and networks engaged in these processes would be of help to find new remedies for alcoholic and non-alcoholic liver diseases. In this review, we summarize the recent findings and perspectives in the context of the molecular pathogenesis of the liver diseases.
Collapse
Affiliation(s)
- Yun Seok Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, Seoul, Korea.,College of Pharmacy, Dongguk University, Goyang, Korea
| |
Collapse
|
34
|
Deng Y, Wu L, Ding Q, Yu H. AGXT2L1 is downregulated in carcinomas of the digestive system. Oncol Lett 2020; 20:1318-1326. [PMID: 32724374 PMCID: PMC7377163 DOI: 10.3892/ol.2020.11645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 01/16/2020] [Indexed: 11/06/2022] Open
Abstract
Alanine-glyoxylate aminotransferase 2-like 1 (AGXT2L1) is a modulator of phospholipid metabolism, and its role in tumor biology is obscure. Previously, significant downregulation of AGXT2L1 has been observed in hepatocellular carcinoma. The aim of the present study was to investigate AGXT2L1 expression and its association with the clinical characteristics of common carcinomas of the digestive system. In the present study, the expression levels of AGXT2L1 were detected by immunohistochemical staining in colorectal cancer (CRC), gastric cancer and pancreatic cancer tissues. The associations between AGXT2L1 expression and clinicopathological features were analyzed using public gene expression datasets. Small interfering RNA was transfected into SW480 and HCT116 cells to explore the role of AGXT2L1 in CRC cells. AGXT2L1 expression was significantly decreased in cancerous tissues compared with in normal tissues, and low AGXT2L1 expression was associated with an unfavorable prognosis in patients. Furthermore, it was revealed that AGXT2L1 may regulate phosphatidylinositol and phosphatidylserine metabolism in cancerous tissues, and that decreased AGXT2L1 expression could induce autophagy in CRC cells. Overall, the present study provides a basis for further understanding of the role of AGXT2L1 and its association with autophagy in cancer.
Collapse
Affiliation(s)
- Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
35
|
Römermann D, Ansari N, Schultz-Moreira AR, Michael A, Marhenke S, Hardtke-Wolenski M, Longerich T, Manns MP, Wedemeyer H, Vogel A, Buitrago-Molina LE. Absence of Atg7 in the liver disturbed hepatic regeneration after liver injury. Liver Int 2020; 40:1225-1238. [PMID: 32141704 DOI: 10.1111/liv.14425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Autophagy is a critical process in cell survival and the maintenance of homeostasis. However, the implementation of therapeutic approaches based on autophagy mechanisms after liver damage is still challenging. METHODS We used a hepatospecific Atg7-deficient murine model to address this question. RESULTS We showed that the proliferation and regeneration capacity of Atg7-deficient hepatocytes was impaired. On the one hand, Atg7-deficient hepatocytes showed steady-state hyperproliferation. On the other hand, external triggers such as partial hepatectomy (PHx) or cell transplantation did not induce hepatocellular proliferation or liver repopulation. After PHx, hepatocyte proliferation was strongly decreased, accompanied by high mortality. This increase in mortality could be overcome by pharmacological mTOR inhibition. In accordance with hepatocyte hypoproliferation after damage, Atg7-deficient hepatocytes failed to repopulate the liver in a hepatic injury model. Atg7-deficient mice showed hepatic hypertrophy, transient cellular hypertrophy, and high transaminase levels followed by strong perisinusoidal/pericellular fibrosis with age. Their elevated modified hepatic activity index (mHAI) was almost exclusively due to apoptosis without any inflammation. These parameters were associated with variations in the triglyceride content and compromised lipid droplet formation after PHx. Mechanistically, we also observed a modulation of HGF, PAK4, NOTCH3 and YES1, which are proteins involved in cell cycle regulation. CONCLUSION We demonstrated the important role of autophagy in the regeneration capacity of hepatocytes. We showed the causative relationship between autophagy and triglycerides that is essential for promoting liver recovery. Finally, pharmacological mTOR inhibition overcame the impact of autophagy deficiency after liver damage and prevented mortality.
