1
|
Xu Y, Huang L, Zhuang Y, Huang H. Modulation of adipose tissue metabolism by exosomes in obesity. Am J Physiol Endocrinol Metab 2024; 326:E709-E722. [PMID: 38416071 DOI: 10.1152/ajpendo.00155.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
Obesity and its related metabolic complications represent a significant global health challenge. Central to this is the dysregulation of glucolipid metabolism, with a predominant focus on glucose metabolic dysfunction in the current research, whereas adipose metabolism impairment garners less attention. Exosomes (EXs), small extracellular vesicles (EVs) secreted by various cells, have emerged as important mediators of intercellular communication and have the potential to be biomarkers, targets, and therapeutic tools for diverse diseases. In particular, EXs have been found to play a role in adipose metabolism by transporting cargoes such as noncoding RNAs (ncRNA), proteins, and other factors. This review article summarizes the current understanding of the role of EXs in mediating adipose metabolism disorders in obesity. It highlights their roles in adipogenesis (encompassing adipogenic differentiation and lipid synthesis), lipid catabolism, lipid transport, and white adipose browning. The insights provided by this review offer new avenues for developing exosome-based therapies to treat obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Yajing Xu
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Linghong Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Yong Zhuang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Huibin Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| |
Collapse
|
2
|
Yu T, Wang L, Zhang L, Deuster PA. Mitochondrial Fission as a Therapeutic Target for Metabolic Diseases: Insights into Antioxidant Strategies. Antioxidants (Basel) 2023; 12:1163. [PMID: 37371893 DOI: 10.3390/antiox12061163] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial fission is a crucial process in maintaining metabolic homeostasis in normal physiology and under conditions of stress. Its dysregulation has been associated with several metabolic diseases, including, but not limited to, obesity, type 2 diabetes (T2DM), and cardiovascular diseases. Reactive oxygen species (ROS) serve a vital role in the genesis of these conditions, and mitochondria are both the main sites of ROS production and the primary targets of ROS. In this review, we explore the physiological and pathological roles of mitochondrial fission, its regulation by dynamin-related protein 1 (Drp1), and the interplay between ROS and mitochondria in health and metabolic diseases. We also discuss the potential therapeutic strategies of targeting mitochondrial fission through antioxidant treatments for ROS-induced conditions, including the effects of lifestyle interventions, dietary supplements, and chemicals, such as mitochondrial division inhibitor-1 (Mdivi-1) and other mitochondrial fission inhibitors, as well as certain commonly used drugs for metabolic diseases. This review highlights the importance of understanding the role of mitochondrial fission in health and metabolic diseases, and the potential of targeting mitochondrial fission as a therapeutic approach to protecting against these conditions.
Collapse
Affiliation(s)
- Tianzheng Yu
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Li Wang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Lei Zhang
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Omics approach to reveal the effects of obesity on the protein profiles of the exosomes derived from different adipose depots. Cell Mol Life Sci 2022; 79:570. [DOI: 10.1007/s00018-022-04597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
|
4
|
Erdogan BR, Michel MC. Does coupling to ADP ribosylation factor 6 explain differences between muscarinic and other receptors in interaction with β-adrenoceptor-mediated smooth muscle relaxation? Naunyn Schmiedebergs Arch Pharmacol 2022; 395:381-386. [PMID: 35175382 PMCID: PMC8873149 DOI: 10.1007/s00210-022-02221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022]
Abstract
Numerous studies in airways, ileum, and urinary bladder have demonstrated that relaxation by β-adrenoceptor agonists has lower potency and/or efficacy when contraction was elicited by muscarinic receptor agonists as compared to other G-protein-coupled receptors, KCl, or basal tone, but the molecular mechanisms behind this relative resistance remain unclear. A paper by Huang et al. in this issue demonstrates that NAV2729, an inhibitor of ADP ribosylation factor 6, inhibits contraction of isolated blood vessels elicited by muscarinic receptor agonists, but not by α1-adrenoceptor agonists or KCl. Against this background, we discuss the role of ADP ribosylation factor 6 in cellular responses to G-protein-coupled receptor stimulation. While ADP ribosylation factor 6 apparently is the only promising molecular explanation for the relative resistance of smooth muscle contraction elicited by muscarinic agonists, the existing data are insufficient for a robust conclusion.
Collapse
Affiliation(s)
- Betül R Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
5
|
Florijn BW, Duijs JMGJ, Klaver M, Kuipers EN, Kooijman S, Prins J, Zhang H, Sips HCM, Stam W, Hanegraaf M, Limpens RWAL, Nieuwland R, van Rijn BB, Rabelink TJ, Rensen PCN, den Heijer M, Bijkerk R, van Zonneveld AJ. Estradiol-driven metabolism in transwomen associates with reduced circulating extracellular vesicle microRNA-224/452. Eur J Endocrinol 2021; 185:539-552. [PMID: 34342596 PMCID: PMC8436186 DOI: 10.1530/eje-21-0267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Sex steroid hormones like estrogens have a key role in the regulation of energy homeostasis and metabolism. In transwomen, gender-affirming hormone therapy like estradiol (in combination with antiandrogenic compounds) could affect metabolism as well. Given that the underlying pathophysiological mechanisms are not fully understood, this study assessed circulating estradiol-driven microRNAs (miRs) in transwomen and their regulation of genes involved in metabolism in mice. METHODS Following plasma miR-sequencing (seq) in a transwomen discovery (n = 20) and validation cohort (n = 30), we identified miR-224 and miR-452. Subsequent systemic silencing of these miRs in male C57Bl/6 J mice (n = 10) was followed by RNA-seq-based gene expression analysis of brown and white adipose tissue in conjunction with mechanistic studies in cultured adipocytes. RESULTS Estradiol in transwomen lowered plasma miR-224 and -452 carried in extracellular vesicles (EVs) while their systemic silencing in mice and cultured adipocytes increased lipogenesis (white adipose) but reduced glucose uptake and mitochondrial respiration (brown adipose). In white and brown adipose tissue, differentially expressed (miR target) genes are associated with lipogenesis (white adipose) and mitochondrial respiration and glucose uptake (brown adipose). CONCLUSION This study identified an estradiol-drive post-transcriptional network that could potentially offer a mechanistic understanding of metabolism following gender-affirming estradiol therapy.
Collapse
Affiliation(s)
- Barend W Florijn
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Correspondence should be addressed to B W Florijn;
| | - Jacques M G J Duijs
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje Klaver
- Department of Internal Medicine, Division of Endocrinology, VU University Medical Center, Amsterdam, The Netherlands
| | - Eline N Kuipers
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine (Endocrinology), Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine (Endocrinology), Leiden University Medical Center, Leiden, The Netherlands
| | - Jurrien Prins
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Huayu Zhang
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hetty C M Sips
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine (Endocrinology), Leiden University Medical Center, Leiden, The Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Hanegraaf
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ronald W A L Limpens
- Department of Cell and Chemical Biology (Section Electron Microscopy), Leiden University Medical Center, Leiden, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry and Vesicle Observation Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Bas B van Rijn
- Department of Obstetrics and Fetal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine (Endocrinology), Leiden University Medical Center, Leiden, The Netherlands
| | - Martin den Heijer
- Department of Internal Medicine, Division of Endocrinology, VU University Medical Center, Amsterdam, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Dankel SN, Røst TH, Kulyté A, Fandalyuk Z, Skurk T, Hauner H, Sagen JV, Rydén M, Arner P, Mellgren G. The Rho GTPase RND3 regulates adipocyte lipolysis. Metabolism 2019; 101:153999. [PMID: 31672447 DOI: 10.1016/j.metabol.2019.153999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Adipose tissue plays a crucial role in diet- and obesity-related insulin resistance, with implications for several metabolic diseases. Identification of novel target genes and mechanisms that regulate adipocyte function could lead to improved treatment strategies. RND3 (RhoE/Rho8), a Rho-related GTP-binding protein that inhibits Rho kinase (ROCK) signaling, has been linked to diverse diseases such as apoptotic cardiomyopathy, heart failure, cancer and type 2 diabetes, in part by regulating cytoskeleton dynamics and insulin-mediated glucose uptake. RESULTS We here investigated the expression of RND3 in adipose tissue in human obesity, and discovered a role for RND3 in regulating adipocyte metabolism. In cross-sectional and prospective studies, we observed 5-fold increased adipocyte levels of RND3 mRNA in obesity, reduced levels after surgery-induced weight loss, and positive correlations of RND3 mRNA with adipocyte size and surrogate measures of insulin resistance (HOMA2-IR and circulating triglyceride/high-density lipoprotein cholesterol (TAG/HDL-C) ratio). By screening for RND3-dependent gene expression following siRNA-mediated RND3 knockdown in differentiating human adipocytes, we found downregulation of inflammatory genes and upregulation of genes related to adipocyte ipolysis and insulin signaling. Treatment of adipocytes with tumor necrosis factor alpha (TNFα), lipopolysaccharide (LPS), hypoxia or cAMP analogs increased RND3 mRNA levels 1.5-2-fold. Functional assays in primary human adipocytes confirmed that RND3 knockdown reduces cAMP- and isoproterenol-induced lipolysis, which were mimicked by treating cells with ROCK inhibitor. This effect could partly be explained by reduced protein expression of adipose triglyceride lipase (ATGL) and phosphorylated hormone-sensitive lipase (HSL). CONCLUSION We here uncovered a novel differential expression of adipose RND3 in obesity and insulin resistance, which may at least partly depend on a causal effect of RND3 on adipocyte lipolysis.