Collapse
Affiliation(s)
- Dorothee Römermann
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nadiea Ansari
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Adriana Rita Schultz-Moreira
- Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Alina Michael
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Thomas Longerich
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
36
|
Tam BT, Morais JA, Santosa S. Obesity and ageing: Two sides of the same coin. Obes Rev 2020; 21:e12991. [PMID: 32020741 DOI: 10.1111/obr.12991] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
Conditions and comorbidities of obesity mirror those of ageing and age-related diseases. Obesity and ageing share a similar spectrum of phenotypes such as compromised genomic integrity, impaired mitochondrial function, accumulation of intracellular macromolecules, weakened immunity, shifts in tissue and body composition, and enhanced systemic inflammation. Moreover, it has been shown that obesity reduces life expectancy by 5.8 years in men and 7.1 years in women after the age of 40. Shorter life expectancy could be because obesity holistically accelerates ageing at multiple levels. Besides jeopardizing nuclear DNA and mitochondrial DNA integrity, obesity modifies the DNA methylation pattern, which is associated with epigenetic ageing in different tissues. Additionally, other signs of ageing are seen in individuals with obesity including telomere shortening, systemic inflammation, and functional declines. This review aims to show how obesity and ageing are "two sides of the same coin" through discussing how obesity predisposes an individual to age-related conditions, illness, and disease. We will further demonstrate how the mechanisms that perpetuate the early-onset of chronic diseases in obesity parallel those of ageing.
Collapse
Affiliation(s)
- Bjorn T Tam
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Quebec, Montreal, Canada
| | - Jose A Morais
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Division of Geriatric Medicine and Research Institute, McGill University Health Centre, Quebec, Montreal, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Quebec, Montreal, Canada.,Research Centre, Centre intégré universitarie de santé et de services sociaux du Nord-de-I'Île-de-Montréal, Hôpital du Sacré-Cœur de Monréal (CIUSS-NIM, HSCM), Quebec, Montreal, Canada
| |
Collapse
|
37
|
Modulation of the Autophagy-lysosomal Pathway in Hepatocellular Carcinoma Using Small Molecules. Molecules 2020; 25:molecules25071580. [PMID: 32235537 PMCID: PMC7181071 DOI: 10.3390/molecules25071580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 90% of all cases of primary liver cancer; it is the third most frequent cause of cancer-related death worldwide. In early-stage disease, surgical resection and liver transplantation are considered curative treatments. However, the majority of HCC patients present with advanced-stage disease that is treated using palliative systemic therapy. Since HCC is heterogeneous owing to its multiple etiologies, various risk factors, and inherent resistance to chemotherapy, the development of an effective systemic treatment strategy for HCC remains a considerable challenge. Autophagy is a lysosome-dependent catabolic degradation pathway that is essential for maintaining cellular energy homeostasis. Autophagy dysfunction is closely linked with the pathogenesis of various cancers; therefore, the discovery of small molecules that can modulate autophagy has attracted considerable interest in the development of a systemic treatment strategy for advanced HCC. Here, we reviewed the roles of autophagy in HCC and the recent advances regarding small molecules that target autophagy regulatory mechanisms.
Collapse
|
38
|
Hammoutene A, Biquard L, Lasselin J, Kheloufi M, Tanguy M, Vion AC, Mérian J, Colnot N, Loyer X, Tedgui A, Codogno P, Lotersztajn S, Paradis V, Boulanger CM, Rautou PE. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J Hepatol 2020; 72:528-538. [PMID: 31726115 DOI: 10.1016/j.jhep.2019.10.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Previous studies demonstrated that autophagy is protective in hepatocytes and macrophages, but detrimental in hepatic stellate cells in chronic liver diseases. The role of autophagy in liver sinusoidal endothelial cells (LSECs) in non-alcoholic steatohepatitis (NASH) is unknown. Our aim was to analyze the potential implication of autophagy in LSECs in NASH and liver fibrosis. METHODS We analyzed autophagy in LSECs from patients using transmission electron microscopy. We determined the consequences of a deficiency in autophagy: (a) on LSEC phenotype, using primary LSECs and an LSEC line; (b) on early stages of NASH and on advanced stages of liver fibrosis, using transgenic mice deficient in autophagy specifically in endothelial cells and fed a high-fat diet or chronically treated with carbon tetrachloride, respectively. RESULTS Patients with NASH had half as many LSECs containing autophagic vacuoles as patients without liver histological abnormalities, or with simple steatosis. LSECs from mice deficient in