Collapse
Affiliation(s)
- Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Therese H Røst
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Agné Kulyté
- Department of Medicine (H7), Karolinska Institutet, C2-94 Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Zina Fandalyuk
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Thomas Skurk
- ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany; Else Kroener-Fresenius Centre for Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany
| | - Hans Hauner
- Else Kroener-Fresenius Centre for Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany; German Center of Diabetes Research, Helmholtz Center, Munich, Germany
| | - Jørn V Sagen
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, C2-94 Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, C2-94 Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
7
|
Rahmati M, Shariatzadeh M, Kazemi A, Taherabadi SJ. High-intensity interval training increasing ADP-ribosylation factor 6 and Cytochrome C in visceral adipose tissue of male Wistar rats. OBESITY MEDICINE 2019. [DOI: 10.1016/j.obmed.2019.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Yao Y, Yang X, Sun L, Sun S, Huang X, Zhou D, Li T, Zhang W, Abumrad NA, Zhu X, He S, Su X. Fatty acid 2-hydroxylation inhibits tumor growth and increases sensitivity to cisplatin in gastric cancer. EBioMedicine 2019; 41:256-267. [PMID: 30738828 PMCID: PMC6441949 DOI: 10.1016/j.ebiom.2019.01.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 01/25/2023] Open
Abstract
Background Most gastric cancers are diagnosed at an advanced or metastatic stage with poor prognosis and survival rate. Fatty acid 2-hydroxylase (FA2H) with high expression in stomach generates chiral (R)-2-hydroxy FAs ((R)-2-OHFAs) and regulates glucose utilization which is important for cell proliferation and invasiveness. We hypothesized that FA2H impacts gastric tumor growth and could represent a novel target to improve gastric cancer therapy. Methods FA2H level in 117 human gastric tumors and its association with tumor growth, metastasis and overall survival were examined. Its roles and potential mechanisms in regulating tumor growth were studied by genetic and pharmacological manipulation of gastric cancer cells in vitro and in vivo. Findings FA2H level was lower in gastric tumor tissues as compared to surrounding tissues and associated with clinicopathologic status of patients, which were confirmed by analyses of multiple published datasets. FA2H depletion decreased tumor chemosensitivity, partially due to inhibition of AMPK and activation of the mTOR/S6K1/Gli1 pathway. Conversely, FA2H overexpression or treatment with (R)-2-OHFAs had the opposite effects. In line with these in vitro observations, FA2H knockdown promoted tumor growth with increased level of tumor Gli1 in vivo. Moreover, (R)-2-OHFA treatment significantly decreased Gli1 level in gastric tumors and enhanced tumor chemosensitivity to cisplatin, while alleviating the chemotherapy-induced weight loss in mice. Interpretation Our results demonstrate that FA2H plays an important role in regulating Hh signaling and gastric tumor growth and suggest that (R)-2-OHFAs could be effective as nontoxic wide-spectrum drugs to promote chemosensitivity. Fund Grants of NSF, NIH, and PAPD.
Collapse
Affiliation(s)
- Yizhou Yao
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaoqin Yang
- Department of Genetics and Bioinformatics, Soochow University Medical College, Suzhou 215123, China
| | - Liang Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shishuo Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Xiaoheng Huang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Diyuan Zhou
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tingting Li
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Wei Zhang
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Xinguo Zhu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Songbing He
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
9
|
Li Y, Wang C, Huang Y, Fu R, Zheng H, Zhu Y, Shi X, Padakanti PK, Tu Z, Su X, Zhang H. C. Elegans Fatty Acid Two-Hydroxylase Regulates Intestinal Homeostasis by Affecting Heptadecenoic Acid Production. Cell Physiol Biochem 2018; 49:947-960. [PMID: 30184537 DOI: 10.1159/000493226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS The hydroxylation of fatty acids at the C-2 position is the first step of fatty acid α-oxidation and generates sphingolipids containing 2-hydroxy fatty acyl moieties. Fatty acid 2-hydroxylation is catalyzed by Fatty acid 2-hydroxylase (FA2H) enzyme. However, the precise roles of FA2H and fatty acid 2-hydroxylation in whole cell homeostasis still remain unclear. METHODS Here we utilize Caenorhabditis elegans as the model and systemically investigate the physiological functions of FATH-1/C25A1.5, the highly conserved worm homolog for mammalian FA2H enzyme. Immunostaining, dye-staining and translational fusion reporters were used to visualize FATH-1 protein and a variety of subcellular structures. The "click chemistry" method was employed to label 2-OH fatty acid in vivo. Global and tissue-specific RNAi knockdown experiments were performed to inactivate FATH-1 function. Lipid analysis of the fath-1 deficient mutants was achieved by mass spectrometry. RESULTS C. elegans FATH-1 is expressed at most developmental stages and in most tissues. Loss of fath-1 expression results in severe growth retardation and shortened lifespan. FATH-1 function is crucially required in the intestine but not the epidermis with stereospecificity. The "click chemistry" labeling technique showed that the FATH-1 metabolites are mainly enriched in membrane structures preferable to the apical side of the intestinal cells. At the subcellular level, we found that loss of fath-1 expression inhibits lipid droplets formation, as well as selectively disrupts peroxisomes and apical endosomes. Lipid analysis of the fath-1 deficient animals revealed a significant reduction in the content of heptadecenoic acid, while other major FAs remain unaffected. Feeding of exogenous heptadecenoic acid (C17: 1), but not oleic acid (C18: 1), rescues the global and subcellular defects of fath-1 knockdown worms. CONCLUSION Our study revealed that FATH-1 and its catalytic products are highly specific in the context of chirality, C-chain length, spatial distribution, as well as the types of cellular organelles they affect. Such an unexpected degree of specificity for the synthesis and functions of hydroxylated FAs helps to regulate protein transport and fat metabolism, therefore maintaining the cellular homeostasis of the intestinal cells. These findings may help our understanding of FA2H functions across species, and offer potential therapeutical targets for treating FA2H-related diseases.