endothelial autophagy displayed an upregulation of genes implicated in inflammatory pathways. In the LSEC line, deficiency in autophagy enhanced inflammation (Ccl2, Ccl5, Il6 and VCAM-1 expression), features of endothelial-to-mesenchymal transition (α-Sma, Tgfb1, Col1a2 expression) and apoptosis (cleaved caspase-3). In mice fed a high-fat diet, deficiency in endothelial autophagy induced liver expression of inflammatory markers (Ccl2, Ccl5, Cd68, Vcam-1), liver cell apoptosis (cleaved caspase-3) and perisinusoidal fibrosis. Mice deficient in endothelial autophagy treated with carbon tetrachloride also developed more perisinusoidal fibrosis. CONCLUSIONS A defect in autophagy in LSECs occurs in patients with NASH. Deficiency in endothelial autophagy promotes the development of liver inflammation, features of endothelial-to-mesenchymal transition, apoptosis and liver fibrosis in the early stages of NASH, but also favors more advanced stages of liver fibrosis. LAY SUMMARY Autophagy is a physiological process controlling endothelial homeostasis in vascular beds outside the liver. This study demonstrates that autophagy is defective in the liver endothelial cells of patients with non-alcoholic steatohepatitis. This defect promotes liver inflammation and fibrosis at early stages of non-alcoholic steatohepatitis, but also at advanced stages of chronic liver disease.
Collapse
Affiliation(s)
- Adel Hammoutene
- Université de Paris, PARCC, INSERM, F-75015, Paris, France; Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, F-75018, Paris, France
| | - Louise Biquard
- Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, F-75018, Paris, France
| | | | | | - Marion Tanguy
- Université de Paris, PARCC, INSERM, F-75015, Paris, France; Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, F-75018, Paris, France
| | | | - Jules Mérian
- Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | - Nathalie Colnot
- Service d'Anatomie Pathologique, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Xavier Loyer
- Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | - Alain Tedgui
- Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | - Patrice Codogno
- Université de Paris, INEM, INSERM, F-75014, Paris, France; CNRS UMR-8253, 75014, Paris, France
| | - Sophie Lotersztajn
- Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, F-75018, Paris, France
| | - Valérie Paradis
- Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, F-75018, Paris, France; Service d'Anatomie Pathologique, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | | | - Pierre-Emmanuel Rautou
- Université de Paris, PARCC, INSERM, F-75015, Paris, France; Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, F-75018, Paris, France; Service d'Hépatologie, DHU Unity, DMU Digest, Hôpital Beaujon, AP-HP, Clichy, France; Centre de Référence des Maladies Vasculaires du Foie, French Network for Rare Liver Diseases (FILFOIE), European Reference Network on Hepatological Diseases (ERN RARE-LIVER).
| |
Collapse
|
39
|
Canivet CM, Bonnafous S, Rousseau D, Leclere PS, Lacas-Gervais S, Patouraux S, Sans A, Luci C, Bailly-Maitre B, Iannelli A, Tran A, Anty R, Gual P. Hepatic FNDC5 is a potential local protective factor against Non-Alcoholic Fatty Liver. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165705. [PMID: 32001301 DOI: 10.1016/j.bbadis.2020.165705] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
The proteolytic cleavage of Fibronectin type III domain-containing 5 (FNDC5) generates soluble irisin. Initially described as being mainly produced in muscle during physical exercise, irisin mediates adipose tissue thermogenesis and also regulates carbohydrate and lipid metabolism. The aim of this study was to evaluate the hepatic expression of FNDC5 and its role in hepatocytes in Non-Alcoholic Fatty Liver (NAFL). Here we report that hepatic expression of FNDC5 increased with hepatic steatosis and liver injury without impacting the systemic level of irisin in mouse models of NAFLD (HFD and MCDD) and in obese patients. The increased Fndc5 expression in fatty liver resulted from its upregulation in hepatocytes and non-parenchymal cells in mice. The local production of Fndc5 in hepatocytes was influenced by genotoxic stress and p53-dependent pathways. The down-regulation of FNDC5 in human HepG2 cells and in primary mouse hepatocytes increased the expression of PEPCK, a key enzyme involved in gluconeogenesis associated with a decrease in the expression of master genes involved in the VLDL synthesis (CIDEB and APOB). These alterations in FNDC5-silenced cells resulted to increased steatosis and insulin resistance in response to oleic acid and N-acetyl glucosamine, respectively. The downregulation of Fndc5 also sensitized primary hepatocytes to apoptosis in response to TNFα, which has been associated with decreased hepatoprotective autophagic flux. In conclusion, our human and experimental data strongly suggest that the hepatic expression of FNDC5 increased with hepatic steatosis and its upregulation in hepatocytes could dampen the development of NAFLD by negatively regulating steatogenesis and hepatocyte death.
Collapse
Affiliation(s)
- Clémence M Canivet
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France; Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Stéphanie Bonnafous
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France; Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | | | | | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée (CCMA), Parc Valrose, Nice, France
| | - Stéphanie Patouraux
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France; Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Arnaud Sans
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France
| | - Carmelo Luci
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France
| | | | - Antonio Iannelli
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France; Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Albert Tran
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France; Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Rodolphe Anty
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France; Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France.
| | - Philippe Gual
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France.
| |
Collapse
|
40
|
Luci C, Bourinet M, Leclère PS, Anty R, Gual P. Chronic Inflammation in Non-Alcoholic Steatohepatitis: Molecular Mechanisms and Therapeutic Strategies. Front Endocrinol (Lausanne) 2020; 11:597648. [PMID: 33384662 PMCID: PMC7771356 DOI: 10.3389/fendo.2020.597648] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Non-Alcoholic Steatohepatitis (NASH) is the progressive form of Non-Alcoholic Fatty Liver Disease (NAFLD), the main cause of chronic liver complications. The development of NASH is the consequence of aberrant activation of hepatic conventional immune, parenchymal, and endothelial cells in response to inflammatory mediators from the liver, adipose tissue, and gut. Hepatocytes, Kupffer cells and liver sinusoidal endothelial cells contribute to the significant accumulation of bone-marrow derived-macrophages and neutrophils in the liver, a hallmark of NASH. The aberrant activation of these immune cells elicits harmful inflammation and liver injury, leading to NASH progression. In this review, we highlight the processes triggering the recruitment and/or activation of hepatic innate immune cells, with a focus on macrophages, neutrophils, and innate lymphoid cells as well as the contribution of hepatocytes and endothelial cells in driving liver inflammation/fibrosis. On-going studies and preliminary results from global and specific therapeutic strategies to manage this NASH-related inflammation will also be discussed.
Collapse
Affiliation(s)
- Carmelo Luci
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | | | - Rodolphe Anty
- Université Côte d’Azur, CHU, INSERM, C3M, Nice, France
| | - Philippe Gual
- Université Côte d’Azur, INSERM, C3M, Nice, France
- *Correspondence: Philippe Gual,
| |
Collapse
|
41
|
Anty R, Gual P. [Pathogenesis of non-alcoholic fatty liver disease]. Presse Med 2019; 48:1468-1483. [PMID: 31767252 DOI: 10.1016/j.lpm.2019.09.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a complex chronic disease resulting from an interaction between genetic and environmental factors. The phenotype and pathophysiology of NAFLD is heterogeneous. NAFLD is a continuum of histological lesions of the liver from steatosis, Non-Alcoholic SteatoHepatitis (NASH), NASH with fibrosis, cirrhosis to hepatocellular carcinoma. The pathophysiology encompasses a dysfunction in fatty tissue (sub-cutaneous and visceral) associated with insulin-resistance and metabolic inflammation. NAFLD is a "multi-systemic" disease. Reciprocal and aggravating interactions exist between NAFLD, cardiovascular anomalies and diabetes. The understanding of the mechanisms responsible for NAFLD allows the identification of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Rodolphe Anty
- Université Côte d'Azur, CHU, Inserm, U1065, C3M, 06000 Nice, France.