Collapse
Affiliation(s)
- Yuanbao Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunxia Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yikai Huang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China
| | - Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hanxi Zheng
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoruo Shi
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China
| | - Prashanth K Padakanti
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China.,Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Li R, Shen Q, Wu N, He M, Liu N, Huang J, Lu B, Yao Q, Yang Y, Hu R. MiR-145 improves macrophage-mediated inflammation through targeting Arf6. Endocrine 2018; 60:73-82. [PMID: 29388044 DOI: 10.1007/s12020-018-1521-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To explore the relationship between miR-145 and ADP ribosylation factor 6 (Arf6) in regulating macrophage-mediated inflammation. METHODS THP-1 cells were induced by 160 nM of phorbol 12-myristate 13-acetate (PMA) for 48 h to differentiate to macrophages and then were treated with LPS (100 ng/ml) for 8 h to simulate chronic metabolic inflammation in vitro. Dual-luciferase reporter assay was performed. MiR-145 siRNA and LV-ARF6-RNAi were used to up or down regulate miR-145 and Arf6 expression in THP-1 cells, respectively. Omental adipose tissue from patients in surgical ward were collected to detect the expression of miR-145, Arf6 and production of proinflammatory cytokines. Patients were divided into three groups according to their body mass index and history of diabetes. RESULTS Dual-luciferase reporter assays showed the direct down-regulation of Arf6 by miR-145. Forty-eight-hour-transfection of miR-145 inhibitor resulted in significant increase of Arf6, IL-1beta, TNF-alpha and IL-6 as well as phosphorylation of p65 in NF-kappaB pathway in THP-1 cells, which, inversely, were reversed by overexpressing miR-145. In addition, down-regulation of Arf6 in macrophages reduced expression and secretion of cytokines. Expression of miR-145 was found to be attenuated in the omental adipose tissue of obese patients and diabetics with greater Arf6 expression, confirming the role of miR-145 in regulating macrophage-mediated inflammation targeting Arf6. CONCLUSIONS By means of reducing the expression of Arf6 and subsequent signal transduction via NF-kappaB, miR-145 plays a role in inhibiting the secretion of inflammatory factors and then improving the inflammatory status. MiR-145 might be one of the candidates for anti-inflammatory treatment for metabolic diseases.
Collapse
Affiliation(s)
- Rumei Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nan Wu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Min He
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Naijia Liu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Jinya Huang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Bin Lu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China.
| | - Renming Hu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
11
|
MiR-221-3p targets ARF4 and inhibits the proliferation and migration of epithelial ovarian cancer cells. Biochem Biophys Res Commun 2017; 497:1162-1170. [PMID: 28057486 DOI: 10.1016/j.bbrc.2017.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/01/2017] [Indexed: 01/03/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer. Although molecular diagnostic tools and targeted therapies have been developed over the past few decades, the survival rate is still rather low. Numerous researches suggest that some microRNAs (miRNAs) are key regulators of tumor progression. Among those miRNAs that has attracted much attention for their multiple roles in human cancers, the function of miR-221-3p in EOC has not been elucidated. Herein, we examined the expression of miR-221-3p in EOC patients and cell lines. Our data revealed that higher expression of miR-221-3p was linked to better overall survival in EOC patients. In-vitro experiments indicated that miR-221-3p inhibited EOC cell proliferation and migration. By performing subsequent systematic molecular biological and bioinformatic analyses, we found ADP-ribosylation factor (ARF) 4 is one of the putative target genes, the direct binding relationship was further confirmed by dual-luciferase reporter assay. Finally, a distinct gene expression between miR-221-3p and ARF4 in EOC group and normal group was identified, and the negative correlation between their expression levels in EOC specimens was further confirmed. Taken together, our research uncovered the tumor suppressive role of miR-221-3p in EOC and directly targeted ARF4, suggesting that miR-221-3p might be a novel potential candidate for clinical prognosis and therapeutics of EOC.