| | - Philippe Gual
- Université Côte d'Azur, Inserm, U1065, C3M, 06000 Nice, France
| |
Collapse
|
42
|
Dash S, Aydin Y, Moroz K. Chaperone-Mediated Autophagy in the Liver: Good or Bad? Cells 2019; 8:E1308. [PMID: 31652893 PMCID: PMC6912708 DOI: 10.3390/cells8111308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection triggers autophagy processes, which help clear out the dysfunctional viral and cellular components that would otherwise inhibit the virus replication. Increased cellular autophagy may kill the infected cell and terminate the infection without proper regulation. The mechanism of autophagy regulation during liver disease progression in HCV infection is unclear. The autophagy research has gained a lot of attention recently since autophagy impairment is associated with the development of hepatocellular carcinoma (HCC). Macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA) are three autophagy processes involved in the lysosomal degradation and extracellular release of cytosolic cargoes under excessive stress. Autophagy processes compensate for each other during extreme endoplasmic reticulum (ER) stress to promote host and microbe survival as well as HCC development in the highly stressed microenvironment of the cirrhotic liver. This review describes the molecular details of how excessive cellular stress generated during HCV infection activates CMA to improve cell survival. The pathological implications of stress-related CMA activation resulting in the loss of hepatic innate immunity and tumor suppressors, which are most often observed among cirrhotic patients with HCC, are discussed. The oncogenic cell programming through autophagy regulation initiated by a cytoplasmic virus may facilitate our understanding of HCC mechanisms related to non-viral etiologies and metabolic conditions such as uncontrolled type II diabetes. We propose that a better understanding of how excessive cellular stress leads to cancer through autophagy modulation may allow therapeutic development and early detection of HCC.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA.
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
43
|
Abstract
Autophagy is a self-eating catabolic pathway that contributes to liver homeostasis through its role in energy balance and in the quality control of the cytoplasm, by removing misfolded proteins, damaged organelles and lipid droplets. Autophagy not only regulates hepatocyte functions but also impacts on non-parenchymal cells, such as endothelial cells, macrophages and hepatic stellate cells. Deregulation of autophagy has been linked to many liver diseases and its modulation is now recognized as a potential new therapeutic strategy. Indeed, enhancing autophagy may prevent the progression of a number of liver diseases, including storage disorders (alpha-1 antitrypsin deficiency, Wilson's disease), acute liver injury, non-alcoholic steatohepatitis and chronic alcohol-related liver disease. Nevertheless, in some situations such as fibrosis, targeting specific liver cells must be considered, as autophagy displays opposing functions depending on the cell type. In addition, an optimal therapeutic time-window should be identified, since autophagy might be beneficial in the initial stages of disease, but detrimental at more advanced stages, as in the case of hepatocellular carcinoma. Finally, identifying biomarkers of autophagy and methods to monitor autophagic flux in vivo are important steps for the future development of personalized autophagy-targeting strategies. In this review, we provide an update on the regulatory role of autophagy in various aspects of liver pathophysiology, describing the different strategies to manipulate autophagy and discussing the potential to modulate autophagy as a therapeutic strategy in the context of liver diseases.
Collapse
|
44
|
Abstract
The average age of liver transplant donors and recipients has increased over the years. Independent of the cause of liver disease, older candidates have more comorbidities, higher waitlist mortality and higher post-transplant mortality than younger patients. However, transplant benefit may be similar in older and younger recipients, provided older recipients are carefully selected. The cohort of elderly patients transplanted decades ago is also increasingly raising issues concerning long-term exposure to immunosuppression and aging of the transplanted liver. Excellent results can be achieved with elderly donors and there is virtually no upper age limit for donors after brain death liver transplantation. The issue is how to optimise selection, procurement and matching to ensure good results with elderly donors. The impact of old donor age is more pronounced in younger recipients and patients with a high model for end-stage liver disease score. Age matching between the donor and the recipient should be incorporated into allocation policies with a multistep approach. However, age matching may vary depending on the objectives of different allocation policies. In addition, age matching must be revisited in the era of direct-acting antivirals. More restrictive limits have been adopted in donation after circulatory death. Perfusion machines which are currently under investigation may help expand these limits. In living donor liver transplantation, donor age limit is essentially guided by morbidity related to procurement. In this review we summarise changing trends in recipient and donor age. We discuss the implications of older age donors and recipients. We also consider different options for age matching in liver transplantation that could improve outcomes.
Collapse
|
45
|
Jiang M, Wu N, Chen X, Wang W, Chu Y, Liu H, Li W, Chen D, Li X, Xu B. Pathogenesis of and major animal models used for nonalcoholic fatty liver disease. J Int Med Res 2019; 47:1453-1466. [PMID: 30871397 PMCID: PMC6460620 DOI: 10.1177/0300060519833527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its pathologically more severe form, nonalcoholic steatohepatitis (NASH), have become prevalent worldwide and carry an increased risk of developing hepatocellular carcinoma and other metabolic diseases. Diverse animal models have been proposed to replicate particular characteristics of NAFLD and NASH and have provided significant clues to the critical molecular targets of NASH treatment. In this review, we summarize the histopathology, pathogenesis, and molecular basis of NAFLD progression and discuss the benchmark animal models of NAFLD/NASH.