Collapse
|
12
|
Wang L, Li H, Zhou Y, Qin Y, Wang Y, Liu B, Qian H. Molecular cloning and characterization of an ADP-ribosylation factor 6 gene (ptARF6) from Pisolithus tinctorius. Can J Microbiol 2016; 62:383-93. [PMID: 26928195 DOI: 10.1139/cjm-2015-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ADP-ribosylation factor 6 (ARF6) is an evolutionarily conserved molecule that has an essential function in intracellular trafficking and organelle structure. To better understand its role during presymbiosis between plant roots and compatible filamentous fungi, the full-length cDNA sequence of ARF6 from Pisolithus tinctorius was cloned and a variety of bioinformatics analyses performed. The full-length sequence was 849 bp long and contained a 549 bp open reading frame encoding a protein of 182 amino acids. A phylogenetic analysis showed that ptARF6 was the ortholog of the ADP ribosylation factor 6/GTPase SAR1 gene from the white-rot basidiomycete Trametes versicolor. A domain architecture analysis of the ARF6 protein revealed a repeat region, which is a common feature of ARF6 in other species. Recombinant ARF6 protein was expressed with an N-terminal 6×His tag and purified using Ni(2+)-NTA affinity chromatography. The molecular mass of the recombinant protein was estimated by SDS-PAGE to be 25 kDa. The recombinant ARF6 protein bound strongly to 18:1 and 18:2 phosphatidic acids. Thus, ARF6 may participate in the signaling pathways involved in membrane phospholipid composition. The intracellular distribution of ptADP6 in HEK239T cells also indicates that ptADP6 may function not only in plasma membrane events but also in endosomal membranes events. Real-time quantitative PCR revealed that the differential expression of ptARF6 was associated with the presymbiotic stage. ptARF6 may be induced by presymbiosis during the regulation of mycorrhizal formation.
Collapse
Affiliation(s)
- Liling Wang
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Haibo Li
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Yifeng Zhou
- b Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Yuchuan Qin
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Yanbin Wang
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Bentong Liu
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Hua Qian
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| |
Collapse
|
13
|
Hu X, Cifarelli V, Sun S, Kuda O, Abumrad NA, Su X. Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment. J Lipid Res 2016; 57:663-73. [PMID: 26912395 DOI: 10.1194/jlr.m066530] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2(PGE2) and prostaglandin D2(PGD2), reflecting cytosolic phospholipase A2α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2potently induced macrophage migration while different FFAs and PGD2had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis.
Collapse
Affiliation(s)
- Xiaoqian Hu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110 Department of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Vincenza Cifarelli
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| | - Shishuo Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
14
|
Su X, Magkos F, Zhou D, Eagon JC, Fabbrini E, Okunade AL, Klein S. Adipose tissue monomethyl branched-chain fatty acids and insulin sensitivity: Effects of obesity and weight loss. Obesity (Silver Spring) 2015; 23:329-34. [PMID: 25328153 PMCID: PMC4310778 DOI: 10.1002/oby.20923] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/24/2023]
Abstract
OBJECTIVES An increase in circulating branched-chain amino acids (BCAA) is associated with insulin resistance. Adipose tissue is a potentially important site for BCAA metabolism. It was evaluated whether monomethyl branched-chain fatty acids (mmBCFA) in adipose tissue, which are likely derived from BCAA catabolism, are associated with insulin sensitivity. METHODS Insulin-stimulated glucose disposal was determined by using the hyperinsulinemic-euglycemic clamp procedure with stable isotope glucose tracer infusion in nine lean and nine obese subjects, and in a separate group of nine obese subjects before and 1 year after Roux-en-Y gastric bypass (RYGB) surgery (38% weight loss). Adipose tissue mmBCFA content was measured in tissue biopsies taken in the basal state. RESULTS Total adipose tissue mmBCFA content was ∼30% lower in obese than lean subjects (P=0.02) and increased by ∼65% after weight loss in the RYGB group (P=0.01). Adipose tissue mmBCFA content correlated positively with skeletal muscle insulin sensitivity (R(2) =35%, P=0.01, n=18). CONCLUSIONS These results demonstrate a novel association between adipose tissue mmBCFA content and obesity-related insulin resistance. Additional studies are needed to determine whether the association between adipose tissue mmBCFA and muscle insulin sensitivity is causal or a simple association.
Collapse
Affiliation(s)
- Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Faidon Magkos
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Dequan Zhou
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - J. Christopher Eagon
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Elisa Fabbrini
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Adewole L. Okunade
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Antonescu CN, McGraw TE, Klip A. Reciprocal regulation of endocytosis and metabolism. Cold Spring Harb Perspect Biol 2014; 6:a016964. [PMID: 24984778 DOI: 10.1101/cshperspect.a016964] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular uptake of many nutrients and micronutrients governs both their cellular availability and their systemic homeostasis. The cellular rate of nutrient or ion uptake (e.g., glucose, Fe(3+), K(+)) or efflux (e.g., Na(+)) is governed by a complement of membrane transporters and receptors that show dynamic localization at both the plasma membrane and defined intracellular membrane compartments. Regulation of the rate and mechanism of endocytosis controls the amounts of these proteins on the cell surface, which in many cases determines nutrient uptake or secretion. Moreover, the metabolic action of diverse hormones is initiated upon binding to surface receptors that then undergo regulated endocytosis and show distinct signaling patterns once internalized. Here, we examine how the endocytosis of nutrient transporters and carriers as well as signaling receptors governs cellular metabolism and thereby systemic (whole-body) metabolite homeostasis.