Collapse
Affiliation(s)
- Mingzuo Jiang
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Nan Wu
- 2 Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Xi Chen
- 3 Department of Surgical Anesthesiology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Weijie Wang
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Yi Chu
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Hao Liu
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Wenjiao Li
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Di Chen
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China.,5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaowei Li
- 4 Department of Gastroenterology, PLA Navy General Hospital, Beijing, China.,5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Xu
- 5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
46
|
Habib A, Chokr D, Wan J, Hegde P, Mabire M, Siebert M, Ribeiro-Parenti L, Le Gall M, Lettéron P, Pilard N, Mansouri A, Brouillet A, Tardelli M, Weiss E, Le Faouder P, Guillou H, Cravatt BF, Moreau R, Trauner M, Lotersztajn S. Inhibition of monoacylglycerol lipase, an anti-inflammatory and antifibrogenic strategy in the liver. Gut 2019; 68:522-532. [PMID: 30301768 DOI: 10.1136/gutjnl-2018-316137] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/08/2018] [Accepted: 09/02/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Sustained inflammation originating from macrophages is a driving force of fibrosis progression and resolution. Monoacylglycerol lipase (MAGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. It is a proinflammatory enzyme that metabolises 2-arachidonoylglycerol, an endocannabinoid receptor ligand, into arachidonic acid. Here, we investigated the impact of MAGL on inflammation and fibrosis during chronic liver injury. DESIGN C57BL/6J mice and mice with global invalidation of MAGL (MAGL -/- ), or myeloid-specific deletion of either MAGL (MAGLMye-/-), ATG5 (ATGMye-/-) or CB2 (CB2Mye-/-), were used. Fibrosis was induced by repeated carbon tetrachloride (CCl4) injections or bile duct ligation (BDL). Studies were performed on peritoneal or bone marrow-derived macrophages and Kupffer cells. RESULTS MAGL -/- or MAGLMye-/- mice exposed to CCl4 or subjected to BDL were more resistant to inflammation and fibrosis than wild-type counterparts. Therapeutic intervention with MJN110, an MAGL inhibitor, reduced hepatic macrophage number and inflammatory gene expression and slowed down fibrosis progression. MAGL inhibitors also accelerated fibrosis regression and increased Ly-6Clow macrophage number. Antifibrogenic effects exclusively relied on MAGL inhibition in macrophages, since MJN110 treatment of MAGLMye-/- BDL mice did not further decrease liver fibrosis. Cultured macrophages exposed to MJN110 or from MAGLMye-/- mice displayed reduced cytokine secretion. These effects were independent of the cannabinoid receptor 2, as they were preserved in CB2Mye-/- mice. They relied on macrophage autophagy, since anti-inflammatory and antifibrogenic effects of MJN110 were lost in ATG5Mye-/- BDL mice, and were associated with increased autophagic flux and autophagosome biosynthesis in macrophages when MAGL was pharmacologically or genetically inhibited. CONCLUSION MAGL is an immunometabolic target in the liver. MAGL inhibitors may show promising antifibrogenic effects during chronic liver injury.
Collapse
Affiliation(s)
- Aida Habib
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Dina Chokr
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - JingHong Wan
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Pushpa Hegde
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Morgane Mabire
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Matthieu Siebert
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Lara Ribeiro-Parenti
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département de Chirurgie générale et digestive, Hôpital Bichat-Claude Bernard, Paris, France
| | - Maude Le Gall
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Philippe Lettéron
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Nathalie Pilard
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Abdellah Mansouri
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | | | - Matteo Tardelli
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Emmanuel Weiss
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Pauline Le Faouder
- Inserm U1048, MetaToul-Lipidomic Core Facility, MetaboHUB, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Richard Moreau
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sophie Lotersztajn
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| |
Collapse
|
47
|
Allaire M, Gilgenkrantz H. The impact of steatosis on liver regeneration. Horm Mol Biol Clin Investig 2018; 41:/j/hmbci.ahead-of-print/hmbci-2018-0050/hmbci-2018-0050.xml. [PMID: 30462610 DOI: 10.1515/hmbci-2018-0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Alcoholic and non-alcoholic fatty liver diseases are the leading causes of cirrhosis in Western countries. These chronic liver diseases share common pathological features ranging from steatosis to steatohepatitis. Fatty liver is associated with primary liver graft dysfunction, a higher incidence of complications/mortality after surgery, in correlation with impaired liver regeneration. Liver regeneration is a multistep process including a priming phase under the control of cytokines followed by a growth factor receptor activation phase leading to hepatocyte proliferation. This process ends when the initial liver mass is restored. Deficiency in epidermal growth factor receptor (EGFR) liver expression, reduced expression of Wee1 and Myt1 kinases, oxidative stress and alteration in hepatocyte macroautophagy have been identified as mechanisms involved in the defective regeneration of fatty livers. Besides the mechanisms, we will also discuss in this review various treatments that have been investigated in the reversal of the regeneration defect, for example, omega-3 fatty acids, pioglitazone, fibroblast growth factor (FGF)19-based chimeric molecule or growth hormone (GH). Since dysbiosis impedes liver regeneration, targeting microbiota could also be an interesting therapeutic approach.
Collapse
Affiliation(s)
- Manon Allaire
- Inserm U1149, Center for Research on Inflammation, Faculté de Médecine Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Service d'Hépato-gastroentérologie et Nutrition, CHU Côte de Nacre, Caen, France
| | - Hélène Gilgenkrantz
- Centre de Recherche sur l'Inflammation, Faculté de Médecine Xavier Bichat, Inserm U1149, Université Paris Diderot, Sorbonne Paris Cité, 16 Rue Huchard, 75018 Paris, France, Phone: (+33) 1 57277530
| |
Collapse
|
48
|
Chava S, Lee C, Aydin Y, Chandra PK, Dash A, Chedid M, Thung SN, Moroz K, Wu T, Nayak NC, Dash S. Chaperone-mediated autophagy compensates for impaired macroautophagy in the cirrhotic liver to promote hepatocellular carcinoma. Oncotarget 2018; 8:40019-40036. [PMID: 28402954 PMCID: PMC5522234 DOI: 10.18632/oncotarget.16685] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022] Open
Abstract
Macroautophagy and chaperone-mediated autophagy (CMA) represent two major lysosomal degradation processes and often compensate for one another to facilitate cell survival. The aim of this study was to determine whether these autophagy pathways could compensate for one another to promote HCC cell survival in the cirrhotic liver. Analysis of normal liver tissue showed no expression of glypican-3 or p62 proteins, suggesting that macroautophagy is the major contributor to autophagic flux under non-pathological conditions. Of 46 cirrhotic livers with HCC examined, 39 (84%) of HCCs showed increased expression of p62, and 36 (78%) showed increased expression of glypican-3, while adjacent non-tumorous hepatocytes were negative for expression of p62 and glypican-3, similar to normal liver tissue. These results suggest that macroautophagy flux is impaired in HCC. Furthermore, more than 95% of HCCs showed altered expression of LAMP-2A compared to the surrounding non-tumorous cirrhotic liver, consistent with induction of CMA in HCC. Elevated expression of glucose-regulated protein 78 (GRP78) and heat shock cognate protein (Hsc70) were detected in 100% of HCC and adjacent non-tumorous cirrhotic livers, suggesting that unresolved ER-stress is associated with HCC risk in liver cirrhosis. Interestingly, inhibition of lysosomal degradation using hydroxychloroquine (HCQ) induced expression of the tumor suppressor p53, promoted apoptosis, and inhibited HCC growth, whereas activation of autophagy using an mTOR inhibitor (Torin1) promoted HCC growth. Results of this study suggest that induction of CMA compensates for the impairment of macroautophagy to promote HCC survival in the cirrhotic liver.