Collapse
Affiliation(s)
- Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
16
|
Davies JCB, Bain SC, Kanamarlapudi V. ADP-ribosylation factor 6 regulates endothelin-1-induced lipolysis in adipocytes. Biochem Pharmacol 2014; 90:406-13. [PMID: 24955982 DOI: 10.1016/j.bcp.2014.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 01/11/2023]
Abstract
Endothelin-1 (ET-1) induces lipolysis in adipocytes, where ET-1 chronic exposure results in insulin resistance (IR) through suppression of glucose transporter (GLUT)4 translocation to the plasma membrane and consequently glucose uptake. ARF6 small GTPase, which plays a vital role in cell surface receptors trafficking, has previously been shown to regulate GLUT4 recycling and thereby insulin signalling. ARF6 also plays a role in ET-1 promoted endothelial cell migration. However, ARF6 involvement in ET-1-induced lipolysis in adipocytes is unknown. Therefore, we investigated the role of ARF6 in ET-1-induced lipolysis in 3T3-L1 adipocytes. This was achieved by studying the effect of inhibitors for the activation of ARF6 and other signalling proteins on ET-1 induced lipolysis and ARF6 activation in the adipocytes. Our results indicate that ET-1 induces, through endothelin type A receptor (ETAR), lipolysis, the ARF6 activation and extracellular-signal regulated kinase (ERK) phosphorylation in adipocytes, further ET-1 stimulated lipolysis is inhibited by the inhibitors of ARF6 activation, ERK phosphorylation and dynamin, which is essential for endocytosis. Our studies also revealed that ARF6 acts upstream of ERK in ET-1-indcued lipolysis. In summary, we determined that ET-1 activation of ETAR signalled through ARF6, which is crucial for lipolysis.
Collapse
Affiliation(s)
- Jonathon C B Davies
- Institute of Life Science 1, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science 1, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | |
Collapse
|
17
|
Craft CS, Pietka TA, Schappe T, Coleman T, Combs MD, Klein S, Abumrad NA, Mecham RP. The extracellular matrix protein MAGP1 supports thermogenesis and protects against obesity and diabetes through regulation of TGF-β. Diabetes 2014; 63:1920-32. [PMID: 24458361 PMCID: PMC4030109 DOI: 10.2337/db13-1604] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microfibril-associated glycoprotein 1 (MAGP1) is a component of extracellular matrix microfibrils. Here we show that MAGP1 expression is significantly altered in obese humans, and inactivation of the MAGP1 gene (Mfap2(-/-)) in mice results in adipocyte hypertrophy and predisposition to metabolic dysfunction. Impaired thermoregulation was evident in Mfap2(-/-) mice prior to changes in adiposity, suggesting a causative role for MAGP1 in the increased adiposity and predisposition to diabetes. By 5 weeks of age, Mfap2(-/-) mice were maladaptive to cold challenge, uncoupling protein-1 expression was attenuated in the brown adipose tissue, and there was reduced browning of the subcutaneous white adipose tissue. Levels of transforming growth factor-β (TGF-β) activity were elevated in Mfap2(-/-) adipose tissue, and the treatment of Mfap2(-/-) mice with a TGF-β-neutralizing antibody improved their body temperature and prevented the increased adiposity phenotype. Together, these findings indicate that the regulation of TGF-β by MAGP1 is protective against the effects of metabolic stress, and its absence predisposes individuals to metabolic dysfunction.
Collapse
Affiliation(s)
- Clarissa S Craft
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO
| | - Terri A Pietka
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Timothy Schappe
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Trey Coleman
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO
| | - Michelle D Combs
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO
| | - Samuel Klein
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MODepartment of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Nada A Abumrad
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MODepartment of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Robert P Mecham
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
18
|
Hauton D, Holmes A, Ziff O, Kumar P. The impact of acute and chronic catecholamines on respiratory responses to hypoxic stress in the rat. Pflugers Arch 2013; 465:209-19. [PMID: 23291711 DOI: 10.1007/s00424-012-1210-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/10/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022]
Abstract
Chronic catecholamine production is associated with desensitisation and down-regulation of adrenergic receptors and occurs in conditions, such as heart failure and myocardial infarction. The effects of further acute adrenergic stimulation, which may occur during exercise, and their subsequent effects on chemosensitivity and ventilation are unclear. Chronic isoprenaline (ISO) increased ventilation by 50 % (P < 0.05) yet the sensitivity to graded hypoxia was preserved. Acute noradrenaline (NA) in control animals led to a doubling of ventilation in hyperoxia (P < 0.001), and this difference was preserved in graded hypoxia (P < 0.001). Yet, combination of NA + ISO did not increase ventilation beyond ISO at baseline or in hypoxia. ISO, NA, and NA + ISO all induced a metabolic acidosis (P < 0.05) with enhanced ventilation in partial compensation. Carotid sinus nerve (CSN) section led to a partial loss of catecholamine-induced augmentation in ventilation (P < 0.05), yet direct recording from CSN in vitro suggests catecholamine is inhibitory for CSN discharge. These observations suggest that chronic catecholamine exposure may result in decreased exercise performance as a direct consequence of the hyperpnea to compensate for an increased metabolic rate coupled with acidosis and leading to increased central chemosensitivity. A limited contribution from peripheral chemoreceptors was noted but was not a consequence of catecholamine stimulation of the carotid body.
Collapse
Affiliation(s)
- David Hauton
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | |
Collapse
|
19
|
Zhang X, Heckmann BL, Liu J. Studying lipolysis in adipocytes by combining siRNA knockdown and adenovirus-mediated overexpression approaches. Methods Cell Biol 2013; 116:83-105. [PMID: 24099289 DOI: 10.1016/b978-0-12-408051-5.00006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3T3-L1 adipocytes are widely used as a model system for studying hormone-stimulated lipolysis. However, these cells were limited in their utility for gain- and loss-of-function studies due to the low efficiency of their transfection with plasmid DNA or small interfering RNA (siRNA) oligos. In this chapter, we provide a review of two methods established for manipulation of protein expression in differentiated mature adipocytes. The use of electroporation allows a high-efficiency delivery of siRNA oligos and subsequent knockdown of specific gene expression. A centrifugation-assisted infection with recombinant adenovirus, on the other hand, enables robust overexpression of ectopic proteins. Most importantly, by combining siRNA electroporation with adenovirus infection, simultaneous manipulation of levels of two different proteins can be achieved in differentiated adipocytes. Through subsequent analyses of lipase activity in cell extracts and fatty acid or glycerol release from living cells, mutual interdependence between the two proteins in the context of basal and hormone-stimulated adipocyte lipolysis can be evaluated.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, Arizona, USA; Metabolic HEALth Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA
| | | | | |
Collapse
|
20
|
Zhou D, Samovski D, Okunade AL, Stahl PD, Abumrad NA, Su X. CD36 level and trafficking are determinants of lipolysis in adipocytes. FASEB J 2012; 26:4733-42. [PMID: 22815385 DOI: 10.1096/fj.12-206862] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD36 has been linked to the etiology of insulin resistance and inflammation. We explored its function in regulating adipose tissue lipolysis, which influences fat accumulation by liver and muscle and overall metabolism. Knockdown of CD36 in differentiated 3T3-L1 adipocytes decreased lipolysis in response to 10 μM of the β-adrenergic agonist isoproterenol (by 42%), 10 μM of the adenyl cyclase activator forskolin (by 32%), and 500 μM of the phosphodiesterase (PDE) inhibitor isobutylmethylxanthine (by 33%). All three treatments in the knockdown adipocytes were associated with significant decreases of cAMP levels and of the hormone-sensitive lipase (HSL) and perilipin phosphorylation. An important role for PDE was supported by the lack of inhibition of the lipolysis induced by the poorly hydrolyzable dibutyryl cAMP analog. An additional contributory mechanism was diminished activation of the Src-ERK1/2 pathway. Regulation of lipolysis and lipolytic signaling by CD36 was reproduced with adipose tissue from CD36(-/-) mice. The importance of surface CD36 in this regulation was suggested by the finding that the plasma membrane-impermeable CD36 inhibitor sulfo-N-succinimidyl oleate (20 μM) decreased lipolysis. Interestingly, isoproterenol induced CD36 internalization, and this process was blocked by HSL inhibition, suggesting feedback regulation of adipocyte lipolysis via CD36 trafficking.
Collapse
Affiliation(s)
- Dequan Zhou
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
21
|
Jang SY, Jang SW, Ko J. Regulation of ADP-ribosylation factor 4 expression by small leucine zipper protein and involvement in breast cancer cell migration. Cancer Lett 2011; 314:185-97. [PMID: 22004728 DOI: 10.1016/j.canlet.2011.09.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 12/21/2022]
Abstract
ADP-ribosylation factor 4 (ARF4) is a member of the Ras superfamily of small guanine nucleotide-binding proteins. ARF4 is known to interact with the epidermal growth factor receptor (EGFR) and mediates the EGF-dependent signal pathway, and has an anti-apoptotic function in human glioblastoma-derived U373MG cells. Although ARF4 plays a role in cancer cells, the molecular mechanism underlying regulation of its expression and its exact functions in breast cancer are unknown. In this study, we investigated the regulatory mechanism of ARF4 expression and its involvement in breast cancer cell migration. Our results show that phorbol 12-myristate 13-acetate (PMA) treatment increases ARF4 expression at both the transcriptional and translational levels. We found that the novel transcription factor small leucine zipper protein (sLZIP) binds directly to the CRE motif of the -43 to -35 region in the ARF4 promoter and regulates PMA-induced ARF4 expression. We also found that PMA-stimulated ARF4 expression increases AP-1 promoter activity, leading to induction of breast cancer cell migration. These results indicate that sLZIP-regulated ARF4 expression in response to PMA is involved in breast cancer cell migration, and sLZIP and ARF4 are potential therapeutic target molecules for treating breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Soon Young Jang