Collapse
Affiliation(s)
- Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Christine Lee
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Yucel Aydin
- Department of Medicine, Division of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Partha K Chandra
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Asha Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Milad Chedid
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Swan N Thung
- The Lillian and Henry M. Stratton-Hans Popper Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nabeen C Nayak
- Senior Consultant and Advisor, Sir Ganga Ram Hospital, Department of Pathology, New Delhi, India
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
49
|
Zhong H, He Y, Tan ZL, Liu LM. Effect of urotensin II/urotensin II receptor system on autophagy in acute liver failure in mice. Shijie Huaren Xiaohua Zazhi 2018; 26:228-235. [DOI: 10.11569/wcjd.v26.i4.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of urotensin II/urotensin II receptor (UII/UT) system on the levels of hepatic autophagy in mice with acute liver failure (ALF).
METHODS Male Balb/c mice were randomly divided into four groups (n = 6 each): normal controls (group A), pre-treated controls (group B), model mice (group C), and pre-treated model mice (group D). Groups B and D received urantide (0.6 mg/kg body weight) via caudal vein injection. At 30 min post-injection, groups C and D were intraperitoneally injected with LPS/D-GalN to induce acute liver injury. Serum and liver tissue samples were collected 6 h later. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels were determined to assess liver injury. The expression of autophagy related genes such as Beclin-1, autophagy related 5 (Atg5), Atg7, sequestosome 1 (Sqstm1/p62), and microtubule-associated protein 1 light chain 3 (LC3) was detected by quantitative PCR. The expression of autophagic proteins LC3 and p62 was tested by Western blot.
RESULTS Serum ALT and AST levels in group C were significantly higher than those in groups A and B (P < 0.01), while they were significantly lower in group D than in group C (P < 0.01). RT-PCR analysis showed that the expression of autophagy related genes such as Beclin-1, Atg5, Atg7, p62, LC3 was downregulated in groups C and D compared to groups A and B (P < 0.05), although there was no difference between groups C and D as well as between groups A and B (P > 0.05). LC3II and p62 protein levels tested by Western blot were significantly lower in groups C and D than in groups A and B (P < 0.05), but there was no difference between groups C and D as well as between groups A and B (P > 0.05).
CONCLUSION UII/UT system has no influence on the suppressed hepatic autophagy in ALF mice.
Collapse
|
50
|
Dash S, Sarashetti PM, Rajashekar B, Chowdhury R, Mukherjee S. TGF-β2-induced EMT is dampened by inhibition of autophagy and TNF-α treatment. Oncotarget 2018; 9:6433-6449. [PMID: 29464083 PMCID: PMC5814223 DOI: 10.18632/oncotarget.23942] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) typically develops in a chronic inflammatory setting causal to release of a plethora of growth factors and cytokines. However, the molecular effect of these cytokines on HCC progression is poorly understood. In this study, we exposed HCC cells to TGF-β2 (Transforming Growth Factor-β2), which resulted in a significant elevation of EMT (Epithelial to Mesenchymal Transition) like features. Molecular analysis of EMT markers showed an increase at both RNA and protein levels upon TGF-β2 administration along with up-regulation of TGF-β-induced Smad signaling. Induction of EMT was associated with a simultaneous increase in reactive oxygen species (ROS) and cytostasis of TGF-β2-treated cells. Importantly, quenching of ROS resulted in a significant promotion of TGF-β2-induced EMT. Furthermore, cells treated with TGF-β2 also showed an enhanced autophagic flux. Interestingly, inhibition of autophagy by chloroquine-di-phosphate (CQDP) or siRNA-mediated ablation of ATG5 drastically inhibited TGF-β2-induced EMT. Autophagy inhibition significantly increased ROS levels promoting apoptosis. It was further observed that pro-inflammatory cytokine like, TNF-α (Tumor Necrosis Factor-α) can antagonize TGF-β2-induced response by down-regulating autophagy, increasing ROS levels and thus inhibiting EMT in HCC cells. This inhibitory effect of TNF-α is serum-independent. Transcriptomic analysis through RNA sequencing was further performed which validated that TGF-β2-induced autophagic genes are inhibited by TNF-α treatment suppressing EMT. Our study suggests that autophagy plays a pro-metastatic role facilitating EMT by regulating ROS levels in HCC cells and TNF-α can suppress EMT by inhibiting autophagy. We provide unique mechanistic insights into the role of TGF-β2 in HCC cells, along with appropriate cues to effectively control the disease.
Collapse
Affiliation(s)
- Subhra Dash
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | | | - Balaji Rajashekar
- Genotypic Technology Pvt. Ltd., Bangalore, India
- Institute of Computer Science, University of Tartu, Estonia
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|