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | |
Collapse
|
22
|
Mancuso DJ, Sims HF, Yang K, Kiebish MA, Su X, Jenkins CM, Guan S, Moon SH, Pietka T, Nassir F, Schappe T, Moore K, Han X, Abumrad NA, Gross RW. Genetic ablation of calcium-independent phospholipase A2gamma prevents obesity and insulin resistance during high fat feeding by mitochondrial uncoupling and increased adipocyte fatty acid oxidation. J Biol Chem 2010; 285:36495-510. [PMID: 20817734 DOI: 10.1074/jbc.m110.115766] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phospholipases are critical enzyme mediators participating in many aspects of cellular function through modulating the generation of lipid 2nd messengers, membrane physical properties, and cellular bioenergetics. Here, we demonstrate that mice null for calcium-independent phospholipase A(2)γ (iPLA(2)γ(-/-)) are completely resistant to high fat diet-induced weight gain, adipocyte hypertrophy, hyperinsulinemia, and insulin resistance, which occur in iPLA(2)γ(+/+) mice after high fat feeding. Notably, iPLA(2)γ(-/-) mice were lean, demonstrated abdominal lipodystrophy, and remained insulin-sensitive despite having a marked impairment in glucose-stimulated insulin secretion after high fat feeding. Respirometry of adipocyte explants from iPLA(2)γ(-/-) mice identified increased rates of oxidation of multiple different substrates in comparison with adipocyte explants from wild-type littermates. Shotgun lipidomics of adipose tissue from wild-type mice demonstrated the anticipated 2-fold increase in triglyceride content after high fat feeding. In sharp contrast, the adipocyte triglyceride content was identical in iPLA(2)γ(-/-) mice fed either a standard diet or a high fat diet. Respirometry of skeletal muscle mitochondria from iPLA(2)γ(-/-) mice demonstrated marked decreases in state 3 respiration using multiple substrates whose metabolism was uncoupled from ATP production. Shotgun lipidomics of skeletal muscle revealed a decreased content of cardiolipin with an altered molecular species composition thereby identifying the mechanism underlying mitochondrial uncoupling in the iPLA(2)γ(-/-) mouse. Collectively, these results identify iPLA(2)γ as an obligatory upstream enzyme that is necessary for efficient electron transport chain coupling and energy production through its participation in the alterations of cellular bioenergetics that promote the development of the metabolic syndrome.
Collapse
Affiliation(s)
- David J Mancuso
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Guo L, Zhou D, Pryse KM, Okunade AL, Su X. Fatty acid 2-hydroxylase mediates diffusional mobility of Raft-associated lipids, GLUT4 level, and lipogenesis in 3T3-L1 adipocytes. J Biol Chem 2010; 285:25438-47. [PMID: 20519515 PMCID: PMC2919107 DOI: 10.1074/jbc.m110.119933] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/26/2010] [Indexed: 01/27/2023] Open
Abstract
Straight chain fatty acid alpha-oxidation increases during differentiation of 3T3-L1 adipocytes, leading to a marked accumulation of odd chain length fatty acyl moieties. Potential roles of this pathway in adipocyte differentiation and lipogenesis are unknown. Mammalian fatty acid 2-hydroxylase (FA2H) was recently identified and suggested to catalyze the initial step of straight chain fatty acid alpha-oxidation. Accordingly, we examined whether FA2H modulates adipocyte differentiation and lipogenesis in mature adipocytes. FA2H level markedly increases during differentiation of 3T3-L1 adipocytes, and small interfering RNAs against FA2H inhibit the differentiation process. In mature adipocytes, depletion of FA2H inhibits basal and insulin-stimulated glucose uptake and lipogenesis, which are partially rescued by the enzymatic product of FA2H, 2-hydroxy palmitic acid. Expression of fatty-acid synthase and SCD1 was decreased in FA2H-depleted cells, and levels of GLUT4 and insulin receptor proteins were reduced. 2-Hydroxy fatty acids are enriched in cellular sphingolipids, which are components of membrane rafts. Accelerated diffusional mobility of raft-associated lipids was shown to enhance degradation of GLUT4 and insulin receptor in adipocytes. Consistent with this, depletion of FA2H appeared to increase raft lipid mobility as it significantly accelerated the rates of fluorescence recovery after photobleaching measurements of lipid rafts labeled with Alexa 488-conjugated cholera toxin subunit B. Moreover, the enhanced recovery rates were partially reversed by treatment with 2-hydroxy palmitic acid. In conclusion, our findings document the novel role of FA2H in adipocyte lipogenesis possibly by modulation of raft fluidity and level of GLUT4.
Collapse
Affiliation(s)
- Lin Guo
- From the Department of Internal Medicine, Center for Human Nutrition, and
| | - Dequan Zhou
- From the Department of Internal Medicine, Center for Human Nutrition, and
| | | | - Adewole L. Okunade
- From the Department of Internal Medicine, Center for Human Nutrition, and
| | - Xiong Su
- From the Department of Internal Medicine, Center for Human Nutrition, and
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|